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1. Introduction

A quantum integrable model is a vector space V and an algebra B of commuting linear
operators on V, called the Bethe algebra of Hamiltonians. The problem is to find eigenvectors
and eigenvalues. If the vector space is a space of functions, then the Hamiltonians are
differential or difference or integral operators.!

We say that a quantum integrable model can be geometrized, if there is a topological space
(a scheme) X with an algebra Ox of functions on X, an isomorphism of vector spaces i : Ox—
V', an isomorphism of algebras 7 : Ox— B such that

¥(fg) = (NP (9), Vfg € Ox.

These objects Ox 1,7 identify the B-module VV with the regular representation of the algebra
Ox of functions.

If a quantum integrable model (V,B) is geometrized, then the eigenvectors of B in V are
identified with delta-functions of points of X and the eigenvalues of an eigenvector in V
correspond to evaluations of functions on X at the corresponding point of X.

Our motivation to geometrize the Bethe algebras came from the examples considered in
[MTV3, MTV5], where the algebra of Hamiltonians acting on a subspace of a tensor product
of glv-modules was identified with the algebra of functions on the intersection of suitable
Schubert cycles in a Grassmannian. That identification gave an unexpected relation between
the representation theory and Schubert calculus.

The examples in [MTV3, MTV5] are related to models with a finite-dimensional vector
space V . How to proceed in the infinite-dimensional case of commuting differential
operators is not clear yet. In this paper we discuss an example. In our infinite-dimensional
space IV we distinguish a family of finite-dimensional subspaces E[u], u € C, each of which is
invariant with respect to the algebra B of commuting differential operators. We geometrize

each of the pairs (EM’ B’E[ﬂ]), thus constructing a family of topological spaces X[u], 1 € C.
We observe that natural interrelations between the subspaces E[u] correspond to natural
interrelations between the topological spaces X[u]. For example, the Weyl involution V>V,
available in our case, identifies E[u] and E[-u]. We show that this identification corresponds
to a natural isomorphism X[u] = X[-u].

Representation theory provides a source of commuting differential or difference
operators. In this paper we discuss the construction due to V.Rubtsov, A.Silantyev,
D.Talalaev, [RST]. That quantum integrable model is called the quantum dynamical Gaudin

1 See examples of commuting integral operators in [Ko, EFKa]
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model. We study the sl2trigonometric version of the quantum dynamical Gaudin model, while
in [RST] the glnelliptic version was considered.

Consider the Lie algebra sl2 and its Cartan subalgebra h C sl2, dimh = 1. For s = 1,...,n, let Vi,
be the irreducible sl-module of dimension ms+ 1. LetV = ®4— Vms,
V[0]={veV|hv=0,VhE€Eh},
the zero weight subspace. The space V [0] is nontrivial i
Fung.V [0] be the space of V [0]-valued functions on h. Fix a subset z = {z3,..,zn} € C*. Having

fM = 3" m, is even. Let

these data, Rubtsov, Silantyev, and Talalaev construct a family of commuting differential
operators acting on Funs.V [0] as follows.

20, 0
0 LU@J + L(z) = [6;; 20, + Lij(2)]

First, one constructs a 2 x 2-matrix{ , where x

is a parameter, 0x = ax2, and Li(x) are some special differential operators on Funs.V [0]

= cdet [6ij r0, + Lij(x)}

depending on x. LetC , where cdet is the column determinant of the

a b
a1 = ad — cb.
matrix with non-commuting entries, cdet ¢ Using the new variable u
Vv
with x = e=27 -1u the operator C can be written in the form
0u? + Cl(X)au + CZ(X),

where C1(x),C2(x) are differential operators on Fung 2V[O], whose coefficients are rational
functions of x. It turns out that for any a,b € C - {z1,..,za} and ij = 1,2 the operators Ci(a), Cj(b)
commute. The space Fung 2V [0] with the algebra B generated by these commuting
differential operators is called the quantum dynamical Gaudin model.

We show that the algebra B is generated by the trigonometric differential KZB operators
Ho, H1(2), .., Hn(2), see them in formula (2.13) and [FW, JV]. The KZB operator Ho is also
known as the trigonometric Hamiltonian operator of the quantum two-particle
CalogeroMoser system with spin space V . The operator Hois a second order differential
operator independent of z.

