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1 Introduction

1.1 Mirror symmetries

Mirror symmetry is one of the most important physics structures that enter the world of mathematics

and arouse lots of attention in the past several decades. Its general
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philosophy is that a space X should come with a dual X, which, though usually different from and
unrelated to X in the appearance, admits some deep connections with X in geometry. Mirror symmetry
in two dimensions turns out to be extremely enligntening in the study of algebraic geometry, symplectic
geometry, and representation theory. In particular, originated from the 2D topological string theory, the
Gromov—Witten theory has an intimate connection with 2D mirror symmetry; for an introduction, see
[8, 27].

Similar types of duality also exist in three dimensions. More precisely, as introduced in [6, 7,
9, 10, 17, 18, 26, 28], the 3D mirror symmetry is constructed between certain pairs of 3D N = 4
supersymmetric gauge theories, under which they exchanged their Higgs branches and Coulomb
branches, as well as their Fayet-Iliopoulos parameters and mass parameters. In mathematics, the N = 4
supersymmetries imply that the corresponding geometric object of our interest should admit a
hyperKahler structure, or if one prefers to stay in the algebraic context, a holomorphic symplectic
structure. In particular, for theories of the class as mentioned above, the Higgs branch, which is a certain
branch of its moduli of vacua, can be interpreted as a holomorphic symplectic quotient in mathematics,
where the prequotient and group actions are determined by the data defining the physics theory. The FI
parameters and mass parameters of the theory are interpreted as Kdhler parameters and equivariant
parameters, respectively.

The Coulomb branch, however, did not have such a clear mathematical construction until
recently [5, 43, 46]. In this general setting, it is not a holomorphic symplectic quotient, and it is difficult
to study its geometry. Nevertheless, in many special cases for example, already appearing in the physics
literature [6, 16], the Coulomb branch might also be taken as some holomorphic symplectic quotient.
Those special cases include hypertoric varieties, Hilbert schemes of points on C?, the moduli space of
instantons on the resolved Ay surfaces, and so on. For a mathematical exposition, see [3, 4], where 3D
mirror symmetry is refered to as symplectic duality.

A typical mirror symmetry statement for a space X and its mirror X is to relate certain
geometrically defined invariants on both sides. For example, in the application of 2D mirror symmetry
to genus-zero Gromow—Witten theory, the J-function counting rational curves in X is related to the /-
function, which arises from the mirror theory.

In the 3D case, instead of cohomological counting, one should consider counting in the K-
theory. One of the K-theoretic enumerative theories in this setting, which we are particularly interested
in, is developed by Okounkov and his collaborators [1, 37, 48, 51]. The 3D mirror symmetry statement
in this theory looks like
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Mirror Symmetry and Elliptic Stable Envelopes 3
(X) = V(X')
X')

On both sides, the vertex functions, which depend on Kéhler parameters z; and equivariant
parameters a;, can be realized as solutions of certain geometrically defined g-difference equations. We
call those solutions that are holomorphic in K&hler parameters and meromorphic in equivariant
parameters the z-solutions and those in the other way the a-solutions. In particular, vertex functions are
by definition z-solutions.

Under the correspondence (1), the Kéhler and equivariant parameters on X and Xare exchanged
with each other, and hence z-solutions of one side should be mapped to a-solutions of the other side and
vice versa. In particular, for the correspondence to make sense, (1) should involve a transition between
a basis of z-solutions and a basis of a-solutions. In [1], this transition matrix is introduced geometrically

as the elliptic stable envelope.

1.2 Elliptic stable envelopes

The notion of stable envelopes first appear in [38] to generate a basis for Nakajima quiver varieties,
which admits many good properties. Their definition depends on a choice of cocharacter or,
equivalently, a chamber in the Lie algebra of the torus that acting on the space X. The transition matrices
between stable envelopes defined for different chambers turn out to be certain R-matrices, satisfying the
Yang—Baxter equation and hence defining quantum group structures. The stable envelopes are
generalized to K-theory [37, 48, 51], where they not only depend on the choice of cocharacter ¢ but also
depend piecewise linearly on the choice of slope s, which lives in the space of Kéhler parameters.

In [1], stable envelopes are further generalized to the equivariant elliptic cohomology, where
the piecewise linear dependence on the slope s is replaced by the meromorphic dependence to a Kéhler
parameter z. In particular, the elliptic version of the stable envelope is the most general structure, K-
theoretic, and cohomological stable envelopes can be considered as limits of elliptic. The elliptic stable
envelopes depend on both the equivariant and Ké&hler parameters, which makes it a natural object for

the study of 3D mirror symmetry.

In this paper, we will concentrate on a special case where X = TxGr(k,n), the cotangent bundle
of the Grassmannian of k-dimensional subspaces in C". This variety is a simplest example of Nakajima
quiver variety associated to the A4;-quiver, with dimension vector v = k and framing vector w = n. We

will always assume that # 2 2k. (Only in the case n 2 2k the dual variety X can also be realized as quiver
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variety.) Its mirror, which we denote by X, can also be constructed as a Nakajima quiver variety,

associated to the 4,~1-quiver. It has dimension vector

v=(12 k- - - Lkyk k=1,..,2,1)

) (n—2k+1)
-times

and framing vector

Wi = ik + Oin—k.

For Nakajima quiver varieties, there is always a torus action induced by that on the framing
spaces. Let T and T be the tori on X and X, respectively. They both have n!/(k!(n - k)!) fixed points,
which admit nice combinatorial descriptions. Elements in X7 can be interpreted as k-subsets p Cn :=
{1,2,-+ ,n}, while(X ")Tis the set of Young diagrams A that fit into a k& x (n - k) rectangle. There is a natural

bijection (54) between those fixed points

(X/)T/ :) XT

X"

ET(X) = ET x EpicT(Y), ET(X") > ETx EpictX),

X"

k:K->T, T->K

(X7)

By localization theorems, the equivariant elliptic cohomology of X has the form
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Mirror Symmetry and Elliptic Stable Envelopes 5
Er) =m0  pom/,

PET

where each O pis isomorphic to the base Et xEpicT(y). The T-action on X is good enough, in the sense
that it is of the GKM type, which means that it admits finitely many isolated fixed points and finitely
many one-dimensional orbits. Due to this GKM property, the

0:¢)

form as above; however, the gluing data are more complicated.

By definition, the elliptic stable envelope Stabs(p) for a given fixed point p €XT is the section

of a certain line bundle T (p). We will describe this section in terms of its components

Tp.q := Stabs(p)O q,

which are written explicitly in terms of theta functions and satisfy prescribed quasiperiodics and

compatibility conditions. Similar for X, we will describe the components 7. * o’ Iz

1.3 Coincidence of stable envelopes for dual variates
Our main result is that the restriction matrices for elliptic stable envelopes on the dual varieties coincide

(up to transposition and normalization by the diagonal elements):

Corollary 1. Restriction matrices of elliptic stable envelopes for X and X are related by

/

_ !
A T TIML

where p = bj(}), q = bj(i) and parameters are identified by (55).

In (2), the prefactors Tppand 7, , have very simple expressions as product of theta functions.

The explicit formula for matrix elements 75, , and T4, however, involves complicated summations.
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Explicit formulas (see Theorems 3 and 4) for elliptic stable envelopes are obtained by the

abelianzation technique [1, 60-62]. In the spirit of abelianization, the formula for 7yp involves a
symmetrization sum over the symmetric group Si, the Weyl group of the gauge group GL(k). However,
the formula 75, , involves not only a symmetrization over S,x, the Weyl group of the corresponding
gauge group, but also a sum over trees. Similar phenomenon already appear in the abelianization
formula for the elliptic stable envelopes of Hilb(C?) [62]. The reason for this sum over trees to occur is
that in the abelianization for X, the preimage of a point is no longer a point, as in the case of X.

As a result, the correspondence (57) we obtained here actually generates an infinite family of
nontrivial identities among product of theta functions. See Sections 7 and 8 for examples in the simplest
cases k=1 and n = 4,k = 2. In particular, in the n = 4,k = 2 case, we obtain the well-known 4-term theta
identity.

Motivated by the correspondence (57) and the Fourier—Mukai philosophy, a natural guess is
that the identity might actually come from a universal “mother function” m, living on the product XxX.

Consider the following diagram of embeddings

ir ip

X=Xx{\}->XxX&-{p}x X=2X.

Corollary 1 then follows directly from our main theorem:

Theorem 1. There exists a holomorphic section m (the mother function) of a line bundle M on the T x

Tequivariant elliptic cohomology of X x X such that

o= 'w

where p = bj(p).

The existence of the mother function was already predicted by Aganagic and Okounkov in the
original paper [1]. This paper originated from our attempt to check their conjecture and construct the

mother function for the simplest examples of dual quiver varieties.
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Mirror Symmetry and Elliptic Stable Envelopes 7
1.4  Relation to (gln, glm)-duality

The 3D-mirror symmetry for 4-type quiver varieties is closely related with the so-called (gl,, gln)-
duality in representation theory. For the case of X, which is 4;-quiver variety and X which is 4,-1 quiver
variety, we are dealing with a particular example of (gl,, gl>)-duality (i.e., m = 2).

Let C*(u) be the fundamental evaluation module with evaluation parameter u of the quantum
affine algebra Un~ (gl 2). Similarly, let %~ C"(a) be the k-th fundamentalU  evaluation — module

with the evaluation parameter a of quantum affine algebra 4~ (gl,). Recall that the equivariant K-theory
of quiver varieties is naturally equipped with an action of quantum affine algebras [45]. In particular,

for X = TsGr(k,n), we have isomorphism of weight subspaces in Us~ (gl 2)-modules:

K7(X) B= weight k subspace in C¥(u1) ®-+ ® Eus). 3)

In geometry, the evaluation parameters u; are identified with equivariant parameters of torus T.

Similarly, the dual variety Xis related to representation theory of Ua~ (gln):

x)c  kC'ap) ®

the corresponding weight subspace is spanned by the following vectors:

X) =

where e; is the canonical basis in C". So that both spaces have dimension n!/(k!(n-k)!).

Let us recall that the elliptic stable envelopes feature in the representation theory as a building
block for solutions of quantum Knizhnik—Zamilodchikov equations and quantum dynamical equations
associated to affine quantum groups [ 14]. The integral solutions of these equations have the form [2, 29,
33, 52]:

\I'p'q'v CDp(Xl,...,Xn)Sta_bq(Xl,...,Xn)
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<I>p(X1, o Xy)
Stab,(x1,...,x,) denotes the elliptic stable envelope of the fixed point (elliptic weight function). The

variables of integration x; correspond to the Chern roots of tautological bundles.

X, X

1.5 Further progress

In this final section, we would like to overview recent progress in the study of 3D-mirror symmetry and
elliptic stable envelopes made since the 1st release of this paper.

In his last two papers [49, 50], Okounkov proves that the elliptic stable envelopes exist for very
general examples of symplectic varieties, improving the results of the original paper [1] dealing only
with quiver varieties. Applications of the elliptic stable envelopes to problems in enumerative geometry,
such us constructing integral solutions of the quantum differential and difference equations, description
of monodromies of these equations, etc., are the central topics of these papers.

In particular, an interesting class of varieties for which the stable envelopes exists (by [49]) is
given by the Cherkis—Nakajima—Takayama bow varieties [47]. Unlike quiver varieties, the bow varieties
are closed under 3D-mirror symmetry, i.e., 3D-mirror of a bow variety is a bow variety again. For
instance, the mirror X for X = T+Gr(k,n) is a bow variety for every value 0 < k < n (note that X'is a bow
variety but not a quiver variety if #n < 2k, which is why we consider only the “quiver” case n 2 2k in this
paper). It is thus very natural to study the elliptic stable envelope classes and the corresponding mother
functions for the bow varieties. This investigation is currently pursued in [53].

The results obtained in our paper were further generalized to the case of X given by the
cotangent bundles over complete flag varieties of type A, in [54]. This result is further generalized to

flag varieties of arbitrary type in [56]. In [63], Theorem 1 was proved for the hypertoric varieties, see
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Mirror Symmetry and Elliptic Stable Envelopes 9
also [58] for the toric case. In particular, the mother function for the hypertoric varieties can be written

very explicitly, see [63, Theorem 6.4]. The categorical generalization of Theorem 1 for hypertoric
varieties is recently proposed in [39]. In this case, the elliptic cohomology of X is substituted by the
category of coherent sheaves on the spaces of loops in X and m is substituted by the kernel of a Fourier—
Mukai transform describing the mirror symmetry. This leads to a possible categorification of the elliptic
stable envelopes.

Alternative proofs of our results, based on analysis of the vertex functions and g-difference
equations, were given by Dinkins [11, 12]. Applications of 3D-mirror symmetry in enumerative
geometry of threefolds were also considered in [35]. An approach to 3D-mirror symmetry based on the
theory of quantum opers is investigated by Koroteev—Zeitlin, see [34] for the current progress.

The 3D-mirror symmetry for the K-theoretic stable envelope (which are limits of the elliptic
ones) is investigated in the ongoing project [31, 32]. We expect that this work results in new geometric
theory of the quantum differential and quantum difference equations associated with symplectic

varieties.

2 Overview of Equivariant Elliptic Cohomology

We start with a pedestrian exposition of the equivariant elliptic cohomology. For more detailed

discussions, we refer to [19, 20, 23, 25, 36, 57].

2.1 Elliptic cohomology functor

Let X be a smooth variety endowed with an action of torus T B= (Cx)". We say X is a T-variety. Recall
that taking spectrums of the equivariant cohomolory and Ktheory, SpecHTX) can be viewed as an
affine scheme over the Lie algebra of the torus SpecHtHpt) B= C"and SpecKT(X) is an affine scheme
over the algebraic torus SpecKt(pt) @= (Cx)". Equivariant elliptic cohomology is an elliptic analogue of
this viewpoint.

Let us fix an elliptic curve

E = Cx/q?,

that is, fix the modular parameter g. The equivariant elliptic cohomology is a covariant functor:

Ellt: {T-varieties} > {schemes},
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10 R. Rimanyi ef al.
which assigns to a T-variety X certain scheme EllT(X). For example, the equivariant elliptic cohomology

of a point is

.
Ellt(pt) = T/gcochar(T) = Edim(T).

We denote this abelian variety by Et := Ellt(pt). We will refer to the coordinates on Et (same as
coordinates on T) as equivariant parameters.

Let m : X - pt be the canonical projection to a point. The functoriality of the elliptic
cohomology provides the map m«: Ellr(X) - Er. For each point ¢+ €E1, we take a small anallytic

neighborhoods U;, which is isomorphic via the exponential map to a
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small analytic neighborhood in C". Consider the sheaf of algebras

HU: := HTo(XT:) &ite(pt) OUVant,

where

T;:= kery CT.

x €har(T),x()=0

Those algebras glue to a sheaf H over E1, and we define EllT(X) := Specgt H . The fiber of EllT(X) over ¢

is obtained by setting local coordinates to 0, as described in the following diagram [1]:

Spec H*(XTt) ©—— SpecH}(X"t) =—— (#*)~'(U) — Ell(X)

{t) € Ccr U, &y

Q)

This diagram describes a structure of the scheme Ellt(X) and gives one of several definitions of elliptic

cohomology.

Example 1. Let us consider a 2D vector space ¥ = C> with coordinates (z1,22) and a torus T, (Cx)?acting

on it by scaling the coordinates: (Zl,Zz) -> (ulzl,uzzz). Let us set X = P(¥). The action of T on V induces

a structure of T-space on X. We have E1= E x E and the equivariant parameters u; and u, represent the
coordinates on the 1st and the 2nd factor. Note that for a generic point ¢ = (u1,u2) €Fr the fixed set X

consists of two points, which in homogeneous coordinates of P(V) are

p=[1:0], g=[0:1].

