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Abstract—Privacy policies are legal documents containing
application data practices. These documents are well-established
sources of requirements in software engineering. However, pri-
vacy policies are written in natural language, thus subject to
ambiguity and abstraction. Eliciting requirements from privacy
policies is a challenging task as these ambiguities can result
in more than one interpretation of a given information type
(e.g., ambiguous information type “device information” in the
statement “we collect your device information”). To address
this challenge, we propose an automated approach to infer
semantic relations among information types and construct an
ontology to guide requirements authors in the selection of the
most appropriate information type terms. Our solution utilizes
word embeddings and Convolutional Neural Networks (CNN) to
classify information type pairs as either hypernymy, synonymy,
or unknown. We evaluate our model on a manually-built on-
tology, yielding predictions that identify hypernymy relations in
information type pairs with 0.904 F-1 score, suggesting a large
reduction in effort required for ontology construction.

Index Terms—Privacy Policy; Privacy Requirement; Ambigu-
ity; Generality; Semantic Relation; Neural Network; Ontology

I. INTRODUCTION

Government regulations increasingly require mobile and

web-based application (app) companies to standardize their

data practices concerning the collection, use, and sharing of

various types of information. A summary of these practices are

communicated to users through online privacy policies [1], [2],

which have become a well-established source of requirements

for requirements engineers [3], [4], because they need to be

consistent with software behaviors.

The challenge of acquiring requirements from data practice

descriptions, however, is that privacy policies often contain

ambiguities [5], which admit more than one interpretation [6].

Furthermore, policies are intended to generalize across a wide

range of data practices, and are not limited to describe a single

software system, in which case they also exhibit vagueness

and generality [7]. Berry and Kamsties distinguish four broad

categories of linguistic ambiguity, including lexical, syntactic,

semantic, and pragmatic ambiguity [8]. They further separate

vagueness and generality from ambiguity. Vagueness occurs

when a phrase admits borderline cases, e.g., the word “tall” is

vague when considering a subject who is neither tall nor not

tall [8]. In generality, a superordinate term refers to two or

more subordinate terms. In linguistics, generality is encoded

by the relationship between a hypernym, or the general term,

and more specific terms, called hyponyms.

In privacy policies, information types can be expressed

using both vague and general terms. Many policies describe

the vague phrase “device information,” which can potentially

include both a device’s “location” and its “IMEI number,”

which users may consider more or less private, leading to

boundary cases. In addition, they contain general terms, such

as “address,” which are intended to refer to more specific

meanings, such as “postal address,” “e-mail address,” or

“network address,” in which case the reader must choose an

interpretation to fit the given context.

Ambiguity, generality, and vagueness have been extensively

studied in requirements engineering research, particularly in

regulatory and policy documents. This includes techniques to

identify, classify, and model ambiguity in regulations, such

as HIPAA [9], [5], and techniques to identify generality [3],

[10], [11] and vagueness [12] in privacy policies. Recently,

two studies employ hand-crafted regular expressions over

nominals, and constituency parse trees derived from indi-

vidual policy statements to extract generalities, specifically

hypernyms[13], [14]. In another study, Hosseini et al. employ

a context-free grammar and semantic attachments to infer

generalities between information types that share at least one

common word (e.g., “device identifier” and “identifier”) [15].

This study solely relies on syntax information to infer hyper-

nyms. Consequently, generality relations between information

types, such as “device identifier” and “MAC address,” that rely

on contextual semantics and tacit knowledge are ignored.

To address the problem of ambiguity in privacy policy termi-

nology, we propose a context-wise semantic model to identify

semantic relationships, such as hypernymy and synonymy,

between information types in a given pair (e.g., pair 〈mobile

device identifier, MAC address〉). Such relationships are then

formalized into partial ontologies which can be used by

requirements engineers for terminology disambiguation. This

model consists of five layers: information type pair input layer,

embedding layer, phrase modeling layer (i.e., convolutional

neural network (CNN)), semantic similarity and classification

layer, and finally an output layer that specifies the relation as

hypernymy, synonymy, or unknown. We investigate the effec-

tiveness of this model using a manually-constructed ontology
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as our ground truth. We elicit all the information type pairs

and their relations from this ontology, which are then used as

training and testing sets in two experiments. Our experiments

show that this model significantly outperforms the syntax-

driven method proposed by Hosseini et al. [15] with 86%

precision and 95% recall for hypernymy. The results confirm

that capturing information type contextual representation from

privacy policies can facilitate the ontology construction task.

The main contributions of this paper are as follows: (1) Con-

textual representation of information types using Word2Vec

and CNN for relationship classification; (2) Context-wise

model to classify relations given an information type pair;

(3) An empirical evaluation of the context-wise model on the

manually-constructed ontology.

This paper is organized as follows. In §II, we motivate using

ontologies in RE. In §III and §IV, we discuss terminology and

related work. In §V, we introduce our model. In §VI and §VII,

we present the experimental design and results, followed by

threats, discussion, and conclusion in §VIII, §IX, and §X.

II. ONTOLOGY USAGE MOTIVATION

Ambiguity in privacy policies creates challenges for man-

aging privacy, tracing privacy requirements to data practices

in code, and checking the compliance of privacy policies

with regulations [9], [16], [17]. Policy analysis tools such

as PVDetector identify misalignments between policy and

practice [18]. This tool maps information types in privacy

policies to privacy-related API methods implemented in the

corresponding code. This mapping provides the semantics

needed to check code for misalignment with privacy policy,

and to suggest where the code or policy may be changed to fit

the functional and legal requirements of apps [18]. The tool

utilizes an ontology as a resource to identify relations between

information types in privacy policies.