For any p /€ Z we define in Section 3.2 the subspace E[u] € Fung.V [0] as the space of

meromorphic eigenfunctions of Ho with eigenvalue 77\/__1#72 and prescribed poles. The
subspaces E[u] were introduced in [FV2] and studied in [JV]. We have dimE[u] = dimV [0].
The Bethe algebra B preserves each of E[u].

The sl2 Weyl involution acts on Fung zV[O] and induces an isomorphism Ef[u] = E[-u],
which is called in [FV2] the scattering matrix. The Bethe algebra B is Weyl group invariant.
The scattering matrix E[u] = E[-u] is an isomorphism of B-modules.

The basis of the geometrization procedure lies in the following observation. Let ) € E[u] be
an eigenvector of B,
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Ci(x)y = Ei(x )y, =12,

where Ei(x,1) are scalar eigenvalue functions of the eigenvector y. We assign to 1 the scalar
differential operator
Ey = 0, + Er(x,9)0u + Ea(x,1)),

We show that the kernel of Ey is spanned by two quasi-polynomials x#2f(x),x*/2g(x), where
f(x),9(x) are monic polynomials of degree M/2, with the property that the Wronskian of the
two quasi-polynomials is

(L.1) wee® @) = © T =)
s=1

This fact suggests that the space X[u] geometrizing (EM’ B‘E[#D is the space of pairs
(x#2f(x), x*/2g(x)) of quasi-polynomials with Wronskian given by (1.1).

In this paper we show that this is indeed so. We show that the space of functions E[u],

with the commutative algebraB‘ Elu] of differential operators acting on E[u], is isomorphic to
the algebra of functions on the space X[u] of pairs of quasi-polynomials (x#2f(x), x*/%2g(x))
with Wronskian given by (1.1). In particular, it means that the eigenfunctions of the algebra

B|E[u] are in bijection with the points of X[u], see Corollary 11.6.

We also show that the scattering matrix isomorphism E[u] — E[-u] corresponds to the
natural isomorphism X[u] — X[-u] defined by the transposition of the quasi-polynomials,
(x#/2f(x) x/2g (X)) 7= (x#/2g (x),x#/%f(X)).

The results of this paper indicate the deep relation between the quantum dynamical Gaudin
model (B,Funs.V [0]) and the spaces of pairs of quasi-polynomials.

[t would be interesting to develop the elliptic version of this correspondence. In the elliptic
version the pairs of quasi-polynomials are replaced with pairs of theta-polynomials, see
[ThV], but the elliptic KZB operator Hodoes depend on z and does not have apparent analogs
of the family of subspaces E[u].

The paper is organized as follows. In Section 2 we define the slquantum dynamical Gaudin
model. In Section 3 we discuss properties of the spaces E[u]. In Section 4 we introduce the
quantum trigonometric Gaudin model (V [v],B(z V [v]) on a weight subspace V [v] € V and

show that the quantum dynamical Gaudin model (E[M l B‘ EV]) is isomorphic to the quantum
trigonometric Gaudin model (V [0],B(z V [0]) on the zero weight subspace. In Section 5 we
describe the Bethe ansatz for the quantum trigonometric Gaudin model. In Sections 6 and 7
we describe the kernel of the operator Ey. In Sections 8 - 11 we develop the geometrization
procedure. The constructions of Sections 9 - 11 are parallel to the geometrization
constructions in [MTV3, MTV2].

The authors thank V.Tarasov for useful discussions.
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2. Quantum dynamical Gaudin model

2.1. gl2 RST-operator. Consider the complex Lie algebra gl2 with standard basis e11, e12, e21,

e22. Denote by h the Cartan subalgebra of gl2 with basis ei11,e22 and elements Aie11 + Azezz.
Denote

A=A- 2
Let z = {z1,..,Zzn} € C*be a set of nonzero pairwise distinct numbers.