The stalk of H at ¢ is Hte(p Ug) &it. O€T,;, and the fiber is He(p Ug). We conclude that over a general

point ¢ €t the fiber of mxin (5) consists of two points.
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12 R.Rimanyi et al.
At the points ¢ = (u1,u2) with u; = us the torus T,acts trivially on X, thus locally the sheaf H looks

like
Hte(X™) = Hre(P") = C[du1,0u2,2]/(z - 8u1)(z - du),

where du; and du, are local coordinates centered at x. Taking Spec, this is the gluing of two copies of C?

along the diagonal. Overall, we obtain that

ElTX) = Op Ua Oq,

We assume further that the set of fixed points X7 is a finite set of isolated points. We will only encounter

varieties of this type in our paper. In this case, for a generic oneparametric subgroup T, CT, we have
XTr= XT.
By the localization theorem, we know that the irreducible components of Ellt(X) are parameterized by

fixed points p €XT and each isomorphic to the base Et1. Therefore, similarly to Example 1, we conclude

that set theoretically, EllT(X) is union of | XT| copies of ET:

Elltr(X) == O,=/, 6)
PET
where O, B= ET and / denotes the gluing of these abelian varieties along the subschemes SpecHe(X™")

corresponding to substori T, for which the fixed sets X7 are larger than XT. We call O, the T-orbit

associated to the fixed point p in EllT(X).
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Mirror Symmetry and Elliptic Stable Envelopes 13

In general, to describe the scheme structure of EllT(X) in terms of the gluing data (6) can be

quite involved. There is, however, a special case when it is relatively simple.
Definition 1. We say that T-variety X is a GKM variety if it satisfies the following conditions:
e XTis finite,
o for every two fixed points p,g €X' there is no more than one T-equivariant curve

connecting them.

Note that by definition, a GKM variety contains finitely many T-equivariant compact curves
(i.e., curves starting and ending at fixed points). We note also that all these curves are rational C &= P!

because T-action on C exists only in this case.

For a compact curve C connecting fixed points p and ¢, let yc €Char(T) = Hom(ET,E) be the
character of the tangent space T,C. For all points # on the hyperplane ycCET, we thus have p,q,€C C

XT. As in Example 1, this means that in (6) the T-orbits

O, and O, in the scheme EllT(X) are glued along the common hyperplane

1
OPD Xc C Oq_

Proposition 1. If X is a GKM variety, then

EllT(X) = BB O,z
PET

where | denotes the intersections of T-orbits O, and Oy along the hyperplanes

1
Op- Xc CQOq,
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14  R.Rimanyi et al.

for all p and q connected by an equivariant curve C where ycis the T-character of the tangent space
T,C. The intersections of orbits O, and Oy are transversal and hence the scheme ElIT(X) is a variety

with simple normal crossing singularities.

Proof. Locally around ¢ €Fr, the stalk of H is given by Hr+(X") ®O€r,.. Let s €T be another point, such

that 7, OT;. We have by T-equivariant localization,

Hre(X™ @Frac(Hr(pt” B= Hre(X™ @Frac(Hr(pt). %

In other words, if U,and U; are small analytic neighborhoods around ¢ and s, such that Us; CU,, then by
definition of the elliptic cohomlogy, the restriction map of H from U, to U is equivalent to the
isomorphism given by the T,-equivariant localization.

By the property of equivariant cohomology of GKM varieties [24], the variety SpecHT+(X™’) is
the union of t,’s along hyperplanes yc., where t, 2. C"are Lie algebras of the torus, associated to fixed

points. Moreover, the intersection of t,’s for p €XT is transversal. More precisely, we have the exact

sequence

0 —> HX") — HX") —— HX',X"),

where X, is the 1-skeleton of X" under the T-action and the last map is given by yc for all one-
dimensional orbits in X',

We see that the exact sequence is compatible with the localization isomorphism (7), which
means that analytically, the local descriptions of Ellt(X) glue over Et, and globally Ellt(X) can be

described exactly as in the proposition.

Here by “gluing”, we mean the pushout in the category of schemes, in the sense of [59].

The classical examples of GKM varieties include Grassmannians or more generally, partial
flag varieties. For non-GKM varieties, the structure of subschemes SpecH(X') and intersection of
orbits in (6) can be more complicated. In particular, more than two orbits can intersect along the same

hyperplane.
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Mirror Symmetry and Elliptic Stable Envelopes 15
2.3 Extended elliptic cohomology

We define

Epic(x) := Pic(X) & E B= E dim(Pic(X)). (8)

For Nakajima quiver varieties Pic(X) = Z19| and thus Epicx) = E|9|, where | Q| denotes the number of

vertices in the quiver. We will refer to the coordinates in this abelian variety as Kdhler parameters. We

will usually denote the Kéhler parameters by the symbol z;, i = 1,...,| Q].

The extended T-orbits are defined by

0] p := Op x EPic(X),

and the extended elliptic cohomology by

ET(X) := ElIT(X) x EPic(X).
In particular, if X is GKM, E1(X) is a bouquet of extended orbits:

1

Etr(X) =@BpexTO PR/,
where denotes the same gluing of orbits as in (6), that is, the extended orbits are glued only along the
equivariant directions.

2.4 Line bundles on elliptic cohomology

We have the following description of a line bundle on the variety Et(X).

Proposition 2. Let X be a GKM variety.
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¢ A line bundle T on the scheme E1(X) is a collection of line bundles Tp on extended orbits

O p, p €XT, which coincide on the intersections:

Tpo pnO q= qu pnO qs

e A meromorphic (holomorphic) section s of a line bundle T is the collection of

meromorphic (holomorphic) sections s, of Tp which agree on intersections:

SpO pﬂo
q -

5q0 pnO q.
)]

Since each orbit O pis isomorphic to the base ET x Epic(x), each Tp is isomorphic via the

pull back along m«to a line bundle on the base. In practice, we often use the coordinates on the base to

describe Tps.

Example 2. Characterization of line bundles and sections is more complicated for non-GKM varieties.

Let X = P! x P!, with homogeneous coordinates ([x : y],[z : w]), and let Cxacts on it by

t-([x:yLlz:wh) = ([x - y].[z - w]).

There are four fixed points, but infinitely many Csinvariant curves: the closure of {([x : y],[x : Ay])} for
any A € €is a Csinvariant curve, connecting the points ([1 : 0],[1 : 0]) and ([0 : 1],[0 : 1]). Locally near

the identity 1 €Ecx the elliptic cohomology Elley(X) looks like
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Mirror Symmetry and Elliptic Stable Envelopes 17
SpecHr"(X) = Spec ClH,, Hy, ul/Hf —u?, H —u?) SpecC[u],

The gluing of 4 affine lines along the origin, as abstract schemes, would no longer be a
subscheme in C3 and hence not isomorphic to SpecHTs(X). To express SpecHr+(X) still as a gluing, one
has to allow each orbit O, to have certain embedded non-reduced point at the origin. For an example of
this type, see [59].

2.5 Theta functions

By Proposition 2, to specify a line bundle T on E7(X), one needs to define line bundles Tp on each orbit
0] p. As O pis an abelian variety, to fix Tp, it suffices to describe the transformation
properties of sections as we go around periods of O,. In other words, to define Tp, one needs to fix

quasiperiods w; of sections

s(xiq) = wis(xy),

for all coordinates x;on O p, that is, for all equivariant and Kéhler parameters.

The abelian variates O, are all some powers of E, which implies that sections of a line bundle

on E1(X) can be expressed explicitly through the Jacobi theta function associated with E:

0(x) == (@Qoox? = x )@/, W =[]0 -
i=0 xqi).

1

0(xq) = xva

0(x), 6(1/x) = —0(x)
. (10)
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18  R. Rimanyi et al.

We also extend it by linearity and define
_ i i
i - b o). 1))
i
By definition, the elliptic stable envelope associated with a T-variety X'is a section of certain line bundle
on Et(X) [1]. Thus, one can use theta-functions to give explicit formulas for stable envelopes, see
Theorem 3 for an example of such formulas.

It will also be convenient to introduce the following combination:

0(xy)
PX,y) = —"F7—
Y= 5m0)
This function has the following quasiperiods:
o(xq.y) =y-'o(xq.y), o(x,yq) = x-'9(x.).

These transformation properties define the so-called Poincaré line bundle on the product of dual elliptic

curves E x EVwith coordinates x and y and ¢(x,y) is a meromorphic section of this bundle.

3 Elliptic Stable Envelope for X

In this section, we discuss algebraic variety X = T+Gr(k,n)—the cotangent bundle over the Grassmannian
of k-dimensional subspaces in an n-dimensional complex space.

31 X as a Nakajima quiver variety

We consider a Nakajima quiver variety X defined by the Ai-quiver, with dimension v = k and framing
w = n. Explicitly, this variety has the following construction. Let R = Hom(C¥,C") be a vector space of
complex k£ x n matrices. There is an obvious action of GL(k) on this space, which extends to a

Hamiltonian action on its cotangent bundle:

T:R = R ®R*@= Hom(C*,C") €Hom(C",C"),

with the Hamiltonian moment map

220Z YoJe\ Z0 uo Jesn [iiH [edeyd 1e euljoied YLoN 1o Alsieaiun Aq 910GE L 9/68SBBUL/UIWI/EE0 L "0 /IOP/[oIIB-80UBADPE/UIWI/WOD dNO"OlWapEo.//:Sdny Wol) papeojumo(



Mirror Symmetry and Elliptic Stable Envelopes 19
W TR > gl(k)% uGi.0) = ij.

Then X is defined as

X :=p-'(0) n {0-semistable points}/ GL(k),

where j €R and i €ERxare n x k and k x n matrices, respectively. There are two choices of stability

conditions 6 <0 and 6 > 0. In the st case, the semistable points are those pairs (j,i) with injective j:

{6-semistable points} = {(j,i) E+R | rank(j) = k}, (12)
In the case 6 > 0, the semistable points are (j,i) with i surjective [22]:

{0-semistable points} = {(j,i) €R | rank(i) = k}.

By construction, X is a smooth holomorphic symplectic variety. In this paper, we choose

0=(-1) ELier(K),

where K := U(1), as the stability condition defining X, in which case it is isomorphic to the cotangent

bundle of the Grassmannian of complex k-dimensional vector subspaces in an n-dimensional space.

3.2 Torus action on X

Let A = (Cx)"be a torus acting on C" by scaling the coordinates:

(Zla---azn) 9 (Z]M—] 19-'-927114—711)’ (13)

which induces an action of A on TxR. We denote by C*;~ the torus acting on 7T*R by scaling the 2nd

component:

) > Gih™ ).
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20  R. Rimanyi et al.

We denote the whole torus'(0) and thus descends to action onT = A x C*,~. The action ofX. Simple check
shows that the action of T preserves semistable locusA

of p-preserves the symplectic form on X, while C*,~scales it by /".

Note that the action (13) leaves invariant k-dimensional subspaces spanned by arbitrary &
coordinate vectors. Thus, the set of T-fixed points X7 consists of n!/((n - k)!k!) points corresponding to
k-dimensional coordinate subspaces in C". In other words, a fixed point p €X7 is described by a k-subset

in the set {1,2,...,n}.

3.3 T-equivariant K-theory of X

Let us denote the tautological bundles on X associated to Cfand C"by V and W, respectively. The bundle
W is a topologically trivial rank-n vector bundle because C”is a trivial representation of GL(k). In
contrast, V is a nontrivial rank-k subbundle of W. One can easily see that V is the standard tautological

bundle of k-subspaces on the Grassmannian. We assume that the tautological bundle splits in K-theory

into a sum of virtual line bundles,

V=yi+-+y. (14)

In other words, y; denote the Chern roots of V. The T-equivariant K-theory of X has the form:

K1(X) = C[y1£!,... .yt 1 @Clust! o~ 11,

where S;is the symmetric group of k elements and 7 denotes the ideal of Laurent polynomials vanishing
at the fixed points, that is, at (15). For our choice of stability condition, the matrix j representing a fixed

point is of rank k; thus, if p is a fixed point corresponding to the k-subset {p1,....ps} C {,2,...,n}, then
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This means that if a K-theory class is represented by a Laurent polynomial f{y;) then its restriction to a

- -1
fixed point is given by the substitution ](y )p= f (up,)

¥y p =Fupth™)

34 Tangent and polarization bundles

The definition of the elliptic stable envelope requires the choice of a polarization and a chamber [1].

The polarization 7"2X, as a virtual bundle, is a choice of the half of the tangent space. In other words,

TX=Ti2X+h -1T12X%

We choose the polarization dual to the canonical polarization (which is defined for all Nakajima

varieties, see [38, Example 3.3.3]):

TV2X = h™ "WV - h™ -'Vx8V. (16)

Expressing 7X through the Chern roots by (14) and restricting it to a fixed point p by (15), we find the

T-character of the tangent space at p equals:

ToX i+ h Vu_J, (17)

app Uj
uile,

where p denotes the k-subset in n = {1,...,n}.

The definition of the stable envelope also requires the choice of a chamber, or equivalently, a

cocharacter of the torus A. We choose ¢ explicitly as

6 =(1,2,...,n) ELier(A). (18)
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22 R.Rimanyi et al.
The choice of ¢ fixes the decomposition 7TpX = Np* ©Np-, where Np:+ are the subspaces whose A-
characters take positive or negative values on 6. From (17), we obtain

Np-=pp..—ui+ h™ -1 jmpp.,u—j , Np+jpp.. e —ui+th™ -1jipp..u—j. (19) iquj uivj <ui
en

en e'n\l
Y &V >\ i<j

3.5 Elliptic cohomology of X

Let us first note that X is a GKM variety. Two fixed points p, q are connected by an equivariant curve
C if and only if the corresponding k-subsets differ by one index p = q \ {i{} U . In this case, the T-

character of the tangent space equals
T pC = uj/ ui.

By Proposition 1, we conclude that the extended elliptic cohomology scheme equals

Er(X)=ER O pl/
(20)

PET

-~

Op = with ETx EpicX) and / Adenotes gluing of abelian varieties O pand O qwithp=q\
YU}

{ialong the hyperplanes u; = u;.
By definition, the elliptic stable envelope of a fixed point p is a section of the twisted Thom

class of the polarization:

TP =60(T"?*X) Q...
®: K (X)
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We refer to [1, Sections 2.5-2.8] for the details of this construction. Sections of T (p) |o
qtransform as the following explicit function:

¢(u5il , Z*l) n ¢(ui'ZI;i1 hDi ) k p
Plug 2 oy PWiz)
T12Xq - (22)

(The variables z,i correspond to Kéhler variables of the T-equivariant Picard group. One checks that all
quasiperiods of line bundles in these directions are trivial and the elliptic stable envelopes are actually

independent on these variables, see discussion in [1, Section 3.3.7]. It is, however, convenient to keep

these directions to describe shifts of stable envelopes by the index.) Here ® T1/ 2Xq for the Laurent

polynomial T X, q is given by a product of theta functions via (11). It has the same transformation

properties as the elliptic Thom class © T'/2 Xo p. Similarly, other terms given by products in (22)
describe the transformation properties of the term denoted by ... in (21).

The powers DP; come from the index of the polarization bundle. They are computed as follows:

for our choice of polarization (16) and chamber (18) the index of a fixed point p equals

1/2 .
=T/X|p,>: indp
ie
Jje

puih_

and the integers DP; are the degrees of the index bundle, that is, the degree in variable u; of the monomial:

u

j=
detindp. uh e
¢
p
ipji
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24 R.Rimanyi et al.

Note that Up q are certain explicit products of the theta functions and their quasiperiods in all variables
are easily determined from (10). In particular (22) conveniently packages the information about
quasiperiods of the elliptic stable envelopes: the matrices of restrictions (23) transform in all variables,
under shifts by ¢, as Upq.

The elliptic stable envelope Stabs(p) of a fixed point p (corresponding to the choice of chamber
o and polarization TV2X) is a section of T (p) fixed uniquely by a list of properties [1]. Alternative
version of the elliptic stable envelope for cotangent bundles to partial flag variates was defined in [15,
55]. Comparing explicit formulas for elliptic stable envelopes in the case of the variety X from [1] and
from [15, 55] one observes that they differ by a multiple. The definition of [15, 55] is based on the fact
that X is a GKM variety, while definition of [1] is more general and is not restricted to GKM varieties.
In fact, the Nakajima varieties are almost never GKM varieties. In this paper, we choose the approach
of [15, 55] because GKM structure of X will simplify the computations. As we mentioned already, in
the case of variety X, both approaches lead to the same explicit formulas; thus, there is no ambiguity in

this choice.

Definition 2. The elliptic stable envelope of a fixed point Stab(p) is the unique section of T (p), such

that its components

Tpq:=
Stabo(p)0 a (23)
satisfy the following properties
= 0
(1) Top z‘g, ig — p.0 " uuy
jen\p, en\
uiuih i<j i>j
[ o -
Q) Tva=foa  jim o Wi __h-', where fpqis

i>j

holomorphic in parameters u;. u
q,
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Let us note that the fact that Stabs(p) is a section of T (p) implies that its restrictions 7pq are

sections of line bundles on abelian varietiesU o q, which have the same transformation properties

in all variables as p q(X).

