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1 Introduction 

1.1 Mirror symmetries 

Mirror symmetry is one of the most important physics structures that enter the world of mathematics 
and arouse lots of attention in the past several decades. Its general 
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philosophy is that a space X should come with a dual X, which, though usually different from and 

unrelated to X in the appearance, admits some deep connections with X in geometry. Mirror symmetry 

in two dimensions turns out to be extremely enligntening in the study of algebraic geometry, symplectic 

geometry, and representation theory. In particular, originated from the 2D topological string theory, the 

Gromov–Witten theory has an intimate connection with 2D mirror symmetry; for an introduction, see 

[8, 27]. 

Similar types of duality also exist in three dimensions. More precisely, as introduced in [6, 7, 

9, 10, 17, 18, 26, 28], the 3D mirror symmetry is constructed between certain pairs of 3D N = 4 

supersymmetric gauge theories, under which they exchanged their Higgs branches and Coulomb 

branches, as well as their Fayet-Iliopoulos parameters and mass parameters. In mathematics, the N = 4 

supersymmetries imply that the corresponding geometric object of our interest should admit a 

hyperKähler structure, or if one prefers to stay in the algebraic context, a holomorphic symplectic 

structure. In particular, for theories of the class as mentioned above, the Higgs branch, which is a certain 

branch of its moduli of vacua, can be interpreted as a holomorphic symplectic quotient in mathematics, 

where the prequotient and group actions are determined by the data defining the physics theory. The FI 

parameters and mass parameters of the theory are interpreted as Kähler parameters and equivariant 

parameters, respectively. 

The Coulomb branch, however, did not have such a clear mathematical construction until 

recently [5, 43, 46]. In this general setting, it is not a holomorphic symplectic quotient, and it is difficult 

to study its geometry. Nevertheless, in many special cases for example, already appearing in the physics 

literature [6, 16], the Coulomb branch might also be taken as some holomorphic symplectic quotient. 

Those special cases include hypertoric varieties, Hilbert schemes of points on C2, the moduli space of 

instantons on the resolved AN surfaces, and so on. For a mathematical exposition, see [3, 4], where 3D 

mirror symmetry is refered to as symplectic duality. 

A typical mirror symmetry statement for a space X and its mirror X is to relate certain 

geometrically defined invariants on both sides. For example, in the application of 2D mirror symmetry 

to genus-zero Gromow–Witten theory, the J-function counting rational curves in X is related to the I-

function, which arises from the mirror theory. 

In the 3D case, instead of cohomological counting, one should consider counting in the K-

theory. One of the K-theoretic enumerative theories in this setting, which we are particularly interested 

in, is developed by Okounkov and his collaborators [1, 37, 48, 51]. The 3D mirror symmetry statement 

in this theory looks like 
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On both sides, the vertex functions, which depend on Kähler parameters zi and equivariant 

parameters ai, can be realized as solutions of certain geometrically defined q-difference equations. We 

call those solutions that are holomorphic in Kähler parameters and meromorphic in equivariant 

parameters the z-solutions and those in the other way the a-solutions. In particular, vertex functions are 

by definition z-solutions. 

Under the correspondence (1), the Kähler and equivariant parameters on X and X are exchanged 

with each other, and hence z-solutions of one side should be mapped to a-solutions of the other side and 

vice versa. In particular, for the correspondence to make sense, (1) should involve a transition between 

a basis of z-solutions and a basis of a-solutions. In [1], this transition matrix is introduced geometrically 

as the elliptic stable envelope. 

1.2 Elliptic stable envelopes 

The notion of stable envelopes first appear in [38] to generate a basis for Nakajima quiver varieties, 

which admits many good properties. Their definition depends on a choice of cocharacter or, 

equivalently, a chamber in the Lie algebra of the torus that acting on the space X. The transition matrices 

between stable envelopes defined for different chambers turn out to be certain R-matrices, satisfying the 

Yang–Baxter equation and hence defining quantum group structures. The stable envelopes are 

generalized to K-theory [37, 48, 51], where they not only depend on the choice of cocharacter σ but also 

depend piecewise linearly on the choice of slope s, which lives in the space of Kähler parameters. 

In [1], stable envelopes are further generalized to the equivariant elliptic cohomology, where 
the piecewise linear dependence on the slope s is replaced by the meromorphic dependence to a Kähler 

parameter z. In particular, the elliptic version of the stable envelope is the most general structure, K-

theoretic, and cohomological stable envelopes can be considered as limits of elliptic. The elliptic stable 

envelopes depend on both the equivariant and Kähler parameters, which makes it a natural object for 
the study of 3D mirror symmetry. 

In this paper, we will concentrate on a special case where X = T∗Gr(k,n), the cotangent bundle 

of the Grassmannian of k-dimensional subspaces in Cn. This variety is a simplest example of Nakajima 

quiver variety associated to the A1-quiver, with dimension vector v = k and framing vector w = n. We 

will always assume that n ≥ 2k. (Only in the case n ≥ 2k the dual variety X can also be realized as quiver 
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variety.) Its mirror, which we denote by X, can also be constructed as a Nakajima quiver variety, 

associated to the An−1-quiver. It has dimension vector 

 v = (1,2,...,k − 1, k,...,k ,k − 1,...,2,1) 
-times 

and framing vector 

wi = δi,k + δi,n−k. 

For Nakajima quiver varieties, there is always a torus action induced by that on the framing 

spaces. Let T and T be the tori on X and X, respectively. They both have n!/(k!(n − k)!) fixed points, 

which admit nice combinatorial descriptions. Elements in XT can be interpreted as k-subsets p ⊂ n := 

{1,2,··· ,n}, while T is the set of Young diagrams λ that fit into a k × (n − k) rectangle. There is a natural 

bijection (54) between those fixed points 

 ET(X) → ET × EPicT(X), ET  → ET × EPicT , 

 κ : K → T, T → K 

By localization theorems, the equivariant elliptic cohomology of X has the form 
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ET(X) = ⎛⎝ O p⎞⎠/, 

p∈XT 

where each O p is isomorphic to the base ET ×EPicT(X). The T-action on X is good enough, in the sense 

that it is of the GKM type, which means that it admits finitely many isolated fixed points and finitely 

many one-dimensional orbits. Due to this GKM property, the 

form as above; however, the gluing data  are more complicated. 

By definition, the elliptic stable envelope Stabσ(p) for a given fixed point p ∈ XT is the section 

of a certain line bundle T (p). We will describe this section in terms of its components 

Tp,q := Stabσ(p)O q, 

which are written explicitly in terms of theta functions and satisfy prescribed quasiperiodics and 

compatibility conditions. Similar for X, we will describe the components T   . 

1.3 Coincidence of stable envelopes for dual variates 

Our main result is that the restriction matrices for elliptic stable envelopes on the dual varieties coincide 
(up to transposition and normalization by the diagonal elements): 

Corollary 1. Restriction matrices of elliptic stable envelopes for X and X are related by 

where p = bj(λ), q = bj(μ) and parameters are identified by (55). 

In (2), the prefactors Tp,p and Tμ ,μ have very simple expressions as product of theta functions. 

The explicit formula for matrix elements Tλ ,μ and Tq,p, however, involves complicated summations. 
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Explicit formulas (see Theorems 3 and 4) for elliptic stable envelopes are obtained by the 

abelianzation technique [1, 60–62]. In the spirit of abelianization, the formula for Tq,p involves a 

symmetrization sum over the symmetric group Sk, the Weyl group of the gauge group GL(k). However, 

the formula Tλ ,μ involves not only a symmetrization over Sn,k, the Weyl group of the corresponding 

gauge group, but also a sum over trees. Similar phenomenon already appear in the abelianization 

formula for the elliptic stable envelopes of Hilb(C2) [62]. The reason for this sum over trees to occur is 

that in the abelianization for X, the preimage of a point is no longer a point, as in the case of X. 

As a result, the correspondence (57) we obtained here actually generates an infinite family of 

nontrivial identities among product of theta functions. See Sections 7 and 8 for examples in the simplest 

cases k = 1 and n = 4,k = 2. In particular, in the n = 4,k = 2 case, we obtain the well-known 4-term theta 

identity. 

Motivated by the correspondence (57) and the Fourier–Mukai philosophy, a natural guess is 

that the identity might actually come from a universal “mother function” m, living on the product X×X. 

Consider the following diagram of embeddings 

 iλ ip 
X = X × {λ} −→ X × X ←− {p} × X = X. 

Corollary 1 then follows directly from our main theorem: 

Theorem 1. There exists a holomorphic section m (the mother function) of a line bundle M on the T × 

Tequivariant elliptic cohomology of X × X such that 

where p = bj(λ). 

The existence of the mother function was already predicted by Aganagic and Okounkov in the 
original paper [1]. This paper originated from our attempt to check their conjecture and construct the 
mother function for the simplest examples of dual quiver varieties. 
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1.4 Relation to (gln, glm)-duality 

The 3D-mirror symmetry for A-type quiver varieties is closely related with the so-called (gln, glm)-

duality in representation theory. For the case of X, which is A1-quiver variety and X which is An−1 quiver 

variety, we are dealing with a particular example of (gln, gl2)-duality (i.e., m = 2). 

Let C2(u) be the fundamental evaluation module with evaluation parameter u of the quantum 

affine algebra Uh¯ (gl 2). Similarly, let  kh¯ Cn(a) be the k-th fundamentalU evaluation module 

with the evaluation parameter a of quantum affine algebra h¯ (gln). Recall that the equivariant K-theory 

of quiver varieties is naturally equipped with an action of quantum affine algebras [45]. In particular, 

for X = T∗Gr(k,n), we have isomorphism of weight subspaces in Uh¯ (gl 2)-modules: 

 KT(X) ∼= weight k subspace in C2(u1) ⊗ ··· ⊗ C2(un). (3) 

In geometry, the evaluation parameters ui are identified with equivariant parameters of torus T. 

Similarly, the dual variety X is related to representation theory of Uh¯ (gl n): 

the corresponding weight subspace is spanned by the following vectors: 

where ei is the canonical basis in Cn. So that both spaces have dimension n!/(k!(n−k)!). 

Let us recall that the elliptic stable envelopes feature in the representation theory as a building 
block for solutions of quantum Knizhnik–Zamilodchikov equations and quantum dynamical equations 
associated to affine quantum groups [14]. The integral solutions of these equations have the form [2, 29, 
33, 52]: 
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 C i 

Stabq(x1,...,xn) denotes the elliptic stable envelope of the fixed point (elliptic weight function). The 

variables of integration xi correspond to the Chern roots of tautological bundles. 

1.5 Further progress 

In this final section, we would like to overview recent progress in the study of 3D-mirror symmetry and 
elliptic stable envelopes made since the 1st release of this paper. 

In his last two papers [49, 50], Okounkov proves that the elliptic stable envelopes exist for very 
general examples of symplectic varieties, improving the results of the original paper [1] dealing only 
with quiver varieties. Applications of the elliptic stable envelopes to problems in enumerative geometry, 
such us constructing integral solutions of the quantum differential and difference equations, description 
of monodromies of these equations, etc., are the central topics of these papers. 

In particular, an interesting class of varieties for which the stable envelopes exists (by [49]) is 

given by the Cherkis–Nakajima–Takayama bow varieties [47]. Unlike quiver varieties, the bow varieties 

are closed under 3D-mirror symmetry, i.e., 3D-mirror of a bow variety is a bow variety again. For 

instance, the mirror X for X = T∗Gr(k,n) is a bow variety for every value 0 ≤ k ≤ n (note that X is a bow 

variety but not a quiver variety if n < 2k, which is why we consider only the “quiver” case n ≥ 2k in this 

paper). It is thus very natural to study the elliptic stable envelope classes and the corresponding mother 

functions for the bow varieties. This investigation is currently pursued in [53]. 

The results obtained in our paper were further generalized to the case of X given by the 

cotangent bundles over complete flag varieties of type An in [54]. This result is further generalized to 

flag varieties of arbitrary type in [56]. In [63], Theorem 1 was proved for the hypertoric varieties, see 
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also [58] for the toric case. In particular, the mother function for the hypertoric varieties can be written 

very explicitly, see [63, Theorem 6.4]. The categorical generalization of Theorem 1 for hypertoric 

varieties is recently proposed in [39]. In this case, the elliptic cohomology of X is substituted by the 

category of coherent sheaves on the spaces of loops in X and m is substituted by the kernel of a Fourier–

Mukai transform describing the mirror symmetry. This leads to a possible categorification of the elliptic 

stable envelopes. 

Alternative proofs of our results, based on analysis of the vertex functions and q-difference 

equations, were given by Dinkins [11, 12]. Applications of 3D-mirror symmetry in enumerative 

geometry of threefolds were also considered in [35]. An approach to 3D-mirror symmetry based on the 
theory of quantum opers is investigated by Koroteev–Zeitlin, see [34] for the current progress. 

The 3D-mirror symmetry for the K-theoretic stable envelope (which are limits of the elliptic 
ones) is investigated in the ongoing project [31, 32]. We expect that this work results in new geometric 
theory of the quantum differential and quantum difference equations associated with symplectic 
varieties. 