Let V1..,Vnbe glz2-modules and V= @=1V k. Let V= @ven-V [v] be the weight decomposition,
where V [v] ={v € V| ejv = v(ejj)v forj = 1,2}. In particular,

V0] ={veV|ewv=ez2v=0}

Forg € glz,denote g®=1&® - ® g ® - ® 1 € End(V), with g in the s-th factor. An element
(1) (n)
ejxacts on’ by e+ ey

Let u be a variable. Denote

v_X
=e-2n
-lu.
_ 0 _ 9 _ 0
Leta” = O =55 Oy 9Aj and so on.
Introduce a 2 x 2-matrix L,
(2.1)
L L " __1p" z.gd-_x.(s)_'_ e __1pn ze+x (S) _ tm #
N e A (mA) ez2 M /=17 521 5y €21~ TCO (A )e21
La1 Lz T -1P P egsz) + meot(mA)erz mw -1P [, P~ eé? - mcot(mA)eir

The entries of L are End(V' )-valued trigonometric functions of u and A.

The universal dynamical differential operator (or the RST-operator) is defined by the
formula

(2.2) C = cdet(6jk0u — Sjk Ox+ Ljk),

where for a 2 x 2-matrix A = (ajx) with noncommuting entries the column determinant is
defined by the formula

cdetA = a11az2 - az1a1z2.
Write the RST-operator in the form
(2.3) C=0%+ Ci(x)0, + Ca(x)

where Ci1(x) and C2(x) are functions in x with values in the space of linear differential
operators in variables A1,A2 with coefficients in End(V).
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Theorem 2.1 ([RST]). Fix z = {z1,..,zn} € C*. Then for any a € C - {z1,..,zn} the operators
C1(a),Cz2(a), restricted to V [0]-valued functions of A1,A2, define linear differential operators in
A, A2 with coefficients in End(V [0]). Moreover, for any a,b € C—{z,..zn}, the differential
operators Cj(a), Ck(b), j,k = 1,2, acting on the space of V [0]-valued functions of A1,A2 commute:

(2.4) [Ci(a),Ck(b)] =0, k=12

The elliptic RST-operator for glv was introduced by V.Rubtsov, A.Silantyev, D.Talalaev in
[RST]. The elliptic gl2 RST-operator was discussed in [ThV]. The RST-operator, defined in
(2.3), is the trigonometric degeneration of the elliptic gl RST-operator.

2.2. Dynamical Bethe algebra of Funs.V [0]. In this paper, we are interested in the slz version
of the RST-operator.

The Lie algebra slzis a Lie subalgebra of gl2. We have glz = sl2 @ C(e11 + e22), where e11 + e22
is a central element. Let V1,..,V "be sl2-modules, thought of as gl>-modules, where the central

N k
element e11 + e2z2 acts by zero. LetY = ®;-1V" be the tensor product of the slz-modules.
In this paper we consider only such tensor products.

We consider the Cartan subalgebra of slz consisting of elements A1e11+A2e22 with A1+42= 0.
We identify the algebra of functions on the Cartan subalgebra of sl with the algebra of
functions in the variable

A=A1- A2,

since the elements Aie11 + Aze22 with A1+ A2 = 0 are uniquely determined by the difference of
coordinates.

Denote by Funs.V [0] the space of VV [0]-valued meromorphic functions on the Cartan
subalgebra of sl2. In other words, Funs..V [0] is the space of VV [0]-valued meromorphic
functions in one variable A.

Each coefficient Ci(x),C2(x) of the RST-operator, defines a differential operator acting on
Funy 2V[O]. From now on we consider the coefficients C1(x), Cz2(x) as a family of commuting
differential operators on Funy QV[O], depending on the parameter x.

The commutative algebra of differential operators on Funs.V [0] generated by the identity
operator and the operators {Cj(a) | j = 1,2, a € C - {z1,..,zn}} is called the dynamical Bethe
algebra of Funs.V [0]. The dynamical Bethe algebra depends on the choice of the numbers
{z1,...,Zn}.

2.3. Tensor product of sl>-modules. Given m € Z.0, denote by Vi the irreducible slzmodule

with highest weight m. It has a basis?0 > - - - Um such that
(25) (e —ex)vy" = (m=2k)v;",  envy' = (k+ vy, envf’ =(m—k+ 1yl

From now on our tensor product V is of the form
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(2.6) V=Q_Vm,,  ms€ZLso,

We have the weight decomposition V = @vezV [v] consisting of weight subspaces
(2.7) Vivl={ve V| (er1-ex)v=vv}

If V [v] is nonzero, then

(28) V= Xms - 2k,

s=1
for some nonnegative integer k. The dimension of V [0] is positive if the sum2_s—1 s is even.