Given the app’s byte code (i.e., apk file) and corresponding

privacy policy, PVDetector generates a list of detected mis-

alignments. These misalignments are marked as either strong
(i.e., no information type related to an API method invocation

is found in the privacy policy) or a weak (i.e., no information

type directly mapped to an API method invocation is found,

but some more general information type is found in the privacy

policy). For example, assume an app has the following text

in its privacy policy. “We collect browsing history, contact
information, mobile identifiers, and language information.” If,

upon analysis of the app’s actual dataflows, a flow is detected

from the method getMacAddress() to some method that

sends data away through the network, the possibility of private

information leakage implied. Therefore, some corresponding

information type (e.g., “MAC address”) should appear in the

privacy policy as information that may be collected. Instead,

the more broad information type “mobile identifiers”, which

does not directly describe “MAC address” but is generally
representative of it, appears in the policy. Without considering

the hypernymy relation between “MAC address” and “mobile

identifiers” (i.e., MAC address is a kind of mobile identifier),

an incorrect misalignment of omission by the policy would

be detected (i.e., false positive). An ontology containing such

relationships facilitates the detection of the hypernym in the

policy. Thus, the false negative due to the use of a more

general term in the policy is avoided, and the policy writer

can be made aware of the more specific term “MAC address”

for improved clarity and precision. In summary, to support

automated analysis of requirements, tools and techniques are

needed to build and validate formal ontologies.

III. BACKGROUND

Ambiguity: Berry and Kamsties distinguish four broad cat-

egories of linguistic ambiguity, including lexical, syntactic,

semantic, and pragmatic ambiguity [8]. They also discuss two

phenomena closely related to ambiguity, including vagueness

and generalization [8], [6]. A requirement is ambiguous if it

admits more than one interpretation [19]. A requirement is un-

ambiguous if different stakeholders with similar backgrounds

give the same interpretation to it [20].

Semantic relations: (1) Hypernymy- a relationship between

two noun phrases where the meaning of one (hypernym)

is more generic than the other (hyponym), e.g., “device

information” is a hypernym of “device ID.” (2) Synonymy- a

relationship between two noun phrases with a similar meaning

or an abbreviation, e.g., “IP” and “Internet protocol.”

Lexicon: a collection or list of information type phrases.

Ontology: an arrangement of concept names in a graph

in which terms are connected via edges corresponding to

relationships, such as hypernymy [21]. In this paper, we only

consider information type names as concept names.

Word Embedding: Distributed representation of a word as

a vector in some m-dimensional space that helps learning

algorithms achieve better performance by grouping similar

words together [22], [23]. Each vector dimension represents

some feature of the words’ semantics in a corpus. Skip-gram

is a popular word embedding model [24]. For each word in a

corpus, the surrounding words (identified by a window size)

are used as context for that word. This context is then used as

input to a neural network that will modify the word’s vector

values. We adopt Word2Vec1, an implementation of the Skip-

gram model to construct domain-specific word embeddings.

Convolutional Neural Network (CNN): CNNs are a kind

of feed-forward network, specialized in processing data with

a grid-like topology [25]. For CNNs, there are usually three

major steps in a convolutional layer. The first step involves

applying several convolutions to the input matrix to produce a

set of linear activations [26]. The second step applies a non-

linear function (e.g., tanh, relu, etc.) to each linear activation

produced by the previous step. In the third step, different types

of pooling functions (e.g., max pooling, average pooling, etc.)

are applied to sets of areas, which cover the entire transformed

input. Pooling is done to make the transformed input approx-

imately invariant, which emphasizes the importance of the

existence of a feature in the input over the specific location

of that feature in the input [26]. The matrix result after these

three steps is a representation of the main features of the input.

1https://code.google.com/archive/p/word2vec/
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IV. RELATED WORK

A. Detection and Resolution of Ambiguity

Detection and resolution of ambiguity in requirements

has been the subject of studies in the RE community for

decades. Lami et al. [27] automatically detect potential lin-

guistic defects that can determine ambiguity. Nigam et al.

identify lexical, syntactic, and syntax ambiguities in words

and provide the possible sources of wrong interpretation in

requirements using POS tagger and a corpus of ambiguous

words [28]. Kiyavitskaya et al. [29] measure lexical and

syntactic ambiguities defined by [8] and identify specific

instances of pragmatic, software-engineering, and language-

error ambiguities in sentences. Ferrari and Gnesi [30] detect

pragmatic ambiguities using n knowledge graphs built upon

n individual requirement documents. The knowledge graphs

are not designed to formalize the semantic relations between

terms. Ferrari et al. [31] identify and categorize ambiguity in

requirements elicitation interviews. Massey et al. [5] model

legal text using ambiguity taxonomy introduced in [9]. Boyd

et al. reduce ambiguity in controlled natural languages by

optimally constraining lexicons using term replaceability [32].

Bhatia et al. [12] introduce a theory of vagueness for privacy

policies using a taxonomy of vague terms derived manually.

Historically, WordNet [33], [34] is widely used in detecting

ambiguity [29] and is also reported as the most utilized lexicon

to support NLP-related RE tasks [35]. However, further anal-

ysis reveals that only 14% of phrases from a privacy policy

lexicon are found in WordNet [10]. Evans et al. apply patterns

to privacy policies to extract hypernymy pairs [14]. Pattern

sets are limited because they must be manually extended to

address new policies. Hosseini et al. [13], [15] propose regular

expression patterns and a context-free grammar (CFG) to parse

a given information type and infer semantic relations based on

syntax to construct partial ontologoies. The patterns and CFG

rules fail to infer semantic relations beyond syntax that require

tacit knowledge. Besides, the methods requires a manual tag-

ging step, where each word is tagged with a syntactic role. Our

proposed model overcomes these shortcomings and provides

a fully automated approach to infer hypernymy relations.

