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Abstract—Privacy policies are legal documents containing
application data practices. These documents are well-established
sources of requirements in software engineering. However, pri-
vacy policies are written in natural language, thus subject to
ambiguity and abstraction. Eliciting requirements from privacy
policies is a challenging task as these ambiguities can result
in more than one interpretation of a given information type
(e.g., ambiguous information type ‘“device information” in the
statement ‘“we collect your device information). To address
this challenge, we propose an automated approach to infer
semantic relations among information types and construct an
ontology to guide requirements authors in the selection of the
most appropriate information type terms. Our solution utilizes
word embeddings and Convolutional Neural Networks (CNN) to
classify information type pairs as either hypernymy, synonymy,
or unknown. We evaluate our model on a manually-built on-
tology, yielding predictions that identify hypernymy relations in
information type pairs with 0.904 F-1 score, suggesting a large
reduction in effort required for ontology construction.

Index Terms—Privacy Policy; Privacy Requirement; Ambigu-
ity; Generality; Semantic Relation; Neural Network; Ontology

I. INTRODUCTION

Government regulations increasingly require mobile and
web-based application (app) companies to standardize their
data practices concerning the collection, use, and sharing of
various types of information. A summary of these practices are
communicated to users through online privacy policies [1], [2],
which have become a well-established source of requirements
for requirements engineers [3], [4], because they need to be
consistent with software behaviors.

The challenge of acquiring requirements from data practice
descriptions, however, is that privacy policies often contain
ambiguities [5], which admit more than one interpretation [6].
Furthermore, policies are intended to generalize across a wide
range of data practices, and are not limited to describe a single
software system, in which case they also exhibit vagueness
and generality [7]. Berry and Kamsties distinguish four broad
categories of linguistic ambiguity, including lexical, syntactic,
semantic, and pragmatic ambiguity [8]. They further separate
vagueness and generality from ambiguity. Vagueness occurs
when a phrase admits borderline cases, e.g., the word “tall” is
vague when considering a subject who is neither tall nor not
tall [8]. In generality, a superordinate term refers to two or
more subordinate terms. In linguistics, generality is encoded
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by the relationship between a hypernym, or the general term,
and more specific terms, called hyponyms.

In privacy policies, information types can be expressed
using both vague and general terms. Many policies describe
the vague phrase “device information,” which can potentially
include both a device’s “location” and its “IMEI number,”
which users may consider more or less private, leading to
boundary cases. In addition, they contain general terms, such
as “address,” which are intended to refer to more specific
meanings, such as “postal address,” “e-mail address,” or
“network address,” in which case the reader must choose an
interpretation to fit the given context.

Ambiguity, generality, and vagueness have been extensively
studied in requirements engineering research, particularly in
regulatory and policy documents. This includes techniques to
identify, classify, and model ambiguity in regulations, such
as HIPAA [9], [5], and techniques to identify generality [3],
[10], [11] and vagueness [12] in privacy policies. Recently,
two studies employ hand-crafted regular expressions over
nominals, and constituency parse trees derived from indi-
vidual policy statements to extract generalities, specifically
hypernyms[13], [14]. In another study, Hosseini et al. employ
a context-free grammar and semantic attachments to infer
generalities between information types that share at least one
common word (e.g., “device identifier” and “identifier”) [15].
This study solely relies on syntax information to infer hyper-
nyms. Consequently, generality relations between information
types, such as “device identifier” and “MAC address,” that rely
on contextual semantics and tacit knowledge are ignored.

To address the problem of ambiguity in privacy policy termi-
nology, we propose a context-wise semantic model to identify
semantic relationships, such as hypernymy and synonymy,
between information types in a given pair (e.g., pair (mobile
device identifier, MAC address)). Such relationships are then
formalized into partial ontologies which can be used by
requirements engineers for terminology disambiguation. This
model consists of five layers: information type pair input layer,
embedding layer, phrase modeling layer (i.e., convolutional
neural network (CNN)), semantic similarity and classification
layer, and finally an output layer that specifies the relation as
hypernymy, synonymy, or unknown. We investigate the effec-
tiveness of this model using a manually-constructed ontology
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as our ground truth. We elicit all the information type pairs
and their relations from this ontology, which are then used as
training and testing sets in two experiments. Our experiments
show that this model significantly outperforms the syntax-
driven method proposed by Hosseini et al. [15] with 86%
precision and 95% recall for hypernymy. The results confirm
that capturing information type contextual representation from
privacy policies can facilitate the ontology construction task.

The main contributions of this paper are as follows: (1) Con-
textual representation of information types using Word2Vec
and CNN for relationship classification; (2) Context-wise
model to classify relations given an information type pair;
(3) An empirical evaluation of the context-wise model on the
manually-constructed ontology.

This paper is organized as follows. In §1I, we motivate using
ontologies in RE. In §III and §1V, we discuss terminology and
related work. In §V, we introduce our model. In §VI and §VII,
we present the experimental design and results, followed by
threats, discussion, and conclusion in §VIII, §IX, and §X.

II. ONTOLOGY USAGE MOTIVATION

Ambiguity in privacy policies creates challenges for man-
aging privacy, tracing privacy requirements to data practices
in code, and checking the compliance of privacy policies
with regulations [9], [16], [17]. Policy analysis tools such
as PVDetector identify misalignments between policy and
practice [18]. This tool maps information types in privacy
policies to privacy-related API methods implemented in the
corresponding code. This mapping provides the semantics
needed to check code for misalignment with privacy policy,
and to suggest where the code or policy may be changed to fit
the functional and legal requirements of apps [18]. The tool
utilizes an ontology as a resource to identify relations between
information types in privacy policies.