3.6 Uniqueness of stable envelope for X

To justify the last definition, we need the following uniqueness theorem.

Theorem 2. [15,Appendix A] The matrix T} q satisfying the following:

(1) For a given fixed p, the collection {Tpq | ¢ €X'} form a section of the line bundle T

(p) (as defined by (22)).
J
(2) Top = q' 0 l.l;! e(ui‘ i —J P — uiu
jen\p, en\ E uih
1<J 1>] .
[ o -

3) Tpq = jé;\l foa o Wi __h-', where fpq is holomorphic in

parameters I wiou

is unique.
Proof. Assume that we have two matrices that satisfy (1), (2), and (3) and let «p q be their difference.

Assume that kp q= 0 for some p. Let q be a maximal (in the partial order defined by the chamber) fixed

point such that kpq= 0. (The partial order defined by a chamber o is

P q <= EAttY,(p)

where Attr/y(p) is the full attracting set of a fixed point p, see Section 3.1 in [1]. For X = TsGr(k,n) and
the chamber (18) this is the standard Bruhat order on S,/(Sx xS,~k). For fixed points p = {p1,...,p+} and q

={q1,....qx} with p1 < - <pg, q1 < -+ < qx we have

Pq = pi2q;,i=1,.,k)

By (3), we know that
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o -
Kpa=foqica U ko, 24)u

en\

>jq, i

where fp qis a holomorphic function of u;.

For i €q and j €n\q with i <, consider the point q = q\{i} U{}. By construction, q and q are

connected by an equivariant curve with character u;/u;. The condition (1) means

Kp,q — Kp,q ui=uj = 0.

ie

Ji<v Vg,

where fp q is holomorphic in ;. As a holomorphic function in u; € § it can be expanded as the Laurent

series fpq  zcx’; with nonzero radius of convergence.

ke

The quasiperiods of functions 7p,q are the same as those of the functions Up,q(X).

In particular, for all i€ P Nq from (22), we find

gD =gz

for some integer m. We obtain
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and thus ¢, = 0 for all £, that is, fp q=0.

Mirror Symmetry and Elliptic Stable Envelopes

> oz — gduf =0
keZ

3.7 Existence of elliptic stable envelope for X

The following result is proven in [1, 15, 30]:

27

Theorem 3. For canonical polarization (16) and chamber (18), the elliptic stable envelope of a fixed

point p €XT has the following explicit form:

(25) k

p-1

0

Stabo(p) = SymBERREE /=1 =100y  <O(z-1hy~ ki -n+pyi~2il)
~1)0(tup z-1h" k-n+p -21)

0

i=pi+l

n

DEREREE

0 h™

Note that the components T} q are defined by this explicit formula as restriction 7p q= Stabe o(p)q

= Stabgo(p) yi=ugqit. The proof of this theorem is by checking the properties 1)-3) from Theorem 2

explicitly, details can be found in [15].

3.8 Holomorphic normalization

Note that the stable envelope (25) has poles in the Kédhler parameter z. It will be more convenient to

work with a different normalization of the stable envelope in which it is holomorphic in z:

Stab(P) = O, Stab,(p),

where pis the section of a line bundle on the Kdhler part Epic(X") defined explicitly by

= H 6z 1- *
m=1

N RN

(26)

@7

220Z YoJe\ Z0 uo Jesn [iiH [edeyd 1e euljoied YLoN 1o Alsieaiun Aq 910GE L 9/68SBBUL/UIWI/EE0 L "0 /IOP/[oIIB-80UBADPE/UIWI/WOD dNO"OlWapEo.//:Sdny Wol) papeojumo(



28  R.Rimanyi et al.
(For Xand T, see Section 4.) Similarly to Theorem 2, the stable envelope Stab(p) can be defined as a

unique section of the twisted line bundle on Et(X):

M®P) =T @6, (28)

with diagonal restrictions (Property 2 in Theorem 2) given by Tp pp. Note that the function p only depends
on Kéhler variables. Thus, the twist of line bundle (28) does not affect quasiperiods of stable envelopes
in the equivariant parameters.

We will see that the section p has the following geometric meaning: it represents the elliptic

Thom class of the repelling normal bundle on the dual variety X (see (35)):
Op = @(N;f)’

where A is related to p by (54), with parameter ai/a> related to Kéhler parameter z by

(59).
4 Elliptic Stable Envelope for X

4.1 X as a Nakajima quiver variety

From now on, we always assume that » > 2k. In this section, we consider the variety X which is a
Nakajima quiver variety associated to the 4,-1 quiver. This variety is defined by the framing dimension

vector:
Wi = Ok,i + On-k,i,

that is, all framing spaces are trivial except those at position k£ and » - k. Both nontrivial framing spaces

are one dimensional. The dimension vector has the form

v=(12,.k- <~ 1, kek Jh-1,.2,1).

. n—2k+1)"
-times

By definition, this variety is given by the following symplectic reduction. Let us consider the vector

space:
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R ="2Hom(C",C"+1)Hom(C,C")Hom(CVs-+,C), (29)

and denote the representatives by (asix,j.—k), [ = 1,...,n — 2. Similarly, the dual vector space

Rx="2Hom(C"+,C%)Hom(C",C)Hom(C,C¥-)

with representatives by (bz," k,l,,—k). We consider the symplectic space 7T: *R R @ xand the moment map

-1 THR
- gl(vi)*
i=1
Denote a = @a;, b = @b, i = @, and j = @, then the moment takes the explicit form p((a,b,i,j) = [b,a] +

i ° j. With this notation, X'is defined as the quotient:

n-1
=u O N
i=1
We will use the canonical choice of the stability parameter
0'=(1,1,...,1) € Lieg(K), (30)

where K := U(1)"-!. (We use the same notations for stability condition as in the MaulikOkounkov [38].

In particular, for us the stability parameter 0 = (8;) corresponds to a character  : i GL(v;) - Cx given by

1 (g) ” (detgy)

i

220Z YoJe\ Z0 uo Jesn [iiH [edeyd 1e euljoied YuoN 1o Alsieaiun Aq 910GE L 9/68SBBUL/UIWI/EE0 L "0 /I0P/a[oIiB-80UBADPE/UIWI/WOD dNO"OlWSpEo.//:Sdny Wol) papeojumo(



30 R. Riméanyi et al.

The set of the 8-semistable points in 7R is described as follows: a point
((a,ik,j,,—k),(b,jk,i,,—k)) € n (0 is Ql—semistable, if and only if the image of ix @i,~« under the actions

. n—1 (Cvi
of {a;,b;,1 <1< n -2} generate the entire space i= 1.

a1h?| ash?* | ash3| ash?| ash

airh | a1h ash

ash3| agh?

ash3| agh? azh

ai ay

Fig. 4. The point A = [4,4,4,3,3,2] CR10,4 corresponds to p ={4,7,9,10} C {,2,...,10}.

4.2 Tautological bundles over X

We denote by Vi the rank v; tautological vector bundle on X associated to CV. It will be convenient to
represent the dimension vector and associated tautological bundles using the following combinatorial
description. Let us consider a rectangle R, s with dimensions £ x (n - k). We turn R, 4 by 45- as in the
Figure 3. We will denote by = (i,j)) €R,ra box in R, with coordinates (i,j), i = 1,...,n-k and j = 1,...,k.

We define a function of diagonal number on boxes:

L=i-j+k
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Vm X.c=m

The tautological bundles Vi generate the equivariant K-theory of X. The K-theory classes are represented

by Laurent polynomials in x:

/(X)) = Clx;;' 19 @ Clay, ag , ™)/

where T is the torus described in the next subsection. These are the Laurent polynomials symmetric with

respect to each group of Chern roots, that is, invariant under the group:

n-1

Sn= Svi, 3D

= {f(Xl,]) : f(Xl,]) Xij:(pi)‘.j,VA. S (X/)T/}

see (32) below.

4.3 Torus action on X

Let A= (Cx)*be a 2D torus acting on the framing space C ® (by
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(21,22) > (z101,2242).

Let C~ be the one-dimensional torus acting on 7R by scaling the cotangent fiber
—ok)) > ((

Denote their product by T = Ax C% . The fixed loci in X under the A-action admit a tensor product

decomposition:

NA
. mHm M(V(1),3k) x M(V(2),81-26),
vil4 @=v
\

where M(v(D,§y) is the quiver variety associated with the 4,-1 quiver with dimension vector v(!,
framing vector & and the same stability condition 8; similar with M(v(2),n-2k).

We now give a combinatorial description of the quiver variety M(v(),5;). By definition, a
representative of a point in M(v(),8,) takes the form (a,i,b,j). It is Osemistable, if and only if the image

of i under the actions of all as and bs generate the space
n-1

V(1) := Cvav.

v,

CVi-i+
{G,)) € Z2, ' lig(1) #0)

In summary, the quiver variety M(v(",8;) is either empty or a single point, where the latter case
only happens when there exists a partition A, whose number of boxes in the m-th diagonal is v{,,)+&. The

quiver variety M(v‘?,5,-2,) can be described in exactly the same way.
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The restriction of Chern roots to the fixed point can be determined as follows. Consider

al-'b-lig: € > Vigjk,
The action of the group GL(V(") on a’-'b/-liyis

a > gag-!, b - gbg-!, ix > g,

where g = (g1, ,gn-1) S GL(VM). So

ai-1bj-1ik - gai-1bj-1ik,

and the action of A on the framing space C, z - az, induces the action

ai-1bj-1ik - a-1 1ai-1bj-1ik.

Here a; becomes a1 ! because the framing C is the domain space of ir. To determine the restriction of

the Chern root ¢;;, we need g to compensate the action of T, that is,

gi=ai, V.
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Fig. 1. An example of a fixed point represented by [3,2] €R8,3.

So the (A-equivariant) restriction is ¢ij = al. For the A™-weight, Cx:~ acts on b directly by
j-1 k™. So the T-equivariant restriction is ¢ij =
a1k . Exactly same consideration applies to the 2nd part M(v®,58,-2).

X"

2 e (X))

tautological bundles are given by the following formula:

== AL (G S e S

(32) h

Our notations should be clear from the following example:

Example 3. Let us fix n = 8,k =3 and consider a Young diagram A = [3,2], then A" = [4,3,3]. The union
of A and A~ is the rectangular of dimensions 5 x 3:

The values of Chern roots (which correspond to boxes of Rg3) are given in Figure 2:
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w’ﬁ for A =

4.4 Tangent and polarization bundles for X

To define the elliptic stable envelope, we need to specify a polarization and a chamber.

We choose the canonical polarization:

n_l
n—2
™x =1 + 2 mk"‘ZVHlW— a-'Vi a
Vi VisVi, = (33)

1 i=1

such that the virtual tangent space takes the form:

We choose a chamber in the following form:

o’ :(0,1) € Lieg(A")

A€ X))
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T.X' =TX ,

The tangent space at a fixed point decomposes into attracting and repelling parts:

WX =N &N~

where Njt are the subspaces with A-characters, which take positive and negative values on the

cocharacter (34), respectively. Explicitly these characters equal:

k k
_ Z 1- _ Z 2-

az a al a

N- m=1 _ h2k-n+p,-2m-1, N+ m=1 __ h-2ktn-p,+2m (35)

where p = {p1,...,ps} = bj(A), for bj described in (54).

4.5 Elliptic cohomology of X

The extended elliptic cohomology scheme of Xis a bouquet of T orbits (as a set)

(X' = WA
re(X')
X
whereidentified with the coordinates in the 1st and 2nd factor ofO A 2 ETx Epic. The equivariant
parameters and Kéhler parameters ofO A,
respectively. Xare

By definition, the elliptic stable envelope classes are sections of the twisted elliptic Thom class

of the polarization (see discussion in Section 3.5):

T =6(T"?X)®...

which is a line bundle over the scheme (36) (T/(k)depends on A via twist terms denoted by ...).

Sections of the line bundles 7" ()0 , over abelian varieties O , have the same transformation

A1y 2 1D}
ZJA"M(X/) H ¢((pDIZCD) H¢(a’l’zai h =0 T1/2X/ u

no -1 —1
OeRy k o (en Zc)) i=1 ¢(a;, Zq;)
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properties as the following function: . (37)

The powers D/ are determined as follows: let us consider the index of the fixed point

. _ ml/25p
indr = T°7°X" 5 - Y

The symbol > means that we choose only the T-weights of polarization 71 2Xx, which are positive at c.
Let det(ind,) denote the product of all these weights, then D/ is a degree of this monomial in variable
a;.

oS) T (%)

4.6 Holomorphic normalization

It will be convenient to work with stable envelopes, which differ from one defined in [1] by

normalization
nMN=0, 0

e

>
1]

@p, Ui euih

AN &V
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where p = bj(A) (see (54) below) and variables u; are related to Kéhler parameters z; through (55). The

stable envelope Stab() is a section of the twisted line bundle on
X’

‘M =T e,

2/
Ok

® Np)

5 Abelianization Formula for Elliptic Stable Envelope for X
5.1 Non-Kibhler part of stable envelope

Define a function in the boxes of the rectangle R, by

— OeaA

O¢gA

pi Js if.
The following function describes the part of elliptic stable envelope of a fixed point A, which is

independent on Kéhler parameters:

Xy a ayh x sh Xy
0 — 0 — 0 0 0 —
CIIk ay Cjk x,h cr=n—k X7 cl;:l=;:] Xy cp;1=;J X
Sn,k — (_l)k(n—k) Pr=pPj Pr =Py 7
A X/ Xy
0 — 6
cr=cy Xy th
o>k
1=k
Igxr
A A
l;[c Pr = Py
pA>ph L)
Example 4.
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'

X711 ayh 0 X321

S[113,1 a, X2.1 X111 p,

6x1,1 6EE@ 12,/ 1 BRORE (21,2 BROREQ22,h 2 BRGEEX21,,11 BROREX11,,12 EEORRAX ™ 12,2,2 REORRX22,,12

S4(1,2,11= al X hx™  6mEEXX12,,12 BEOER XX1,1 BEX X X s
X hx™ 22
X 2222 i ayh hy12.0.0022.2) ah X 1h xi1h i
6 — — - 0 0 0 —
42 @9
21 7 11 hx™ x x X X x 00
S.
x1,1 x1,1
Xx2,2 hx™ 2,
5.2 Trees in Young diagrams

Let us consider a Young diagram A. We will say that two boxes U1 = (y,J1), 82 = (2,J2) €} are
adjacent if

i =i, -2l =1 or J1=12, lir-i2] = 1.

Definition 3. A A-tree is a rooted tree with
(%, %

(*, %, %) edges connecting only the adjacent boxes.

Note that the number of A-trees depends on the shape of A. In particular, there is exactly one

tree for “hooks”.
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We assume that each *= (A1, 1,---,1) edge of a-tree is oriented in a certain way. In

particular, on a set of edges, we A have two well-defined functions

h,t : {edges of a tree} —— {boxes of A},

which for an edge e return its head /(e) €\ and tail #(e) €\ boxes, respectively. In this paper, we will

work with a distinguished canonical orientation on A-trees.

Definition 4. We say that a A-tree has canonical orientation if all edges are oriented from the root to the

end points of the tree.

For a box O € A and a canonically oriented A-tree t, we have a well-defined canonically
oriented subtree [0, t] C t with root at . In particular, [r,t] = t for a root » of t.

We rotate the rectangle R, by 45- as in the Figure 3, such that the horizontal coordinate of the

box is equal to €. The boundary of a Young diagram A CR,xis a graph of a piecewise linear function.

We define a function on boxes in R, by

+1 if O € A and I" has maximum above
Jod(m) 1 ifoexrandl

= ~has minimum above (42)

0 else.

Ao = Oex AV (@)

We also define +life<k

(2)
B = -1 ife >n-k

0 else

and we set
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1 2
@ = 8" @ + AP @)
5.3 Kiihler part of the stable envelope

Let A CR,xbe a Young diagram and & = R, \ A is the complement Young diagram as above. Lett U t
be the (disjoint) union of A-tree t and A"-tree "t. We define a function:
WEt U txi,zi) := WEU(tx,,2 ) WEI (Tt ,x3,2:),

for the elliptic weight of a tree, where

h*V(D) ¢ t
R — A : : X
WEI(t;xi,zi) := (=1D)x®)g PRy Xr, zcal ect wt(e) h(e) teln(e),ty
Oelr,tl

_1_
@@, 2o pvo)p, (44)

and similarly for W("t,x; z;).