B. Ontology in Requirements Modeling and Analysis

Ontologies are a standard form for representing the concepts

within a domain, as well as the relationships between those

concepts in a way that allows automated reasoning [36]. Due

to such benefits, prior work in RE has employed ontology

in requirements formalization and modeling. For example,

Gordon and Breaux [37] formalize regulatory requirements

from multiple jurisdictions into a single standard of care.

Breitman and do Prado Leite describe how ontologies can be

used to analyze web application requirements [38]. Breaux

et al. use an ontology to identify conflicting requirements

across vendors in a multi-stakeholder data supply chain [3].

Oltramari et al. propose a formal ontology to specify privacy-

related data practices and their categories [39]. However, this

ontology does not entail semantic relations among information

types. Humphreys et al. [40] semi-automatically populate legal

ontologies by extracting definitions, norms, and other elements

of regulations using semantic role labeling.

Ontologies have been applied in tracing requirements to data

practices expressed in source code. Two recent works [11],

[41] identify app code that is inconsistent with privacy policies

using manually-constructed ontologies [10]. These works ex-

emplify the efficacy of ontologies for requirements traceability.

However, the manual construction of ontologies is costly

and lacks scalability due to the time spent by analysts to

compare information types, and errors generated by analysts

during comparison [10]. Our proposed automated model is an

improvement on prior work to construct ontologies.

C. Relationship Extraction using Machine Learning (ML)

Snow et al. employ hypernym-hyponym pairs in WordNet

to identify additional pairs in the parsed sentences of the

Newswire corpus [42]. The approach relies on the explicit

expression of hypernymy pairs in text. Hearst propose six

lexico-syntactic patterns to automatically identify hypernymy

in text using noun phrases and regular expressions [43]. Tradi-

tional ML approaches classify the relationship between a pair

of words in sentences by extracting features, such as part-of-

speech tags, shortest dependency path, and named entities [44],

[45], [46], [47]. Some models use deep learning to learn

sentence-level semantics of word pairs [48], [49]. Recent

works are sentence-independent and employ general-purpose

distributional vectors for a pair of words as features [50], [51],

[52], [53]. The vectors are learnt from Wikipedia, WordNet, or

Newswire corpus. In contrast, our proposed model is designed

on domain specific phrases, such as “MAC address” and learns

the vectors from a privacy policy corpus.

V. CONTEXT-WISE RELATION CLASSIFICATION MODEL

We propose a novel context-wise model for inferring se-

mantic relations between two given information types as a

pair. Figure 1 shows the overview for the model with a

pair of information types as input. Throughout the paper, we

present the information type pair as 〈information-typeLHS ,

information-typeRHS〉, e.g., 〈device information, device ID〉,
where LHS (left-hand side) and RHS (right-hand-side) indicate

two predicates in an asymmetric ontological relationship. The

input information types in a privacy policy lexicon can be

from a single statement in a policy, different sections of

a single policy, or completely different policies. Given an

information type pair, the Embedding layer first maps the

words in an information type to their corresponding word

embedding vectors. Second, word embeddings are fed into

the Phrase Modeling layer, creating a phrase-level semantic

vector for each information type phrase. Third, the Semantic

Similarity Calculation compares the direction and distance of

the two phrase-level vectors and generates a similarity vector.

Finally, the similarity vector is input to Softmax, generating

three probabilities corresponding to hypernymy, synonymy,

and unknown. We select the most probable relation for each

information type pair. We now describe each step in detail.
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Fig. 1. Context-wise Relation Classification Model

A. Word Embedding Mapping

Each word in an information type phrase is presented

using a pre-trained 200-dimensional vector called a word

embedding [23]. To create domain-specific word embeddings,

we train the Word2Vec model using 77,556 English privacy

policies collected from mobile applications on the Google

Play Store 2 [54]. Common-purpose word embeddings trained

on the English Wikipedia dump [55], [56], [57] or Google

News dataset [22] exist, however, previous research has shown

improvements on classification accuracy by utilizing domain-

specific word embeddings [58].

To obtain the privacy policy corpus to train the Word2Vec

model, we crawl the metadata archive for more than 1,402,894

Android apps provided by the PlayDrone project [59] from

which 109,933 contained a valid link to a privacy policy. We

use the BeautifulSoup library in Python to extract the text from

the HTML files by stripping HTML tags associated with: head,

script, URL, navigation, button, and option information. Next,

we filtered non-English policy text files, yielding 77,556 pri-

vacy policies with the majority of text in English by using the

DetectLang library in Python. In the next step, for each privacy

policy, we tokenize the sentences and remove all non-English

sentences. We also expand the contractions (e.g., “won’t” is

transformed to “will not”), and remove punctuation, numbers,

email addresses, URLs, and special characters. Finally, we

transform the remaining characters to lower-case. The resulting

pre-processed text is used to train the Word2Vec [22] model.

The trained word embeddings for the words in our privacy

policy corpus are stacked in a word embedding matrix, which

is used in the mapping process. The Embedding layer maps

2http://play.google.com

every word in an input information type phrase from a privacy

policy lexicon to its corresponding embedding vector read

from the embedding matrix. To this end, we first identify

the maximum phrase length t by analyzing the number of

words in all information types in the privacy policy lexicon.