2 Overview of Equivariant Elliptic Cohomology 

We start with a pedestrian exposition of the equivariant elliptic cohomology. For more detailed 

discussions, we refer to [19, 20, 23, 25, 36, 57]. 

2.1 Elliptic cohomology functor 

Let X be a smooth variety endowed with an action of torus T ∼= (C×)r. We say X is a T-variety. Recall 

that taking spectrums of the equivariant cohomolory and Ktheory, SpecHT∗(X) can be viewed as an 

affine scheme over the Lie algebra of the torus SpecHT∗(pt) ∼= Cr and SpecKT(X) is an affine scheme 

over the algebraic torus SpecKT(pt) ∼= (C×)r. Equivariant elliptic cohomology is an elliptic analogue of 

this viewpoint. 

Let us fix an elliptic curve 

E = C×/qZ, 

that is, fix the modular parameter q. The equivariant elliptic cohomology is a covariant functor: 

EllT : {T-varieties} → {schemes}, 
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which assigns to a T-variety X certain scheme EllT(X). For example, the equivariant elliptic cohomology 

of a point is 

EllT(pt) = T/qcochar(T) 
∼= Edim(T). 

We denote this abelian variety by ET := EllT(pt). We will refer to the coordinates on ET (same as 

coordinates on T) as equivariant parameters. 

Let π : X → pt be the canonical projection to a point. The functoriality of the elliptic 

cohomology provides the map π∗ : EllT(X) → ET. For each point t ∈ ET, we take a small anallytic 

neighborhoods Ut, which is isomorphic via the exponential map to a 
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small analytic neighborhood in Cr. Consider the sheaf of algebras 

HUt := HT•(XTt) ⊗HT•(pt) OUant , 

where 

 Tt :=  kerχ ⊂ T. 

χ∈char(T),χ(t)=0 

Those algebras glue to a sheaf H over ET, and we define EllT(X) := SpecET H . The fiber of EllT(X) over t 

is obtained by setting local coordinates to 0, as described in the following diagram [1]: 

 

This diagram describes a structure of the scheme EllT(X) and gives one of several definitions of elliptic 

cohomology. 

Example 1. Let us consider a 2D vector space V = C2 with coordinates (z1,z2) and a torus T = (C×)2 acting 

on it by scaling the coordinates: (z1,z2) → (u1
z

1,u2
z

2). Let us set X = P(V). The action of T on V induces 

a structure of T-space on X. We have ET = E × E and the equivariant parameters u1 and u2 represent the 

coordinates on the 1st and the 2nd factor. Note that for a generic point t = (u1,u2) ∈ ET the fixed set XTt 

consists of two points, which in homogeneous coordinates of P(V) are 

 p = [1 : 0], q = [0 : 1]. 

The stalk of H at t is HT•(p ∪ q) ⊗HT• OET,t, and the fiber is H•(p ∪ q). We conclude that over a general 

point t ∈ ET the fiber of π∗ in (5) consists of two points. 
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At the points t = (u1,u2) with u1 = u2 the torus Tt acts trivially on X, thus locally the sheaf H looks 

like 

HT•(XTt) = HT•(P1) = C[δu1,δu2,z]/(z − δu1)(z − δu2), 

where δu1 and δu2 are local coordinates centered at x. Taking Spec, this is the gluing of two copies of C2 

along the diagonal. Overall, we obtain that 

EllT  Oq, 

. 

We assume further that the set of fixed points XT is a finite set of isolated points. We will only encounter 

varieties of this type in our paper. In this case, for a generic oneparametric subgroup Tt ⊂ T, we have 

XTt = XT. 

By the localization theorem, we know that the irreducible components of EllT(X) are parameterized by 

fixed points p ∈ XT and each isomorphic to the base ET. Therefore, similarly to Example 1, we conclude 

that set theoretically, EllT(X) is union of |XT| copies of ET: 

 EllT(X) = ⎛⎝ Op⎞⎠/, (6) 

p∈XT 

where Op ∼= ET and / denotes the gluing of these abelian varieties along the subschemes SpecH•(XTt) 

corresponding to substori Tt for which the fixed sets XTt are larger than XT. We call Op the T-orbit 

associated to the fixed point p in EllT(X). 
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In general, to describe the scheme structure of EllT(X) in terms of the gluing data (6) can be 

quite involved. There is, however, a special case when it is relatively simple. 

Definition 1. We say that T-variety X is a GKM variety if it satisfies the following conditions: 

• XT is finite, 

• for every two fixed points p,q ∈ XT there is no more than one T-equivariant curve 

connecting them. 

Note that by definition, a GKM variety contains finitely many T-equivariant compact curves 

(i.e., curves starting and ending at fixed points). We note also that all these curves are rational C ∼= P1 

because T-action on C exists only in this case. 

For a compact curve C connecting fixed points p and q, let χC ∈ Char(T) = Hom(ET,E) be the 

character of the tangent space TpC. For all points t on the hyperplane χC
⊥ ⊂ ET, we thus have p,q,∈ C ⊂ 

XTt. As in Example 1, this means that in (6) the T-orbits 

Op and Oq in the scheme EllT(X) are glued along the common hyperplane 

Op . 

Proposition 1. If X is a GKM variety, then 

EllT(X) = ⎛⎝ Op⎞⎠/, 

p∈XT 

where / denotes the intersections of T-orbits Op and Oq along the hyperplanes 

Op Oq, 
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for all p and q connected by an equivariant curve C where χC is the T-character of the tangent space 

TpC. The intersections of orbits Op and Oq are transversal and hence the scheme EllT(X) is a variety 

with simple normal crossing singularities. 

Proof. Locally around t ∈ ET, the stalk of H is given by HT•(XTt) ⊗ OET,t. Let s ∈ ET be another point, such 

that Ts ⊃ Tt. We have by Ts-equivariant localization, 

 HT•(XTt) ⊗ Frac(HT•
s(pt)) ∼= HT•(XTs) ⊗ Frac(HT•

s(pt)). (7) 

In other words, if Ut and Us are small analytic neighborhoods around t and s, such that Us ⊂ Ut, then by 

definition of the elliptic cohomlogy, the restriction map of H from Ut to Us is equivalent to the 

isomorphism given by the Ts-equivariant localization. 

By the property of equivariant cohomology of GKM varieties [24], the variety SpecHT•(XTt) is 

the union of tp’s along hyperplanes χC⊥, where tp 
∼= Cr are Lie algebras of the torus, associated to fixed 

points. Moreover, the intersection of tp’s for p ∈ XT is transversal. More precisely, we have the exact 

sequence 

 

where X1Tt is the 1-skeleton of XTt under the T-action and the last map is given by χC for all one-

dimensional orbits in XTt. 

We see that the exact sequence is compatible with the localization isomorphism (7), which 

means that analytically, the local descriptions of EllT(X) glue over ET, and globally EllT(X) can be 

described exactly as in the proposition.  

Here by “gluing”, we mean the pushout in the category of schemes, in the sense of [59]. 
The classical examples of GKM varieties include Grassmannians or more generally, partial 

flag varieties. For non-GKM varieties, the structure of subschemes SpecH•(XTt) and intersection of 

orbits in (6) can be more complicated. In particular, more than two orbits can intersect along the same 

hyperplane. 
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2.3 Extended elliptic cohomology 

We define 

 EPic(X) := Pic(X) ⊗Z E ∼= E dim(Pic(X)). (8) 

For Nakajima quiver varieties Pic(X) ∼= Z|Q| and thus EPic(X) =
∼ E|Q|, where |Q| denotes the number of 

vertices in the quiver. We will refer to the coordinates in this abelian variety as Kähler parameters. We 

will usually denote the Kähler parameters by the symbol zi, i = 1,...,|Q|. 

The extended T-orbits are defined by 

O p := Op × EPic(X), 

and the extended elliptic cohomology by 

ET(X) := EllT(X) × EPic(X). 

In particular, if X is GKM, ET(X) is a bouquet of extended orbits: 

ET(X) = ⎛⎝p T O p⎞⎠/, 

where  denotes the same gluing of orbits as in (6), that is, the extended orbits are glued only along the 
equivariant directions. 

2.4 Line bundles on elliptic cohomology 

We have the following description of a line bundle on the variety ET(X). 

Proposition 2. Let X be a GKM variety. 
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• A line bundle T on the scheme ET(X) is a collection of line bundles Tp on extended orbits 

O p, p ∈ XT, which coincide on the intersections: 

TpO p∩O q = TqO p∩O q, 

• A meromorphic (holomorphic) section s of a line bundle T is the collection of 

meromorphic (holomorphic) sections sp of Tp which agree on intersections: 

 spO p∩O

 q = 
sqO p∩O q.
 (9) 

Since each orbit O p is isomorphic to the base ET × EPic(X), each Tp is isomorphic via the 

pull back along π∗ to a line bundle on the base. In practice, we often use the coordinates on the base to 

describe Tps. 

Example 2. Characterization of line bundles and sections is more complicated for non-GKM varieties. 

Let X = P1 × P1, with homogeneous coordinates ([x : y],[z : w]), and let C∗ acts on it by 

t · ([x : y],[z : w]) = ([x : ty],[z : tw]). 

There are four fixed points, but infinitely many C∗-invariant curves: the closure of {([x : y],[x : λy])} for 

any λ ∈ C∗ is a C∗-invariant curve, connecting the points ([1 : 0],[1 : 0]) and ([0 : 1],[0 : 1]). Locally near 

the identity 1 ∈ EC∗, the elliptic cohomology EllC∗(X) looks like 
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 SpecHT•  → SpecC[u], 

The gluing of 4 affine lines along the origin, as abstract schemes, would no longer be a 

subscheme in C3 and hence not isomorphic to SpecHT•(X). To express SpecHT•(X) still as a gluing, one 

has to allow each orbit Op to have certain embedded non-reduced point at the origin. For an example of 

this type, see [59]. 

2.5 Theta functions 

By Proposition 2, to specify a line bundle T on ET(X), one needs to define line bundles Tp on each orbit 

O p. As O p is an abelian variety, to fix Tp, it suffices to describe the transformation 

properties of sections as we go around periods of Op. In other words, to define Tp, one needs to fix 

quasiperiods wi of sections 

s(xiq) = wis(xi), 

for all coordinates xi on O p, that is, for all equivariant and Kähler parameters.  

The abelian variates Op are all some powers of E, which implies that sections of a line bundle 

on ET(X) can be expressed explicitly through the Jacobi theta function associated with E: 

 xqi). 

 . (10) 
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We also extend it by linearity and define 

 . (11) θ(a ) i ai − jbj : 
j j 

By definition, the elliptic stable envelope associated with a T-variety X is a section of certain line bundle 

on ET(X) [1]. Thus, one can use theta-functions to give explicit formulas for stable envelopes, see 

Theorem 3 for an example of such formulas. 

It will also be convenient to introduce the following combination: 

This function has the following quasiperiods: 

 φ(xq,y) = y−1φ(xq,y), φ(x,yq) = x−1φ(x,y). 

These transformation properties define the so-called Poincaré line bundle on the product of dual elliptic 

curves E × E∨ with coordinates x and y and φ(x,y) is a meromorphic section of this bundle. 

3 Elliptic Stable Envelope for X 

In this section, we discuss algebraic variety X = T∗Gr(k,n)—the cotangent bundle over the Grassmannian 

of k-dimensional subspaces in an n-dimensional complex space. 

3.1 X as a Nakajima quiver variety 

We consider a Nakajima quiver variety X defined by the A1-quiver, with dimension v = k and framing 

w = n. Explicitly, this variety has the following construction. Let R = Hom(Ck,Cn) be a vector space of 

complex k × n matrices. There is an obvious action of GL(k) on this space, which extends to a 

Hamiltonian action on its cotangent bundle: 

T∗R = R ⊕ R∗ ∼= Hom(Ck,Cn) ⊕ Hom(Cn,Ck), 

with the Hamiltonian moment map 
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 μ : T∗R → gl(k)∗, μ(j,i) = ij. 

Then X is defined as 

X := μ−1(0) ∩ {θ-semistable points}/GL(k), 

where j ∈ R and i ∈ R∗ are n × k and k × n matrices, respectively. There are two choices of stability 

conditions θ < 0 and θ > 0. In the 1st case, the semistable points are those pairs (j,i) with injective j: 

 {θ-semistable points} = {(j,i) ∈ T∗R | rank(j) = k}, (12) 
In the case θ > 0, the semistable points are (j,i) with i surjective [22]: 

{θ-semistable points} = {(j,i) ∈ T∗R | rank(i) = k}. 

By construction, X is a smooth holomorphic symplectic variety. In this paper, we choose 

θ = (−1) ∈ LieR(K), 

where K := U(1), as the stability condition defining X, in which case it is isomorphic to the cotangent 

bundle of the Grassmannian of complex k-dimensional vector subspaces in an n-dimensional space. 