Here & or e & means the box or edge belongs to the tree. The sign of a tree depends on the
number K(t), which is equal to the number of edges in the tree with wrong orientation. In other words,
K(t) is the number of edges in t directed down or to the left, while «("t) is the number of edges in "t
directed up or to the right. To avoid ambiguity, we also define W#(t;x;,z;) := 1 for a tree in the empty

Young diagram.

1

Example 5. Let us consider a Young diagram [2,2] CRs, with trees

By definition, we have

WEI = WEI WE!
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In this case, we have six boxes with the following characters:
b A 2 ) 2 A
P11 =a1, 951 =01, ¢35 =axh, ¢y =a1h, ¢y =a,h, g5 =ash

Similarly for the 4™-weights of boxes (43) we obtain

B, =pPA,D+P(A, 1D =1+0= L
B(1,2)=BpN(1,2)+BP(1,2)=0+1= .
B(2,1) =pP(2,1)+p?2,1)=0+4+0= 0.
p2,2) pP22 pP22 1 0 1
= + = 4 = >
B3, 1) =3, 1)+23,1)=0-1=— L
B@3,2)=pM13,2)+p2(3,2)=0+0=0. 1
First, let us consider WEH I . In this

case, we have a tree with the root at

r =(1,1) and three edgeswith the following heard and tails: #(ei) = (1,1), A(e1) = (1,2), t(e2) = (1,1),

h(e2) = (2,1), H(e3) = (1,2), h(es) = (2,2).

For the 1st factor in (44), we obtain

1 a 1 2 _
H chh v(O) =¢ 1 7] 1Z22Z31_ (1)5;L 3
o X —
Oert 11
(pah_
Xr [ 1]

For the edges in the product (44), we obtain:

é Xte1) h(er) o
A - x o
1 PrenXne) pe () RVO =¢ “h,zl 1221_
» 20 X1

[Aet t]
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Xt(ez) h(ez) _lh—V(D) =¢ 11 Z_l
t(ez) h(e2) pelh(eq) 1] ot x o Xy 3 o

X

P Xt(es) hoes) —1p—v(O) —¢ X12 Z1-
= Zy
- ‘o X Pt(es)Xhies) pelhies)t]
o 1
, zh-
22

Thus, overall we obtain

whEH )0 )

Similarly, for the 2nd multiple we obtain WEn

ah ho o oxa h

’ ’
X3p 2324 X31 24

5.4 Formula for elliptic stable envelope

Definition 5. The skeleton 5 of a partition A is the graph, whose vertices are given by the set of boxes of

A and whose edges connect all adjacent boxes in A.

Definition 6. A l-shaped subgraph in A is a subgraph? © r rconsisting of two edges v = {51,02} with the

following end boxes:

81,1 = (i), 82,1=0812=(i + 1,)), p=(i+1,7+1). (45)
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It is easy to see that the total number of L -shaped subgraphs in A is equal to

=D (o) -1

leZ

where d(A) is the number of boxes in the /-diagonal of A

M =#Hoerlcg=1

There is a special set of A-trees, constructed as follows. For each l-shaped subgraph y;in A we choose

one of its two edges. We have 2" of such choices. For each such choice, the set of edges ['2 \ {8;} is a

-tree. We denote the set of 2™ A-trees, which appear this way by Y.
Now let us define Y, x= Y2 x Y-, whose elements of are pairs of trees (t,t7), where t is a A-tree
with root (1,1) and t” is a A"-tree with root (n - k,k). Both trees are constructed in the way described as

above, and they are disjoint, that is, do not have common vertices.

Example 6. Let us consider A = [3,2] €Rs3and k_ =[4,3,3]. A typical element of Yg3looks like

| M-

€Y'8,3

The following theorem can be proved using the same arguments as in [62].

Theorem 4. The elliptic stable envelope of a fixed point A for the chamber o defined by (34) and

polarization (33) has the following form:

Stab, (1) =Sym_,, "' w (B (48)
N LA g

where the symbol Syms»«denotes a sum over all permutations in the group (31).
Proof. The proof of this theorem is based on the abelianization of elliptic stable envelope developed in

[1, Section 4.3], which, in turn, is inspired by the abelianization of stable envelopes in cohomology [60].
The proof follows closely the proof of the main result of [62]. To keep the presentation short, we will
refer to the corresponding results in these papers when possible. We also refer to [1, 62] for definitions

of all maps and objects appearing here.
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Let us denote by AX the abelianization of the Nakajima variety X. This is a hypertoric variety

defined by the following symplectic reduction:

AX:= TR///IS,

n
where R is given by (29) and S is the maximal torus of GL(V;). H)i ; The stability condition for this

’

symplectic reduction is defined by (30). Let () be a T fixed points in X. By definition, (A,A7) is a zero-

dimensional Nakajima quiver variety of type A,-1. We will denote by AX the

()
li

(h,2) abelianization of this Nakajima variety. It is a hypertoric subvariety AX C
AX fixed by the action of torus A. We denote by Stabc the elliptic stable envelope map for these
hypertoric varieties. The chamber C here is the chamber of A defined by cocharacter (34).

The abelianization diagram for Nakajima varieties (see [1, (74)]) expresses the elliptic stable

envelope of the fixed point (A,A") in Xas the following composition:

()»,5»):71'* O_]'*_,_O(]',*)_l L*o(i)_l oJT*_l

For the definition of all maps here, we refer to [1, Section 4.3].

Lemma 1. The Nakajima quiver variety (M) is a direct product of two zerodimensional Nakajima

varieties of A -type corresponding to dimension vectors given

oo

/(A,X) = AH, x AH;

Proof. The fixed point set of a Nakajima quiver variety with respect to action of the framing torus is
isomorphic to the direct product of Nakajima varieties for the same quiver and one-dimensional
framings (this property of quiver varieties is known as tensor product structure). Non-empty 4,-1 quiver
varieties with one-dimensional framing are all zero-dimensional 4 quiver varieties and have dimension

vectors o
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’ s
Jiem

s s/ dxo_ % % r_ ! /
Jose =1, X200 4 T I X240 Tu = e X T

1/ .l* / . . . . . .
U1,—%J1,4+ 1) whereare maps for zero-dimensional Nakajima quiver variety A (i.e., 4

o o P
(2, —srdz4r 02,0

AH,".

The hypertoric varieties AH) were considered in [62, Section 6]. In particular, it was shown
that AH, contains fixed points (of a maximal torus acting on AH; by automorphisms) labeled by A-trees.
For trees t, t™ in A, and A", we denote by the same symbols the corresponding fixed points in AH; and

AH,".

"
172
"

1'0:2

that C and C are faces of the chamber C).

The following is a version of [62,Proposition 6] for the case of X:

Proposition 3. Up to a shift of Kéhler parameters z; > zh~ ™, m; € Zthe elliptic stable of Cx x Ct -fixed

point (t,t7) in AXq) corresponding to the chamber C equals

® Stabcs (t), (50)

Stabc (t,t") = Stabci

where
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StabC1 " (t) =

I 1 I J I 1. ¢
Iex p)w >p/\ p)‘ <p)L

X7

@) GO e () o)

_ =n-k XI cr+l=cy XI
v (t) = YN Ieh o >p
Wi(zi), Stabc2 o J TP

[

c +1=
Pr=Pp a0 _XXJI VV{(Z,‘),

1J I,

rJjes rJjesJ

the elliptic stable envelope of A x Cx x C*t” -fixed point (t,"t) in AXis given by

() e (o) 1) I () I

- 1=k cr=k =n—k cr+l=cy crt+l=c
StabC(t,’t) ¢ €* [28 AoA AA_ o
_ ___Jo xile Wi(zi) Wt (zi) (5 1)
! ! pl >pJ pl <pJ
with
Wi(z) = (1) Xy il Zie tQ —xth(e)d)hk((ee)), i[h(e)t] zi B

A
(52)n  x©@%

= (= S

Proof. By Lemma 1, elliptic stable envelope of a fixed point factors to a product of elliptic stable
envelopes (50). The explicit formulas for elliptic stable envelopes of t in AH, are given by [62,

Proposition 6], which gives the above explicit formulas.
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We note that the variables z;, i €Ry,,in (52) denote the Kéhler parameters associated to the line

bundles x; on the abelianization AX.

Proposition 4.

(t,Her
nk

rosx
_*r_]+l 7-[*

Proposition 3, the stable envelope of the fixed point (t,"t) also factorizes into a product of stable

envelopes. This gives

meei foGlo™h LiStabe(t,t) =
tt)y T
e
, N ) B J . _
RSty (oG ot 10 moiiied, /(0

Each factor here is equal to 1 by [62, Theorem 5].

The last proposition implies that the abelianization formula (49) can be written in the form:

-— . . —1
- o > (0 =m 080Gy >
sab(A,A) " = T Joke© (j—9-1 © subc Bsubc (£, D)€Y (t,HeT

.
surc(i, ™) B,

nkn,k

where the 2nd identity Stabc = Stabc ° Stabc is the triangle lemma for elliptic stable envelope, see [1,

Section 3.6]. We now see that the last expression coincides with (48).
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[1 ¢ x
CI:CJ
st>p5  Indeed, the numerator of

(48) is given by (51), the product __!inthe denominator [] 6
cr=cy
oE=p

XJ

of (41) comes from pushforward © computed by localization, similarly ___/ x
h-
*

comes from the pushforward (j—3-!. We refer to [2, Section 4.3] for computations of the corresponding
normal bundles to maps wand j . -

By definition, the Kéhler parameters z;, / = 1,...,n — 1 of the Nakajima variety X are parameters
associated to tautological line bundles L/ = detVi. Expressed in the corresponding Chern roots these line

bundles have the form Lm = icrukx. This means

i=m

that the Kahler parameters z;, i €Ry, corresponding to the line bundles x; on the abelianization AX restrict
to the Kéhler parameters of X by z; - z... This substitution gives desired dependence of stable envelope
on Kéhler variables.

The last step is to find correct shifts of the Kéahler variables by powers of /™. Indeed, the
proposition (3) provides the explicit formulas for elliptic stable envelopes up to shifts z; > zA~™ ™ for
some integers m;. The values of m;are uniquely determined by the condition that quasi-periods x; > xiq
of (48) coincide with the quasi-periods of the section (37). A calculation repeating the last part of [62,

Section 8.3] gives exactly the combinatorial formula for the 2™ -powers (43).

5.5 Refined formula

In this subsection, we prove a refined version of formula (48), in the sense that when restricted to another
fixed point y, the summation will be rewritten as depending on the trees t™ only, but not on the trees t.
The refined formula will be of crucial use to us in the proof of the main theorem.

Given a fixed point A, the original formula (48) has the following structure (for simplicity we

omit the chamber subscript ):
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where we denote

Tex

R. Rimanyi et al.

- N°
- o n Lo} n
Stab()h) n.k, ) FR (t, t)W (t, t)
GES tt
X; a, xzh
H 0 (a ) 0 (X - = hei=nn—k,kk) H 6 (L) XI_cpl
=1 k e & I >plJJ cpl [+ =c X1 + = <plues
Ign rA A A
xJ ahxi__ 0 0
I=(
(IJ)¢T,UT; (I<>J)¢T,UT;
)‘>p} 2 o
c=c,p>p XJ c=c,p + xJh
xjh Xy
c1+l=CJ,p}=p§+l 0 ); cl+1=CJ,p}‘+l=p§e -
IeNB )\ 5\t ! IONE 3 ;5\t
X1
cr=cy, P?=P}+2 6 th
(52)
A
©%h(e)
a ——— 7 a X -
0 “x1riert] —c,lgze)(b%))q[m; t] Ze-(1h)” V() z
Zc_Il h_v(l) el 0 Z;Il -
Blrt] 18[A(e),t]
A
0 h~v1

0 ax2h” tze-nh™ ~v() O xt(e)dh(e) z-crlh™ ~v(l)

r 1] >

) )
X n(e)Prie) IPIA(e) 4]

Bt 0
B7 ) I h

) tzith” ()

[ e)]
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and N°, D°, R°(t,"t), W°(t,"t) are the functions obtained by permuting x;’s via 6 €S, x

inN, D, R, W.

We would like to consider its restriction to a fixed point v O\; in other words, to evaluate x;=
¢7'. The symmetrization ensures that Stab(A) does not have poles for those values of x,’s, and hence

Stab(L)v is well defined.

For an individual term such as

N° O T T
WR & OW 1)

however, its restriction to v is not well defined; in other words, it may depend on the order we approach

the limit x;= ¢,*. We discuss these properties in more details here. Lemma 2. The restriction to v of

N
’DO’

is well defined, that is, does not depend on the ordering of evaluation.

Proof. The proof'is the same as [62, Proposition 9]. Lemma 3. If

NBoov =0,

then o fixes every box in v™.

Proof.when restricted toSuppose thatv. First note thatNDo® v = 0. Then by LemmaN contains 2, N°
contains no factors that vanish

0 a2h”,
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=n—k,i#n—k,k)

o(i) # (n—k, k)

We proceed by induction on the p-values of boxes in v™. Assume that ¢ fixes every box with p
< po. Consider a box (a,b) with p(a,b) = po+ 2. Then either (a + 1,b) or (a,b + 1) lies in v_, and both of
them have p = po. Suppose 6-'(a,b) = (a,b), then it is adjacent to neither (a + 1,b) nor (a,b + 1), and by
induction hypothesis, ps-1(ap)> pPatlp,Paptl. We see that N° contains the factor

0 (M) — - (ab)

Xo(o-1(a,b)) 0 +1,b or - 0 x.

o(a,b+1)h
o(o 1 0 xw , Xa

Xab XXa,b+1h~

which vanishes at v. Hence, 6 must fix (a,b) and the lemma holds.

Lemma 4. If

NBoo =0, v

then o preserves the set of boxes of A.

Proof. We proceed by induction on the diagonals. For the initial step, we need to show that the box with
least content in A, denoted by (1,b), is fixed by 6. If (1,b + 1) € v, then (2,b + 1) € v, and ¢ fixes (1,b)
by Lemma 3. Now assume that (1,5 + 1) &\A. Let X; = (1,b + 1),X>, - be the boxes in the diagonal of

v\A with one less content than (1,b). Since pxi< 0 < p1,5, by Lemma 3 we always have in No the factor

H 6 (XU(X'")) = H XXm 0, x
>1

mo(1.5) Xob) ) mz1

which vanishes at v unless 6(1,b) has no box to the left of it. This implies o(1,b) = (1,b).
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Now assume that o preserves the /-th diagonal of A. Consider the (/ + 1)-th diagonal. There are
several cases.
e Both the /-th and (/ + 1)-th diagonals of v\A are empty. The lemma holds trivially for / +
1.
e V\\Ais empty in the /-th diagonal but has one box X;+! in the (/ + 1)-th diagonal.

 In this case, let Y1/,Y,/ - be boxes in the /-th diagonal of A. In N°, there is the theta factor

(7) 0 0 ) [T _
X + I —
1 m1 > oX;") > 11 h

I+1y
oX1) X¥m

, xh
G(Xi+1) — X{+1

¢ The [-th diagonal of v\A is nonempty.
 In this case, let Xi’,Xo' -+ be the boxes in the /-th diagonal of v\A, and consider a general

box Y in the (/ + 1)-th diagonal of .. We have in N° the factor

G(XU(XL”) = H —) H9 XXl
>1 m>1

Xo(v)

Xo(¥) m
1f0(¥Y) & A then it must be in v\A. Let Z be the box to the left of o(¥), which must either
also lie in V\A and has to be one of those X/’s, or lie in A. In the former case, the product
vanishes at v; in the latter case, we have another factor 6 _____x#, which also

vanishes at v.

Yo
The lemma holds by induction.
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Consider the subgroups in S, s defined as

S\ :={c | o fixes each box inA U v}, S,~:={o | o fixes each box in A}.

Lemma 5. If

then S
Proof. The proof is exactly the same as Lemma 3, by induction on the p-values of boxes.