Next, the information type phrase is padded automatically if

the number of words is less than t to reach the maximum

length. This approach ensures that all the input information

types have the same length. Next, using the word embedding

matrix, each word in the padded information type is mapped

to its corresponding word embedding vector. If a word cannot

be found in the embedding matrix, our approach assigns a

200-dimension vector to the word with its elements randomly

generated using the uniform distribution. In the next section,

we illustrate how the word embeddings for each padded

information type phrase are utilized to generate a phrase-level

semantic vector.

B. Phrase Modeling using CNN

In this section, we describe the phrase modeling architecture

(see Figure 2) that transforms word embeddings of an input

information type to a low dimensional, fixed-sized vector using

Convolutional Neural Network (CNN) with three different fil-

ter widths [58]. Implementing CNN with multiple filter widths

captures local semantics of n-gram of various granularities

[60]. In our case, convolutional filters with widths 1, 2, and

3 capture the semantics of unigrams, bigrams, and trigram,

respectively.

We present an example for convolution filter of width w = 3
for the padded information type P : device1 information2
padt−1 padt with length t, where t is the maximum phrase

length in the privacy policy lexicon as discussed in Sec-

tion V-A. The words/pads in the information type P are

represented as a list of vectors (x1, x2, ..., xt−1, xt), where

xi ∈ R
n corresponds to word embedding of word/pad i ∈ P

and n represents the dimension of word embeddings (n = 200
as mentioned in Section V-A). Our approach automatically

assigns a 200-dimension vector with random uniform values

for pads and also the words that cannot be found in the

embedding matrix.

Using embedding vectors and filter width w = 3, the phrase

is presented as follows: {[x1;x2;x3], ..., [xt−2;xt−1;xt]},

where “;” shows vertical vector concatenations. In general, the

result of this module is matrix X ∈ R
n0×t, where n0 = w×n.

To convolve all the features in X , we process X using the

linear transformation in (1).

Z = W1X (1)

where W1 ∈ R
n1×n0 is the linear transformation matrix and

n1 is a hyper-parameter representing the number of filters,

which we set as 128 in our model. The result of linear

transformation is shown as Z ∈ R
n1×t, which is dependent on

t, the maximum phrase length in the privacy policy lexicon.

We further apply tanh as a non-linear activation function,

see (2), on the result of the linear transformation.

h = tanh(Z) (2)
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Fig. 2. Phrase Modeling using CNN

To determine the useful features, we apply a maximum pooling

on h. The result of this process is a feature vector of size n1,

which is independent of the phrase length.

After applying the Phrase Modeling layer to the input

information type with three different convolution filter widths,

we retrieve three high-level feature vectors of size n1 as

shown in Figure 2. Finally, we concatenate these three feature

vectors to create a single vector representing the phrase-level

semantics. We follow this approach to generate two phrase-

level vectors for both information-typeLHS and information-

typeRHS . These two vectors are compared in the Semantic

Similarity Calculation layer, which we discuss next.

C. Semantic Similarity Calculation

The Semantic Similarity Calculation layer compares the

input phrase-level vectors from the Phrase Modeling layer.

We adopt the structure proposed by Tai et al. [61], where the

direction and distance of the two input vectors are compared

using the following equations. Two vectors PLVLHS and

PLVRHS refer to Phrase-Level-VectorLHS and Phrase-Level-

VectorRHS in Figure 1, which are shortened for simplicity:

dir = PLVLHS � PLVRHS (3)

Dis = |PLVLHS − PLVRHS | (4)

sim = σ(Wdir + Udir + b) (5)

Equation (3) compares the direction of two semantic vec-

tors PLVLHS and PLVRHS for each dimension using the

point-wise multiplication operator. For calculating the distance

between PLVLHS and PLVRHS , we utilize the absolute

vector subtraction presented in (4). To integrate the results

of (3) and (4) on PLVLHS and PLVRHS , we use a hidden

sigmoid layer presented in (5). The similarity vector as the

output of the function is then sent to a Softmax classifier

as shown in (6) to predict the probabilities of hypernymy,

synonymy, and unknown. We select the prediction with the

highest probability as the relationship between information-

typeLHS and information-typeRHS . Next, we discuss the loss

function used to train the relation classifier.

Prelation = softmax(Wpsim+ bp) (6)

D. Loss Function

We use weighted cross-entropy loss to measure the per-

formance of the relation classifier with respect to the pre-

dicted probability Prelation, which has been normalized with

Softmax, and the actual label (hypernym, synonymy, un-

known). Cross-entropy loss increases as the predicted proba-

bility Prelation diverges from the actual label. We use weights

to account for imbalance in ontological relations, i.e., the

number of unknown pairs is several orders of magnitude

larger than all other relations combined. The weights are

calculated using the frequency of each relation’s presence

in the ontology as a simple ratio: unknown/total and

(hypernymy + synonymy)/total. The unknown ratio is

applied to hypernymy and synonymy classes, as determined

by the actual label, to give more weight when determining the

loss, and the hypernymy and synonymy ratio is applied to the

unknown class to give less weight when determining the loss.

The loss function is defined in (7).

loss = −wi
∑

i∈T

yiln(P i
relation) (7)

where T is the training pairs, and wi, yi, and P i
relation are the

weight, actual label, and predicted probability, respectively, for

the ith information type pair in the training set.