3.2 Torus action on X 

Let A = (C×)n be a torus acting on Cn by scaling the coordinates: 

 (z1,...,zn) → (z1u−1 
1,...,znu−n

1), (13) 

which induces an action of A on T∗R. We denote by C×
h¯ the torus acting on T∗R by scaling the 2nd 

component: 

(j,i) → (j,ih¯ −1). 
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We denote the whole torus1(0) and thus descends to action onT = A × C×

h¯ . The action ofX. Simple check 
shows that the action ofT preserves semistable locusA 

of μ− preserves the symplectic form on X, while C×
h¯ scales it by h¯. 

Note that the action (13) leaves invariant k-dimensional subspaces spanned by arbitrary k 

coordinate vectors. Thus, the set of T-fixed points XT consists of n!/((n − k)!k!) points corresponding to 

k-dimensional coordinate subspaces in Cn. In other words, a fixed point p ∈ XT is described by a k-subset 

in the set {1,2,...,n}. 

3.3 T-equivariant K-theory of X 

Let us denote the tautological bundles on X associated to Ck and Cn by V and W, respectively. The bundle 

W is a topologically trivial rank-n vector bundle because Cn is a trivial representation of GL(k). In 

contrast, V is a nontrivial rank-k subbundle of W. One can easily see that V is the standard tautological 

bundle of k-subspaces on the Grassmannian. We assume that the tautological bundle splits in K-theory 

into a sum of virtual line bundles, 

 V = y1 + ··· + yk. (14) 

In other words, yi denote the Chern roots of V. The T-equivariant K-theory of X has the form: 

KT(X) = C[y1±1,...,yk±1]Sk ⊗ C[ui±1,h¯ ±1]I, 

where Sk is the symmetric group of k elements and I denotes the ideal of Laurent polynomials vanishing 

at the fixed points, that is, at (15). For our choice of stability condition, the matrix j representing a fixed 

point is of rank k; thus, if p is a fixed point corresponding to the k-subset {p1,...,pk} ⊂ {1,2,...,n}, then 
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This means that if a K-theory class is represented by a Laurent polynomial f(yi) then its restriction to a 

fixed point is given by the substitution f   . 

3.4 Tangent and polarization bundles 

The definition of the elliptic stable envelope requires the choice of a polarization and a chamber [1]. 

The polarization T1/2X, as a virtual bundle, is a choice of the half of the tangent space. In other words, 

TX = T1/2X + h¯ −1T1/2X∗. 

We choose the polarization dual to the canonical polarization (which is defined for all Nakajima 
varieties, see [38, Example 3.3.3]): 

 T1/2X = h¯ −1W∗ ⊗ V − h¯ −1V∗ ⊗ V. (16) 

Expressing TX through the Chern roots by (14) and restricting it to a fixed point p by (15), we find the 

T-character of the tangent space at p equals: 

TpX = 
i ui + h¯ −1 u j , (17) 

∈npp uj
 ui j∈ \ 

where p denotes the k-subset in n = {1,...,n}. 

The definition of the stable envelope also requires the choice of a chamber, or equivalently, a 

cocharacter of the torus A. We choose σ explicitly as 

 σ = (1,2,...,n) ∈ LieR(A). (18) 
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The choice of σ fixes the decomposition TpX = Np+ ⊕ Np−, where Np± are the subspaces whose A-

characters take positive or negative values on σ. From (17), we obtain 

Np− = pp, , ui + h¯ −1 jinpp, , u j , Np+ jpp, , ui + h¯ −1 ji pp, , u j . (19) i∈ uj ∈ uiuj ∈ ui 

 j\j ∈i>\j i>\j  

3.5 Elliptic cohomology of X 

Let us first note that X is a GKM variety. Two fixed points p, q are connected by an equivariant curve 

C if and only if the corresponding k-subsets differ by one index p = q \ {i} ∪ {j}. In this case, the T-

character of the tangent space equals 

TpC = uj/ui. 

By Proposition 1, we conclude that the extended elliptic cohomology scheme equals 

 ET(X) = ⎛⎝ O p⎞⎠/
 (20) 

p∈XT 

with ET × EPic denotes gluing of abelian varieties O p and O q with p = q \ 

{ialong the hyperplanes ui = uj. 

By definition, the elliptic stable envelope of a fixed point p is a section of the twisted Thom 
class of the polarization: 
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We refer to [1, Sections 2.5-2.8] for the details of this construction. Sections of T (p)|O

 q transform as the following explicit function: 

 k p 

Up,q(X) = 
T1/2Xq  . (22) 

i=1 

(The variables zui correspond to Kähler variables of the T-equivariant Picard group. One checks that all 

quasiperiods of line bundles in these directions are trivial and the elliptic stable envelopes are actually 

independent on these variables, see discussion in [1, Section 3.3.7]. It is, however, convenient to keep 

these directions to describe shifts of stable envelopes by the index.) Here  2Xq for the Laurent 

polynomial T1/2Xq is given by a product of theta functions via (11). It has the same transformation 

properties as the elliptic Thom class  XO p. Similarly, other terms given by products in (22) 

describe the transformation properties of the term denoted by ... in (21). 

The powers Dp
i come from the index of the polarization bundle. They are computed as follows: 

for our choice of polarization (16) and chamber (18) the index of a fixed point p equals 

uj indp

 , 
p uih¯ 

and the integers Dp
i are the degrees of the index bundle, that is, the degree in variable ui of the monomial: 

u 
detindp. 

p 
j p j>i 

  

 

 

 



24 R. Rimányi et al. 
Note that Up,q are certain explicit products of the theta functions and their quasiperiods in all variables 

are easily determined from (10). In particular (22) conveniently packages the information about 

quasiperiods of the elliptic stable envelopes: the matrices of restrictions (23) transform in all variables, 

under shifts by q, as Up,q. 

The elliptic stable envelope Stabσ(p) of a fixed point p (corresponding to the choice of chamber 

σ and polarization T1/2X) is a section of T (p) fixed uniquely by a list of properties [1]. Alternative 

version of the elliptic stable envelope for cotangent bundles to partial flag variates was defined in [15, 

55]. Comparing explicit formulas for elliptic stable envelopes in the case of the variety X from [1] and 

from [15, 55] one observes that they differ by a multiple. The definition of [15, 55] is based on the fact 

that X is a GKM variety, while definition of [1] is more general and is not restricted to GKM varieties. 

In fact, the Nakajima varieties are almost never GKM varieties. In this paper, we choose the approach 

of [15, 55] because GKM structure of X will simplify the computations. As we mentioned already, in 

the case of variety X, both approaches lead to the same explicit formulas; thus, there is no ambiguity in 

this choice. 

Definition 2. The elliptic stable envelope of a fixed point Stabσ(p) is the unique section of T (p), such 

that its components 

 Tp,q := 
Stabσ(p)O q (23) 

satisfy the following properties 

(1) Tp,p 
=   j p, , θ ¯ . ujuj 

uiuih 

 q,  h−1, where fp,q is (2) Tp,q = fp,q

holomorphic in parameters ui. u 
q, 

 



 Mirror Symmetry and Elliptic Stable Envelopes 25 
Let us note that the fact that Stabσ(p) is a section of T (p) implies that its restrictions Tp,q are 

sections of line bundles on abelian varietiesU O q, which have the same transformation properties 

in all variables as p,q(X). 

3.6 Uniqueness of stable envelope for X 

To justify the last definition, we need the following uniqueness theorem. 

Theorem 2. [15,Appendix A] The matrix Tp,q satisfying the following: 

(1) For a given fixed p, the collection {Tp,q | q ∈ XT} form a section of the line bundle T 

(p) (as defined by (22)). 

 i   j p, , . uju (2) Tp,p =
 ∈ uih 

fp,q q,  h−1, where fp,q is holomorphic in (3) Tp,q = 
parameters ui. u 

q, 

is unique. 
Proof. Assume that we have two matrices that satisfy (1), (2), and (3) and let κp,q be their difference. 

Assume that κp,q = 0 for some p. Let q be a maximal (in the partial order defined by the chamber) fixed 

point such that κp,q = 0. (The partial order defined by a chamber σ is 

 p  q, ⇐⇒ q ∈ Attrf
σ(p) 

where Attrf
σ(p) is the full attracting set of a fixed point p, see Section 3.1 in [1]. For X = T∗Gr(k,n) and 

the chamber (18) this is the standard Bruhat order on Sn/(Sk ×Sn−k). For fixed points p = {p1,...,pk} and q 

= {q1,...,qk} with p1 < ··· < pk, q1 < ··· < qk we have 

 p  q ⇐⇒ pi ≥ qi, i = 1,...,k.) 

By (3), we know that 
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κp,q = fp,q   h−1, (24) u 
jq, i 

j 

where fp,q is a holomorphic function of ui. 

For i ∈ q and j ∈ n\q with i < j, consider the point q = q\{i}∪{j}. By construction, q and q are 

connected by an equivariant curve with character ui/uj. The condition (1) means 

κp,q − κp,q ui=uj = 0. 

 j i<\j ∈i>\jq, 

where fp,q is holomorphic in ui. As a holomorphic function in ui ∈ C∗, it can be expanded as the Laurent 

series fp,q 
= 

Zckuk
i with nonzero radius of convergence. 

k∈ 
The quasiperiods of functions Tp,q are the same as those of the functions Up,q(X). 

In particular, for all i q from (22), we find 

fp,q hm 

for some integer m. We obtain 
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and thus ck = 0 for all k, that is, fp,q = 0.  

3.7 Existence of elliptic stable envelope for X 

The following result is proven in [1, 15, 30]: 

Theorem 3. For canonical polarization (16) and chamber (18), the elliptic stable envelope of a fixed 

point p ∈ XT has the following explicit form: 

Stabσ(p) = Sym⎝⎜⎜⎛ l=1  il=1 θ(ylui <θ(z−l1hy¯ ki −n+pyl−j2ll) i=pl+1 lui)⎠⎟⎞⎟⎟⎟
 (25) k p −1 −1)θ(ylup z−1h¯ k−n+p −2l) n θ(y h¯ 

 θ θ 

Note that the components Tp,q are defined by this explicit formula as restriction Tp,q = Stabθ,σ(p)q 

= Stabθ,σ(p) yi=u−qi1. The proof of this theorem is by checking the properties 1)-3) from Theorem 2 

explicitly, details can be found in [15]. 

3.8 Holomorphic normalization 

Note that the stable envelope (25) has poles in the Kähler parameter z. It will be more convenient to 
work with a different normalization of the stable envelope in which it is holomorphic in z: 

 Stab p Stabσ(p), (26) 
where p is the section of a line bundle on the Kähler part EPic  defined explicitly by 

k 

 phk−n+pm). (27) 
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(For X and T, see Section 4.) Similarly to Theorem 2, the stable envelope Stab(p) can be defined as a 

unique section of the twisted line bundle on ET(X): 

 M p, (28) 

with diagonal restrictions (Property 2 in Theorem 2) given by Tp,pp. Note that the function p only depends 

on Kähler variables. Thus, the twist of line bundle (28) does not affect quasiperiods of stable envelopes 

in the equivariant parameters. 

We will see that the section p has the following geometric meaning: it represents the elliptic 

Thom class of the repelling normal bundle on the dual variety X (see (35)): 

, 

where λ is related to p by (54), with parameter a1/a2 related to Kähler parameter z by 

(55). 

4 Elliptic Stable Envelope for X 

4.1 X as a Nakajima quiver variety 

From now on, we always assume that n ≥ 2k. In this section, we consider the variety X which is a 

Nakajima quiver variety associated to the An−1 quiver. This variety is defined by the framing dimension 

vector: 

wi = δk,i + δn−k,i, 

that is, all framing spaces are trivial except those at position k and n − k. Both nontrivial framing spaces 

are one dimensional. The dimension vector has the form 

 v = (1,2,...,k − 1, k,...,k ,k − 1,...,2,1). 
-times 

By definition, this variety is given by the following symplectic reduction. Let us consider the vector 
space: 
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 R = n−2 Hom(Cvi,Cvi+1)Hom(C,Cvk)Hom(Cvn−k,C), (29) 

i=1 

and denote the representatives by (al,ik,jn−k), l = 1,...,n − 2. Similarly, the dual vector space 

R∗ = n−2 Hom(Cvi+1,Cvi)Hom(Cvk,C)Hom(C,Cvn−k) 

i=1 

with representatives by (bl,
j

k,
i
n−k). We consider the symplectic space T∗R = R⊕R∗ and the moment map 

n−1 μ : T∗R 

→ gl(vi)∗. 

i=1 

Denote a = ⊕iai, b = ⊕ibi, i = ⊕iii and j = ⊕iji, then the moment takes the explicit form μ((a,b,i,j) = [b,a] + 

i ◦ j. With this notation, X is defined as the quotient: 

n−1 

i=1 

We will use the canonical choice of the stability parameter 

 , (30) 

where K := U(1)n−1. (We use the same notations for stability condition as in the MaulikOkounkov [38]. 

In particular, for us the stability parameter θ = (θi) corresponds to a character χ : i GL(vi) → C× given by 

χ : (gi) → (detgi)θi. 

i 
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The set of the θ-semistable points in T∗R is described as follows: a point 

((a,ik,jn−k),(b,jk,in -semistable, if and only if the image of ik ⊕ in−k under the actions 

of {al,bl,1 ≤ l ≤ n − 2} generate the entire space  1 . 