Given the app’s byte code (i.e., apk file) and corresponding
privacy policy, PVDetector generates a list of detected mis-
alignments. These misalignments are marked as either strong
(i.e., no information type related to an API method invocation
is found in the privacy policy) or a weak (i.e., no information
type directly mapped to an API method invocation is found,
but some more general information type is found in the privacy
policy). For example, assume an app has the following text
in its privacy policy. “We collect browsing history, contact
information, mobile identifiers, and language information.” If,
upon analysis of the app’s actual dataflows, a flow is detected
from the method getMacAddress () to some method that
sends data away through the network, the possibility of private
information leakage implied. Therefore, some corresponding
information type (e.g., “MAC address”) should appear in the
privacy policy as information that may be collected. Instead,
the more broad information type “mobile identifiers”, which
does not directly describe “MAC address” but is generally
representative of it, appears in the policy. Without considering
the hypernymy relation between “MAC address” and “mobile
identifiers” (i.e., MAC address is a kind of mobile identifier),
an incorrect misalignment of omission by the policy would
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be detected (i.e., false positive). An ontology containing such
relationships facilitates the detection of the hypernym in the
policy. Thus, the false negative due to the use of a more
general term in the policy is avoided, and the policy writer
can be made aware of the more specific term “MAC address”
for improved clarity and precision. In summary, to support
automated analysis of requirements, tools and techniques are
needed to build and validate formal ontologies.

III. BACKGROUND

Ambiguity: Berry and Kamsties distinguish four broad cat-
egories of linguistic ambiguity, including lexical, syntactic,
semantic, and pragmatic ambiguity [8]. They also discuss two
phenomena closely related to ambiguity, including vagueness
and generalization [8], [6]. A requirement is ambiguous if it
admits more than one interpretation [19]. A requirement is un-
ambiguous if different stakeholders with similar backgrounds
give the same interpretation to it [20].

Semantic relations: (1) Hypernymy- a relationship between
two noun phrases where the meaning of one (hypernym)
is more generic than the other (hyponym), e.g., “device
information” is a hypernym of “device ID.” (2) Synonymy- a
relationship between two noun phrases with a similar meaning
or an abbreviation, e.g., “IP” and “Internet protocol.”
Lexicon: a collection or list of information type phrases.
Ontology: an arrangement of concept names in a graph
in which terms are connected via edges corresponding to
relationships, such as hypernymy [21]. In this paper, we only
consider information type names as concept names.

Word Embedding: Distributed representation of a word as
a vector in some m-dimensional space that helps learning
algorithms achieve better performance by grouping similar
words together [22], [23]. Each vector dimension represents
some feature of the words’ semantics in a corpus. Skip-gram
is a popular word embedding model [24]. For each word in a
corpus, the surrounding words (identified by a window size)
are used as context for that word. This context is then used as
input to a neural network that will modify the word’s vector
values. We adopt Word2Vec!, an implementation of the Skip-
gram model to construct domain-specific word embeddings.
Convolutional Neural Network (CNN): CNNs are a kind
of feed-forward network, specialized in processing data with
a grid-like topology [25]. For CNNs, there are usually three
major steps in a convolutional layer. The first step involves
applying several convolutions to the input matrix to produce a
set of linear activations [26]. The second step applies a non-
linear function (e.g., tanh, relu, etc.) to each linear activation
produced by the previous step. In the third step, different types
of pooling functions (e.g., max pooling, average pooling, etc.)
are applied to sets of areas, which cover the entire transformed
input. Pooling is done to make the transformed input approx-
imately invariant, which emphasizes the importance of the
existence of a feature in the input over the specific location
of that feature in the input [26]. The matrix result after these
three steps is a representation of the main features of the input.

Thttps://code.google.com/archive/p/word2vec/
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IV. RELATED WORK
A. Detection and Resolution of Ambiguity

Detection and resolution of ambiguity in requirements
has been the subject of studies in the RE community for
decades. Lami et al. [27] automatically detect potential lin-
guistic defects that can determine ambiguity. Nigam et al.
identify lexical, syntactic, and syntax ambiguities in words
and provide the possible sources of wrong interpretation in
requirements using POS tagger and a corpus of ambiguous
words [28]. Kiyavitskaya et al. [29] measure lexical and
syntactic ambiguities defined by [8] and identify specific
instances of pragmatic, software-engineering, and language-
error ambiguities in sentences. Ferrari and Gnesi [30] detect
pragmatic ambiguities using n knowledge graphs built upon
n individual requirement documents. The knowledge graphs
are not designed to formalize the semantic relations between
terms. Ferrari et al. [31] identify and categorize ambiguity in
requirements elicitation interviews. Massey et al. [S] model
legal text using ambiguity taxonomy introduced in [9]. Boyd
et al. reduce ambiguity in controlled natural languages by
optimally constraining lexicons using term replaceability [32].
Bhatia et al. [12] introduce a theory of vagueness for privacy
policies using a taxonomy of vague terms derived manually.

Historically, WordNet [33], [34] is widely used in detecting
ambiguity [29] and is also reported as the most utilized lexicon
to support NLP-related RE tasks [35]. However, further anal-
ysis reveals that only 14% of phrases from a privacy policy
lexicon are found in WordNet [10]. Evans et al. apply patterns
to privacy policies to extract hypernymy pairs [14]. Pattern
sets are limited because they must be manually extended to
address new policies. Hosseini et al. [13], [15] propose regular
expression patterns and a context-free grammar (CFG) to parse
a given information type and infer semantic relations based on
syntax to construct partial ontologoies. The patterns and CFG
rules fail to infer semantic relations beyond syntax that require
tacit knowledge. Besides, the methods requires a manual tag-
ging step, where each word is tagged with a syntactic role. Our
proposed model overcomes these shortcomings and provides
a fully automated approach to infer hypernymy relations.