2.4. Operator A(u). The sl2Weyl group W consists of two elements: identity and involution o.
The projective action of W on Vmis given by the formula

k,m

g U;n = (_]‘) Um—k

for any k. We have ¢2 = (-1)™. The Weyl group W acts on the tensor product V diagonally.

Following [TV], introduce
k—1

1
k _k
= E e(e{—”
p(,u) £ 21912 7., I 1L+ e

The series p(u) acts on Vm, since only a finite number of terms acts nontrivially. The formula

for the action of p(u) on a basis vector vi™ becomes more symmetric if u is replaced by
B+

1

P
— €11 — )

ueC

1, where v =m - 2k is the weight of vi™,
k—1

v " p+g—=J

p<u+§ — 1)vk = H ﬁvk

(2.9) jmo M=o ,
see [TV, Section 2.5].

The series p(u) acts on the tensor product Vin the standard way. Introduce the operator
(2.10) Aw): V-1, v7-op(u)v.

The operator A(u) is a meromorphic function of . For any v, we have A(u)V [v] € V[-V], and
limy—» A(¢t) = 0 . The operator A(u) may be considered as a deformation of the Weyl group
operator o.

V =" ,Vp, as in (2.6) M=>3" ms pwit2+7
Then for any v the operator

«4M+Z—QRM:VM-*VFW

(2.11) 2

o . L ptg = 1)‘
is an isomorphism of vector spaces. The composition of the operator ( ? Vvl and the
operator

A(—M—K+Qh%w;va-+vm

(2.12) 2
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_1\M p—v/2
is the scalar operator on V [v] of multiplication by (=1) ptv/2,

Proof. The slz irreducible decomposition V = @mVm of the tensor product V has the highest
weights m of the form m = M - 2k for k € Z-0, only. Now (2.11) is an isomorphism by formula
(2.9). The statement on the composition is [TV, Theorem 10].

Remark. The operator A(u) is the (only) nontrivial element of the sl dynamical Weyl group
of I/, see definitions in [EV].

2.5. KZB operators. Introduce the following elements of gl @ gl2,

Quz=e12Q ez, Q21=e21Q e1z,

Qo=e11 @ e11+e22@Q ez, Q=00+ Q12+ Qo1

The KZB operators Ho,Hi1(z),..,Hn(z) are the following differential operators in variables 11,12
acting on the space Funs.V [0],

(2.13)
1 1 (st
Hy = 02 482 )+ 1Y QY 1+l
’ Amy/—1 (03, +05) Stz:l [ Sln (7T/\) ( '+ )}
Hy(2) = —(ef0n +e5on)+ > {W\/—l%Q(S’U 7 cot(m)) (Q{;t) —ol ﬂ
t — s

tit#s

J

cf. formulas in Section 3.4 of [JV]. The elliptic KZB operators were introduced in [FW]. In
(2.13) we consider the trigonometric degeneration of the elliptic KZB operators.

By [FW] the operators Ho,H1(z),...,Hn(z) commute and2_s—1 Hs(2) = 0.

Remark. The differential operator Ho is the Hamiltonian operator of the trigonometric
quantum two-particle system with spin space V .

2.6. Coefficients C1(x), C2(x).
Lemma 2.3. We have

Ci(z) = [’(1)1 (z) + 552(@ — Oy, — Oy,

Hence the coefficient C1(x) acts by zero on Funs.V [0]. Corollary 2.4. The RST-operator
(2.3) has the form
(2.14) C =0, + Co(T)as an operator on Fung.V [0].

Theorem 2.5 ([ThV]). We have
(2.15)
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n

CQ(x) = —271'\/—71]‘]0 — Z 27T\/—_1 Hs(z) 471’2( B Cés) N CgS) )]

1—x/z *

s=1
where c2 = e11e22 — e12e21 + e111s a central element of gla.

Proof. This is the trigonometric degeneration of the elliptic version of this theorem, see [ThV,
Theorem 4.9].

Corollary 2.6. The dynamical Bethe algebra of Funs..V [0] is generated by the identity operator
and the KZB operators Ho,H1(z),...,Hn(Z2).

The commutativity of the KZB operators and formulas (2.14), (2.15) imply the
commutativity [C2(a),C2(b)] = 0 independently of Theorem 2.1.