Now we would like to restrict the formula to the fixed point v, in a specific choice of limit. We

call the following the row limit for A: first take

XI=xJ

v

Y1

By previous lemmas, we see that only 6 €S,\i survives. Moreover, under the row limit, one
can see that only one tree t (which contains all rows of A) survives, and one can write all terms

independent of trees in A:

RO(tt) = (-1)"™R(t"), We(t,t™) = We(t),
= > (4 —
where m(L\) leZ 1), and
x jh x
cit1=cy, pr=py+1 X1 c+l=cy, pr+1=ps Xy
- don? ;\t IONE 5 \¢
R@@) := X/ ,
6 —_
ca=crp=pst2 X Jh
1,JB)
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A
h — X 1) Phe) -
Zc11h V() 1) Ph(e qu -

9 ¢k -
- 7 18 Xn(e)Pr(e) 1P[h(e) 1]
W@ = “
Zc_’jl VD P 0 Z(,_jl -
17 [B[h(e),t]
a2 h-v() x
0 h-v(l)
For N°, D°, and 6 €S,-, we have the factorization
(&) NO' _ M ) N/,_ ) NX
o D, » Di’_ _ ,
D %
where
O, ) = (—Dnkn k-l
a ah x sh X
cr=k )C[h cr=n—k X ci+l=cy I crtl=cy Xy
(- L 1, 1B, JE), 1B}, JE)
X X >
o Lo —L
cr=cy X )CJh
I3, JE,
X
ayh X5 (h
x 9(—) 9(—) 0
(5([) H _ XI H XO'(I) H -
- =n—k,iek cr+l1=cy, pr>py crt+l=cy, pr<py
NX = #£(n-kk () gl5, IJer (<) gl IJer
i
X; x;h
e I ¢ 11 o x
a, X7
=k, Ier cr+l=cy, pr>ps cr+l=cy, pr<ps
#(1,1) I<J)ely, I,Jel T<J)gly, IJer  Na= I X
JI,
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=CJ. p1>pJ C1=Cy, P1>PJ -
IJer IJex IJer cxJx h

In summary, we have the following refined formula:
Proposition 5. For any choice of limit x; - ¢, for i €A", we have Stab(L)v

—e(d) O, ) g g N _D—é_,R“(E)W"G)

cE Wt A v

— (1) H
€)= (-1 cr+l=cy (=D.
I J)¢l, I,Jer
4

As a corollary, we have the following identity in elliptic cohomology:

_ N2 ; }
Stab() =) %) _ij;R"(t)W"(t)-
oBS;,t Ui
Proof. Computations above show that

= (=" 2 ew;)

. [
Stab(W)v D Now % v o St NDiko ™ Ro("t)Wo(t)v.

The refined formula is proved by the following lemma.

Lemma 6.

X1

X5 (I) X6 (I) _ o =cy, pr>pi+
DI= H Q(X— H o . -nl D= H 0 e IJer  20J.
oW/ er=c;, pr>ps+2 o)

(53)
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NDiaw =. [T v

cr+l=cy

I gy, IJex

Proof. Letti=h™-', ,=1, x> x/a) in [62, Proposition 10]. We have

I o J] o

NDaav = NDap =. cr+l=cy, pr<ps cr+l=cy, pr>py
(I gl IJe T gl I,Jer
6 The mother function
6.1 Bijection on fixed points

Recall that the setp = {pi,...,p«} in the setXT consists ofn = {1,2,n!.../((,nn-}. On the dual side, the setk)!k!)
fixed points corresponding toT consists of thek-subsets

X"
same number of fixed points, labeled by Young diagrams A, which fit into the rectangle R, with

dimensions (n — k) x k. There is a natural bijection

&) S

defined in the following way.
r e XD

We note that this bijection preserves the standard dominant ordering on the set of fixed points. For
instance in the case n = 4,k = 2 the fixed points on X are labeled by 2-subsets in {1,2,3,4}, which are

ordered as follows:
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XT={{1,2},{1,3},{1,4},{2,3}1.{2,4},{3,4}}.

The fixed points on X correspond to Young diagrams, which fit into 2x2 rectangle. The bijection above

gives the following ordered list of fixed points in X:

xHT =

parameters u;/u;+1,h~ and the Kéhler parameter z. The coordinateson  =xO ) = Et x Epic X)Recall
that the coordinates on the abelian variety Op ET Epic(x) are the equivariant

. . a a - . z z . . .
are the equivariant parameters 1/ 2,4~ and Kéhler parameters “1,..., ,-1. Let us consider an isomorphism

identifying the equivariant and Kéhler tori on the dual sides

K:To>KK->T,

defined explicitly by

Recall that the stability and chamber parameters for X are defined by the following vectors:
al=>zh™ k-1, ay

6 =(1,2,...,n) ELiex(A), 0 =(-1) ELiex(K).

Using the map (55), we find that

—1 _ _ ,
Kk No)=(~1,...,—1) = -6’ KHO) = (1) =—0 .

d.

We see that the isomorphisms k is chosen such that the stability parameters are matched to
chamber parameters on the dual side.

6.3 Mother function and 3D mirror symmetry

Forthe T Tx -variety X x X, we consider equivariant embeddings defined by fixed points:

ir ip

X=Xx{}->XxX&-{p}x X=X (56)
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We consider X x {A} as a T x T variety with trivial action on the 2nd component. This gives

EllrxT(X x {A}) = EllT(X) x ET= ET(X),

where in the last equality we used the isomorphism « to identify Epiccx) = ET. Similarly,
Ell({p} x X') = Ep(X"),

We conclude that T x T-equivariant embeddings (56) induce the following maps of extended elliptic
cohomologies:

DRI /(X X X/) (X/)
ET(X) - ElltxT¢- Er.

Here is our main result.

Theorem 5.

e There exists a line bundle M on ElltxT(X x X) such that
)" () = M(p), (IO = ZDT’(A).
where p = bj()).
e There exists a holomorphic section m (the mother function) of M, such that

(i) (m) = Stab(p), ((p)*(m) = Stab’(k)’

We will prove this theorem in Section 9. This theorem implies that (up to normalization by
diagonal elements) the restriction matrices of elliptic stable envelopes of X and X are related by

transposition:

li P 4 )\_ /
(Similarly with notations in Definition 2, we denote 74« "~ Stab @) Ou; we also

use the simplified notation (-)|p for (-)|O0  p.)
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Corollary 3. The restriction matrices of the elliptic stable envelopes for X and X in the basis of fixed

points are related by
—
Tp.pThm = ~mnTqp, (57)

where p = bj(}), q = bj(i) and parameters are identified by (55).

Proof. For fixed points* 4 € (X))T let p = bj(}), q = bj(1) denote the corresponding fixed points in XT.

Note that (X x X)TXT = X" x (X)T. Let us consider the point (p,u) from this set. By Theorem 5, we

have

Stab(q)p = m|(p,y) = Stab(A)y.

—Q T e
By definition (26, 38), we have Stab A) p=065T5 , Stab @ p=0 qTqp. In the standard
normalization of elliptic stable envelope, the diagonal elements of the restriction matrix are given by

normal bundles of repelling part of the normal bundles:

_ — ! (N —
Top™ O (N, )’ T 5 = OV, )’

r_ . o ® _ 4
with Np-and N5 @S 10 (19), (35 we see that 0, =Tpp Oq = Thup,

As we will see in Section 8, the equality (57) encodes certain infinite family of highly nontrivial

identities for theta function.
7 The mother function in case k = 1

Before we prove the Theorem 5 in general, it might be very instructive to check its prediction in the case
k =1. In this case, the formulas for stable envelopes for X and Xare simple enough to compute the mother

function explicitly.

220Z YoJe\ Z0 uo Jesn [iiH [edeyd 1e euljoied YLoN 1o Alsieaiun Aq 910GE L 9/68SBBUL/UIWI/EE0 L "0 /IOP/[oIIB-80UBADPE/UIWI/WOD dNO"OlWapEo.//:Sdny Wol) papeojumo(



Mirror Symmetry and Elliptic Stable Envelopes 61

7.1 Explicit formula for the mother function
In the case k = 1, both X and X are hypertoric, X = T+P"-!, and X is isomorphic to the A,-1 surface

(resolution of singularity C*Z,). The map « has the following form:

K: h— l, 4 ul u
h az 2>z zZl=>u, LN zn-1->  un-nl. (58)
1 m-1 m ... n-1

Fig. 5. The tree for the fixed point representing [lm—l] Ra,1.

We denote by y =y; the Chern root of the tautological bundle on X and by x;=x;1, i = 1,-- ,n — 1 the Chern

roots of tautological bundles on X. For symmetry, we also denote by xo = a; and x, = a». In these notations,

we have
Theorem 6. In the case & = 1, the mother function equals:
" ( xh
1 n 0 i 0 i1
[l —
m= (— i= )
uy. (59)

7.2 Stable envelope for X

First, let us consider the elliptic stable envelopes of the fixed points in X. In the case k = 1, the fixed

points on the variety X are labeled by Young diagrams inside the 1 x (n - 1) rectangle. There are exactly
n such Young diagrams A,, = [1,1,...,1] with
e
m =0, ,n - 1. To compute the stable envelope of A,,, we need to consider trees in A, m

and A"m. Obviously, there is only one possible tree in this case, see Figure 5:
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For (41), we obtain

Sl = (=116 a—l X0 @ m=20 i X0 xxmm-h"1 X in=-m2 0 xixilh™ .
1

Xn 1 il Xi 1

(2) _
To compute the Kéhler part of the stable envelope (44), we note thatPim = 0 for all boxes of R,.1 and

(D)
B is equal to zero for all boxes except the box (m - 1,1) where it is equal to 1. Thus, B((i,1)) = dim-1.

WEI
HRRE==3

= w [ L L[] <we
a m—1 m—2 ¥ m—1 ah n—1 n—2 h
— -1 -1 -1 - 2 -1 +1 =1
0 _L,h z; (P z ’h Zi >< 0] S z l ZI
X X,,— X
1 =1 =1 i+l j=i+1 n—1 i=m i=m t J=i
x We conclude that
- x; —m— Xm T -
0 VRl oz x6 h x I o I
n,1 =1 \Xl—l Jj=i ]) Xm—1 = + \ -1 =
m n x; i—
. X h
Ell n iml Jm____
1z 1em
Stah Am) =8, W, =(-1 oo
m m m 1 m 1 - - = n .
o el An,z;)x. o ol
i1 \ = J=i 1=m+ \J=1 mz—j 168

(60)

9. The restriction of stable envelope to fixed points is given by

where we denote ¥ = ¢ and ¥, =
evaluation of Chern roots (32). In this case, the restriction to m-th fixed point is given by
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fx1=ai, Xm-1=ai, Xm=axh™ """, Xn-1=ach™}. (61)

Thus, for the diagonal matrix elements of restriction matrix, we obtain

/(}\’m) . — (_1)TL6 2hn7m+
nm,}.m= Stab a, a— 1.

Finally, the stable envelope written in terms of parameters of X, that is, all with the parameters substituted
by (58), equals:

Xi Ui
n
9 S
i=1
Stab(n) = (=1)" 10 w100 i, (62)
i=1 umh” i=m+1 um
with diagonal elements of the restriction matrix:
T = (ZD"0@ AT, (63)

7.3 Stable envelope for X

Under the bijection of fixed points, we have bj(A,) = {m} Cn. From (25) for the stable envelope of X in
the case k = 1, we obtain

-1 —1p—n+m-—1
Stab(m) = 1—[9(T O(yu,,z _h+ _ ) yuh' x 1 -
. 0z~ h ) 0w, (64) mn

i li=m+1

The restriction to the m-th fixed point is given by substitution y = u-,'. Thus, for diagonal of restriction

matrix, we obtain
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m
u: -1 n Ui
= Stab(m)|,, = 0 N
| m 11 " -
Tnmb . (65)
h i=m+1 um
7.4 Stable envelopes are restrictions of the mother functions

We are now ready to check Theorem 6 in the &k = 1 case. Note that (65) gives exactly the denominator of
(62) and we obtain
n X
— (— 1 n 9 1
b LU (Xi—l - Ui -

Stab(A) = Ty Stab(h)

m| m, h um

where m is defined by (59) by m| m we denotes the restriction of this class to the m-th fixed point on X,
that is, the evaluation y = u-,'. Similarly, we note that (63) is exactly the denominator of (64) and we
obtain

m
— D" [ ¢ (Y;“:") X O(yu,z th =1y T
=1

stab™ =T}, 1 - Stab(m) _
x 0(yu)= m |,

i=m+1

where m|a, denoted the restriction to A, on X, that is, the substitution (61) (one should not forget to
substitute 2~ > A~ -'in (61), as all formulas written in terms of the parameters of X). Theorem 6 for k =

1 is proven.

8 Simplest Non-abelian Case n =4,k =2
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8.1 Identification of parameters and fixed points
In the case £ = 1 considered in the previous section, the matrix elements of restriction matrices 73 , and
Tp.q factorize into a product of theta functions and Theorem 5 can be proved by explicit computation. In
contrast, when & 2 2, the matrix elements are much more complicated. In particular, Theorem 5 (and
Corollary 3) gives a set of very non-trivial identities satisfied by the theta functions. In this section, we
consider the simplest example with n = 4 and k = 2. In this case, the fixed points on X are labeled by 2-

subsets in {1,2,3,4}. We consider the basis ordered as

XT={{1,21,{1,3},{1,4},{2,3}1,{2,4}1,{3,4}}.



66  R. Rimanyi et al.

The fixed points on X’ correspond to Young diagrams, which fit into a 2 x 2 square. The
bijection on the fixed points described in the Section 6.1 gives the corresponding points
on X (in the same order):

xH" = {9, 01],11,11,12], [2, 1], [2, 21}.

The identification of Kdhler and equivariant parameters (55) in this case reads

h u Usg

a
s zh, A hl, zln—>#, zzn—>—2, Zg > ——. (66)
a, U, Usg uzh

We will denote a fixed point simply by its number m = 1,---,6. For example, T, ; will

denote the coefficient of the restriction matrix for X given by T}, 3 (; 4;- Similarly, T} ,
g2 O the dual side X'.

8.2 Explicit expressions for stable envelopes

Using (25), (26), (48), and (38), one can compute explicit expressions for stable envelopes.
We list two of them here for example (after applying « (66)):

(B (05 B (5 (25 () (2
V1 V2 zh + 1 < Vo)
(1) (5
Y2 )4

Ug\, (Ua QylUgly Xp U3 \ (XpoUg\ (X1oU3z\ (Xo1\ chay\ (ha,
al—=)o(—=)e 0 0 8 0 ol—=)o(—)o
uy/ \uy/ \nx, ,uyuy 1,2hu1 2,143 1,1U2 110 1,1 2,2

a,
110

)

UL U u X hx
() (G ) (%)
Uy Uz/ \X39 X2.2

‘ ug)g(us)g( St )9( s )9(X1,2u4)9(X1'1u4h)9(X2,2)G(hal)G(hal)g( = )
u
1 Uy/ \AX, U Uy/ \xyhuy /) \xy U, X1 Ug Xp 1 X) X5, hx, ,

(et (), (322),(S22)
[ oy — oy — )o
U Uy Uz/ \X3 9 X2,2

+

+ (%11 © Xp5)
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k : denotes T

8.2

Stab(6) =

Stab(1)

where we denote x = a ,x
8.3 Theorem 5 in case n =4,k =2

Corollary 1 means that the functions above are related by the following identities:

Stab(@ = Stab'®) ,
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where the restriction to the fixed points on X is given by substitution of variables y; (15). The restrictions

to the fixed points on X are defined by (32) (together with identification of parameters (66)!). We only

compute non-zero restrictions and only those Stab(a) » with a = b (the case a = b is trivial).

For example:

Casea=2b=1:

, B 3 u, zu,h® u
Stab (1)|2_0(zh)9(h)9(u3)9( . )9(u4 B g

Us

3
(2)|1=9(zh3)9(h)9(u1)9 Zuzh e(ul)e(u
Stab Us U3 Uy Uy 2

We see that for (a,b) = (2,1) the two are trivially equal as product of theta functions, which also
happens in cases (a,b)=(3,2),(4,2),(5,2),(5,3),(4,3),(6,3),(5,4),(6,5). However, the identity is nontrivial

for the remaining cases (a,b) = (3,1),(4,1),(5,1), (6,1),(6,2),(6,4). Case a =3,b = 1:

n? 3 h n
00 G 0 G 6 TR 0 T 0 L2 0= 2 0 Tt o zn’ 6 T

Stab(1)3 = O34

2
=6 (ul) 0 (ul)e (h) 6 (huz) e(Zh u2)9 (z-
Stab(3) Us Ug Us Ug .