B. Ontology in Requirements Modeling and Analysis

Ontologies are a standard form for representing the concepts
within a domain, as well as the relationships between those
concepts in a way that allows automated reasoning [36]. Due
to such benefits, prior work in RE has employed ontology
in requirements formalization and modeling. For example,
Gordon and Breaux [37] formalize regulatory requirements
from multiple jurisdictions into a single standard of care.
Breitman and do Prado Leite describe how ontologies can be
used to analyze web application requirements [38]. Breaux
et al. use an ontology to identify conflicting requirements
across vendors in a multi-stakeholder data supply chain [3].
Oltramari et al. propose a formal ontology to specify privacy-
related data practices and their categories [39]. However, this
ontology does not entail semantic relations among information
types. Humphreys et al. [40] semi-automatically populate legal
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ontologies by extracting definitions, norms, and other elements
of regulations using semantic role labeling.

Ontologies have been applied in tracing requirements to data
practices expressed in source code. Two recent works [11],
[41] identify app code that is inconsistent with privacy policies
using manually-constructed ontologies [10]. These works ex-
emplify the efficacy of ontologies for requirements traceability.
However, the manual construction of ontologies is costly
and lacks scalability due to the time spent by analysts to
compare information types, and errors generated by analysts
during comparison [10]. Our proposed automated model is an
improvement on prior work to construct ontologies.

C. Relationship Extraction using Machine Learning (ML)

Snow et al. employ hypernym-hyponym pairs in WordNet
to identify additional pairs in the parsed sentences of the
Newswire corpus [42]. The approach relies on the explicit
expression of hypernymy pairs in text. Hearst propose six
lexico-syntactic patterns to automatically identify hypernymy
in text using noun phrases and regular expressions [43]. Tradi-
tional ML approaches classify the relationship between a pair
of words in sentences by extracting features, such as part-of-
speech tags, shortest dependency path, and named entities [44],
[45], [46], [47]. Some models use deep learning to learn
sentence-level semantics of word pairs [48], [49]. Recent
works are sentence-independent and employ general-purpose
distributional vectors for a pair of words as features [50], [51],
[52], [53]. The vectors are learnt from Wikipedia, WordNet, or
Newswire corpus. In contrast, our proposed model is designed
on domain specific phrases, such as “MAC address” and learns
the vectors from a privacy policy corpus.

V. CONTEXT-WISE RELATION CLASSIFICATION MODEL

We propose a novel context-wise model for inferring se-
mantic relations between two given information types as a
pair. Figure 1 shows the overview for the model with a
pair of information types as input. Throughout the paper, we
present the information type pair as (information-typer s,
information-typerpgs), e.g., {device information, device ID),
where LHS (left-hand side) and RHS (right-hand-side) indicate
two predicates in an asymmetric ontological relationship. The
input information types in a privacy policy lexicon can be
from a single statement in a policy, different sections of
a single policy, or completely different policies. Given an
information type pair, the Embedding layer first maps the
words in an information type to their corresponding word
embedding vectors. Second, word embeddings are fed into
the Phrase Modeling layer, creating a phrase-level semantic
vector for each information type phrase. Third, the Semantic
Similarity Calculation compares the direction and distance of
the two phrase-level vectors and generates a similarity vector.
Finally, the similarity vector is input to Softmax, generating
three probabilities corresponding to hypernymy, synonymy,
and unknown. We select the most probable relation for each
information type pair. We now describe each step in detail.
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Fig. 1. Context-wise Relation Classification Model

A. Word Embedding Mapping

Each word in an information type phrase is presented
using a pre-trained 200-dimensional vector called a word
embedding [23]. To create domain-specific word embeddings,
we train the Word2Vec model using 77,556 English privacy
policies collected from mobile applications on the Google
Play Store 2 [54]. Common-purpose word embeddings trained
on the English Wikipedia dump [55], [56], [57] or Google
News dataset [22] exist, however, previous research has shown
improvements on classification accuracy by utilizing domain-
specific word embeddings [58].

To obtain the privacy policy corpus to train the Word2Vec
model, we crawl the metadata archive for more than 1,402,894
Android apps provided by the PlayDrone project [59] from
which 109,933 contained a valid link to a privacy policy. We
use the BeautifulSoup library in Python to extract the text from
the HTML files by stripping HTML tags associated with: head,
script, URL, navigation, button, and option information. Next,
we filtered non-English policy text files, yielding 77,556 pri-
vacy policies with the majority of text in English by using the
DetectLang library in Python. In the next step, for each privacy
policy, we tokenize the sentences and remove all non-English
sentences. We also expand the contractions (e.g., “won’t” is
transformed to “will not”), and remove punctuation, numbers,
email addresses, URLs, and special characters. Finally, we
transform the remaining characters to lower-case. The resulting
pre-processed text is used to train the Word2Vec [22] model.