 

 
     

     

     
 

     

     

     

Fig. 4. The point λ = [4,4,4,3,3,2] ⊂ R10,4 corresponds to p = {4,7,9,10} ⊂ {1,2,...,10}. 

4.2 Tautological bundles over X 

We denote by Vi the rank vi tautological vector bundle on X associated to Cvi. It will be convenient to 

represent the dimension vector and associated tautological bundles using the following combinatorial 

description. Let us consider a rectangle Rn,k with dimensions k × (n − k). We turn Rn,k by 45◦ as in the 

Figure 3. We will denote by  = (i,j) ∈ Rn,k a box in Rn,k with coordinates (i,j), i = 1,...,n−k and j = 1,...,k. 

We define a function of diagonal number on boxes: 
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Vm 
=  x. c =m 

The tautological bundles Vi generate the equivariant K-theory of X. The K-theory classes are represented 

by Laurent polynomials in x: 

where T is the torus described in the next subsection. These are the Laurent polynomials symmetric with 

respect to each group of Chern roots, that is, invariant under the group: 

n−1 

 Sn,k =  Svi, (31) 

i=1 

see (32) below. 

4.3 Torus action on X 

Let A = (C×)2 be a 2D torus acting on the framing space C ⊕ C by 
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(z1,z2) → (z1a1,z2a2). 

Let C×
h¯ be the one-dimensional torus acting on T∗R by scaling the cotangent fiber 

Denote their product by T = A × C×
h¯ . The fixed loci in X under the A-action admit a tensor product 

decomposition: 

M(v(1),δk) × M(v(2),δn−2k), 

v 

where M(v(1),δk) is the quiver variety associated with the An−1 quiver with dimension vector v(1), 

framing vector δk and the same stability condition θ; similar with M(v(2),δn−2k). 

We now give a combinatorial description of the quiver variety M(v(1),δk). By definition, a 

representative of a point in M(v(1),δk) takes the form (a,i,b,j). It is θsemistable, if and only if the image 

of i under the actions of all as and bs generate the space 

n−1 

V(1) := Cv(i1). 

i=1 

In summary, the quiver variety M(v(1),δk) is either empty or a single point, where the latter case 

only happens when there exists a partition λ, whose number of boxes in the m-th diagonal is v(
m

1)+k. The 

quiver variety M(v(2),δn−2k) can be described in exactly the same way. 
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The restriction of Chern roots to the fixed point can be determined as follows. Consider 

ai−1bj−1ik : C → Vi−j+k. 

The action of the group GL(v(1)) on ai−1bj−1ik is 

 a → gag−1, b → gbg−1, ik → gkik, 

where g = (g1,··· ,gn−1) ∈ 
i GL(v(

i
1)). So 

ai−1bj−1ik → gai−1bj−1ik, 

and the action of A on the framing space C, z → a1z, induces the action 

ai−1bj−1ik → a−1 1ai−1bj−1ik. 

Here a1 becomes a−
1 

1 because the framing C is the domain space of ik. To determine the restriction of 

the Chern root ϕij, we need g to compensate the action of T, that is, 

 gi = a1, ∀i. 
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Fig. 1. An example of a fixed point represented by [3,2] ∈ R8,3. 

So the (A-equivariant) restriction is ϕij = a1. For the h¯-weight, C×h¯ acts on b directly by 

j−1 h¯. So the T-equivariant restriction is ϕij = 

a1h¯ . Exactly same consideration applies to the 2nd part M(v(2),δn−2k). 

tautological bundles are given by the following formula:  

 a1h¯ j−1, if (i,j) ∈ λ, xλa2 ¯ n−k−i+1, if (i,j) ∈ λ¯.

 (32) h 

Our notations should be clear from the following example: 

Example 3. Let us fix n = 8,k = 3 and consider a Young diagram λ = [3,2], then λ¯ = [4,3,3]. The union 

of λ and λ¯ is the rectangular of dimensions 5 × 3: 

The values of Chern roots (which correspond to boxes of R8,3) are given in Figure 2: 
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4.4 Tangent and polarization bundles for X 

To define the elliptic stable envelope, we need to specify a polarization and a chamber. 
We choose the canonical polarization: 

n−1 

 T1/2X  a−1Vk a 
V∗ Vi∗Vi,  (33) 

 1 i=1 

such that the virtual tangent space takes the form: 

We choose a chamber in the following form: 
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The tangent space at a fixed point decomposes into attracting and repelling parts: 

where Nλ± are the subspaces with A-characters, which take positive and negative values on the 

cocharacter (34), respectively. Explicitly these characters equal: 

 k k 

 Nλ− 
a  h2k−n+pm−2m−1, Nλ+ 

a  h−2k+n−pm+2m (35) 

where p = {p1,...,pk} = bj(λ), for bj described in (54). 

4.5 Elliptic cohomology of X 

The extended elliptic cohomology scheme of X is a bouquet of T orbits (as a set) 

 
whereidentified with the coordinates in the 1st and 2nd factor ofO λ 

∼= ET × EPic. The equivariant 

parameters and Kähler parameters ofO λ, 

respectively. X are 

By definition, the elliptic stable envelope classes are sections of the twisted elliptic Thom class 

of the polarization (see discussion in Section 3.5): 

which is a line bundle over the scheme ( depends on λ via twist terms denoted by ...). 

Sections of the line bundles O μ over abelian varieties O μ have the same transformation 
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properties as the following function: . (37) 

) 

The powers Di
λ are determined as follows: let us consider the index of the fixed point 

 ind   . / 

The symbol > means that we choose only the T-weights of polarization T1 2Xλ, which are positive at σ. 

Let det(indλ) denote the product of all these weights, then Di
λ is a degree of this monomial in variable 

ai. 

4.6 Holomorphic normalization 

It will be convenient to work with stable envelopes, which differ from one defined in [1] by 
normalization 

 λ = i 

 ∈n p, ui ∈ uih 
 j∈i<\j ∈i>\j 
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where p = bj(λ) (see (54) below) and variables ui are related to Kähler parameters zi through (55). The 

stable envelope Stab(λ) is a section of the twisted line bundle on 

5 Abelianization Formula for Elliptic Stable Envelope for X 

5.1 Non-Kähler part of stable envelope 

Define a function in the boxes of the rectangle Rn,k by 

 i j, if 

ρ i j, if. 
The following function describes the part of elliptic stable envelope of a fixed point λ, which is 
independent on Kähler parameters: 

 

ρλ>ρλ IJ 

Example 4. 
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 S[1]3,1      h¯ , 

θx1,1 θ⎛⎝a12,h¯1 ⎞⎠θ⎛⎝ a21,2 ⎠⎞θ⎛⎝a22,h¯2 ⎠⎞θ⎝⎛x21,,11 ⎠⎞θ⎝⎛x11,,12 ⎞⎠θ⎛⎝hx¯ 12,2,2 ⎠⎞θ⎝⎛x22,,12 ⎞⎠ 

 S4[1,2,1] = a1 x hx¯ θ⎛⎝xx12,,12 ⎞⎠θ⎛⎝ xx1,1 ⎞⎠ x x x , 

 x hx¯ 2,2 

1,2  hx12,2,2  x22,,21  x   2,2  2,2   1,1   
θθ 

x1,1 hx¯ x  x x x x θθ   

S. 
 x1,1 x1,1 

 x2,2 hx¯ 2,2 

5.2 Trees in Young diagrams 

Let us consider a Young diagram λ. We will say that two boxes λ are 
adjacent if 

 i1 = i2, |j1 − j2| = 1 or j1 = j2, |i1 − i2| = 1. 

Definition 3. A λ-tree is a rooted tree with 

) edges connecting only the adjacent boxes. 

Note that the number of λ-trees depends on the shape of λ. In particular, there is exactly one 
tree for “hooks”. 
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We assume that each edge of a -tree is oriented in a certain way. In 

particular, on a set of edges, we have two well-defined functions 

h,t : {edges of a tree} −→ {boxes of λ}, 

which for an edge e return its head h(e) ∈ λ and tail t(e) ∈ λ boxes, respectively. In this paper, we will 

work with a distinguished canonical orientation on λ-trees. 

Definition 4. We say that a λ-tree has canonical orientation if all edges are oriented from the root to the 
end points of the tree. 

For a box  and a canonically oriented λ-tree t, we have a well-defined canonically 

oriented subtree [  t with root at . In particular, [r,t] = t for a root r of t. 

We rotate the rectangle Rn,k by 45◦ as in the Figure 3, such that the horizontal coordinate of the 

box is equal to c. The boundary of a Young diagram λ ⊂ Rn,k is a graph  of a piecewise linear function. 

We define a function on boxes in Rn,k by 

 ⎧⎪⎪⎨⎪⎪⎩  has maximum above 

 = −has minimum above (42) 

 0 else. 

We also define ⎧⎪⎪⎨⎪⎪⎩ +1 if c < k 

= −1 if c > n − k 

 0 else 

and we set 
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5.3 Kähler part of the stable envelope 

Let λ ⊂ Rn,k be a Young diagram and λ¯ = Rn,k \ λ is the complement Young diagram as above. Let t ∪ ̄t 

be the (disjoint) union of λ-tree t and λ¯-tree ¯t. We define a function: 

WEll(t ∪ ̄t;xi,zi) := WEll(t;xi,zi)WEll(¯t,xi,zi), 

for the elliptic weight of a tree, where 

xr ,  z 1 
⎞⎠ ⎛⎝ xWEll(t;xi,zi) := (−1)κ(t)φ ⎝⎛

 (e)ϕhλ(e),  z h−v
⎞⎠, (44) 

and similarly for WEll(¯t,xi,zi). 

Here  ∈ t or e ∈ t means the box or edge belongs to the tree. The sign of a tree depends on the 

number κ(t), which is equal to the number of edges in the tree with wrong orientation. In other words, 

κ(t) is the number of edges in t directed down or to the left, while κ(¯t) is the number of edges in ¯t 

directed up or to the right. To avoid ambiguity, we also define WEll(t;xi,zi) := 1 for a tree in the empty 

Young diagram. 

Example 5. Let us consider a Young diagram [2,2] ⊂ R5,2 with trees . 

By definition, we have 

WEll  = WEll WEll . 
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In this case, we have six boxes with the following characters: 

Similarly for the h¯-weights of boxes (43) we obtain 

1, 
1, 
0, 

1, 
1, 

WEll . In this First, let us consider 
case, we have a tree with the root at 

r = (1,1) and three edgeswith the following heard and tails: t(e1) = (1,1), h(e1) = (1,2), t(e2) = (1,1), 

h(e2) = (2,1), t(e3) = (1,2), h(e3) = (2,2). 

For the 1st factor in (44), we obtain 

⎝ϕrλ ⎞⎠  3 

 φ,h− . 
 xr [ ] 

For the edges in the product (44), we obtain: 

ϕλ 

   h−2,  ,  z

[h e1 ,t] 
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 ⎝

 ϕλ  ⎞⎠
 x  

 , z, 

 ⎝

 ϕλ  ⎞⎠  1 

 , zh− . 
22 

Thus, overall we obtain 

1 1 
 WEll

. 

2 ¯ ¯ h¯ 

Similarly, for the 2nd multiple we obtain WEll

    . 

5.4 Formula for elliptic stable envelope 

Definition 5. The skeleton λ of a partition λ is the graph, whose vertices are given by the set of boxes of 

λ and whose edges connect all adjacent boxes in λ. 

Definition 6. A -shaped subgraph in λ is a subgraph consisting of two edges γ = {δ1,δ2} with the 

following end boxes: 

 δ1,1 = (i,j), δ2,1 = δ1,2 = (i + 1,j), δ2,2 = (i + 1,j + 1). (45) 
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It is easy to see that the total number of L -shaped subgraphs in λ is equal to 

where dl(λ) is the number of boxes in the l-diagonal of λ 

There is a special set of λ-trees, constructed as follows. For each -shaped subgraph γi in λ we choose 

one of its two edges. We have 2m of such choices. For each such choice, the set of edges 
-tree. We denote the set of 2m λ-trees, which appear this way by ϒλ. 

Now let us define ϒn,k = ϒλ × ϒλ¯ , whose elements of are pairs of trees (t,t¯), where t is a λ-tree 

with root (1,1) and t¯ is a λ¯-tree with root (n − k,k). Both trees are constructed in the way described as 

above, and they are disjoint, that is, do not have common vertices. 

Example 6. Let us consider λ = [3,2] ∈ R8,3 and λ¯ = [4,3,3]. A typical element of ϒ8,3 looks like 

∈ ϒ8,3 

The following theorem can be proved using the same arguments as in [62]. 

Theorem 4. The elliptic stable envelope of a fixed point λ for the chamber σ defined by (34) and 

polarization (33) has the following form: 

 

where the symbol SymSn,k denotes a sum over all permutations in the group (31). 
Proof. The proof of this theorem is based on the abelianization of elliptic stable envelope developed in 
[1, Section 4.3], which, in turn, is inspired by the abelianization of stable envelopes in cohomology [60]. 
The proof follows closely the proof of the main result of [62]. To keep the presentation short, we will 
refer to the corresponding results in these papers when possible. We also refer to [1, 62] for definitions 
of all maps and objects appearing here. 