Casea=4,b=1:
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2
W), =6 (ul)e (uz) 6 (h)6 (huz) 6 (zh3) o 7
Stab Us) \Ug Us us
23]

>

On)p “Log 12 g Mg i gy 2R g 2 g My g ozh g -

uy O ug u3 uy u3 u3 uy u3 2
u
uy 3
3 h2
Stab(4) 1 = 0
Casea=5.b=1:
_ 2n ug huy hug 72 uy 222 4o Zhu huy zuzh éL h)ﬂ -
I(l) h o U4 o Uy o U3 bz 0 U3 0 u3 0 u3 0 u3 0 U4 o ugq o Ug 0(
3
Stab s = (

h h h u u hu h u hu -2
0(h) 0 o 0 b6 T e T T a(n=6 26 o2 0 oo T 0 T2 6z

up

Stab(S) 1= 0 u2
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Casea=6,b=1:

1 h h h
Stab'(1)] = (9( UZ)Q(ﬂ)g(&)g(zhz)g(m)g(ﬂ)g(ﬁ)e(m
( 0 (—3) Uz Uy UzlUy Uy) \Ug
us u u
(L) (hul) (hu4)9 Zh? 6.(h)6 zhu,u, g U
u Uy UsUy Usg
() o Pttt 9(h2)9 ) (H“)o@hyo (1) (X2
Uy Ugly Ug Uy U, u,) )’
hu zhu hu zh2u u zhu hu zh%u hu
o (o(2)o (o (S Jo (2 o (222 ) =0 (32 )0 (2 ) (o (22 o (52))
o()
19 %2
u3
Stab(6) 1 =
Case a=6,b=2:
h h h -
@) s=0 " e "Ly Mg gz o Us
Stab Us Uj Uy Uy -
___h,
2 2 h oul
mo g g Mg HL g 23 gy—geme P g -
Stab(6) 2=6( O uul3. “Ous
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Case a=6,b =4
ush hu zhu ush
‘@) g=0 2= 9 2 ¢ 2 9 37 9o z-
Stab U Uy Uy Uy h2,
(6) 4 Mo 2g 3t g 2 g T2 g F32 g(myanyn P 200 B
Stab = 0 w23 .
8.4 Identities for theta functions

In all these cases the identity follows from the well-known 3-term identity

 lTe@=0 29 29 1y +0 %26 %o
Oayx1 0hyx2 0hyy2 X X Y, X X Y2 ahy y y ahy

ay ay—1,(67)

and 4-term identity for theta functions:

0 (M)0Byy12 Ohy__x11 8a2xhy1 2 8alax22hy1 Oxy22 Bax1x12

R CIIENRC STETe

X ) ) X9 Xy X Y210 &at'

(68)
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_ 9 (h)g(xl)g(alath2)9(a2hYI)Q(aIYI)Q(hy

X2 X1 X2 Y2 X1

_ 1 exyzg

1032 (2)e (e () ()42 e

Let us check the identity for the most complicated case a = 6,b = 1. The other cases are analyzed in the
same manner. First, we specialize the parameters in the 4-term relation

(68) to the following values:

(ai=h"-', ay=zh", X1= us, X2= ug, V1=, ya=ul, h=h).

After this substitution, the above 4-term (up to a common multiple 0(%7)) takes the form:
_ uy hug uy zuy h? zhug hu
0w 0w 0w O Ty 0 00 2
+6 uq 0 huy 9 hug 0 uq 0 zhuy 0 Zuy~

w 7 w7 owa Y owa U uwa U w2 (69)

_ uy us huy zhu, zh2uy hu
=~ u4_9 u4_9 ug_e us_e u4_9 uz 2

+0 Us g U2 g huy 0 hug 0 zhuy 0 zu h?

Ug Ug us Uy Uz Uy

Now, the identity for a = 6,b = 1 has the form:

A1+ A2+ A3=B1+ B,
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where the terms have the following explicit form (after clearing the denominators):

A=0 W g Mg Mg Mg ogp2 g iz g w1 g 2 g (p

Uz uz_ - uz_ Uy~ ug &'
_ up huy huy hug 2 zhujug uy
A, = -0 ui_G u4_9 u4_9 ue—9 zh* 0 (h)6 0 uS_Q
uu32
_ u; uz zh?uou, 2 up us uy
A3 = -0 uz_@ u3_9 6 h° 0 u3_9 Uré(zh)e s 0
uud2
_ 2 uiuz uz uy huy zhuy huy zh?
B =6 h)0 9u4_9 u4_9 ug_@ 6 uS_Q
2 ) —url —zhu —hu —zurh®> ,—hu
w2 Ba=—0 (h)* 6 et g_uui 9_52 0 s 9w O 0w
2
For some values of the parameters, the three-term relation (67) can be written in the form
u hu zhu,u hu zh?u,u u
o 0 20 "o 172 =—0 % 0 R 7))
Uy Us UzlUy Uy UzlUy Us
uu zhu Zuq "~
+6 172 9o ) !
UzlUy gz — YUz
hy

and thus for 4; we can write
2
L = -6 (%) o (ﬁ) 0 (%) 0 (%) 0 (ﬁ) 0 (h)o (ﬂ) Q(L Y2l )9 (zh)
Uy Uy Us Uy Uy Us UzUy

PR Zhuz) 9 (%) 9 (ﬂ) o ()26 ﬁ) o (—uluz) 0 (hi
Us Uy Uz Uy Uz UzlUy Uy 3
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Similarly we can write the 3-term relation as

2
n?) 6 (ﬁ) 0 (%) 9 (Luluz) — 9 <%) o U2t ), (ﬁ) 0 (zh)
02z us Uy UzUy Uz UzUy Uy

and thus

2
o)) () () () ) (o
4 U Uz Uy Uy us 3 UzUy

2 4 Us Uz UzlUy Us Uy
hz-
Finally,
0 R0 W@ W W —gmo M2 og Mg M g Mg Mo ogpyg M

3

which gives
2
L= 9 (%) ) (h) ) (@) ; (%) ; (h) 5 ) (h) Q(L)g b
Uy Uy Us Uy Uy us UzlUy
2
(2 (1) 0 (2) oo () () (1) (22 o o
Uy Uy Uy Uy Us Us UzUy

. A A A .
Several terms in the sum “" 1+ "2+ 3 cancels and we obtain
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A, +A, = 020 (ul)e (uluz) 5 zu,h? p (zhuz)e (huz)e (hu
4 U Uzly us3 Uy us3 Uy

_ - _ _ 30 uui4

0 hu, P hu, 0 zhu, g Z”
Uy Us Us Us  h20uuis.
0 (h)%e U

Now, modulo a common multiple uzlu2, the relation 41 + A2+ A3 = By + By is exactly the 4-

term relation (69).

9 Proof of Theorem 5

Let us first discuss the idea of the proof. We denote the restriction matrices for the elliptic stable

envelopes in (holomorphic normalization) by

' = Stab’'(x /
Tqp = Stab(q)0 o, THH * o,

~

1
O
Il

Recall that the isomorphism « induces an isomorphism of extended orbits O I3 p

EtxT. First, we show that under this isomorphism we have the following identity

/

Tin = Tqp, for p = bj(V), q = bj(w). (70)

By Theorem 2, to prove this identity, it is enough to check that the matrix elements T;, satisfies the
conditions (1), (2) and (3).

The condition (1) says that for fixed p the set of functions Ty, is a section of the line bundle
M(q) see (28). By Proposition 1, to check this property, it is enough to show that T, has the same
quasiperiods in equivariant and Kéahler variables as sections of M(q)|O pand that it satisfies the GKM

conditions:
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Thit Wi=u;j — “v,p w=
w, (71)

if the fixed points p = bj(L) and s = bj(v) are connected by equivariant curve, that is, if p = s \ {i} U as
k-sets. We recall that the quasiperiods of T), are the same as of function (37) multiplied by (39). The
quesiperiods of sections of M(q)|op are the same as of function (22) multiplied by (27). Both resulting
functions are explicit product of  theta functions and the quasiperiods are determined immediately
from (10). A long but straightforward calculation then shows that the quasiperiods coincide. To check
(71) is however less trivial, we prove it in the next Subsection 9.2.

The condition (2) is trivial and follows from our choice of holomorphic normalization.

The condition (3) says that Ty, must be divisible by some explicit product of theta functions
and the result of division is a holomorphic function in variables u;. We will refer to these properties as
divisibility and holomorphicity. These properties of the matrix Ty, will be proven in Subsections 9.3 and

9.4, respectively.

Let us consider the following scheme:
n-1

SX, X") :=FrTx SHE) x Su(E). (72)

i=1

Here SY(E) denotes k-th symmetric power of the elliptic curve E. We assume that coordinates on S(E)
are given by symmetric functions on Chern roots of tautological bundle on X. Similarly, SV/(E) denotes
the scheme with coordinates given by Chern roots of i-th tautological bundle on X, that is, symmetric
functions in x with ¢ = i, see Section 4.2 for the notations.

Recall that the stable envelopes Stab(q) and Stab(A) are defined explicitly by (25) and (48). In
particular, they are symmetric functions in the Chern roots of tautological bundles. This means that the

function defined by
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m = 2. (Dap stab(p) Stab’ (b~ (@) (73)

=X p.

can be considered as a meromorphic section of certain line bundle on S(X,X’). We denote this line
bundle by M™ . (Note that Tqpis triangular matrix with non-vanishing diagonal; thus, it is invertible and
the sum in (73) is well defined. Note also that in (73) we assume that q = bj(u) and the 2nd sum over p

is the same as sum over q €X".) Let us consider the map

¢ EllnT(X x X SX, Xy > |

which is defined as follows: the component of ¢™ mapping to the 1st factor of (72) is the projection to
the base. The components of the map ¢~ to S(E) and to S¥/(E) are given by the elliptic Chern classes of
the corresponding tautological classes. For the definition of elliptic Chern classes, see [21, Section 1.8]
or [19, Section 5]. It is known that ¢ is an embedding [40], see also [1, Section 2.4] for discussion.

Finally, the line bundle and the section of the Theorem 5 can be defined as M = ¢"sM"~ and m

=c¢"(m" ). Indeed, from the very definition (73) and (70), it is obvious that

(i)*(m) = m , = Stab(p), (ii’;)*(m) =m P = Stab()).
that is, the section m is the mother function.

9.1 Cancellation of trees

Before checking conditions (1)—(3), we need a key lemma that describes that under specialization of
some u; parameters, the contributions from trees cancel out with each other and the summation simplifies

dramatically.

Define the boundary of 1™ to be the set

{G)er|@—1,j—1)¢Ar}

Define the upper boundary of A" to be the set
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U:={G)) € |j=k}

Consider a 2 x 2 square in A", consisting of (c,d),(c + 1,d),(c,d + 1),(c + 1,d + 1), where (¢ + 1,d) is in the
a-th diagonal. Let t™ be a tree, which contains the edge (¢ + 1,d + 1) > (¢ + 1,d).

The involution of t™ at the box (¢ + 1,d) is defined to be the tree inv(t™,(c + 1,d)) obtained by
removing (¢ + 1,d + 1) = (c + 1,d) from "t and adding the edge (¢,d) >
(c + 1,d). (The involution sends a tree to another tree. In fact, by definition, t™ contains the edge d; :
(c+1,d+1) - (c+1,d), but does not contain the edge 3, : (c,d) - (c+1,d). It also follows from definition
that the subtree s™ := [(c + 1,d),t"] does not contain the other 3 boxes in the 2 x 2 square (otherwise t~
would contain either a loop or a l-shape). It is then easy to see that inv(t") is still a tree.) We abbreviate
the notation as inv(t") if there is no confusion. Define inv(inv(t")) = t". Involution is a well-defined

operation on all trees at all boxes that are not in U or the boundary of ™. Let s~ be the subtree

s :=[(c+ 1,d),t7] =[(c + 1,d),inv(t)].

The u-parameter contributed from s~ is

B =ul u(s) :
s Uc
€™ I

Lemma 7 (Cancellation lemma). SPiText
ROW(b) _
R3Anv()WENV() 'y 5)=1

As a corollary,

Ne _ _
S REOW (t) = — Z » D°

A 0eS; A

N; _ _
—=R? (inv(t) W’ (nv(t) o . _
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Proof. Direct
computation
shows that

P Xet1,d
X

_h
c,d

RO : (74)

R(inv(b)) N
Xetl,d+

X
c+l,d

The quotient W("t)/W(inv("t)) has contribution from an edge e if the subtree [/(e),t™] or

[A(e),inv("t)] contains (¢ + 1,d + 1) or (c,d). Those contributions are all of the form

0 xxzh((ee))¢¢hxt7»((ee)) I€h(e),inv(t7)] ut el - u(s’)  or 0 xx (@%te) Ielh(e)tl
A
zh(e)cbh}”x(e) uycleri1 |
A
X t(€)¢h( e) -
2 (e) h(e) l—[
Xne)9”e u X o ]
1) I€h(e),inv(t)] U cle+1 0x__ hROY () Olliedrelehe

utcies 1 u(s)

which are both 1 under u(s”) = 1, and the only remaining factor comes from the edges (c + 1,d + 1) - (¢

+ 1,d) and (¢,d) - (c + 1,d):
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A
d -
0 : 1 ctld yxen gr u(s?)
Oxxcrerlldadl . +1.d Pc
A
Xc,d wc-ﬁ— d cd .
X * ——h
ct+ d (/’C'd XC+ d
cll,d+l u-=1= X
Ou(s™) 0 1,

1,
The lemma follows.

9.2  GKM conditions

The goal of this section is to prove that the elliptic stable envelopes Stab() satisfy the GKM condition
(71). For simplicity, we assume that (1,k) €L7; in other words, A~ starts with diagonal 1. The general
case can be easily reduced to this.

A subtree of "t is called a strip if it contains at most one box in each diagonal. We will

also abuse the name s#rip for a connected subset in a partition that contains at most one box in each

diagonal. We call a strip that starts from diagonal i to j - 1 an

(iy)-strip.
Let A and p be two partitions, and p = bj(X), q = bj(r). Suppose that as fixed points in X, p and

q are connected by a torus-invariant curve, which means that

q=p\{i} U,

for some 1 <i,j <n (assume i <j). On the dual side, that means p D\, and p\\ is an

(i,)-strip, lying the boundary of A".

Recall the GKM condition:

Proposition 6. For partitions A and p as above,
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stab®) u=u; = SEAD'GL)

By localization and the triangular property of stable envelopes, it suffices to show that for any

partition v O\,

stab™ vui=u; = Stab' () VU=

Before proving the GKM condition, we need some analysis on the specialization of the stable envelopes

u_u
under ;= ;.

9.2.1 Specialization of Stab(\) under ui = uj
Recall that p Cn and i€ P-J & P/ I <j. We would like to study the specialization u; = u;.

By definition

Stab()”) =Tpp- Stab'()»)’

where

Tp.p = (=) (n-k)k i, j@\p,i<j Ou—uji iep,j\p,i> Ou—uijh™ .

In particular, Tppcontains a factor 0 __u/'. u;

For any tree t™ in A7, consider all subtrees of t™ that are (i,/)-strips

B = {Bi,Bi+1,"' 9Bj_1}5
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where B;is the box in the /-th diagonal. We define B(t",,/) to be one whose B; has the smallest height. 1f
t~ does not contain any (i,j)-stripes as subtrees, define B(t™,i,j) = DA tree t” in A™ is called distinguished,
if its strip B 1)) # @, and lies in the boundary of "

A simple observation is that, for the contribution from t™ to Stab(}) to be nonzero under u; = u;,

B(t",i,j) has to be nonempty.

Lemma 8. Let B be an (i,j)-strip in t”, which is a subtree. Let Bybe the box in B n U with largest content.
We have
e if B; €U, then B;is the root of B;

e if B; €U, then Byis the root of B.

Proof. If B; €U, and the root of B is some box other than B;. Then the unique path from B;to U has a box
in its interior with local maximal content. must be connected to both the boxes to the left and above it,
which is not allowed.

If B; €U, then every box in B from B;to Byis in U. It is clear that the root of B is

By.

Lemma 9. Let B be an (i,j)-strip in t~ which is a subtree. If B, lies in the boundary of ", then B

lies entirely in the boundary of A7; in other words, B(t",i,j) = B.

Proof. Suppose B;lies in the boundary, but B does not. Then there exists a box in the boundary of A",
not in B, but in a diagonal less than j - 1. Since t” is a tree, there is a unique path from that box to some

box in U. This path would contain a box with local maximal content in its interior. Contradiction.

Lemma 10. Under the specialization u; = uj,
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Stab(L),i. ;= Tpp- N, ) pe ® ®
oe A Ua=
disinguished
S ubt ., Ne ~ B
e ol > ARTTwW

Proof. Let B = B(t",i,j). Since Tp, contains a zero ui/u;, if B = it is clear that the stable envelope will
vanish. Now assume B = J

Ifi =1, then B; = (1,k). By Lemma 9 B lies in the boundary and t” is distinguished.