The trained word embeddings for the words in our privacy
policy corpus are stacked in a word embedding matrix, which
is used in the mapping process. The Embedding layer maps

2http://play.google.com
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every word in an input information type phrase from a privacy
policy lexicon to its corresponding embedding vector read
from the embedding matrix. To this end, we first identify
the maximum phrase length ¢ by analyzing the number of
words in all information types in the privacy policy lexicon.
Next, the information type phrase is padded automatically if
the number of words is less than ¢ to reach the maximum
length. This approach ensures that all the input information
types have the same length. Next, using the word embedding
matrix, each word in the padded information type is mapped
to its corresponding word embedding vector. If a word cannot
be found in the embedding matrix, our approach assigns a
200-dimension vector to the word with its elements randomly
generated using the uniform distribution. In the next section,
we illustrate how the word embeddings for each padded
information type phrase are utilized to generate a phrase-level
semantic vector.

B. Phrase Modeling using CNN

In this section, we describe the phrase modeling architecture
(see Figure 2) that transforms word embeddings of an input
information type to a low dimensional, fixed-sized vector using
Convolutional Neural Network (CNN) with three different fil-
ter widths [58]. Implementing CNN with multiple filter widths
captures local semantics of n-gram of various granularities
[60]. In our case, convolutional filters with widths 1, 2, and
3 capture the semantics of unigrams, bigrams, and trigram,
respectively.

We present an example for convolution filter of width w = 3
for the padded information type P: device; informations
pad;_; pad; with length ¢, where ¢ is the maximum phrase
length in the privacy policy lexicon as discussed in Sec-
tion V-A. The words/pads in the information type P are
represented as a list of vectors (x1, 2, ..., Tt—1,2+), where
x; € R™ corresponds to word embedding of word/pad ¢ € P
and n represents the dimension of word embeddings (n = 200
as mentioned in Section V-A). Our approach automatically
assigns a 200-dimension vector with random uniform values
for pads and also the words that cannot be found in the
embedding matrix.

Using embedding vectors and filter width w = 3, the phrase
is presented as follows: {[z1;x2;x3], ..., [Te—2;Tt—1;T¢]},
where “;” shows vertical vector concatenations. In general, the
result of this module is matrix X € R™*? where ny = w xn.
To convolve all the features in X, we process X using the
linear transformation in (1).

Z=WX ey

where W7 € R™*"0 jg the linear transformation matrix and
ny is a hyper-parameter representing the number of filters,
which we set as 128 in our model. The result of linear
transformation is shown as Z € R™**, which is dependent on
t, the maximum phrase length in the privacy policy lexicon.

We further apply tanh as a non-linear activation function,
see (2), on the result of the linear transformation.

h = tanh(2) 2)
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Fig. 2. Phrase Modeling using CNN

To determine the useful features, we apply a maximum pooling
on h. The result of this process is a feature vector of size nq,
which is independent of the phrase length.

After applying the Phrase Modeling layer to the input
information type with three different convolution filter widths,
we retrieve three high-level feature vectors of size n; as
shown in Figure 2. Finally, we concatenate these three feature
vectors to create a single vector representing the phrase-level
semantics. We follow this approach to generate two phrase-
level vectors for both information-typer, s and information-
typerms. These two vectors are compared in the Semantic
Similarity Calculation layer, which we discuss next.

C. Semantic Similarity Calculation

The Semantic Similarity Calculation layer compares the
input phrase-level vectors from the Phrase Modeling layer.
We adopt the structure proposed by Tai et al. [61], where the
direction and distance of the two input vectors are compared
using the following equations. Two vectors PLVyps and
PLVgiys refer to Phrase-Level-Vectory, s and Phrase-Level-
Vectorryrs in Figure 1, which are shortened for simplicity:

dir = PLV,gs ©® PLVgrgs 3)
Dis = |PLVLHS — PLVRHs" (4)
sim = o(Wdir + Udir +b) (5)

Equation (3) compares the direction of two semantic vec-
tors PLVygs and PLVgps for each dimension using the
point-wise multiplication operator. For calculating the distance
between PLV;ys and PLVgiyg, we utilize the absolute
vector subtraction presented in (4). To integrate the results
of (3) and (4) on PLV;ys and PLViygg, we use a hidden
sigmoid layer presented in (5). The similarity vector as the
output of the function is then sent to a Softmax classifier
as shown in (6) to predict the probabilities of hypernymy,
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synonymy, and unknown. We select the prediction with the
highest probability as the relationship between information-
typer s and information-typerrs. Next, we discuss the loss
function used to train the relation classifier.

Pretation = softmaz(Wysim + by,) (6)

D. Loss Function

We use weighted cross-entropy loss to measure the per-
formance of the relation classifier with respect to the pre-
dicted probability P,cjqtion, Which has been normalized with
Softmax, and the actual label (hypernym, synonymy, un-
known). Cross-entropy loss increases as the predicted proba-
bility Pjreiation diverges from the actual label. We use weights
to account for imbalance in ontological relations, i.e., the
number of unknown pairs is several orders of magnitude
larger than all other relations combined. The weights are
calculated using the frequency of each relation’s presence
in the ontology as a simple ratio: unknown/total and
(hypernymy + synonymy)/total. The unknown ratio is
applied to hypernymy and synonymy classes, as determined
by the actual label, to give more weight when determining the
loss, and the hypernymy and synonymy ratio is applied to the
unknown class to give less weight when determining the loss.
The loss function is defined in (7).

loss = —w’ Z yzln(Prz‘elation) )
ieT
where T is the training pairs, and w’, y*, and P!, .. are the

weight, actual label, and predicted probability, respectively, for
the i*" information type pair in the training set.