           
 

     
 

           
        

 
(48) 
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Let us denote by AX the abelianization of the Nakajima variety X. This is a hypertoric variety 

defined by the following symplectic reduction: 

AX := T∗R////S, 

where R is given by (29) and S is the maximal torus of GL(vi). The stability condition for this 

symplectic reduction is defined by (30). Let ( ) be a T fixed points in X. By definition, (λ,λ¯) is a zero-

dimensional Nakajima quiver variety of type An−1. We will denote by AX the 

abelianization of this Nakajima variety. It is a hypertoric subvariety AX ⊂ 

AX fixed by the action of torus A. We denote by StabC the elliptic stable envelope map for these 

hypertoric varieties. The chamber C here is the chamber of A defined by cocharacter (34). 

The abelianization diagram for Nakajima varieties (see [1, (74)]) expresses the elliptic stable 

envelope of the fixed point (λ,λ¯) in X as the following composition: 

For the definition of all maps here, we refer to [1, Section 4.3]. 

Lemma 1. The Nakajima quiver variety (λ,λ)¯ is a direct product of two zerodimensional Nakajima 

varieties of A -type corresponding to dimension vectors given 

∞ 

∞ 
 

Proof. The fixed point set of a Nakajima quiver variety with respect to action of the framing torus is 
isomorphic to the direct product of Nakajima varieties for the same quiver and one-dimensional 
framings (this property of quiver varieties is known as tensor product structure). Non-empty An−1 quiver 
varieties with one-dimensional framing are all zero-dimensional A quiver varieties and have dimension 
vectors ∞ 
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whereare maps for zero-dimensional Nakajima quiver variety λ (i.e., A 
∞ 

AHλ¯ . 

The hypertoric varieties AHλ were considered in [62, Section 6]. In particular, it was shown 

that AHλ contains fixed points (of a maximal torus acting on AHλ by automorphisms) labeled by λ-trees. 

For trees t, t¯ in λ, and λ¯, we denote by the same symbols the corresponding fixed points in AHλ and 

AHλ¯ . 

that C and C are faces of the chamber C). 

The following is a version of [62,Proposition 6] for the case of X: 

Proposition 3. Up to a shift of Kähler parameters zi → zih¯ mi, mi ∈ Z, the elliptic stable of C×t × C×t¯ -fixed 

point (t,t¯) in AX(λ,λ)¯ corresponding to the chamber C equals 

 StabC (t,t¯) = StabC  StabC , (50) 

where 
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 cStabC1

 J θ x xJ
I  

Wt(zi), StabC  cI

 I cλJ θ xxJ
I  Wt¯(zi), 

 I,J I, 

λ 
 I,J∈λ¯ I,J∈λ¯J 

the elliptic stable envelope of A × C×t × C×t¯ -fixed point (t,¯t) in AX is given by 

 StabC(t,¯t) = 
c  

   J θ x
x

J
I Wt(zi)Wt¯(zi) (51) 

 I I ρI >ρJ ρI <ρJ 

with 

 xr, i1 zie t φ ⎝⎛ xth(e)ϕhλ((ee)), i [h(e),t] zi
⎞⎠.Wt(zi) = (−1)κtφ

 (52) n x  
 = ∈ ∈ 

Proof. By Lemma 1, elliptic stable envelope of a fixed point factors to a product of elliptic stable 

envelopes (50). The explicit formulas for elliptic stable envelopes of t in AHλ are given by [62, 

Proposition 6], which gives the above explicit formulas.  
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We note that the variables zi, i ∈ Rk,n in (52) denote the Kähler parameters associated to the line 

bundles xi on the abelianization AX. 

Proposition 4. 

 π

n,k 

Proposition 3, the stable envelope of the fixed point (t,¯t) also factorizes into a product of stable 

envelopes. This gives 

 ◦ j  n,k StabC (t,¯t) = 
∈ 

Each factor here is equal to 1 by [62, Theorem 5].  

The last proposition implies that the abelianization formula (49) can be written in the form: 

Stab(λ,λ)¯ = π∗ ◦ j∗+ ◦ (j−∗)−1 ◦ StabC
⎛⎝StabC

 

⎞ ⎛ StabC(t,¯t)⎞⎠, 

n,kn,k 

where the 2nd identity StabC = StabC ◦ Stab
C is the triangle lemma for elliptic stable envelope, see [1, 

Section 3.6]. We now see that the last expression coincides with (48). 
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x 

Indeed, the numerator of 
(48) is given by (51), the product I  in the denominator 

xJ 
of (41) comes from pushforward π computed by localization, similarly  J

I  x 

∗x h¯ 

comes from the pushforward (j−∗)−1. We refer to [2, Section 4.3] for computations of the corresponding 
normal bundles to maps π and j . − 

By definition, the Kähler parameters zl, l = 1,...,n − 1 of the Nakajima variety X are parameters 

associated to tautological line bundles Ll = detVl. Expressed in the corresponding Chern roots these line 

bundles have the form Lm = icRn,k x. This means 

∈ 
i=m 

that the Kähler parameters zi, i ∈ Rk,n corresponding to the line bundles xi on the abelianization AX restrict 

to the Kähler parameters of X by zi → zci. This substitution gives desired dependence of stable envelope 

on Kähler variables. 

The last step is to find correct shifts of the Kähler variables by powers of h¯. Indeed, the 

proposition (3) provides the explicit formulas for elliptic stable envelopes up to shifts zi → zih¯ mi for 

some integers mi. The values of mi are uniquely determined by the condition that quasi-periods xi → xiq 

of (48) coincide with the quasi-periods of the section (37). A calculation repeating the last part of [62, 

Section 8.3] gives exactly the combinatorial formula for the h¯-powers (43). 

5.5 Refined formula 

In this subsection, we prove a refined version of formula (48), in the sense that when restricted to another 

fixed point μ, the summation will be rewritten as depending on the trees t¯ only, but not on the trees t. 

The refined formula will be of crucial use to us in the proof of the main theorem. 

Given a fixed point λ, the original formula (48) has the following structure (for simplicity we 

omit the chamber subscript σ): 
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Stab(λ) = 
n,k, 

σ∈S ,t,t 

where we denote 

xI¯  cρI = hcI=nn−−k,kk)  
>ρ1 J J cIρI <ρ1 JcJ 

a2hxI  θxJ   θ
  , 

I=( 

D := 

 c =c ,ρ >ρ xJ c =c ,ρ + xJh 

 R(t,¯t) :=  (52) 

 
,¯ := θ ax1r I∈[r,t] −cI1h¯ −v(I) θ xxht ,t] zc−I(1h)¯−v(I) z 

W(t t) 

 θ  h−v I 

I 

θ ax2h¯ t zc−I1h¯ −v(I) θ xt(e)ϕh(e)  z−cI1h¯ −v(I) 

 · r¯ I∈[r¯,¯] , 

 θ I ( ) θ ∈ ( ) t −cI1h¯ −v(I) 

 [ e ,¯] 
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and Nσ, Dσ, Rσ(t,¯t), Wσ(t,¯t) are the functions obtained by permuting xi’s via σ ∈ Sn,k 

in N, D, R, W. 

We would like to consider its restriction to a fixed point ν ⊃ λ; in other words, to evaluate xI = 

ϕI
ν. The symmetrization ensures that Stab(λ) does not have poles for those values of xI’s, and hence 

Stab(λ)ν is well defined. 

For an individual term such as 

however, its restriction to ν is not well defined; in other words, it may depend on the order we approach 

the limit xI = ϕI
ν. We discuss these properties in more details here. Lemma 2. The restriction to ν of 

 

is well defined, that is, does not depend on the ordering of evaluation. 

Proof. The proof is the same as [62, Proposition 9].  Lemma 3. If 

NDσσ ν = 0, 

then σ fixes every box in ν¯. 

Proof.when restricted toSuppose thatν. First note thatNDσσ ν = 0. Then by LemmaN contains 2, Nσ 

contains no factors that vanish 

σ 

θ  a2h¯ , 

x 
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We proceed by induction on the ρ-values of boxes in ν¯. Assume that σ fixes every box with ρ 

≤ ρ0. Consider a box (a,b) with ρ(a,b) = ρ0 + 2. Then either (a + 1,b) or (a,b + 1) lies in ν¯, and both of 

them have ρ = ρ0. Suppose σ−1(a,b) = (a,b), then it is adjacent to neither (a + 1,b) nor (a,b + 1), and by 

induction hypothesis, ρσ−1(a,b) > ρa+1,b,ρa,b+1. We see that Nσ contains the factor 

θ +1,b  or  θ x

σ(σ 1  θ  xab , xa 
 xab xxa,b+1h¯ 

which vanishes at ν. Hence, σ must fix (a,b) and the lemma holds.  

Lemma 4. If 

NDσσ  = 0, ν 

then σ preserves the set of boxes of λ. 

Proof. We proceed by induction on the diagonals. For the initial step, we need to show that the box with 

least content in λ, denoted by (1,b), is fixed by σ. If (1,b + 1) ∈ ̄ν, then (2,b + 1) ∈ ̄ν, and σ fixes (1,b) 

by Lemma 3. Now assume that (1,b + 1) ∈ ν\λ. Let X1 = (1,b + 1),X2,··· be the boxes in the diagonal of 

ν\λ with one less content than (1,b). Since ρXi < 0 < ρ1,b, by Lemma 3 we always have in Nσ the factor 

xXm  θ, x 
mσ(1,b) 

which vanishes at ν unless σ(1,b) has no box to the left of it. This implies σ(1,b) = (1,b). 
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Now assume that σ preserves the l-th diagonal of λ. Consider the (l + 1)-th diagonal. There are 

several cases. 

• Both the l-th and (l + 1)-th diagonals of ν\λ are empty. The lemma holds trivially for l + 

1. 

• ν\λ is empty in the l-th diagonal but has one box X1
l+1 in the (l + 1)-th diagonal. 

• In this case, let Y1
l ,Y2

l ,··· be boxes in the l-th diagonal of λ. In Nσ, there is the theta factor 

 
  xYml  

, xh 
m 

• The l-th diagonal of ν\λ is nonempty. 

• In this case, let X1
l ,X2

l ,··· be the boxes in the l-th diagonal of ν\λ, and consider a general 

box Y in the (l + 1)-th diagonal of λ. We have in Nσ the factor 

xXml  

. 
xσ(Y) m 

If , then it must be in ν\λ. Let Z be the box to the left of σ(Y), which must either 

also lie in ν\λ and has to be one of those Xi
l’s, or lie in λ. In the former case, the product 

vanishes at ν; in the latter case, we have another factor θ xZ , which also 

vanishes at ν. 

x
σ(Y) 

 The lemma holds by induction.  
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Consider the subgroups in Sn,k defined as 

 Sν\λ := {σ | σ fixes each box inλ ∪ ̄ν}, Sλ¯ := {σ | σ fixes each box in λ}. 

Lemma 5. If 

 ∈ Nσ
σ  = 0, 

D ν 

then σ Sν\λ. 
Proof. The proof is exactly the same as Lemma 3, by induction on the ρ-values of boxes.  

Now we would like to restrict the formula to the fixed point ν, in a specific choice of limit. We 

call the following the row limit for λ: first take 

xI = xJ 

By previous lemmas, we see that only σ ∈ Sν\λ survives. Moreover, under the row limit, one 

can see that only one tree t (which contains all rows of λ) survives, and one can write all terms 

independent of trees in λ: 

 Rσ(t,t¯) = (−1)m(λ)Rσ(t¯), Wσ(t,t¯) = Wσ(t¯), 

where m(λ)  1), and 

 

R     :  
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a2 h−v(I) x 

 θ  h−v(I) 

For Nσ, Dσ, and σ ∈ Sλ¯ , we have the factorization 

σ 
, 

 D % 
where 

x 

x
σ(I) 

i 

x 

Nλ = I x
JI , 

c 
I 
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xI xI 

cI  2θ J . 
cIxJx h¯ 

In summary, we have the following refined formula: 

Proposition 5. For any choice of limit xi → ϕi
ν for i ∈ λ¯, we have Stab(λ)ν

 %  Sν Nσ

  , 

 σ∈ \λ,t λ ν 

 (−1). 

↔ 

As a corollary, we have the following identity in elliptic cohomology: 

 
Proof. Computations above show that 

 Stab(λ)ν Nλν 
% 

ν σ Sν λ,t NDλλσ¯¯σ Rσ(¯t)Wσ(t¯)ν. 

 ∈ \ ¯ 

The refined formula is proved by the following lemma.  

Lemma 6. 

 

          
  

 

        

N    
D    

R      W       (53) 



 Mirror Symmetry and Elliptic Stable Envelopes 57 
NDλλν =. 

Proof. Let t1 = h¯ −1, t2 = 1, xI → xI/a1 in [62, Proposition 10]. We have 

NDλλν = NDλλλ =. 