Ifi =1, it is easy to see that B; €U (otherwise as a subtree B must contain (1,k)). If moreover B;

is not in the boundary, then one can construct its involution inv(t™). By Lemma 7, the contributions from

t” and inv(t") cancel with each other. Therefore, in the summation over trees, we are left with those t”

whose B;lies in the boundary of 1™, which by Lemma 9 are distinguished.

Fix a distinguished tree t™, and B = B(t",i,j). Let’s consider the restriction of Stab(}) to a certain
fixed point v S\. For an individual contribution from given t” and o, we take the following limit, called

B-column limit for v\\: first, for each pair of ,J €\ such that [ is above J and I.J €B, take
X7= x_]h_;

for any / B, take x;= ¢;"; finally take any well-defined evaluation of the remaining variables. Note that

this limit only depends on the partition A and the pair 7,f, and does not depend on t”.

Lemma 11. The restriction

N? _ _

—R7OW OP} v
under the B-column limit vanishes unless o fixes B.

Proof. Suppose that the restriction does not vanish under the chosen limit. Recall that By, i </ <j -1 is

the box in the /-th diagonal of B. We use induction on /, fromj - 1 to i.

220Z YoJe\ Z0 uo Jesn [iiH [edeyd 1e euljoied YLoN 1o Alsieaiun Aq 910GE L 9/68SBBUL/UIWI/EE0 L "0 /IOP/[oIIB-80UBADPE/UIWI/WOD dNO"OlWapEo.//:Sdny Wol) papeojumo(



84  R. Rimanyi et al.

Recall that by the refined formula, o lies in S\
First, we show that B;-1is fixed by o. Let Y1,Y>, - be the boxes in the j-th diagonal of v\A, such
that the heights of Y,,’s are increasing. Since j €p, Y is the box to the right of B;-1. Hence, we have the
Xo(Bj_y

theta factors x h )
Ym

as pg-1 > prm and Bj-1 is not connected to Yi. Under the B-column limit for v\A, this product vanishes
unless o6(B;-1) has no box below it, which implies 6(B)-1) = B;-1.

Next, suppose that B+1 is fixed by o, consider B;. Let e be the edge connecting B;and By+1. Let
Xi1=B,Xs,+ and Y1 = Br1,Ys, - be, respectively, the boxes in the /-th and (/ + 1)-th diagonals of v\\.

If e is horizontal, then we have factors ,

>2 XBZ+1
since we know px< m I+1 psand X, is not connected toxs' Bi+1. If 6(X,,) = X1 = B,
g XoGm) 0
for some m = 1, then the factor /1 = ; vanishes under the B-column ordering.
XB XB
+ +1

Hence, 6(B) B.

If e is vertical, then we have factors

o (By) o (By)
o) ) _ | | ol 2o
0,

X0 (Ym) m=2 Vi P

h X

m22

since we know pgi> pr, and B, is not connected to Y>. If 6(B)) = X, for some m = 1,
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then the factor o °B) _ gy m Xnm~  vanishes under the B-column
x h ordering, since X, isx x
Y xvh

the box above Y,and they are not in B for m > 2. Hence, o fixes B,.

In summary, after restriction to v in the B-column limit for v\A, only contributions from

distinguished t™ and permutations ¢ that fix B survive. We are now ready to prove Proposition 6.

9.2.2 Proof of Proposition 6: | is not contained in v

In this case, the strip p\A is not entirely contained in v\A. Clearly, we have Stab(u)v = 0.

Lemma 12.

Stab(M)v.=u,= 0.

Proof. By Lemma 10, only distinguished trees t~, with strip B = B(t",i,j) contributes. Let B, ,B;-1 be
boxes in B, and X be the first box in B that does not lie in V\A. For restriction to v of an individual
contribution by given t~ and o, we take the column limit for v-, that is, first let x;= x,for any 1J € v in
the same column, and then take any limit for the remaining variables.

If X = B;, then there is a box Y above it, which also lies in v". Since ¥ €B, the edge connecting
X and Y is not in "t. The contribution from "t then contains a factor 8(X/Y), which vanishes under the
column limit.

If X = B;, then either i = 1, or i = 1, and the entire B N U, and in particular By, lie in v™. By
Lemma 8§, we know the root 5 = B; or By, respectively. Denote the box not in B and connected to » by

C. The factor in W°=!("t) that contributes the pole u/u; is
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—$£‘—€6€er uji
———Ovxdrrui= 1.
-

uj

Stab())v = 0 under u; = u;because of the zero u;/u;in Tpp.

9.23 Proof of Proposition 6: p &v
In this case, B is contained entirely in V\A; in other words, A Cu Gv. Let rpbe the root of B, which if i =
1,is By; and if i = 1, is B,.

Ifn—k, k) €B, let C € (\B be the box connected to 7. C could be in or not in V\\A.

A
If (n - k,k) €B, we denote by convention that xc/ Yc = 1. Then
u
Bu;iStab(A)%v,u=1; S
t Ng ot t oy -
v N P
u
=0 T ecyow) ,-
P WO, :
v
- cki) O ax2th” v
=n—k,I#£(n—
Iep A
1 \
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cl 0 xo(o(UD)h™ view
+1=cj, pr>ps
J)¢t, I or Jep A
1
1—[ 0 XU(I)) 9( Xo (D
—c5, o507 \XoW) X7y
orJeu i
1t,cljor,pl/<put 0 xo(o(l)vxx
+= )
(o)¢
(es - \ _ en-a
I hv-1
I \
A
’L‘I’%jﬁg U hieephnledyeB —x 0 mﬁ Uie)
A% A%
X 0C Y9 vx o uh e) Xne)Puiey Yi
Uu; u bl
0 <« efy 9 E(le_) g

Uu;
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A
which can be compared with Stab’(u). Direct computation shows that
1 Qe cqmp

() vu u
Xt(e)%);(e) ut(e))

v, Ui=Uj

/ J 0 i
0 (ﬁ) Stab’(A) l ( )jiie(h_l) H ( e () h(9)> H (Xh(e)‘pt(e) u;

7
U Stab | = eeB\U 0 ) eeBNU G(u;_(ie))

=™ []

i< <jo@
mep

where the last equality is because for e € B\U,

. N e @ ep egU
o[ Xt@%he Y \ 9( ' )
v
Xne)Piie) Unter ) _ Unie)
Up(e)
© (e)¢p e¢gU

and foree BN U,

Q(Xt(e) h(e) Ut(e)
A
Xp(\Pie) Ui

u
P ( t(e)
U;

The proposition is proved by making the change of variable  — h~! in the above
result, and compare with the following lemma.

Lemma 13.
un-1T, Uu; u u -1 u; \-1
/() g =00 TLo(Gr) T1 o) T1 o(G5) - T1 o(55)
Y/ Tqq ! i<m<j UM’ iimei W7 iimaj ush i<m<j Ut
np mep men p mep
Proof. Straightforward computation. [
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9.3 Divisibility
In this subsection, we aim to prove the following divisibility result. Let p = bj(X), q = bj(1) €X” be two

fixed points.

Tp,p
Proposition 7. The function Ty, - Ty , is of the form
uj
f‘}""}" ' 6 ,jE S s
i>j
. ih
in\pU
where f,,). is holomorphic in parameters u;.
Proof. Recall that
9( J
Tp.p = (=1)k(n-k) O_ui __u, u;~

; h
74 i j@\p,> i) \p,i<

and 7}, , does not depend on u;’s. By formula (53), we can see that all possible poles of Tx u take the

f

form u[/uj. Therefore, all possible poles of the function”,, in the proposition are of the form wui/u;.

Moreover, by the proof of holomorphicity (Theorem 9 below), they have no poles at u;/u;. We conclude

that f,.» is holomorphic in u;.
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9.4  Holomorphicity

In this subsection, we will prove the holomorphicity, that is, the normalized restriction matrices of stable
envelopes on X are holomorphic in u;s. The idea is to apply general results for g-difference equations

associated to Nakajima quiver varieties.

9.4.1 Quantum differential equations

Let X be a Nakajima variety. For the cone of effective curves in H»(X,Z), we consider the semigroup
algebra, which is spanned by monomials z¢ with d €H(X,Z)er. It has a natural completion, which we
denote by C[[z4]]. The cup product in the equivariant cohomology Hte+(X) has a natural commutative

deformation, parametrized by z:

axfB=aUpB+0(2) (75)

known as the quantum product.
The quantum multiplication defines a remarkable flat connection on the trivial Ht+(X)-bundle
over Spec(C[[z4]]). Flat sections W (2) of this connection, considered as Hr+(X)-valued functions, are
defined by the following system of differential equations (known as the quantum differential equation

or Dubrovin connection):

e—V(z) =A%V (2), V(z) € HT( ) d

axr
X[[=]],
where A €H%(X,C) and the differential operator is defined by
d
_ = (d) (76)
d\
9.42 Quantum multiplication by divisor

The equivariant cohomology of Nakajima varieties is equipped with a natural action of certain Yangian
Y (gx) [65]. In the case of Nakajima varieties associated to quivers of ADE type this algebra coincides
with the Yangian of the corresponding Lie algebra (but in general can be substantially larger).

The Lie algebra gyhas a root decomposition:
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gxr=h g,

in which h = H?(X,C) @center, and 0. €H,(X,2)csr. All root subspaces g, are finite dimensional and g-, =
g% with respect to the symmetric nondegenerate invariant form.

The quantum multiplication (75) for Nakajima varieties can be universally described in therms
of the corresponding Yangians:

Theorem 7 ([38,Theorem 10.2.1]). The quantum multiplication by a class A €H(X) is given by

z
)\*:)\.U-I-h Z a()\)ﬁeae_a+-~-
©,0)>0 (77)

where 6 €H*(X,R) is a vector in the ample cone (i.e., in the summation, 0 selects the effective
representative from each *ao pair) and --- denotes a diagonal term, which can be fixed by the condition

Ax1l=A.

Let z;with i = 1,--- ,n—1 denote the Kéhler parameters of the Nakajima variety X from Section

Corollary 4. The quantum connection associated with the Nakajima variety X is a connection with

regular singularities supported on the hyperplanes

ziziel ..zj= 1, I<i<j<n-1.

Proof. The variety X is a Nakajima quiver variety associated with the A,-1-quiver. Thus, the

corresponding Lie algebra gX= sl,. The Kéhler parameters z; associated to the tautological line bundles

on X correspond to the simple roots of this algebra. In other words, in the notation of (76) they
correspond to z; = z%, where a;, i = 1, ,n—1 are the simple roots of sl, (more precisely, simple roots with
respect to positive Weyl chamber (0", ;) >0 where 0 s the choice stability parameters for X).

By (77), the singularities of quantum differential equation of X are located at
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O —

%=1

for positive roots a. All positive roots of sl, are of the form o = o; + aq+1 + - + oy with 1 i <j<n - 1.

Thus, the singularities are at

z%=zizipl -zj= 1.

943 Quantum difference equation

In the equivariant K-theory, the differential equation is substituted by its g-difference version:
W(zq“)L = M, (2)¥(2) (78)

where L €ic(X) is a line bundle and ¢ = € and W(2) € K7 (X)[[2]], The theory of quantum difference
equations for Nakajima varieties was developed in [51]. In particular, the operators ML(z) €End(KT(X))
were constructed for an arbitrary line bundle L. These operators are the g-deformations of (77), that is,

in the cohomological limit they behave as
Mc(@) =1+Ax+--

where ... stands for the terms vanishing the cohomological limit and A = ¢;(L).
In K-theory, the sum over roots in (77) is substituted by a product:

ML(z) = Lw Bu(z) The singularities of the quantum difference

equations, that is, the singularities

over certain set of affine root hyperplanes of an affine algebra gy.
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of matrix ML(z) are located in the union of singularities of B,(z). The wall crossing operators B,(z) are
constructed in [51, Section 5.3]. In particular, if z* = 1 are the singularities of the quantum differential
equation in cohomology, then the singularities of (78) can only be located at z%¢?h™ * =1 for some integral

p,s. This, together with Corollary 4 gives

Proposition 8. The singularities of the quantum difference equation associated with the Nakajima

variety X are located at

zizi+1 ...quph_S: 1’ 1 Sl<]s n,p,s €z

944 Pole subtraction theorem

The elliptic stable envelopes describes the monodromy of g-difference equations. More precisely, the
g-difference equation (78) has two distinguished fundamental solution matrices, indexed by fixed points
XT. The z-solutions “ form a basis of solutions, which are holomorphic in the Kéahler parameters in the
neighborhood |z;| < 1. Similarly, the a-solutions “ for a basis of solutions holomorphic in |a| < 1. By

general theory of g-difference equations, every two bases of solutions are related by a transition matrix:

e = W(2)W:, (79)

known as the monodromy matrix from the solutionsW? to W¢ . (Let us clarify the meaning of terms in
(79): here Z denotes the fundamental solution matrix - the | XT| x | X7 | dimensional matrix with columns
of Z satisfying the quantum difference equation. The set of | XT| columns of “ forms a basis in the space
of solutions. The elements of this basis are holomorphic in variables z. Similarly, “is a matrix whose
columns form a basis of solutions, which are holomorphic in parameters a. The theorem above says that
W(z) = {W(2) b e coincides with W (W) 1) The central result of [1] (in the case when X7 is finite)
is the following:

Theorem 8 ([1, Theorem 5]). Let X be a Nakajima variety and let

Tiu(2) = Stab(3) |, Ao SXT
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be the restriction matrix for elliptic stable envelope in the basis of fixed points. Then, the matrix W(z) =

{2 w7 from (79) in takes the form:

_ TA,M(Z)
Wepw  ©C 72X ),

o 1/2 1/2
O(T'?x ) e(T'?x )

where is given by (11) applied to Laurent polynomial 7"2Xy. In particular,

does not depend on the Kéhler parameters.

The singularities of solutions ¢ and “ are supported on the singularities of the corresponding ¢-
difference equation. It implies that the transition matrix also may have only these singularities (if W(z)
is singular at a hyperplane %, which is not a singularity of g-difference equation then, by (79) W¢is also
singular along 4, which is not possible).

In particular, combining the last theorem with Proposition 8, we obtain

Corollary 5. Let 75, , be the restriction matrix of the elliptic stable envelope for the

Nakajima variety Xin the basis of fixed points. Then, the singularities of 75 , are
supported to the set of hyperplanes:

zizitl zZigPh™ * =1, 1<i<j<nmps€Z
This implies that the poles of the restriction matrix 75 , in the coordinates u;related to Kéhler

variables (55) are of the form:

Mg, i=j,ps €Z (80)

U

9.4.5 Holomorphicity of stable envelope
Let us return to the Nakajima varieties X and X defined in Sections 3 and 4, respectively. We identify

the fixed points as in Section 6.1 and identify the equivariant and Kéhler parameters by (55). Let T,

220Z YaJe\ Z0 uo Jesn [iiH [edeyd 1e euiljoe YLoN 1o Alsieaiun Aq 910GE L 9/68SBBUL/UIWI/EE0 L "0 /I0P/a[oIIB-80UBADPE/UIWI/WOD dNO"OlWapEoR//:Ssdny Wolj) papeojumo(



96  R.Rimanyi et al.
and Ty q be the restriction matrices of the elliptic stable envelopes for the Nakajima varieties X and X,
respectively.

Theorem 9. The functions

PP AsH

are holomorphic in parameters u;.

Proof. By (80), we need to show that the denominators of functions 7p,73 . do not contain factors of

the form

Ou_ji h™ s;.
u

On the other hand, by Proposition 5, the explicit formula for the elliptic stable envelope on X has the

form
r NN~ .
P = €EROW) o ©  ® % Surt
N){f o~ o Tu \ A
—R7 W7 n
cE . -
(N~ T DI RO(E

where oW, ) w' NA ! DA’ R (t)% are independent of u;, and

X A
0 o@h It uier —o(() 3)(%— e —

Wc()-; = X 7T, Tuc+t XireQretere; et 7]
Uy U,
6 — 0
U [BlA(e),q Yer+l
c+l t eE_

Therefore, we conclude that among (80) only factors with s; = 0 may appear. To show that those are

actually not poles, it suffices to prove that
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9 U_—U; Tp,ka,p,Li Jj= O.

J u=u

As discussed before, the only possible nontrivial terms of the left side come from trees "t which contains

some (i,/)-strip B.