2.7.sl2Weyl group invariance. The Weyl group acts on V [0] as explained in Section 2.4.
Hence the Weyl group acts on Fung.V [0] by the formula

(2.16) o () 7> o((-1)), ¥ € Funa.V[0].

This action extends to a Weyl group action on End(Funs 2V[O]), where for T € End(Funs.V [0])
the operator o(T) is defined as the product 6To1 of the three elements of End(Funs.V [0]).

Lemma 2.7 ([ThV]). For any a € C-{z1,...,.zn} the operator C2(a) € End(Funs.V [0]) is Weyl group
invariant.

Proof. By [FW] the KZB operators Ho,H1(Z),....Hn(z) are Weyl group invariant. The lemma
follows from formula (2.15).

3. Eigenfunctions of Ho

3.1. Trigonometric Gaudin operators. The trigonometric r-matrix is defined by
r(z) = Qe +Q

(3.1) -1,

where Q-+ = 320 + e o-= 3% + Qa1

For u € C the trigonometric Gaudin operators acting on V are defined as

Ks(z, 1) = g (e —en)¥ + > r(2/z),  s=1,....n
(3.2) t: ks

Each operator Ks(z u) preserves each of the weight subspaces V [v] and
[Ks(z4),Ke(zu)] = 0

for all s,t, see [Ch, EFK].
3.2. Dynamical Bethe algebra of E(u). Let v
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Let A be the algebra of functions in A, which can be represented as meromorphic functions of
A with poles only at the set {A = 1}.
v
For u € Cintroduce the A-module A[u] of functions of the form e  -1#f where f € A. This
module is preserved by derivatives with respect to A1,A2. Therefore the KZB operator Ho
preserves the space A[u] ® V[0]. Any y € A[u] ® V [0] has the form

Y(N) = VA i/\kw’»‘, Y* e V[0]
k=0 .

Theorem 3.1 ([FV2]). Let u 6€ Z-0. Then for any nonzero v € V [0], there exists a unique i €
A[u] ® V[0] such that
H, 1/) = Elg/}a

2

— I
for some e C and Y° = v. Moreover, €= 7T\/—17.

Cf. [JV]. This function i is denoted by v.
We denote by E[u] the vector space of functions ¥ € A[u] @ V [0] such that Hoy =
2
mV/-1 % ¥ For more information on this space see [JV, Section 9].

For the zero vector 0 in V [0] we define yoto be the zero function of A[u] ® V[0].

Corollary 3.2. For u /€ Z-0, the map
(3.3) V [0] = E[u), v 7= Yy, is an isomorphism of complex
vector spaces.

Theorem 3.3 ([JV]). Let u /€ Z-0. Then for s = 1,..,n, the KZB operators Hs(z) preserve the space
E[u]. Moreover, for any nonzerov € V [0] we have

Hs(Z)l/)v = l/)w,
v

where w = =21 -1Ks(z,w)v.
Theorem 3.4. Letht & Z>0, V = ®_ Vi, andv € V [0]. Then
CZ(X)l,bvz 7,[)w,

where

B 1L ms(ms +2)/4 + Kq(z, u) ms(ms + 2)/4
(3.4) w (27“/_ {_Z z_:[ 1—x/2 (1 —2x/2)? HU

Proof. One computes the action of C2(X) on ¥y using Theorem 2.5. The computation is based
mg(ms+2)
on Theorem 3.3 and the fact that c2acts on Vimsas multiplication by — 4
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By Theorem 3.3 the subspace E[u] € Funs.V [0] is invariant with respect to the action of
the dynamical Bethe algebra. The restriction of the dynamical Bethe algebra to E[y] is called
the dynamical Bethe algebra of E[u] and denoted by B(z;E[u]).

Notice that E[u] is a finite-dimensional vector space of dimension dimV [0]. The space E[u]
does not depend on z, since the KZB operator Hodoes not depend on z. The algebra B(z;E[u])
is generated by the identity operator and the KZB operators Hi(z),...Hs(z) and does depend
on z.