 

6 The mother function 

6.1 Bijection on fixed points 

Recall that the setp = {p1,...,pk} in the setXT consists ofn = {1,2,n!.../((,nn−}. On the dual side, the setk)!k!) 
fixed points corresponding toT consists of thek-subsets 

 
same number of fixed points, labeled by Young diagrams λ, which fit into the rectangle Rn,k with 

dimensions (n − k) × k. There is a natural bijection 

defined in the following way. 

We note that this bijection preserves the standard dominant ordering on the set of fixed points. For 

instance in the case n = 4,k = 2 the fixed points on X are labeled by 2-subsets in {1,2,3,4}, which are 

ordered as follows: 
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XT = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}. 

The fixed points on X correspond to Young diagrams, which fit into 2×2 rectangle. The bijection above 

gives the following ordered list of fixed points in X: 

parameters ui/ui+1,h¯ and the Kähler parameter z. The coordinates on = × O λ = ET × EPic Recall 
that the coordinates on the abelian variety Op ET EPic(X) are the equivariant 

are the equivariant parameters a1/a2,h¯ and Kähler parameters z1,...,zn−1. Let us consider an isomorphism 

identifying the equivariant and Kähler tori on the dual sides 

κ : T → K, K → T, 

defined explicitly by 
Recall that the stability and chamber parameters for X are defined by the following vectors: 

 σ = (1,2,...,n) ∈ LieR(A), θ = (−1) ∈ LieR(K). 

Using the map (55), we find that 

 d,
 d. 

We see that the isomorphisms κ is chosen such that the stability parameters are matched to 
chamber parameters on the dual side. 
6.3 Mother function and 3D mirror symmetry 

For the × -variety X × X, we consider equivariant embeddings defined by fixed points: 

 iλ ip 
 X = X × {λ} −→ X × X ←− {p} × X = X. (56) 

a1 → zh¯ k−1, a2 h¯ → h     
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We consider X × {λ} as a T × T variety with trivial action on the 2nd component. This gives 

EllT×T(X × {λ}) = EllT(X) × ET = ET(X), 

where in the last equality we used the isomorphism κ to identify EPic(X) = ET. Similarly, 

EllT . 

We conclude that T × T-equivariant embeddings (56) induce the following maps of extended elliptic 

cohomologies: 

i∗λi∗p 
ET(X) −→ EllT×T←− ET. 

Here is our main result. 

Theorem 5. 

• There exists a line bundle M on EllT×T(X × X) such that 

. 

where p = bj(λ). 

• There exists a holomorphic section m (the mother function) of M, such that 

, 

We will prove this theorem in Section 9. This theorem implies that (up to normalization by 

diagonal elements) the restriction matrices of elliptic stable envelopes of X and X are related by 

transposition: 

(Similarly with notations in Definition 2, we denote T  Stab ; we also 

use the simplified notation (−)|p for (−)|O p.)  
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Corollary 3. The restriction matrices of the elliptic stable envelopes for X and X in the basis of fixed 

points are related by 

 Tp,pT Tq,p, (57) 

where p = bj(λ), q = bj(μ) and parameters are identified by (55). 

Proof. For fixed points T, let p = bj(λ), q = bj(μ) denote the corresponding fixed points in XT. 

Note that (X × X) T. Let us consider the point (p,μ) from this set. By Theorem 5, we 

have 

Stab(q)p = m|(p,μ) = Stab(λ)μ. 

By definition (26, 38), we have Stab   , Stab   qTq,p. In the standard 

normalization of elliptic stable envelope, the diagonal elements of the restriction matrix are given by 

normal bundles of repelling part of the normal bundles: 

 Tp,p , , 

with Np− and N ). We see that .  

As we will see in Section 8, the equality (57) encodes certain infinite family of highly nontrivial 
identities for theta function. 

7 The mother function in case k = 1 

Before we prove the Theorem 5 in general, it might be very instructive to check its prediction in the case 

k = 1. In this case, the formulas for stable envelopes for X and X are simple enough to compute the mother 

function explicitly. 
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7.1 Explicit formula for the mother function 

In the case k = 1, both X and X are hypertoric, X = T∗Pn−1, and X is isomorphic to the An−1 surface 

(resolution of singularity C2/Zn). The map κ has the following form: 

 u1 u 
→ z, z1 → u2 , ··· , zn−1 → un−n1 . (58) 

 
       

     

Fig. 5. The tree for the fixed point representing [1m−1] ⊂ Rn,1. 

We denote by y = y1 the Chern root of the tautological bundle on X and by xi = xi,1, i = 1,··· ,n − 1 the Chern 

roots of tautological bundles on X. For symmetry, we also denote by x0 = a1 and xn = a2. In these notations, 

we have 

Theorem 6. In the case k = 1, the mother function equals: 

n 

 m = (−  )  
uiy. (59) 

7.2 Stable envelope for X 

First, let us consider the elliptic stable envelopes of the fixed points in X. In the case k = 1, the fixed 

points on the variety X are labeled by Young diagrams inside the 1 × (n − 1) rectangle. There are exactly 

n such Young diagrams λm = [1,1,...,1] with 

m = 0,··· ,n − 1. To compute the stable envelope of λm, we need to consider trees in λm m 
and λ¯m. Obviously, there is only one possible tree in this case, see Figure 5: 
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For (41), we obtain 

x θ  a2−h¯  m=−2 θ  x+i  × θ xxmm−h¯1  × in=−m2 θ xi+xi1h¯ .  Snλm,1

 xn 1 i 1 xi 1 

To compute the Kähler part of the stable envelope (44), we note that  0 for all boxes of Rn,1 and

 is equal to zero for all boxes except the box (m − 1,1) where it is equal to 1. Thus, βλ((i,1)) = δi,m−1. 

WEll 

 x We conclude that 

 ⎛  ⎞

  ⎛ 1 z−j 1⎞⎠ 

Stab m ,

 (60) z−j 1⎞⎠ 

where we denote x
0 = a

1 and x
n = a

2. The restriction of stable envelope to fixed points is given by 

evaluation of Chern roots (32). In this case, the restriction to m-th fixed point is given by 

       

      

  Ell   
  Ell   
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 {x1 = a1, ··· , xm−1 = a1, xm = a2h¯ n−m, ··· , xn−1 = a2h¯}. (61) 

Thus, for the diagonal matrix elements of restriction matrix, we obtain 

 Tλ m,λm = Stab a  1. 

Finally, the stable envelope written in terms of parameters of X, that is, all with the parameters substituted 
by (58), equals: 

  xi ui  

 Stab(λm) = (−1)n 
m−1 θ  ui 

xi−1h¯
n 
umθ  ui , (62) 

 i=1 umh¯ i=m+1 um 

with diagonal elements of the restriction matrix: 

 T . (63) 

7.3 Stable envelope for X 

Under the bijection of fixed points, we have bj(λm) = {m} ⊂ n. From (25) for the stable envelope of X in 

the case k = 1, we obtain 

 yuh i  × 1 n m 1 
×  Stab(m) =

θ(yui). (64) mn 
i 1i=m+1 

The restriction to the m-th fixed point is given by substitution y = u−m
1. Thus, for diagonal of restriction 

matrix, we obtain 
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 −1  n  ui  

 Tm,mθ . (65) 
 h i=m+1 um 

7.4 Stable envelopes are restrictions of the mother functions 

We are now ready to check Theorem 6 in the k = 1 case. Note that (65) gives exactly the denominator of 

(62) and we obtain 

ui  = Stab(λm) = Tm,m Stab(λm) 

m| m, h um 

1 

where m is defined by (59) by m| m we denotes the restriction of this class to the m-th fixed point on X, 

that is, the evaluation y = u−m
1. Similarly, we note that (63) is exactly the denominator of (64) and we 

obtain 

 −1 n 

Stab mStab(m) 
 ×  θ(yui)= m|λm, 

i=m+1 

where m|λm denoted the restriction to λm on X, that is, the substitution (61) (one should not forget to 

substitute h¯ → h¯ −1 in (61), as all formulas written in terms of the parameters of X). Theorem 6 for k = 

1 is proven. 

8 Simplest Non-abelian Case n = 4,k = 2 
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8.1 Identification of parameters and fixed points 

In the case k = 1 considered in the previous section, the matrix elements of restriction matrices Tλ ,μ and 

Tp,q factorize into a product of theta functions and Theorem 5 can be proved by explicit computation. In 

contrast, when k ≥ 2, the matrix elements are much more complicated. In particular, Theorem 5 (and 

Corollary 3) gives a set of very non-trivial identities satisfied by the theta functions. In this section, we 

consider the simplest example with n = 4 and k = 2. In this case, the fixed points on X are labeled by 2-

subsets in {1,2,3,4}. We consider the basis ordered as 

XT = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}. 
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κ : denotes T 

8.2 

Stab(6) = 

Stab(1) 

 

where we denote x = a ,x 
8.3 Theorem 5 in case n = 4,k = 2 

Corollary 1 means that the functions above are related by the following identities: 

 Stab    a, 
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where the restriction to the fixed points on X is given by substitution of variables yi (15). The restrictions 

to the fixed points on X are defined by (32) (together with identification of parameters (66)!). We only 

compute non-zero restrictions and only those Stab(a) b with a = b (the case a = b is trivial). 

For example: 

Case a = 2,b = 1: 

 1 θ  Stab
u2 , 

u4 

 Stab  2 . 

We see that for (a,b) = (2,1) the two are trivially equal as product of theta functions, which also 

happens in cases (a,b)=(3,2),(4,2),(5,2),(5,3),(4,3),(6,3),(5,4),(6,5). However, the identity is nontrivial 

for the remaining cases (a,b) = (3,1),(4,1),(5,1), (6,1),(6,2),(6,4). Case a = 3,b = 1: 

 Stab(1) 3 =  θuu34  , 

 Stab(3)
  h3. 

Case a = 4,b = 1: 
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 Stab  

 u1 , 

 
  2 
 
 3    
  

 3   h2 

 Stab(4) 1 = θ 1 . 

Case a = 5,b = 1: 

   2            2     2      h) 

Stab 5 = 
θ( 

θ 

u , 

 2 2  2  h  

Stab(5) 1 = θ u2 . 
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   1 θ u2  

u3 

 Stab(6) 1 = . 

Case a = 6,b = 2: 

 Stab       
     h, 

          2   2   h   u3  

 Stab(6) 2 = θ( θ uu13 . ¯ θ u4 
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Case a = 6,b = 4: 

 Stab           h2, 

 (6) 4 θ(          2   2   h¯ θ uu43  

 Stab = θ uu23 . 

8.4 Identities for theta functions 

In all these cases the identity follows from the well-known 3-term identity 

θayx1 θhyx2 θhyy   ahy  y  y  a hy  
ay  ay 1 , (67) 

and 4-term identity for theta functions: 

θ (h)θyy12 θhy x11 θa2xhy1 2 θa1ax22hy1 θxy22 θax1x12  

1 θ &a1' 

(68) 
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1 θxy22  

'. 

Let us check the identity for the most complicated case a = 6,b = 1. The other cases are analyzed in the 

same manner. First, we specialize the parameters in the 4-term relation 

(68) to the following values: 

 (a1 = h¯ −1, a2 = zh¯, x1 = u3, x2 = u4, y1 = u2, y2 = u1, h = h¯). 
After this substitution, the above 4-term (up to a common multiple θ(h¯)) takes the form: 

           2  

           h2  (69) 

            2  

            . 

Now, the identity for a = 6,b = 1 has the form: 

A1 + A2 + A3 = B1 + B2, 
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where the terms have the following explicit form (after clearing the denominators): 

 A1         & '       

 A2           
    uu32  

 A3               
uu42  

B1              

u2  B2              

2  

For some values of the parameters, the three-term relation (67) can be written in the form 

 θ z        
       

 
     h2  
and thus for A1 we can write 

A 

 3 . 
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Similarly we can write the 3-term relation as 

θ z 

     h2  

and thus 

A 

        
     h2 . 

Finally, 

       
            3 , 

which gives 

A 

. 

Several terms in the sum A1 + A2 + A3 cancels and we obtain 
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A
 3 θ uu14  

       h2 θ uu13 . 

Now, modulo a common multiple  1u
u
24  the relation A1 + A2 + A3 = B1 + B2 is exactly the 4-

term relation (69). 

9 Proof of Theorem 5 

Let us first discuss the idea of the proof. We denote the restriction matrices for the elliptic stable 
envelopes in (holomorphic normalization) by 

 Tq,p = Stab(q)O p,T   . 

Recall that the isomorphism κ induces an isomorphism of extended orbits O  ∼ 

ET×T. First, we show that under this isomorphism we have the following identity 

 T  Tq,p, for p = bj(λ), q = bj(μ). (70) 

By Theorem 2, to prove this identity, it is enough to check that the matrix elements Tλ,μ satisfies the 

conditions (1), (2) and (3). 