The training involves sending the derivative of the loss
function through back-propagation to update the network
parameters using the stochastic gradient descent method. Each
epoch iterates over all the training data, which are divided
into multiple batches. After processing each batch of training
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data within an epoch, the parameters are updated based on
the gradient of the loss function and another hyper-parameter
called the learning rate. This hyper-parameter determines how
fast or slow the network should move towards the optimal
solution. The hyper-parameters, including learning rate, are
defined in §VI-B and §VI-C. The training process stops when
the loss value is sufficiently small or fails to decrease [62].

VI. EXPERIMENTAL DESIGNS

Predicting the ontological relationship between two entities
is a multi-class classification problem: is the first item in
an ordered information type pair, a hyponym, synonym, or
unknown to the second item? Traditional machine learning
classification approaches make an independent and identically
distributed (IID) assumption for data instances, i.e., predicting
the class label of each instance in isolation [63], [64]. In re-
quirements engineering, a major focus is to solve classification
problems with IID assumptions. For example, classifying app
reviews, bug reports, and feature requests [65], or customer
praise [66]; mining Twitter feeds for identifying software
requirements [67], [68], [69], [70]; classifying functional and
non-functional requirements [71], [72], [73]; and software
feature request detection [73].

In contrast, the IID assumption fails in classification prob-
lems where class labels are related to features of other labeled
instances. These problems can be best described as a set of ob-
jects interconnected via links to form a network structure [74].
For example, in hypertext classification, predicting the topic
of a webpage requires the knowledge of webpages linked
to the page [75]. In a hyperlink network, the classification
goal is to label nodes (webpages) with appropriate topics. To
achieve this goal, proposed classifiers not only use a webpage’s
own words, but also consider the neighboring webpages, their
attributes, and topics [75], [76], [77]. We extend this view to
the relationship classification problem: for each concept in the
ontology, we utilize the direct subsumption and equivalence
relations, along with the indirect relations with ancestors
through transitivity and equalities.

In learning ontologies, we evaluate both views with and
without the IID assumption, respectively: (1) each relationship
is independent, and the model learns direct relationships
among concepts ignoring the transitive closure of hypernymys;
or (2) relationships can be dependent, and the model learns
a partial semantic representation that is some subset of the
transitive closure of hypernymy. For example, we assume the
concept pairs (Android ID, mobile device ID) and (mobile
device ID, device identifier) are related by a hypernymy rela-
tionship. We assume the model learns semantic relationships
among these words based on how they are used in policy
sentences. Under (1) above, we train the model to learn
these relationships from policy embeddings. Under (2) above,
however, we further train the model to learn relationships
inferred through transitivity, which includes the hypernymy
relationship for the pair (Android ID, device identifier). We
hypothesize that this additional training generalizes to improve
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Info Type Frequency
IP address 41
Browser type 21
IP addresses 21
Internet protocol 16
Location information 16

TABLE I: Five Most Frequent Information Types in L

the classification of hypernymy, because more abstract hyper-
nyms can be used to group semantically similar, indirectly
related concepts. Furthermore, this approach aligns with our
intuition to discover statistical relationships between how
abstract terms are used in sentences, and how their concrete
examples are used.

Based on these two views, we design two experiments
to evaluate the context-wise relation classification model de-
scribed in Section V. In experiment 1, we evaluate the model’s
ability to classify whether an information type pair is a direct
hypernymy, synonymy, or unknown. Experiment 2 differs from
experiment 1 by considering entailed hypernymy relations,
which include direct and indirect hyponyms in a single class,
and thus we evaluate the model’s ability to classify information
type pairs into one of three classes: hypernymy (direct and
indirect), synonymy, or unknown.

This section is organized as follows. We first introduce
our ground-truth ontology followed by the approach to design
experiment 1. Next, we discuss experiment 2, which unfolds
the unique challenge of learning with ontologies and the
overall design for experiment 2.

A. Ground-truth Ontology

As our ground truth, we utilize an ontology manually
built upon a privacy policy lexicon, called L. The lexicon is
extracted from the data collection practices of 50 mobile app
privacy policies and contains 356 platform-related information
types (e.g., “IP address”) defined as “any information that the
app or another party accesses through the mobile platform
that is not unique to the app” [11]. These 50 policies are
unrestricted by domain, and cover gaming, finance, commu-
nication, music, productivity, social and entertainment, sports,
and shopping, among others. In Table I, we present the top 5
most frequent information types across lexicon L. Hosseini
et al. construct an ontology from lexicon L by manually
applying seven heuristics that are identified through grounded
analysis of five privacy policies [10], [11]. This ontology?
contains 367 information types, which are used to comprise
1,583 hypernymy and 310 synonymy relationships between
information type pairs [10].

We use the following formal representation for an on-
tology. An ontology is a knowledge base KB expressed
using F Ly, a sub-language of the Attribute Language (AL)
in Description Logic (DL). A DL knowledge base KB is
comprised of two components, 7' Box and ABox [78]. T Box
consists of terminology, i.e., the vocabulary (concepts and

3http://polidroid.org/downloads/ontology.owl
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Hypernymy | Synonymy | unknown Model Hyper-parameter | Best
truth-set; 1,583 310 65,268 Hyper-parameter Options Hyper-parameter
Selection
TABLE II: Experiment 1: Number of Pairs in truth-set; Number of Epochs 10, 15 10
Dropout Keep Rate 0.7, 0.8, 0.9 0.9
Information- Information- Semantic Rela- Batch Size 30, 128, 200 128
typeros typerus tion Label Learning Rate 0.01, 0.001 0.001
Android ID Mobile device ID | Direct Convolution Activa- | tanh, relu, sigmoid | tanh
Hypernymy tion Function