3.3. Two-particle scattering matrix.

Theorem 3.5 ([FV2, Lemma 6.2]). For u /€ Z, the action (2.16) of the Weyl group involution o
on Fung.V [0] identifies the spaces E[u] and E[-u]. More precisely, for any v € V [0] we have

(3.5) (@5 (=A) = Yafu-1u(N)

—p
where Pw#(A) is the element of E[u] with initial term v and 2'/jA(u—l)v(/\) is the element of

E[-u] with initial term A(u - 1)v. Here A(u - 1) : V[0] — V [0] is the vector isomorphism, defined
in (2.10).

Proof. Formula (3.5) is proved in the example next to Lemma 6.2 in [FV2].

4. Quantum trigonometric Gaudin model
4.1. Universal differential operator. LetV = ®{-1Vin.. Introduce a 2 x 2-matrix
M — My, Mo — _9on /_127,,(0,3)(93/28)
M21 MQQ
(4'1) = ’
where r(x) is the trigonometric r-matrix defined in (3.1). More explicitly,
M — 2V =130 1o ;/z 611 —mV=len 2mvV—-1370 = 111‘/2 eésl) —2mv/—lex
2V =13 T/z ey 2mV/ =130 a:/z ey —mv/~Tex

The universal (trigonometric) differential operator for V with parameter u € C is defined by the

formula

D = cdet — TV =lpt M Mo
M21 8u +7T\/—1/L+M22
(4.2) .
Write the operator D in the form
D = 83 + D]([E)au + DQ(I’)]

where Di(x), D2(x) are End(V )-valued functions of x. It is clear that D commutes with the
action on V of the Cartan subalgebra of sl2. In particular, it means that Di(x), D2(x) preserve
the weight decomposition of V.

4.2. Coefficients Di1(x), D2(x) and Gaudin operators.
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V__
Theorem 4.1. We have D1(x) = 0 and (2 -1)2D2(x) equals
12+ pen — ex) — €162~ [Ms(ms +2)/44+ K(Z, 1)) mg(mg +2)/4
4.3) — —
(4.3) 4 +Z[ 1—x/z (1 —x/z)? ]

s=1
Proof. The proof is by straightforward calculation. We have

n 1
D = <au—7r\/—1/,b—|-27r\/—1zl_x 6” ™ — 611)

X

(8 +7T\/_/L+27T\/72 622 71'\/_622)

. (27r\/_ Z eﬁ?) (27r\/_ Z eg? . 27r\/—_1e21>

Then |
Dy(z) = 2%\/_2 e+ eg; — v/ —=1(en + €22) =0
i v Vo

Sincex=e2"  -lugnd du=-2m  -1x0x the coefficient of (2r  -1)-2D2(x) equals

2 n (s) n (s) (s)

K €22 622 H 611 €2 M

44) —=— — = —
(44) 4 Z(1—:5’/,25)2 +Zl—x/zs Z 1—x/z 4<611 €22)

n (s) n (s) ,(t) (t) (S) n (s) ,(s)

611 €22 ( €11 €90 t €116 ) 1 _ €11 €22

+Z (1 —x/z)? +Z Z 1 — 24/ 1—2x/z ;1—:6/23

s=1 t:t#s

s n (s) (s)
(t)) e11 1 €12 €91
— + —€11€22 — _—
;(tzt#:e 4 ;(1—33/2’3)2
(s) () (t) (s) n (s) n (s)
€19 €31 T €19€g) > 1 €19 621 ( ) €19
J— e [ —
Z<Z 1— 2/ 1—x/zs+zl—x/z +Z Z )1 —ax/z

s=1  t:t#s s=1  tl:t#s

] _ pPtp(ern—ean)—errean . .
The constant term in (4.4) equals 1 .Fors=1,..,n, the coefficient of

1

-x/zin (4.4) equals

() , M egz)egt])zs + eﬁgegﬁ)zt (s (s)
—Cy + (611 — 622 (S + Z +e (622 — 622)
2 tit#s —Ft

=%@+mmm:mmﬁmﬂ+&@m

The coefficient of (1 -x/z} 5)2in (4.4) equals

_ ) (s) ,(s) () (s) _

s (s)

:CQ'

The theorem is proved.
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Lemma 4.2. For any a,b € C-{z1,...,zn} the operators Dz(a),D2(b) € End(V) commute. They also
commute with the slz Cartan subalgebra.