The training involves sending the derivative of the loss

function through back-propagation to update the network

parameters using the stochastic gradient descent method. Each

epoch iterates over all the training data, which are divided

into multiple batches. After processing each batch of training

74

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 03,2022 at 00:23:46 UTC from IEEE Xplore.  Restrictions apply. 



data within an epoch, the parameters are updated based on

the gradient of the loss function and another hyper-parameter

called the learning rate. This hyper-parameter determines how

fast or slow the network should move towards the optimal

solution. The hyper-parameters, including learning rate, are

defined in §VI-B and §VI-C. The training process stops when

the loss value is sufficiently small or fails to decrease [62].

VI. EXPERIMENTAL DESIGNS

Predicting the ontological relationship between two entities

is a multi-class classification problem: is the first item in

an ordered information type pair, a hyponym, synonym, or

unknown to the second item? Traditional machine learning

classification approaches make an independent and identically

distributed (IID) assumption for data instances, i.e., predicting

the class label of each instance in isolation [63], [64]. In re-

quirements engineering, a major focus is to solve classification

problems with IID assumptions. For example, classifying app

reviews, bug reports, and feature requests [65], or customer

praise [66]; mining Twitter feeds for identifying software

requirements [67], [68], [69], [70]; classifying functional and

non-functional requirements [71], [72], [73]; and software

feature request detection [73].

In contrast, the IID assumption fails in classification prob-

lems where class labels are related to features of other labeled

instances. These problems can be best described as a set of ob-

jects interconnected via links to form a network structure [74].

For example, in hypertext classification, predicting the topic

of a webpage requires the knowledge of webpages linked

to the page [75]. In a hyperlink network, the classification

goal is to label nodes (webpages) with appropriate topics. To

achieve this goal, proposed classifiers not only use a webpage’s

own words, but also consider the neighboring webpages, their

attributes, and topics [75], [76], [77]. We extend this view to

the relationship classification problem: for each concept in the

ontology, we utilize the direct subsumption and equivalence

relations, along with the indirect relations with ancestors

through transitivity and equalities.

In learning ontologies, we evaluate both views with and

without the IID assumption, respectively: (1) each relationship

is independent, and the model learns direct relationships

among concepts ignoring the transitive closure of hypernymy;

or (2) relationships can be dependent, and the model learns

a partial semantic representation that is some subset of the

transitive closure of hypernymy. For example, we assume the

concept pairs 〈Android ID, mobile device ID〉 and 〈mobile

device ID, device identifier〉 are related by a hypernymy rela-

tionship. We assume the model learns semantic relationships

among these words based on how they are used in policy

sentences. Under (1) above, we train the model to learn

these relationships from policy embeddings. Under (2) above,

however, we further train the model to learn relationships

inferred through transitivity, which includes the hypernymy

relationship for the pair 〈Android ID, device identifier〉. We

hypothesize that this additional training generalizes to improve

Info Type Frequency
IP address 41

Browser type 21

IP addresses 21

Internet protocol 16

Location information 16

TABLE I: Five Most Frequent Information Types in L

the classification of hypernymy, because more abstract hyper-

nyms can be used to group semantically similar, indirectly

related concepts. Furthermore, this approach aligns with our

intuition to discover statistical relationships between how

abstract terms are used in sentences, and how their concrete

examples are used.

Based on these two views, we design two experiments

to evaluate the context-wise relation classification model de-

scribed in Section V. In experiment 1, we evaluate the model’s

ability to classify whether an information type pair is a direct

hypernymy, synonymy, or unknown. Experiment 2 differs from

experiment 1 by considering entailed hypernymy relations,

which include direct and indirect hyponyms in a single class,

and thus we evaluate the model’s ability to classify information

type pairs into one of three classes: hypernymy (direct and

indirect), synonymy, or unknown.

This section is organized as follows. We first introduce

our ground-truth ontology followed by the approach to design

experiment 1. Next, we discuss experiment 2, which unfolds

the unique challenge of learning with ontologies and the

overall design for experiment 2.

A. Ground-truth Ontology

As our ground truth, we utilize an ontology manually

built upon a privacy policy lexicon, called L. The lexicon is

extracted from the data collection practices of 50 mobile app

privacy policies and contains 356 platform-related information

types (e.g., “IP address”) defined as “any information that the

app or another party accesses through the mobile platform

that is not unique to the app” [11]. These 50 policies are

unrestricted by domain, and cover gaming, finance, commu-

nication, music, productivity, social and entertainment, sports,

and shopping, among others. In Table I, we present the top 5

most frequent information types across lexicon L. Hosseini

et al. construct an ontology from lexicon L by manually

applying seven heuristics that are identified through grounded

analysis of five privacy policies [10], [11]. This ontology3

contains 367 information types, which are used to comprise

1,583 hypernymy and 310 synonymy relationships between

information type pairs [10].

We use the following formal representation for an on-

tology. An ontology is a knowledge base KB expressed

using FL0, a sub-language of the Attribute Language (AL)

in Description Logic (DL). A DL knowledge base KB is

comprised of two components, TBox and ABox [78]. TBox
consists of terminology, i.e., the vocabulary (concepts and

3http://polidroid.org/downloads/ontology.owl
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Hypernymy Synonymy unknown
truth-set1 1,583 310 65,268