The condition (1) says that for fixed μ the set of functions Tλ,μ is a section of the line bundle 

M(q) see (28). By Proposition 1, to check this property, it is enough to show that Tλ,μ has the same 

quasiperiods in equivariant and Kähler variables as sections of M(q)|O p and that it satisfies the GKM 

conditions: 
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 T    
uj, (71) 

if the fixed points p = bj(λ) and s = bj(ν) are connected by equivariant curve, that is, if p = s \ {i} ∪ {j} as 

k-sets. We recall that the quasiperiods of Tλ,μ are the same as of function (37) multiplied by (39). The 

quesiperiods of sections of M(q)|Op are the same as of function (22) multiplied by (27). Both resulting 

functions are explicit product of theta functions and the quasiperiods are determined immediately 

from (10). A long but straightforward calculation then shows that the quasiperiods coincide. To check 

(71) is however less trivial, we prove it in the next Subsection 9.2. 

The condition (2) is trivial and follows from our choice of holomorphic normalization. 

The condition (3) says that Tλ,μ must be divisible by some explicit product of theta functions 

and the result of division is a holomorphic function in variables ui. We will refer to these properties as 

divisibility and holomorphicity. These properties of the matrix Tλ,μ will be proven in Subsections 9.3 and 

9.4, respectively. 

Let us consider the following scheme: 

n−1 

 S ET×T × Sk(E) ×  Svi(E). (72) 

i=1 

Here Sk(E) denotes k-th symmetric power of the elliptic curve E. We assume that coordinates on Sk(E) 

are given by symmetric functions on Chern roots of tautological bundle on X. Similarly, Svi(E) denotes 

the scheme with coordinates given by Chern roots of i-th tautological bundle on X, that is, symmetric 

functions in x with c = i, see Section 4.2 for the notations. 

Recall that the stable envelopes Stab(q) and Stab(λ) are defined explicitly by (25) and (48). In 

particular, they are symmetric functions in the Chern roots of tautological bundles. This means that the 

function defined by 
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 Stab  (73)  m˜ :=
p,T 

can be considered as a meromorphic section of certain line bundle on S . We denote this line 

bundle by M˜ . (Note that Tq,p is triangular matrix with non-vanishing diagonal; thus, it is invertible and 

the sum in (73) is well defined. Note also that in (73) we assume that q = bj(μ) and the 2nd sum over μ 

is the same as sum over q ∈ XT.) Let us consider the map 

 c˜ : EllT×T(X × X ) → , 

which is defined as follows: the component of c˜ mapping to the 1st factor of (72) is the projection to 

the base. The components of the map c˜ to Sk(E) and to Svl(E) are given by the elliptic Chern classes of 

the corresponding tautological classes. For the definition of elliptic Chern classes, see [21, Section 1.8] 

or [19, Section 5]. It is known that c˜ is an embedding [40], see also [1, Section 2.4] for discussion. 

Finally, the line bundle and the section of the Theorem 5 can be defined as M = c˜∗M˜ and m 

= c˜∗(m˜ ). Indeed, from the very definition (73) and (70), it is obvious that 

  Stab(λ). 

that is, the section m is the mother function. 

9.1 Cancellation of trees 

Before checking conditions (1)–(3), we need a key lemma that describes that under specialization of 

some ui parameters, the contributions from trees cancel out with each other and the summation simplifies 

dramatically. 

Define the boundary of λ¯ to be the set 

. 

Define the upper boundary of λ¯ to be the set 
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U := {(i,j) ∈ λ¯ | j = k}. 

Consider a 2 × 2 square in λ¯, consisting of (c,d),(c + 1,d),(c,d + 1),(c + 1,d + 1), where (c + 1,d) is in the 

a-th diagonal. Let t¯ be a tree, which contains the edge (c + 1,d + 1) → (c + 1,d). 

The involution of t¯ at the box (c + 1,d) is defined to be the tree inv(t¯,(c + 1,d)) obtained by 

removing (c + 1,d + 1) → (c + 1,d) from ¯t and adding the edge (c,d) → 

(c + 1,d). (The involution sends a tree to another tree. In fact, by definition, t¯ contains the edge δ1 : 

(c+1,d+1) → (c+1,d), but does not contain the edge δ2 : (c,d) → (c+1,d). It also follows from definition 

that the subtree s¯ := [(c + 1,d),t¯] does not contain the other 3 boxes in the 2 × 2 square (otherwise t¯ 

would contain either a loop or a -shape). It is then easy to see that inv(t¯) is still a tree.) We abbreviate 

the notation as inv(t¯) if there is no confusion. Define inv(inv(t¯)) = t¯. Involution is a well-defined 

operation on all trees at all boxes that are not in U or the boundary of λ¯. Let s¯ be the subtree 

s¯ := [(c + 1,d),t¯] = [(c + 1,d),inv(t¯)]. 

The u-parameter contributed from s¯ is 

¯ =ucI+1 . u(s) : 
s uc 

 I∈ ̄ I 
Lemma 7 (Cancellation lemma). SPiText 

As a corollary,  

Sλ

 . σ∈ ¯ ¯ 
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Proof. Direct 

computation 

shows that 

h 

c,d 
 . (74) 

θxc+1,d+1  

x
c+1,d 

The quotient W(¯t)/W(inv(¯t)) has contribution from an edge e if the subtree [h(e),t¯] or 

[h(e),inv(¯t)] contains (c + 1,d + 1) or (c,d). Those contributions are all of the form 

 θ xxth((ee))ϕϕhλtλ((ee)) I∈[h(e),inv(t¯)] uu
cIc+I 1 · u(s¯) or θ xx

th(e)ϕhλλ(e)  uucIc+I 1  , 

 t( ) I∈[h(e),inv(t¯)] uu
cIc+I 1  θ xx

t e ϕ t e I∈[h e

 uu
cIc+I 1 u(s¯) 

which are both 1 under u(s¯) = 1, and the only remaining factor comes from the edges (c + 1,d + 1) → (c 

+ 1,d) and (c,d) → (c + 1,d): 
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xxc+1,d ϕ+ u(s¯) (s) θ 
 θxxc+c+1,1d,+d1 . 

 c11,,d+1  u ¯ =1 = x 

 θu(s¯) θ 1, 
1, 

The lemma follows.  

9.2 GKM conditions 

The goal of this section is to prove that the elliptic stable envelopes Stab(λ) satisfy the GKM condition 

(71). For simplicity, we assume that (1,k) ∈ λ¯; in other words, λ¯ starts with diagonal 1. The general 

case can be easily reduced to this. 

A subtree of ¯t is called a strip if it contains at most one box in each diagonal. We will 

also abuse the name strip for a connected subset in a partition that contains at most one box in each 

diagonal. We call a strip that starts from diagonal i to j − 1 an 

(i,j)-strip. 

Let λ and μ be two partitions, and p = bj(λ), q = bj(μ). Suppose that as fixed points in X, p and 

q are connected by a torus-invariant curve, which means that 

q = p \ {i} ∪ {j}, 

for some 1 ≤ i,j ≤ n (assume i < j). On the dual side, that means μ ⊃ λ, and μ\λ is an 

(i,j)-strip, lying the boundary of λ¯. 

Recall the GKM condition: 

Proposition 6. For partitions λ and μ as above, 
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 Stab    . 

By localization and the triangular property of stable envelopes, it suffices to show that for any 

partition ν ⊃ λ, 

 Stab    . 

Before proving the GKM condition, we need some analysis on the specialization of the stable envelopes 

under ui = uj. 

9.2.1 Specialization of Stab(λ) under ui = uj 

Recall that p ⊂ n and i j. We would like to study the specialization ui = uj. 

By definition 

Stab , 

where 

Tp,p = (−1)(n−k)k i∈p,j∈n\p,i<j θu uji  i∈p,j∈n\p,i>j θu uijh¯ . 

In particular, Tp,p contains a factor θ ui . uj 

For any tree t¯ in λ¯, consider all subtrees of t¯ that are (i,j)-strips 

B = {Bi,Bi+1,··· ,Bj−1}, 
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where Bl is the box in the l-th diagonal. We define B(t¯,i,j) to be one whose Bi has the smallest height. If 

t¯ does not contain any (i,j)-stripes as subtrees, define B(t¯,i,j) = ∅. A tree t¯ in λ¯ is called distinguished, 

if its strip B , and lies in the boundary of λ¯. 

A simple observation is that, for the contribution from t¯ to Stab(λ) to be nonzero under ui = uj, 

B(t¯,i,j) has to be nonempty. 

Lemma 8. Let B be an (i,j)-strip in t¯, which is a subtree. Let BU be the box in B ∩ U with largest content. 

We have 

• if Bi ∈ U, then Bi is the root of B; 

• if Bi ∈ U, then BU is the root of B. 

Proof. If Bi ∈ U, and the root of B is some box other than Bi. Then the unique path from Bi to U has a box  

in its interior with local maximal content.  must be connected to both the boxes to the left and above it, 

which is not allowed. 

If Bi ∈ U, then every box in B from Bi to BU is in U. It is clear that the root of B is 

BU.  

Lemma 9. Let B be an (i,j)-strip in t¯ which is a subtree. If Bi lies in the boundary of λ¯, then B 

lies entirely in the boundary of λ¯; in other words, B(t¯,i,j) = B. 

Proof. Suppose Bi lies in the boundary, but B does not. Then there exists a box in the boundary of λ¯, 

not in B, but in a diagonal less than j − 1. Since t¯ is a tree, there is a unique path from that box to some 

box in U. This path would contain a box with local maximal content in its interior. Contradiction.  

Lemma 10. Under the specialization ui = uj, 
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Stab(λ)ui. 

S¯ ub t 

Proof. Let B = B(t¯,i,j). Since Tp,p contains a zero ui/uj, if B = ∅, it is clear that the stable envelope will 

vanish. Now assume B = ∅. 

If i = 1, then Bi = (1,k). By Lemma 9 B lies in the boundary and t¯ is distinguished. 

If i = 1, it is easy to see that Bi ∈ U (otherwise as a subtree B must contain (1,k)). If moreover Bi 

is not in the boundary, then one can construct its involution inv(t¯). By Lemma 7, the contributions from 

t¯ and inv(t¯) cancel with each other. Therefore, in the summation over trees, we are left with those t¯ 

whose Bi lies in the boundary of λ¯, which by Lemma 9 are distinguished.  

Fix a distinguished tree t¯, and B = B(t¯,i,j). Let’s consider the restriction of Stab(λ) to a certain 

fixed point ν ⊃ λ. For an individual contribution from given t¯ and σ, we take the following limit, called 

B-column limit for ν\λ: first, for each pair of I,J ∈ ν\λ such that I is above J and I,J ∈ B, take 

xI = xJh¯; 

for any I ∈ B, take xI = ϕI
ν; finally take any well-defined evaluation of the remaining variables. Note that 

this limit only depends on the partition λ and the pair i,j, and does not depend on t¯. 

Lemma 11. The restriction 

 

under the B-column limit vanishes unless σ fixes B. 

Proof. Suppose that the restriction does not vanish under the chosen limit. Recall that Bl, i ≤ l ≤ j − 1 is 

the box in the l-th diagonal of B. We use induction on l, from j − 1 to i. 
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Recall that by the refined formula, σ lies in Sν\λ. 

First, we show that Bj−1 is fixed by σ. Let Y1,Y2,··· be the boxes in the j-th diagonal of ν\λ, such 

that the heights of Ym’s are increasing. Since j ∈ p, Y1 is the box to the right of Bj−1. Hence, we have the 

theta factors   , 

m≥1 

as ρBj−1 > ρYm and Bj−1 is not connected to Y1. Under the B-column limit for ν\λ, this product vanishes 

unless σ(Bj−1) has no box below it, which implies σ(Bj−1) = Bj−1. 

Next, suppose that Bl+1 is fixed by σ, consider Bl. Let e be the edge connecting Bl and Bl+1. Let 

X1 = Bl,X2,··· and Y1 = Bl+1,Y2,··· be, respectively, the boxes in the l-th and (l + 1)-th diagonals of ν\λ. 

If e is horizontal, then we have factors , 

m 

ρB and X2 is not connected toxB
l Bl+1. If σ(Xm) = X1 = Bl since we know ρX < 

for some m = 1, then the factor  l 1  =  l  vanishes under the B-column ordering. 

 xB xB 
 + +1 
Hence, σ(B ) B . 

 l = l 

If e is vertical, then we have factors 

θ , 

 h x 
m≥2 

since we know ρBl > ρYm and Bl is not connected to Y2. If σ(Bl) = Xm for some m = 1, 
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 m ¯   Xmm¯  vanishes under the B-column then the factor
ordering, since Xm is x x 

 Y xY h 
the box above Ymand they are not in B for m ≥ 2. Hence, σ fixes Bl.  

In summary, after restriction to ν in the B-column limit for ν\λ, only contributions from 

distinguished t¯ and permutations σ that fix B survive. We are now ready to prove Proposition 6. 

9.2.2 Proof of Proposition 6: μ is not contained in ν 

In this case, the strip μ\λ is not entirely contained in ν\λ. Clearly, we have Stab(μ)ν = 0. 

Lemma 12. 

Stab(λ)ν,ui=uj = 0. 