Mobile Device | Device identifier Direct Prediction Function sigmoid, softmax sigmoid
ID Hypernymy TABLE IV: Experiment 1: Parameter Configuration Options
DID Device identifier | Synonymy
URL URLs Synonymy two parts with 70:30 ratio. One dataset (70% of truth-set;)
Android ID Device identifier | unknown is used for hyper-parameter optimization and training, called
Call duration Advertising ID unknown training-set;. The second dataset, called testing-sety, is set

TABLE III: Experiment 1: truth-set; Pairs Examples

roles) of an application domain. ABoz contains assertions
about named individuals using this vocabulary. The manually-
constructed ontology only contains terminology, which we
call TBox T [10]. TBox T contains terminological axioms
that relate concepts to each other in the form of subsumption
and equivalence, which we use to formalize hypernymy, and
synonymy. A concept C' is subsumed by a concept D, written
T & C C D, if C* C DZ for all interpretations Z that
satisfy TBox T. The concept C is equivalent to a concept
D, written T = C = D, if CT = D7 for all interpretations
7 that satisfy T Box T. Axioms of the first kind (C' C D)
are called inclusions, whereas axioms of the second kind
(C = D) are called equalities [78]. Note that the equalities
C = D can be rewritten as two inclusion axioms C C D and
D C C. A subset of the ground-truth ontology is shown in
Figure 3. For clarity, we focus on “identifiers” in this figure,
hiding other subclasses. Furthermore, some concepts, such as
“mobile device identifier” and “mobile device identifiers” are
equivalent and this equality is shown using two inclusions.

B. Experiment 1

In this experiment, we evaluate the IID assumption by
classifying whether a new information type pair describes a
direct hypernymy, synonymy, or unknown. To this end, we
define direct hypernymy for concepts C, D if their relation
satisfies the following three criteria: (1) C' T D; (2) there
exists no concept E such that C C F and £ C D; and (3)
C # D. We define synonymy relationship for concepts C, D
if C = D. If a pair is related in a way other than a direct
hypernymy or synonymy relationship, we classify this rela-
tionship as unknown. unknown means an explicit relationship
is yet unknown, yielding no change to the ontology. Using
this definition, we identify direct hypernyms, synonyms, and
unknown pairs in the ground-truth ontology as truth-set;.
Table II presents the number of pairs identified for each class
in truth-set,. Table III presents examples of information type
pairs along with their relationships in this set.

We train and test the classifier with a 10-fold cross vali-
dation on truth-set;. To this end, we split truth-set; into
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aside toward final testing*. For hyper-parameter optimization,
we partition training-sety into 10 sets D1, Do, D3, - - - , D1g.
For each possible hyper-parameter combination we use nine
sets to fit our model and use the remaining set to validate the
model. This process is repeated 10 times for each possible
hyper-parameter combination, yielding 10 average F-1 score
on three classes. To create possible combinations of hyper-
parameters, we use grid search over six hyper-parameters of
the classification model, including number of epochs, dropout
keep rate, batch size, learning rate, convolution activation
function, and prediction function. The hyper-parameters, their
different configuration options, and best performing combina-
tion with respect to average F-1 score on three classes, are
shown in Table IV.

After selecting the best hyper-parameter combination, we
test the model using testing-set; and report the performance
metrics for three classes. In this experiment, we aim to answer
the following research questions.

RQ1: To what extent does the classification model reduce
the manual ontology construction effort?

RQ2: What is the effect of missing transitive hypernymy
on classification performance?

C. Experiment 2

In an ontology, the relationships between concepts are
not independent, e.g., the relationships in hypernymy are
transitive. Removing a relationship between a superordinate
and subordinate concept can lead to misclassification between
the subordinate concept and its ancestor concepts, because
missing intermediary concepts provide the categorical bridge
to ancestor concepts. Thus, we are interested in classifying
information type pairs using the pair’s attributes, and the
pair’s neighbors’ attributes. This approach assumes the IID
assumption is false.

Experiment 2 classifies whether a new information type pair
is one of hypernymy, synonymy, or unknown. This experiment
diverges from experiment 1 by listing both direct and transitive
hypernymy relationships from a 7'Box entailment. Therefore,
we define hypernymy relationship between two concepts C, D,
such that: (1) C' C D; and (2) C' # D. We define synonymy

“https://github.com/01458198/RE21-Dataset
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Fig. 3. Ground-truth Ontology Fragment View

Hypernymy | Synonymy | Unknown
truth-sety 7,070 310 59,781

TABLE V: Experiment 2: Number of Pairs in truth-seto

Information- Information- Semantic Rela-
typer s typerus tion Label
Android ID Mobile Device | Hypernymy
ID

Mobile device ID | Device identifier | Hypernymy
Android ID Device identifier | Hypernymy

DID Device identifier | Synonymy

URL URLs Synonymy

Call duration Adbvertising ID Unknown

TABLE VI: Experiment 2: truth-sety Pairs Examples

relationship for concepts C, D if C'= D. If a pair is related
in any way other than a hypernymy or synonymy relationship,
we classify this relationship unknown. Using this definition,
we create truth-sets and present the resulting counts for each
relationship in Table V. Further, Table VI presents examples
from this set. In contrast to instances listed in Table VI, the
pair (Android ID, device identifier) is labeled as hypernymy.

We train and test the classifier with a 10-fold cross val-
idation on truth-set. Similar to experiment 1, we split
truth-sety into two parts with 70:30 ratio. training-sets
is used for hyper-parameter optimization and training, and
testing-sety is set aside toward final testing*. The hyper-
parameters, their different configuration options, and best
performing selections for experiment 2 are shown in Table VII.
Experiments 1 and 2 raise the following research question.