TABLE II: Experiment 1: Number of Pairs in truth-set1

Information-
typeLHS

Information-
typeRHS

Semantic Rela-
tion Label

Android ID Mobile device ID Direct

Hypernymy

Mobile Device

ID

Device identifier Direct

Hypernymy

DID Device identifier Synonymy

URL URLs Synonymy

Android ID Device identifier unknown

Call duration Advertising ID unknown

TABLE III: Experiment 1: truth-set1 Pairs Examples

roles) of an application domain. ABox contains assertions

about named individuals using this vocabulary. The manually-

constructed ontology only contains terminology, which we

call TBox T [10]. TBox T contains terminological axioms
that relate concepts to each other in the form of subsumption

and equivalence, which we use to formalize hypernymy, and

synonymy. A concept C is subsumed by a concept D, written

T |= C � D, if CI ⊆ DI for all interpretations I that

satisfy TBox T . The concept C is equivalent to a concept

D, written T |= C ≡ D, if CI ≡ DI for all interpretations

I that satisfy TBox T . Axioms of the first kind (C � D)

are called inclusions, whereas axioms of the second kind

(C ≡ D) are called equalities [78]. Note that the equalities

C ≡ D can be rewritten as two inclusion axioms C � D and

D � C. A subset of the ground-truth ontology is shown in

Figure 3. For clarity, we focus on “identifiers” in this figure,

hiding other subclasses. Furthermore, some concepts, such as

“mobile device identifier” and “mobile device identifiers” are

equivalent and this equality is shown using two inclusions.

B. Experiment 1

In this experiment, we evaluate the IID assumption by

classifying whether a new information type pair describes a

direct hypernymy, synonymy, or unknown. To this end, we

define direct hypernymy for concepts C, D if their relation

satisfies the following three criteria: (1) C � D; (2) there

exists no concept E such that C � E and E � D; and (3)

C 	≡ D. We define synonymy relationship for concepts C, D
if C ≡ D. If a pair is related in a way other than a direct

hypernymy or synonymy relationship, we classify this rela-

tionship as unknown. unknown means an explicit relationship

is yet unknown, yielding no change to the ontology. Using

this definition, we identify direct hypernyms, synonyms, and

unknown pairs in the ground-truth ontology as truth-set1.

Table II presents the number of pairs identified for each class

in truth-set1. Table III presents examples of information type

pairs along with their relationships in this set.

We train and test the classifier with a 10-fold cross vali-

dation on truth-set1. To this end, we split truth-set1 into

Model
Hyper-parameter

Hyper-parameter
Options

Best
Hyper-parameter
Selection

Number of Epochs 10, 15 10

Dropout Keep Rate 0.7, 0.8, 0.9 0.9

Batch Size 30, 128, 200 128

Learning Rate 0.01, 0.001 0.001

Convolution Activa-

tion Function

tanh, relu, sigmoid tanh

Prediction Function sigmoid, softmax sigmoid

TABLE IV: Experiment 1: Parameter Configuration Options

two parts with 70:30 ratio. One dataset (70% of truth-set1)

is used for hyper-parameter optimization and training, called

training-set1. The second dataset, called testing-set1, is set

aside toward final testing4. For hyper-parameter optimization,

we partition training-set1 into 10 sets D1, D2, D3, · · · , D10.

For each possible hyper-parameter combination we use nine

sets to fit our model and use the remaining set to validate the

model. This process is repeated 10 times for each possible

hyper-parameter combination, yielding 10 average F-1 score

on three classes. To create possible combinations of hyper-

parameters, we use grid search over six hyper-parameters of

the classification model, including number of epochs, dropout

keep rate, batch size, learning rate, convolution activation

function, and prediction function. The hyper-parameters, their

different configuration options, and best performing combina-

tion with respect to average F-1 score on three classes, are

shown in Table IV.

After selecting the best hyper-parameter combination, we

test the model using testing-set1 and report the performance

metrics for three classes. In this experiment, we aim to answer

the following research questions.

RQ1: To what extent does the classification model reduce

the manual ontology construction effort?

RQ2: What is the effect of missing transitive hypernymy

on classification performance?

C. Experiment 2

In an ontology, the relationships between concepts are

not independent, e.g., the relationships in hypernymy are

transitive. Removing a relationship between a superordinate

and subordinate concept can lead to misclassification between

the subordinate concept and its ancestor concepts, because

missing intermediary concepts provide the categorical bridge

to ancestor concepts. Thus, we are interested in classifying

information type pairs using the pair’s attributes, and the

pair’s neighbors’ attributes. This approach assumes the IID

assumption is false.

Experiment 2 classifies whether a new information type pair

is one of hypernymy, synonymy, or unknown. This experiment

diverges from experiment 1 by listing both direct and transitive

hypernymy relationships from a TBox entailment. Therefore,

we define hypernymy relationship between two concepts C, D,

such that: (1) C � D; and (2) C 	≡ D. We define synonymy

4https://github.com/01458198/RE21-Dataset
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Fig. 3. Ground-truth Ontology Fragment View

Hypernymy Synonymy Unknown
truth-set2 7,070 310 59,781

TABLE V: Experiment 2: Number of Pairs in truth-set2

Information-
typeLHS

Information-
typeRHS

Semantic Rela-
tion Label

Android ID Mobile Device

ID

Hypernymy

Mobile device ID Device identifier Hypernymy

Android ID Device identifier Hypernymy

DID Device identifier Synonymy

URL URLs Synonymy

Call duration Advertising ID Unknown

TABLE VI: Experiment 2: truth-set2 Pairs Examples

relationship for concepts C, D if C ≡ D. If a pair is related

in any way other than a hypernymy or synonymy relationship,

we classify this relationship unknown. Using this definition,

we create truth-set2 and present the resulting counts for each

relationship in Table V. Further, Table VI presents examples

from this set. In contrast to instances listed in Table VI, the

pair 〈Android ID, device identifier〉 is labeled as hypernymy.

We train and test the classifier with a 10-fold cross val-

idation on truth-set2. Similar to experiment 1, we split

truth-set2 into two parts with 70:30 ratio. training-set2
is used for hyper-parameter optimization and training, and

testing-set2 is set aside toward final testing4. The hyper-

parameters, their different configuration options, and best

performing selections for experiment 2 are shown in Table VII.