Ifj €p, one can see that L™\B contains a path in "t admitting a box with local maximal content,
which is not allowed. In other words, contributions from all "t are zero in this case.

If i €n\p, then the boxes above and to the left of the root of B both lie in A~, and the involution
inv(t") is also a tree in A". By the cancellation Lemma 7, contribution from t~ cancels with that from

inv(t”). Sum over all t™ gives 0.

If i €p andj €n\p, then Tp, contains a factor 0__u’, and nontrivial terms come w;

from trees t~ that contains at least two (i,f)-strips, for example, By, B>. At least one of them, say B, is
not contained in the boundary of A~ and hence the involution of t™ with respect to Bj is well defined.

Contribution from t~ then cancels with that from inv(t"). Therefore, we exclude all possible poles
9(”,-/”,-), and Tp,pTx w1s holomorphic in "

Acknowledgments

First and foremost we are grateful to M.Aganagic and A.Okounkov for sharing their ideas with us. During the 2018
MSRI program “Enumerative Geometry Beyond Numbers” the authors learned from A.Okounkov about his explicit
formula for the Mother function in the hypertoric case. This very formula triggered our curiosity and encouraged

us to look for non-abelian examples of these functions.

Funding

This work was supported by Simons Foundation [523882 to R.R.]; RFBR [18-01-00926 to A.S.]; AMS [A.S.]; NSF
[DMS-1665239 to A.V.]; and FRG [1564500 to Z.Z.].

References
[1] Aganagic, M. and A. Okounkov. “Elliptic stable envelope.” (2016): preprint arXiv:1604.00423. [2] Aganagic,
M. and A. Okounkov. “Quasimap counts and Bethe eigenfunctions.” Mosc. Math. J.
17, no. 4 (2017): 565-600.

220Z YoJe\ Z0 uo Jesn [iiH [edeyd 1e euljoied YLoN 1o Alsieaiun Aq 910GE L 9/68SBBUL/UIWI/EE0 L "0 /I0P/a[oliB-80UBADPE/UIWI/WOD dNO"OlWapeo.//:sdny Wol) papeojumo(



98

(3]

(4]

(3]

9]

[10]

[11]

[12]
[13]

R. Rimanyi et al.

Braden, T., A. Licata, N. Proudfoot, and B. Webster. “Gale duality and koszul duality.” Adv. Math. 225, no.
4 (2010): 2002—49.

Braden, T., A. Licata, N. Proudfoot, and B. Webster. “Quantizations of conical symplectic resolutions II:
category O and symplectic duality.” Astérisque. 384 (2016): 75-179. With an appendix by I. Losev.

Braverman, A., M. Finkelberg, and H. Nakajima. “Towards a mathematical definition of Coulomb branches
of 3-dimensional N =4 gauge theories, I1.” Adv. Theor. Math. Phys. 22

(2016).
Bullimore, M., T. Dimofte, and D. Gaiotto. “The Coulomb branch of 3d N = 4 theories.” Comm. Math. Phys.

354, no. 2 (2017): 671-751.

Bullimore, M., T. Dimofte, D. Gaiotto, and J. Hilburn. “Boundaries, mirror symmetry, and symplectic duality
in 3d N = 4 gauge theory.” J. High Energy Phys. 10 (2016): 108.

Cox, D. A. and S. Katz. Mirror Symmetry and Algebraic Geometry. Mathematical Surveys and Monographs
68. Providence, RI: American Mathematical Society, 1999.

de Boer, J., K. Hori, H. Ooguri, and Y. Oz. “Mirror symmetry in three-dimensional gauge theories, quivers
and D-branes.” Nuclear Phys. B 493, no. 1-2 (1997): 101-47.

de Boer, J., K. Hori, H. Ooguri, Y. Oz, and Y. Zheng. “Mirror symmetry in three-dimensional gauge theories,
SL(2,Z) and D-brane moduli spaces.” Nuclear Phys. B 493, no. 1-2 (1997):

148-76.

Dinkins, H. “3d mirror symmetry of the cotangent bundle of the full flag variety.” (2020):

preprint arXiv:2011.08603.

Dinkins, H. “Symplectic duality of T4Gr(k,n).” (2020): preprint arXiv:2008.05516.

Dinkins, H. and A. Smirnov. “Quasimaps to zero-dimensional 4e--quiver varieties.” Int.

Math. Res. Not. IMRN (2019): preprint.

Etingof, P. and A. Varchenko. “Dynamical Weyl groups and applications.” Adv. Math. 167, no. 1 (2002):
74-127.

Felder, G., R. Rimanyi, and A. Varchenko. “Elliptic dynamical quantum groups and equivariant elliptic
cohomology.” SIGMA Symmetry Integrability Geom. Methods Appl. 14 (2018): 132.

Gaiotto, D. and P. Koroteev. “On three dimensional quiver gauge theories and integrability.” J. High Energy
Phys. 5 (2013): 126.

Gaiotto, D. and E. Witten. “S-duality of boundary conditions in N = 4 super Yang—Mills theory.” Adv. Theor.

Math. Phys. 13, no. 3 (2009): 721-896.

Galakhov, D. V., A. D. Mironov, A. Y. Morozov, and A. V. Smirnov. “Three-dimensional extensions of the
Alday—Gaiotto—Tachikawa relation.” Theoret. and Math. Phys. 172, no. 1 (2012): 939-62. Russian version
appears in Teoret. Mat. Fiz.172, no. 1 (2012): 72-99.

Ganter, N. “The elliptic Weyl character formula.” Compositio Math. 150, no. 7 (2014): 1196— 234.

Gepner, D. J. Homotopy Topoi and Equivariant Elliptic Cohomology. Ann Arbor, MI: ProQuest LLC, 2006.
PhD Thesis, University of Illinois at Urbana-Champaign.

220Z YoJe\ Z0 uo Jesn [iiH [edeyd 1e euijoed YuoN 1o Alsieaiun Aq 910GE L 9/68EBBUL/UIWI/EE0 L 01 /I0P/a[oIIB-80UBADPE/UIWI/WOD dNO"OlWapEoR//:Sdny Wol) papeojumo(



[21]

[22]

[23]

[27]

(28]

[29]

[30]

[40]

[41]

Mirror Symmetry and Elliptic Stable Envelopes 99

Kapranov Ginzburg, M. and E. Vasserot. “Elliptic algebras and equivariant elliptic cohomology.” (2018):
preprint arXiv:q—alg/9505012.

Ginzburg, V. “Lectures on Nakajima’s Quiver Varieties.” In Geometric Methods in Representation Theory.
1. Sémin. Congr. 24, 145-219. France, Paris: Soc. Math., 2012.

Ginzburg, V. and E. Vasserot. “Algebres elliptiques et K-théorie équivariante.” C. R. Acad. Sci. Paris Sér. I
Math. 319, no. 6 (1994): 539-43.

Goresky, M., R. Kottwitz, and R. MacPherson. “Equivariant cohomology, Koszul duality, and the
localization theorem.” Invent. Math. 131 (2003): 25-83 11.

Grojnowski, I. “Delocalised Equivariant Elliptic Cohomology.” In Elliptic Cohomology, 114— 21. London
Math. Soc. Lecture Note Ser. 342. Cambridge: Cambridge University Press, 2007.

Hanany, A. and E. Witten. “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics.”
Nuclear Phys. B 492 (1997): 152-90.

Hori, K., S. Katz, and A. Klemm. Mirror Symmetry. Clay Mathematics Monographs. Providence, RI: AMS,
2003. Based on lectures at the school on Mirror Symmetry, Brookline, MA, US, Spring 2000.

Intriligator, K. and N. Seiberg. “Mirror symmetry in three-dimensional gauge theories.” Phys. Lett. B 387,
no. 3 (1996): 513-9.

Konno, H. “Elliptic weight functions and elliptic q-KZ equation.” Journal of Integrable Systems 2, no. 1
(2017).

Konno, H. “Elliptic stable envelopes and finite-dimensional representations of elliptic quantum group.”
Journal of Integrable Systems 3, no. 1 (2018).

Kononov, Y. and A. Smirnov. “Pursuing quantum difference equations I: stable envelopes of subvarieties.”
(2020): preprint arXiv:2004.07862.

Kononov, Y. and A. Smirnov. “Pursuing quantum difference equations II: 3D-mirror symmetry.” (2020):
preprint arXiv:2008.06309.

Koroteev, P., P. P. Pushkar, A. Smirnov, and A. M. Zeitlin. “Quantum K-theory of quiver varieties and many-
body systems.” (2018).

Koroteev, P. and A. M. Zeitlin. “Toroidal g-opers.” (2020): preprint arXiv:2007.11786.

Liu, H. “Quasimaps and stable pairs.” (2020): preprint arXiv:2006.14695.

Lurie, J. “A Survey of Elliptic Cohomology.” In Algebraic Topology, 219-77. Abel Symp. 4.

Berlin: Springer, 2009.

Maulik, D. and A. Okounkov. In preparation.

Maulik, D. and A. Okounkov. “Quantum Groups and Quantum Cohomology.” 4stérisque., no. 408 (2019):
ix+209.

McBreen, M., A. Sheshmani, and S.-T. Yau. “Elliptic stable envelopes and hypertoric loop spaces.” (2020):
preprint arXiv:2010.00670.

McGerty, K. and T. Nevins. “Kirwan surjectivity for quiver varieties.” Invent. Math. 212, no. 1 (2018): 161—
87.

Mironov, A., A. Morozov, B. Runov, Y. Zenkevich, and A. Zotov. “Spectral dualities in XXZ spin chains
and five dimensional gauge theories.” J. High Energy Phys. 2013, no. 12 (2013): 34. Front matter + 10.

220Z YoJe\ Z0 uo Jesn [iiH [edeyd 1e euljoied YLoN 1o Alsieaiun Aq 910GE L 9/68SBBUL/UIWI/EE0 L "0 /IOP/[oIIB-80UBADPE/UIWI/WOD dNO"OlWapEo.//:Sdny Wol) papeojumo(



100

[42]

[43]
[44]

[45]

[46]

[49]

[50]

[52]

[53]

[54]

R. Rimanyi et al.

Mukhin, E., V. Tarasov, and A. Varchenko. “Bispectral and &gly,gly/' dualities, discrete versus differential.”

Adv. Math. 218, no. 1 (2008): 216-65.

Nakajima, H. “Quiver varieties and Kac—Moody algebras.” Duke Math. J. 91, no. 3 (1998): 515-60.
Nakajima, H. Lectures on Hilbert Schemes of Points on Surfaces. University Lecture Series 18. Providence,
RI: American Mathematical Society, 1999.

Nakajima, H. “Quiver varieties and finite-dimensional representations of quantum affine algebras.” J. Amer.
Math. Soc. 14, no. 1 (2001): 145-238.

Nakajima, H. “Introduction to a provisional mathematical definition of Coulomb branches of 3-dimensional
N =4 gauge theories.” (2017).

Nakajima, H. and Y. Takayama. “Cherkis bow varieties and Coulomb branches of quiver gauge theories of
affine type 4.” Selecta Math. (N.S.) 23, no. 4 (2017): 2553-633.

Okounkov, A. “On K-Theoretic Computations in Enumerative Geometry.” In Geometry of Moduli Spaces
and Representation Theory, 251-380. IAS/Park City Math. Ser. 24. Providence, RI:

Amer. Math. Soc., 2017.
Okounkov, A. “Inductive construction of stable envelopes and applications, I. Actions of tori. Elliptic

cohomology and K-theory.” (2020): preprint arXiv:2007.09094.
Okounkov, A. “Inductive construction of stable envelopes and applications, II. Nonabelian actions. Integral
solutions and monodromy of quantum difference equations.” (2020): preprint arXiv:2010.13217.
Okounkov, A. and A. Smirnov. “Quantum difference equation for Nakajima varieties.” (2016): preprint
arXiv: 1602.09007.
Pushkar, P. P., A. Smirnov, and A. M. Zeitlin. “Baxter Q-operator from quantum K-theory.” Adv. Math. 360
(2020): 106919, 63.
Rimanyi, R. and Y. Shou. “Bow varieties—geometry, combinatorics, characteristic classes.” (2020): preprint
arXiv: 2012.07814 .
Rimanyi, R., A. Smirnov, A. Varchenko, and Z. Zhou. “Three-dimensional mirror selfsymmetry of the
cotangent bundle of the full flag variety.” SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019):
22.
Rimanyi, R., V. Tarasov, and A. Varchenko. “Partial flag varieties, stable envelopes, and weight functions.”
Quantum Topol. 6, no. 2 (2015): 333-64.
Rimanyi, R. and A. Weber. “Elliptic classes of Schubert varieties via Bott—Samelson resolution.” J. Topol.
13 (2020): 1139-82.
Rosu, I. “Equivariant elliptic cohomology and rigidity.” Amer. J. Math. 123, no. 4 (2001): 647-77.
Ruan, Y., Y. Wen, and Z. Zhou. “Quantum K-theory of toric varieties, level structures, and 3d mirror
symmetry.” (2020): preprint arXiv:2011.07519.
Schwede, K. “Gluing Schemes and a Scheme Without Closed Points.” In Recent Progress in

Arithmetic and Algebraic Geometry, 157-72. Contemp. Math. 386. Providence, RI: Amer.
Math. Soc., 2005.

220Z YaJe\ Z0 uo Jesn [iiH [edeyd 1e euljoie YuoN 10 Alsieaiun Aq 910GE L 9/68SBBUL/UIWI/EE0 L "0 /I0P/a[oIIB-80UBADPE/UIWI/WOD dNO"OlWapEo.//:Ssdny Wol) papeojumo(



[60]

[61]

[62]

[63]

[64]

[65]

Mirror Symmetry and Elliptic Stable Envelopes 101

Shenfeld, D. Abelianization of Stable Envelopes in Symplectic Resolutions. Ann Arbor, MI: ProQuest LLC,
2013. PhD Thesis, Princeton University.

Smirnov, A. “Polynomials associated with fixed points on the instanton moduli space.”

(2014).

Smirnov, A. “Elliptic stable envelope for Hilbert scheme of points in the plane.” Selecta Math. (N.S.) 26, no.
1 (2020): Paper No. 3, 57.

Smirnov, A. and Z. Zhou. “3d Mirror symmetry and quantum K-theory of Hypertoric varieties.” (2020):
preprint arXiv:2006.00118.

Laredo, V. T. “A Kohno—Drinfeld theorem for quantum Weyl groups.” Duke Math. J. 112, no.

3 (2002): 421-51.

Varagnolo, M. “Quiver varieties and Yangians.” Lett. Math. Phys. 53, no. 4 (2000): 273-83.



	1.1 Mirror symmetries
	1.2 Elliptic stable envelopes
	1.3 Coincidence of stable envelopes for dual variates
	1.4 Relation to (gln, glm)-duality
	1.5 Further progress
	2.1 Elliptic cohomology functor
	2.2 GKM varieties
	2.3 Extended elliptic cohomology
	2.4 Line bundles on elliptic cohomology
	2.5 Theta functions
	3.1 X as a Nakajima quiver variety
	3.2 Torus action on X
	3.3 T-equivariant K-theory of X
	3.4 Tangent and polarization bundles
	3.5 Elliptic cohomology of X
	3.6 Uniqueness of stable envelope for X
	3.7 Existence of elliptic stable envelope for X
	3.8 Holomorphic normalization
	4.1 X as a Nakajima quiver variety
	4.2 Tautological bundles over X
	4.3 Torus action on X
	4.4 Tangent and polarization bundles for X
	4.5 Elliptic cohomology of X
	4.6 Holomorphic normalization
	5.1 Non-Kähler part of stable envelope
	5.2 Trees in Young diagrams
	5.3 Kähler part of the stable envelope
	5.4 Formula for elliptic stable envelope
	5.5 Refined formula
	W(t t)
	D %
	6.1 Bijection on fixed points
	,[1],[1,1],[2],[2,1],[2,2]}. 6.2 Identification of equivariant and Kähler parameters
	6.3 Mother function and 3D mirror symmetry
	7.1 Explicit formula for the mother function
	7.2 Stable envelope for X
	7.3 Stable envelope for X
	7.4 Stable envelopes are restrictions of the mother functions
	8.1 Identification of parameters and fixed points
	8.2
	8.3 Theorem 5 in case n = 4,k = 2
	8.4 Identities for theta functions
	9.1 Cancellation of trees
	9.2 GKM conditions
	9.3 Divisibility
	9.4 Holomorphicity
	Acknowledgments
	Funding