RQ3: How does the IID assumption affect the performance
of relation classification model?

VII. EXPERIMENTAL RESULTS

A. Experiment 1 Results

In experiment 1, we compare the labels of testing-set;
with the predicted relations to answer RQ1 and RQ2. We
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Model Hyper- | Hyper- Best Hyper-

parameter parameter parameter
Options Selection

Number of | 10, 15 10

Epochs

Dropout Keep | 0.7, 0.8, 0.9 0.9

rate

Batch Size 30, 128, 200 200

Learning Rate 0.01, 0.001 0.001

Convolution Ac- | tanh, relu, sig- | relu

tivation Function | moid

Prediction Func- | sigmoid, softmax | softmax

tion

TABLE VII: Experiment 2: Parameter Configuration Options

report the model’s performance using precision, recall, and F-1
score. test-set1 contains 856 direct hypernymy, 87 synonymy,
and 19,605 unknown instances. Since our dataset is skewed
toward unknown, we opt for F-1 score, which provides a better
balance between precision and recall. Table VIII presents the
confusion matrix, where each row presents the class predic-
tions, and each column presents the actual class instances.
For each class, we define correct predictions (CPs), if the
prediction is the same as class label, shown in the shaded
diagonal. Equations 8- 10 are used to calculate performance
measures, which appear in Table IX. The relation classification
model fails to predict synonymy relationships. This outcome
is not unexpected, since synonyms are rare and the data set is
highly imbalanced.

. CPreati
Precision,eiation = T ®)
#Predictions,ciation
CPrclation
Recallrelation = T )
#La ElSrelation
Precision,eigtion X Recallreiation
F'lrelation =2x (10)

PreCiSionrelation + Recallrelation
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Actual Actual Actual Total Pre-
Direct Syn- Unknown | dictions/-
Hypernymy | onymy Class
Predicted 372 35 239 646
Direct
Hypernymy
Predicted 0 0 5 5
Synonymy
Predicted Un- | 84 52 19,361 19,497
known
Total Labels/- | 456 87 19,605
Class

TABLE VIII: Experiment 1: Confusion Matrix

Hypernymy | Synonymy | Unknown
Precision 0.575 0.000 0.993
Recall 0.815 0.000 0.987
F-1 Score | 0.673 0.000 0.989

TABLE IX: Experiment 1: Performance Measures

The manual ontology construction method requires com-
paring paired information types by at least two analysts [10],
[11]. Therefore, a complete analysis of n information types

. nx(n—1) . . .
requires comparisons. The average time for a pair
comparison is reported at 11.72 seconds [13], which makes
the task tedious and not feasible for large n. Further, the
method is susceptible to human error due to fatigue and gaps in
analysts’ domain knowledge [13]. In addition, as language use
evolves, the ontology would need to be extended over time.
Evidence from Bhatia et al. shows that between 23-71% of
information types in any new privacy policy will be previously
unseen [79]. To address RQ1, we evaluate the extent that the
relation classification model can reduce ontology construction
effort. The ground-truth ontology contains 367 information
types. Using the manual method, an analyst must compare
w = 67,161 information type pairs during construc-
tion (~218 hours). A key challenge is reducing the number
of comparisons, particularly of information type pairs that are
unknown and that dominate the space of comparisons, e.g.,
the unknown dominates %97 of the truth-set; (see Table II).
The 0.987 recall for predicting unknown pairs enables analysts
to identify unknown pairs with high confidence, significantly
reducing comparison time by 97%.

In experiment 1, truth-set; includes direct hypernymy
relations and thus label indirect, or ancestor hypernymy re-
lations as unknown. This task aims to predict the graph edges
in an ontology, ignoring that subsumption is transitive and
the transitive closure of a concept’s class relationships. RQ2
investigates the effect of missing transitive hypernymy on re-
lation classification performance. To answer RQ2, we analyze
the logical entailment of 1,207 falsely predicted hypernymy
relations that were labeled unknown. We utilize the OWL API
HermiT reasoner’ for this analysis. The results show 44% of
falsely predicted hypernymy relations with unknown labels are
logically entailed through indirect hypernymy. Table X shows

Shttp://www.hermit-reasoner.com/java.html
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Information- Information- Pre | Act | Ent | Hops

typerLus typerus

Device brand Device H U | Yes 3

Mobile device | Mobile device H U | Yes 2

IP address

MAC address Hardware H U | Yes 3
Information

Player Interactions H U | Yes 2

interactions

Mobile devices | Device H U | Yes 2

unique identifiers

identifier

Unique Hardware H U | Yes 2

hardware information

identifiers

Website Usage times H U No -

activity date

Devices UDID | Device unique | H U No -
identifier

Postal code Approximate H U No -
geographical
location

WiFi Mobile device H U No -

signal strength

Websites Aggregated H U No -

visited user data

MAC address Hardware H U No -
settings

TABLE X: Examples of False Hypernymy Predictions

a sample analysis result, where the model prediction (Pre) is
hypernymy (H) and the actual label (Act) is unknown (U). If
a pair is logically entailed, we show the number of hops/edges
between the types in the ontology. Notably, predicting indirect
hypernyms could improve results.

B. Experiment 2 Results

In experiment 2, we include direct and indirect hypernymy
in the actual labeled relations. The model is trained on
testing-set, containing 2,116 information type pairs labeled
as hypernymy (direct and transitive), 106 information type
pairs labeled as synonymy, and 17,926 pairs as unknown.
We evaluate the performance of the relation classification
model by comparing the actual labels of testing-set, with
the predicted relations.