Experiments 1 and 2 raise the following research question.

RQ3: How does the IID assumption affect the performance

of relation classification model?

VII. EXPERIMENTAL RESULTS

A. Experiment 1 Results

In experiment 1, we compare the labels of testing-set1
with the predicted relations to answer RQ1 and RQ2. We

Model Hyper-
parameter

Hyper-
parameter
Options

Best Hyper-
parameter
Selection

Number of

Epochs

10, 15 10

Dropout Keep

rate

0.7, 0.8, 0.9 0.9

Batch Size 30, 128, 200 200

Learning Rate 0.01, 0.001 0.001

Convolution Ac-

tivation Function

tanh, relu, sig-

moid

relu

Prediction Func-

tion

sigmoid, softmax softmax

TABLE VII: Experiment 2: Parameter Configuration Options

report the model’s performance using precision, recall, and F-1

score. test-set1 contains 856 direct hypernymy, 87 synonymy,

and 19,605 unknown instances. Since our dataset is skewed

toward unknown, we opt for F-1 score, which provides a better

balance between precision and recall. Table VIII presents the

confusion matrix, where each row presents the class predic-

tions, and each column presents the actual class instances.

For each class, we define correct predictions (CPs), if the

prediction is the same as class label, shown in the shaded

diagonal. Equations 8- 10 are used to calculate performance

measures, which appear in Table IX. The relation classification

model fails to predict synonymy relationships. This outcome

is not unexpected, since synonyms are rare and the data set is

highly imbalanced.

Precisionrelation =
CPrelation

#Predictionsrelation
(8)

Recallrelation =
CPrelation

#Labelsrelation
(9)

F -1relation = 2× Precisionrelation ×Recallrelation
Precisionrelation +Recallrelation

(10)
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Actual
Direct
Hypernymy

Actual
Syn-
onymy

Actual
Unknown

Total Pre-
dictions/-
Class

Predicted

Direct

Hypernymy

372 35 239 646

Predicted

Synonymy

0 0 5 5

Predicted Un-

known

84 52 19,361 19,497

Total Labels/-

Class

456 87 19,605

TABLE VIII: Experiment 1: Confusion Matrix

Hypernymy Synonymy Unknown
Precision 0.575 0.000 0.993

Recall 0.815 0.000 0.987

F-1 Score 0.673 0.000 0.989

TABLE IX: Experiment 1: Performance Measures

The manual ontology construction method requires com-

paring paired information types by at least two analysts [10],

[11]. Therefore, a complete analysis of n information types

requires
n×(n−1)

2 comparisons. The average time for a pair

comparison is reported at 11.72 seconds [13], which makes

the task tedious and not feasible for large n. Further, the

method is susceptible to human error due to fatigue and gaps in

analysts’ domain knowledge [13]. In addition, as language use

evolves, the ontology would need to be extended over time.

Evidence from Bhatia et al. shows that between 23-71% of

information types in any new privacy policy will be previously

unseen [79]. To address RQ1, we evaluate the extent that the

relation classification model can reduce ontology construction

effort. The ground-truth ontology contains 367 information

types. Using the manual method, an analyst must compare
367×(367−1)

2 = 67, 161 information type pairs during construc-

tion (∼218 hours). A key challenge is reducing the number

of comparisons, particularly of information type pairs that are

unknown and that dominate the space of comparisons, e.g.,

the unknown dominates %97 of the truth-set1 (see Table II).

The 0.987 recall for predicting unknown pairs enables analysts

to identify unknown pairs with high confidence, significantly

reducing comparison time by 97%.

In experiment 1, truth-set1 includes direct hypernymy

relations and thus label indirect, or ancestor hypernymy re-

lations as unknown. This task aims to predict the graph edges

in an ontology, ignoring that subsumption is transitive and

the transitive closure of a concept’s class relationships. RQ2

investigates the effect of missing transitive hypernymy on re-

lation classification performance. To answer RQ2, we analyze

the logical entailment of 1,207 falsely predicted hypernymy

relations that were labeled unknown. We utilize the OWL API

HermiT reasoner5 for this analysis. The results show 44% of

falsely predicted hypernymy relations with unknown labels are

logically entailed through indirect hypernymy. Table X shows

5http://www.hermit-reasoner.com/java.html

Information-
typeLHS

Information-
typeRHS

Pre Act Ent Hops

Device brand Device H U Yes 3

Mobile device

IP address

Mobile device H U Yes 2

MAC address Hardware

Information

H U Yes 3

Player

interactions

Interactions H U Yes 2

Mobile devices

unique

identifier

Device

identifiers

H U Yes 2

Unique

hardware

identifiers

Hardware

information

H U Yes 2

Website

activity date

Usage times H U No -

Devices UDID Device unique

identifier

H U No -

Postal code Approximate

geographical

location

H U No -

WiFi

signal strength

Mobile device H U No -

Websites

visited

Aggregated

user data

H U No -

MAC address Hardware

settings

H U No -

TABLE X: Examples of False Hypernymy Predictions

a sample analysis result, where the model prediction (Pre) is

hypernymy (H) and the actual label (Act) is unknown (U). If

a pair is logically entailed, we show the number of hops/edges

between the types in the ontology. Notably, predicting indirect

hypernyms could improve results.

B. Experiment 2 Results

In experiment 2, we include direct and indirect hypernymy

in the actual labeled relations. The model is trained on

testing-set2 containing 2,116 information type pairs labeled

as hypernymy (direct and transitive), 106 information type

pairs labeled as synonymy, and 17,926 pairs as unknown.