Proof. By Lemma 10, only distinguished trees t¯, with strip B = B(t¯,i,j) contributes. Let Bi,··· ,Bj−1 be 

boxes in B, and X be the first box in B that does not lie in ν\λ. For restriction to ν of an individual 

contribution by given t¯ and σ, we take the column limit for ν¯, that is, first let xI = xJ for any I,J ∈ ̄ν in 

the same column, and then take any limit for the remaining variables. 

If X = Bi, then there is a box Y above it, which also lies in ν¯. Since Y ∈ B, the edge connecting 

X and Y is not in ¯t. The contribution from ¯t then contains a factor θ(X/Y), which vanishes under the 

column limit. 

If X = Bi, then either i = 1, or i = 1, and the entire B ∩ U, and in particular BU, lie in ν¯. By 

Lemma 8, we know the root rB = Bi or BU, respectively. Denote the box not in B and connected to r by 

C. The factor in Wσ=1(¯t) that contributes the pole ui/uj is 
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xCrBCλB uji 

θν xϕ u uj = 1. 

θ 

ui 

Stab(λ)ν = 0 under ui = uj because of the zero ui/uj in Tp,p.  

9.2.3 Proof of Proposition 6: μ ⊂ ν 

In this case, B is contained entirely in ν\λ; in other words, λ ⊂ μ ⊂ ν. Let rB be the root of B, which if i = 

1, is BU; and if i = 1, is Ba. 

If B, let C ∈ ̄t\B be the box connected to rB. C could be in or not in ν\λ. 

If (n − k,k) ∈ B, we denote by convention that xC  1. Then 

u 

 
 θujiStab(λ)%ν,ui=uj S

 t  

u 

 μ) i σ∈ \ ¯
 ν 

· ck,k) θ ax2Ih¯ ν 

 I \ 
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 θ xσ(σ(JI))h¯ ν I cIJ cI

1t,cIJor,ρIJ<ρμJ θ xσ(σ(I) ν xx 

 + = J) 

(I↔ ¯ \  ∈ \λ · cI

  h ν −1 
 I \ 

u
ji   eB U  ht((ee))htλ((ee))  (  e B x ϕλ

 uj θ ν x ϕ uh e) 

θ ∈ \ ∈ ∩
U u 
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λ 
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 θ huu¯ mj  θ  umjh 

uuj  mn<j θ uuj¯ , 

 m m mi<∈ \p um 

 ⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨ θ h¯ uu
h(je), h 

 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩  θ h¯−1 uhj , h 

uj 

 θ uh(e) 

e 
ϕ 

ν,ui=uj θθh¯ ut(j  λ u e) 

  = ut(e) . 

uj 
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 m
∈ \ \ 

9.3 Divisibility 

In this subsection, we aim to prove the following divisibility result. Let p = bj(λ), q = bj(μ) ∈ XT be two 

fixed points. 

Tp,p 
Proposition 7. The function Tμ ,μ · Tλ ,μ is of the form 

uj 

¯ ,  fμ,λ · θ 

i∈pn\puih 

where fμ,λ is holomorphic in parameters ui. 

Proof. Recall that 

 Tp,p = (−1)k(n−k)  θ ui   u , 

uj i∈p,j∈n\p,i>j
h 

i∈p,j∈n\p,i<j 

and Tμ ,μ does not depend on ui’s. By formula (53), we can see that all possible poles of Tλ ,μ take the 

form u
i/uj. Therefore, all possible poles of the function f

μ,λ in the proposition are of the form ui/uj. 

Moreover, by the proof of holomorphicity (Theorem 9 below), they have no poles at ui/uj. We conclude 

that fμ,λ is holomorphic in ui.  
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9.4 Holomorphicity 

In this subsection, we will prove the holomorphicity, that is, the normalized restriction matrices of stable 

envelopes on X are holomorphic in uis. The idea is to apply general results for q-difference equations 

associated to Nakajima quiver varieties. 

9.4.1 Quantum differential equations 

Let X be a Nakajima variety. For the cone of effective curves in H2(X,Z), we consider the semigroup 

algebra, which is spanned by monomials zd with d ∈ H2(X,Z)eff. It has a natural completion, which we 

denote by C[[zd]]. The cup product in the equivariant cohomology HT•(X) has a natural commutative 

deformation, parametrized by z: 

  (75) 

known as the quantum product. 
The quantum multiplication defines a remarkable flat connection on the trivial HT•(X)-bundle 

over Spec(C[[zd]]). Flat sections  of this connection, considered as HT•(X)-valued functions, are 

defined by the following system of differential equations (known as the quantum differential equation 

or Dubrovin connection): 

d 
X [[z]], 

where λ ∈ H2(X,C) and the differential operator is defined by 

 d zd = (λ,d)zd. (76) 
dλ 

9.4.2 Quantum multiplication by divisor 

The equivariant cohomology of Nakajima varieties is equipped with a natural action of certain Yangian 

Yh¯ (gX) [65]. In the case of Nakajima varieties associated to quivers of ADE type this algebra coincides 

with the Yangian of the corresponding Lie algebra (but in general can be substantially larger). 

The Lie algebra gX has a root decomposition: 
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gX = h ⊕ gα 

α 

in which h = H2(X,C) ⊕ center, and α ∈ H2(X,Z)eff. All root subspaces gα are finite dimensional and g−α = 

g∗α with respect to the symmetric nondegenerate invariant form. 

The quantum multiplication (75) for Nakajima varieties can be universally described in therms 
of the corresponding Yangians: 

Theorem 7 ([38,Theorem 10.2.1]). The quantum multiplication by a class λ ∈ H2(X) is given by 

  (77) 

where θ ∈ H2(X,R) is a vector in the ample cone (i.e., in the summation, θ selects the effective 

representative from each ±α pair) and ··· denotes a diagonal term, which can be fixed by the condition

. 

Let zi with i = 1,··· ,n−1 denote the Kähler parameters of the Nakajima variety X from Section 

4. 

Corollary 4. The quantum connection associated with the Nakajima variety X is a connection with 

regular singularities supported on the hyperplanes 

 zizi+1 ...zj = 1, 1 ≤ i < j ≤ n − 1. 

Proof. The variety X is a Nakajima quiver variety associated with the An−1-quiver. Thus, the 

corresponding Lie algebra gX 
∼= sln. The Kähler parameters zi associated to the tautological line bundles 

on X correspond to the simple roots of this algebra. In other words, in the notation of (76) they 

correspond to zi = zαi, where αi, i = 1,··· ,n−1 are the simple roots of sln (more precisely, simple roots with 

respect to positive Weyl chamber 0 where θ is the choice stability parameters for X). 

By (77), the singularities of quantum differential equation of X are located at 
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zα = 1 

for positive roots α. All positive roots of sln are of the form α = αi + αi+1 + ··· + αj with 1 ≤ i < j ≤ n − 1. 

Thus, the singularities are at 

zα = zizi+1 ···zj = 1. 

 

9.4.3 Quantum difference equation 

In the equivariant K-theory, the differential equation is substituted by its q-difference version: 

  (78) 

where L ∈ Pic(X) is a line bundle and q ]]. The theory of quantum difference 

equations for Nakajima varieties was developed in [51]. In particular, the operators ML(z) ∈ End(KT(X)) 

were constructed for an arbitrary line bundle L. These operators are the q-deformations of (77), that is, 

in the cohomological limit they behave as 

M  , 

where ... stands for the terms vanishing the cohomological limit and λ = c1(L). 
In K-theory, the sum over roots in (77) is substituted by a product: 

ML(z) = Lw Bw(z) The singularities of the quantum difference 

equations, that is, the singularities  

over certain set of affine root hyperplanes of an affine algebra gX. 
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of matrix ML(z) are located in the union of singularities of Bw(z). The wall crossing operators Bw(z) are 

constructed in [51, Section 5.3]. In particular, if zα = 1 are the singularities of the quantum differential 

equation in cohomology, then the singularities of (78) can only be located at zαqph¯ s = 1 for some integral 

p,s. This, together with Corollary 4 gives 

Proposition 8. The singularities of the quantum difference equation associated with the Nakajima 

variety X are located at 

 zizi+1 ···zjqph¯ s = 1, 1 ≤ i < j ≤ n, p,s ∈ Z. 

9.4.4 Pole subtraction theorem 

The elliptic stable envelopes describes the monodromy of q-difference equations. More precisely, the 

q-difference equation (78) has two distinguished fundamental solution matrices, indexed by fixed points 

XT. The z-solutions z form a basis of solutions, which are holomorphic in the Kähler parameters in the 

neighborhood |zi| < 1. Similarly, the a-solutions a for a basis of solutions holomorphic in |a| < 1. By 

general theory of q-difference equations, every two bases of solutions are related by a transition matrix: 

 z, (79) 

known as the monodromy matrix from the solutions  . (Let us clarify the meaning of terms in 

(79): here z denotes the fundamental solution matrix - the |XT| × |XT| dimensional matrix with columns 

of z satisfying the quantum difference equation. The set of |XT| columns of z forms a basis in the space 

of solutions. The elements of this basis are holomorphic in variables z. Similarly, a is a matrix whose 

columns form a basis of solutions, which are holomorphic in parameters a. The theorem above says that 

W(z) = {W(z)λ,μ}λ,μ∈XT coincides with .) The central result of [1] (in the case when XT is finite) 

is the following: 

Theorem 8 ([1, Theorem 5]). Let X be a Nakajima variety and let 

 Tλ,μ(z) = Stab(λ)|μ, λ,μ ∈ XT 
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be the restriction matrix for elliptic stable envelope in the basis of fixed points. Then, the matrix W(z) = 

{W(z)λ,μ}λ,μ∈XT from (79) in takes the form: 

1 ),  W(z)λ,μ

T μ 

where   is given by (11) applied to Laurent polynomial T1/2Xμ. In particular,  

does not depend on the Kähler parameters. 

The singularities of solutions a and z are supported on the singularities of the corresponding q-

difference equation. It implies that the transition matrix also may have only these singularities (if W(z) 

is singular at a hyperplane h, which is not a singularity of q-difference equation then, by ( a is also 

singular along h, which is not possible). 

In particular, combining the last theorem with Proposition 8, we obtain 

Corollary 5. Let Tλ ,μ be the restriction matrix of the elliptic stable envelope for the 

Nakajima variety X in the basis of fixed points. Then, the singularities of Tλ ,μ are 
supported to the set of hyperplanes:  

zizi+1 ···zjqph¯ s = 1, 1 ≤ i < j ≤ n, p,s ∈ Z. 

This implies that the poles of the restriction matrix Tλ ,μ in the coordinates ui related to Kähler 

variables (55) are of the form: 

 ui h¯ sqp, i = j, p,s ∈ Z. (80) 
uj 

9.4.5 Holomorphicity of stable envelope 

Let us return to the Nakajima varieties X and X defined in Sections 3 and 4, respectively. We identify 

the fixed points as in Section 6.1 and identify the equivariant and Kähler parameters by (55). Let Tλ ,μ 
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and Tp,q be the restriction matrices of the elliptic stable envelopes for the Nakajima varieties X and X, 

respectively. 

Theorem 9. The functions 

T
p,p

T
λ ,μ 

are holomorphic in parameters ui. 

Proof. By (80), we need to show that the denominators of functions Tp,pTλ ,μ do not contain factors of 

the form 

θu ji h¯ sij. 
u 

i=j 

On the other hand, by Proposition 5, the explicit formula for the elliptic stable envelope on X has the 

form 

 T  %  Sμ λ t

 μ, 
 σ∈ ,¯ ¯ 

where %  are independent of ui, and 

θ  σ(2h¯) t uIcI   σ( ( )) ( ) ( ) t uIcI  a  

Wσ( ) x r¯ I∈[r¯,¯] uc +1 x h e ϕt e I∈[h e ,¯] uc +1 . ∈[r¯,t¯]

 cI+1 t  e∈ ̄

Therefore, we conclude that among (80) only factors with sij = 0 may appear. To show that those are 

actually not poles, it suffices to prove that 
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θ u ui Tp,pTλ ,μ i j = 0. 

 j u =u 

As discussed before, the only possible nontrivial terms of the left side come from trees ¯t which contains 

some (i,j)-strip B. 

If j ∈ p, one can see that λ¯\B contains a path in ¯t admitting a box with local maximal content, 

which is not allowed. In other words, contributions from all ¯t are zero in this case. 

If i ∈ n\p, then the boxes above and to the left of the root of B both lie in λ¯, and the involution 

inv(t¯) is also a tree in λ¯. By the cancellation Lemma 7, contribution from t¯ cancels with that from 

inv(t¯). Sum over all t¯ gives 0. 

If i ∈ p and j ∈ n\p, then Tp,p contains a factor θ ui , and nontrivial terms come uj 

from trees t¯ that contains at least two (i,j)-strips, for example, B1, B2. At least one of them, say B1, is 

not contained in the boundary of λ¯ and hence the involution of t¯ with respect to B1 is well defined. 

Contribution from t¯ then cancels with that from inv(t¯). Therefore, we exclude all possible poles 

θ(ui/uj), and Tp,p
T

λ ,μ is holomorphic in ui
.  
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