RQ3 seeks to investigate the effect of transitional hyper-
ynymy in classification performance. We use precision, recall,
and F-1 score as measures to evaluate the performance on
testing-sets. The confusion matrix for this evaluation is
presented in Table XI. In contrast to Table VIII, some portion
of unknown labeled instances are shifted toward hypernymy.
Hence, the model’s performance on hypernymy shows a sig-
nificant improvement as shown in Table XII.

VIII. THREATS TO VALIDITY

Construct Validity: Construct validity concerns whether we
are measuring what we believe we are measuring. Because
we utilize a previously published ontology (See §VI-A) as the
ground truth [10], [11], [18], there is a risk that the expected
relations are incorrect. The ontology authors describe two
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Actual | Actual | Actual | Total
Hyper- | Syn- Un- Predictions
nymy onymy | known | /Class
Predicted 2,013 58 257 2,328
Hypernymy
Predicted 0 0 0 0
Synonymy
Predicted 103 48 17,669 | 17,820
Unknown
Total 2,116 106 17,926
Labels/Class

TABLE XI: Experiment 2: Confusion Matrix

Hypernymy | Synonymy | Unknown
Precision 0.864 0.000 0.991
Recall 0.951 0.000 0.985
F-1 Score | 0.904 0.000 0.985

TABLE XII: Experiment 2: Performance Measures

rounds of consensus-building while developing the ontology,
including an inter-rater reliability Kappa statistic of 0.977 and
0.979, which is extremely high above-chance agreement [10].

Internal Validity: We mitigate threats to internal validity by
applying established training procedures: the ground-truth in
both experiments are partitioned into training and testing sets
with 70:30 ratio, and we employ a 10-fold cross validation on
the training sets for each experiment. Due to data imbalance,
however, the model fails to accurately predict synonymy
results. According to Tables II and V, synonymy relations
constitute only 0.46% of instances in both truth-set; and
truth-set,. To address this threat, we introduce a weighted
cross-entropy loss function (see §V-D) in our model. Despite
biasing weights for prediction, which enhances hypernymy
predictions, synonymy predictions remain unaffected. We rec-
ognize that this approach fails to fully mitigate the risk to
internal validity. Additional effort is required to reduce the
effect of the minority class (i.e., synonymy) by applying over-
sampling methods to synonymy instances [80].

External Validity: We acknowledge that the model is only
trained on platform information types (see § VI-A), which does
not include domain-specific information types, such as health-
, finance-, dating-, and shopping-related app data, to name
a few. Additional experiments are required to investigate the
generalizability of the model.

IX. DISCUSSION

The use of ontologies are directly impactful to novel tech-
niques in privacy-sensitive static and dynamic information
flow tracing in software engineering [81], [54], [11]. However,
due to technical challenges in information flow tracing, such
approaches may not yet be broadly used in industry. That said,
continued pressure by regulators and corporate compliance
under privacy laws, including the E.U. General Data Protection
Regulation, is driving the need to understand where companies
collect and use sensitive data. A preliminary step in ratio-
nalizing corporate data flows, is classifying stored data by
a broad category, which evidence suggests can easily reach
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into the thousands of distinct types [79]. Without explicit,
scalable procedures to construct these ontologies and detect
relationships between information type names, companies will
produce compliance gaps, where rules for protecting data
are applied unevenly due to misalignments arising from am-
biguous and vague information type names. Our model for
inferring semantic relations between information types can
bolster these efforts and increase their viability by providing
a general approach for ontology construction, thus yielding a
strong indirect benefit to engineers and regulators.

We now examine the characteristics of the ground-truth
ontology. This ontology contains 367 information types, re-
sulting in w = 67,161 information type pairs that
an analyst must compare during construction. According to
Table V in experiment 2, truth-sety contains 59,781 unknown
pairs. Consequently, noting 67,161 possible pairs, 89% of
these pairs are identified as unknown in the ground-truth
ontology. This percentage reflects that: (1) given all possible
information type pair comparisons, there are few relationships
(high sparsity); and (2) the corresponding imbalance between
related (e.g., hypernymy and synonymy) and unknown pairs
is intrinsic to this problem’s nature. Given this observation,
the model identifies unknown information type pairs with
0.985 F-1 score, greatly reducing the burden of manually
checking the unknown pairs in the search space of possible
relations for an analyst. In addition, test-sets contains 2,222
positive relationships (i.e., direct and transitive hypernymy and
synonymy). According to Table XI for experiment 2, the model
identifies 2,013 hypernymy from this positive space. The high
F-1 score of 0.904 suggests that a requirements analyst can
trust the hypernymy relationships inferred by the model.

X. CONCLUSION

Privacy policies are well-established sources of require-
ments in software engineering. However, such documents are
subject to abstraction and ambiguity, making requirements
extraction a challenging task. We focus on the role of hy-
pernyms and their formal relationships among terminology in
privacy policies to propose a model for constructing partial
ontologies. Such ontologies can be used as knowledge bases
by requirements analysts for resolving conflicting interpre-
tations of ambiguous terminology. As improvements to our
model, we plan to apply over-sampling methods to synonymy
relations. Further, we plan to evaluate ontologies created
through our model in privacy detection misalignment tools
and privacy question-answering systems. We also plan to
automatically extract information types from privacy policies
and apply our current model to infer semantic relations. Such
an improvement will enhance automatic elicitation of privacy
requirements.
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