Proof. Itis clear that the trigonometric Gaudin operators Ks(z,u) commute with the sl Cartan
subalgebra. Now the lemma follows from the commutativity of trigonometric Gaudin
operators. V__

Corollary 4.3. Choose a weight subspace V [v] of V. Then (2w —1)-2D2(x) restricted to V [v]
equals

(n+1v/2)? = me(me +2)/4+Ko(z, 1) me(mg +2)/4
(4.5) a 4 +;[ 1—x/z (1 —x/z)?

The commutative algebra of operators on V [v] generated by the identity operator and the
operators {Dz(a) | a € C - {z1,..,zn}} is called the Bethe algebra of V [v] with parameter u and
denoted by B(z;u;V [v]). The Bethe algebra B(z;u;V [v]) is generated by the identity operator
and the trigonometric Gaudin operators Ki(zu),...,Kn(z 1).

The pair (V [v],B(z;w;V [v])) is called the trigonometric Gaudin model on V [v].

Corollary 4.4. If u /€ Z-o, the isomorphism V [0] — E[u] in (3.3) induces an isomorphism
B(z;w;V [0]) = B(zE[u]) between the Bethe algebra of V [0] with parameter u and the
dynamical Bethe algebra of the space E[u].

Proof. The corollary is proved by comparing formulas (3.4) and (4.5).

4.3. Gaudin operators and Weyl group.

Lemma 4.5 ([TV, Lemma 18], cf. [MV2, Lemma 5.5]). For any weight subspace V [v], anyv € V
[v], s = 1,..,n, we have

(4.6) A(u + g — 1>ICS(2,,LL)U = Ks(z, —M)A<M 4 % _ 1)1}.

n ; [] — n M
Theorem 4.6. ForV = ®i_1Vin, asin (2.6) denoteM = >_i—1 Ms, Assume thatt ¢ 5 T2
Then for any v the isomorphism of vector spaces

Aln+5 - 1)‘W VY] = V-]

(4.7)
induces an isomorphism of Bethe algebras

-1
(48)  B(ziu V) = Bz —wVI-v]), T Ap+5—1)TA(u+5—1)

Proof. The theorem is a corollary of Lemmas 2.2 and 4.5.
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4.4. Commutative diagram. Assume that y /€ Z and M is even. Then V' [0] is a nonzero weight
subspace.

Consider the B(z;w;V [0])-module V [0] and B(z;-x;V [0])-module V [0]. Consider the
B(z;E[u])-module E[u] and B(zE[-u])-module E[-u]. Consider the diagram relating these
modules

(B(zw;V [0]), V[0]) — (B(z-;V [0]), V[0])

(4.9) l l

(B(zE[u]), E[u]) —— (B(zE[-u1), E[-u])
Here the map (B(zw;V [0]), V [0]) = (B(z-w;V [0]), V [0]) is the module isomorphism of
Theorem 4.6. The map (B(zE[u]), E[u#]) = (B(z;E[-u]), E[-1]) is the module isomorphism
induced by the action of the Weyl involution o, see Lemma 2.7. The maps (B(z;u;V [0]), V [0])
= (B(zE[u]), E[u]) and (B(z-wV [0]), V [0]) — (B(zE[-u]), E[-u]) are the module
isomorphisms of Corollary 4.4.

Theorem 4.7. Diagram (4.9) is commutative.

Proof. The theorem follows from Theorems 3.3, 3.5, 4.6.

5. Bethe ansatz
5.1. Bethe ansatz equations for triple (z;u;V [v]). LetV = ®1Vim, asin (2.6),and

M =370 ms LetV [v] be a nonzero weight subspace of V. Then v =M - 2m for some
nonnegative integer m.

Let z = {z31,..,Zn} € C*be a set of nonzero pairwise distinct numbers, as in Section

21.LetuecC

Introduce the master function of the variables t = (ty,. tm), 12,

O, 2, p0) = (1—u+ )Zlnt +Z
+ 2 Z In(t; —t;) Zstlnt—zs Z mszmrln(zs—zr)

1<i<gjs<m i=1 s=1 1<s<r<n

—v) Inz

The Bethe ansatz equations are the critical point equations for the master function ®(t,zu)
with respect to the variables t3,.. ,t m,

1—p+v/2
S
(5.1) t; li —t; t—zS

The master function ®(¢t,zu) is the trigonometric degeneration of the elliptic master function
considered in Section 5 of [ThV], see also [FV1, MaV].
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The symmetric group Smacts on the critical set If (tl X 7tm7 %5 ) is a solution of the Bethe
ansatz equations, then for any p € Sm, the point ( p T p(m ' % M) is also a solution.