We evaluate the performance of the relation classification

model by comparing the actual labels of testing-set2 with

the predicted relations.

RQ3 seeks to investigate the effect of transitional hyper-

ynymy in classification performance. We use precision, recall,

and F-1 score as measures to evaluate the performance on

testing-set2. The confusion matrix for this evaluation is

presented in Table XI. In contrast to Table VIII, some portion

of unknown labeled instances are shifted toward hypernymy.

Hence, the model’s performance on hypernymy shows a sig-

nificant improvement as shown in Table XII.

VIII. THREATS TO VALIDITY

Construct Validity: Construct validity concerns whether we

are measuring what we believe we are measuring. Because

we utilize a previously published ontology (See §VI-A) as the

ground truth [10], [11], [18], there is a risk that the expected

relations are incorrect. The ontology authors describe two
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Actual
Hyper-
nymy

Actual
Syn-
onymy

Actual
Un-
known

Total
Predictions
/Class

Predicted

Hypernymy

2,013 58 257 2,328

Predicted

Synonymy

0 0 0 0

Predicted

Unknown

103 48 17,669 17,820

Total

Labels/Class

2,116 106 17,926

TABLE XI: Experiment 2: Confusion Matrix

Hypernymy Synonymy Unknown
Precision 0.864 0.000 0.991

Recall 0.951 0.000 0.985

F-1 Score 0.904 0.000 0.985

TABLE XII: Experiment 2: Performance Measures

rounds of consensus-building while developing the ontology,

including an inter-rater reliability Kappa statistic of 0.977 and

0.979, which is extremely high above-chance agreement [10].

Internal Validity: We mitigate threats to internal validity by

applying established training procedures: the ground-truth in

both experiments are partitioned into training and testing sets

with 70:30 ratio, and we employ a 10-fold cross validation on

the training sets for each experiment. Due to data imbalance,

however, the model fails to accurately predict synonymy

results. According to Tables II and V, synonymy relations

constitute only 0.46% of instances in both truth-set1 and

truth-set2. To address this threat, we introduce a weighted

cross-entropy loss function (see §V-D) in our model. Despite

biasing weights for prediction, which enhances hypernymy

predictions, synonymy predictions remain unaffected. We rec-

ognize that this approach fails to fully mitigate the risk to

internal validity. Additional effort is required to reduce the

effect of the minority class (i.e., synonymy) by applying over-

sampling methods to synonymy instances [80].

External Validity: We acknowledge that the model is only

trained on platform information types (see §VI-A), which does

not include domain-specific information types, such as health-

, finance-, dating-, and shopping-related app data, to name

a few. Additional experiments are required to investigate the

generalizability of the model.

IX. DISCUSSION

The use of ontologies are directly impactful to novel tech-

niques in privacy-sensitive static and dynamic information

flow tracing in software engineering [81], [54], [11]. However,

due to technical challenges in information flow tracing, such

approaches may not yet be broadly used in industry. That said,

continued pressure by regulators and corporate compliance

under privacy laws, including the E.U. General Data Protection

Regulation, is driving the need to understand where companies

collect and use sensitive data. A preliminary step in ratio-

nalizing corporate data flows, is classifying stored data by

a broad category, which evidence suggests can easily reach

into the thousands of distinct types [79]. Without explicit,

scalable procedures to construct these ontologies and detect

relationships between information type names, companies will

produce compliance gaps, where rules for protecting data

are applied unevenly due to misalignments arising from am-

biguous and vague information type names. Our model for

inferring semantic relations between information types can

bolster these efforts and increase their viability by providing

a general approach for ontology construction, thus yielding a

strong indirect benefit to engineers and regulators.

We now examine the characteristics of the ground-truth

ontology. This ontology contains 367 information types, re-

sulting in
367×(367−1)

2 = 67, 161 information type pairs that

an analyst must compare during construction. According to

Table V in experiment 2, truth-set2 contains 59,781 unknown

pairs. Consequently, noting 67,161 possible pairs, 89% of

these pairs are identified as unknown in the ground-truth

ontology. This percentage reflects that: (1) given all possible

information type pair comparisons, there are few relationships

(high sparsity); and (2) the corresponding imbalance between

related (e.g., hypernymy and synonymy) and unknown pairs

is intrinsic to this problem’s nature. Given this observation,

the model identifies unknown information type pairs with

0.985 F-1 score, greatly reducing the burden of manually

checking the unknown pairs in the search space of possible

relations for an analyst. In addition, test-set2 contains 2,222

positive relationships (i.e., direct and transitive hypernymy and

synonymy). According to Table XI for experiment 2, the model

identifies 2,013 hypernymy from this positive space. The high

F-1 score of 0.904 suggests that a requirements analyst can

trust the hypernymy relationships inferred by the model.

X. CONCLUSION

Privacy policies are well-established sources of require-

ments in software engineering. However, such documents are

subject to abstraction and ambiguity, making requirements

extraction a challenging task. We focus on the role of hy-

pernyms and their formal relationships among terminology in

privacy policies to propose a model for constructing partial

ontologies. Such ontologies can be used as knowledge bases

by requirements analysts for resolving conflicting interpre-

tations of ambiguous terminology. As improvements to our

model, we plan to apply over-sampling methods to synonymy

relations. Further, we plan to evaluate ontologies created

through our model in privacy detection misalignment tools

and privacy question-answering systems. We also plan to

automatically extract information types from privacy policies

and apply our current model to infer semantic relations. Such

an improvement will enhance automatic elicitation of privacy

requirements.
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