5.2. Bethe vectors. Define

C = {62(617,£)€Z>0|é m@agl +€n:m}
n b +-tls
m ool
a)‘(t,Z) = Sym s=1i=l1++Ls_1+1 g S i

where Symf{ts,...,tm) = PpESm f(to(1),-.,tp(m)). Introduce the weight function

(5.2) w(t2) =X W 2)vymi® - @ vimy,

‘eC

see Section 2.3. This weight function see in [MV2], also in [JV, MaV, SV].

Notice that the weight function is a symmetric function of the variables ti,...,tm.
If (£%;z;u) is a solution of the Bethe ansatz equations (5.1), then the vector w(t9,z) is called
the Bethe vector.

Theorem 5.1 ([MTVe6, V]). Let (t%z;u) be a solution of the Bethe ansatz equations (5.1). Then
the Bethe vector w(t%z) is nonzero.

Theorem 5.2 ([FV1, JV], cf. [RV]). Let (t%z;u) be a solution of the Bethe ansatz equations

(5. 1). Then the Bethe vector w(t%z) is an eigenvector of the trigonometric Gaudin operators,
0P
Ko(z, p)w(t® 2) = 2 a(to,z,u)w(to,z), s=1,...,n
Denote
0P

0 _ 9% 0
(53) ks(t7zaﬂ) = Zs azs(tazvﬂ)

M
= < (w—v/2+mg/2) + Z mp

p:p#s i=

5.3. Bethe vectors and coefficient D2(x).

Lemma 5.3. If (t%z;u) is a solution of the Bethe ansatz equations (5.1), then the Bethe vector
w(t%,z) is an eigenvector of all operators of the Bethe algebra B(z;w;V [v]). In particular, the
operator D2(x) acts on w(t%z) by multiplication by the scalar
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n

JT (V2P | pmymy + 24+ k(8 2, 0)  ma(m, +2)/4
(54) @rv-1)%| - 4 +Z[ 1—2x/z (1 —x/z)? H

s=1

Proof. The lemma follows from Theorem 5.2 and Corollary 4.3.

For a solution (t%z;u) of the Bethe ansatz equations (5.1), we introduce the fundamental
differential operator

(5.5) Erozp=0u2 + Ea(x,£0,2,0),

where the function E2(x,t%zu) is given by formula (5.4).

5.4. Basis of Bethe vectors. The Bethe ansatz method is the method to construct
eigenvectors of commuting operators, see Lemma 5.3 as an example. The
standard problem is to determine if the Bethe ansatz method gives a basis of
eigenvectors of the vector space, on which the commuting operators act. In the
case of Lemma 5.3 the answer is positive.

Lemma 5.4. Let! % 5 T Z>0 Then for generic z = {z1,...,zn} C C*, the set of solutions

(t%z;u) of system (5.1) of the Bethe ansatz equations is such that the corresponding Bethe
vectors w(t%zu) form a basis of the space V [v].

Proof. Here the word generic means that the subset of all acceptable sets {z3,..,zn} forms a
Zariski open subset in the space of all sets {z1,...,zn}. The proof of the lemma is standard. It is
a modification of [ScV, Theorem 8], cf. [MV1, Section 4.4], [MV2, Section 5.4], [MTV1,
Section 10.6].

6. Function w(x) in the kernel of Eto;zu

Let (£%z;u) be a solution of system (5.1) of Bethe ansatz equations, where 0= (], tm)-
Define
- v/2—p - —m./
ya) = [[e-6).  we) =y@e"= [J@-2z)"
(6.1) i=1 s=1 )

Theorem 6.1. We have

(6.2) Ewop = (0w + (Inw)') (8, — (In w)’)l
where 0= d/0u. In other words,

(6.3) E2(xt%z,u) = —(Inw)%0 - ((Inw)9)2,
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Remark. For v = 0 this statement is the trigonometric degeneration of its elliptic version [ThV,
Theorem 5.3].

Vv
Proof. Recall that 0y = -2m -1x0x. We have

oy — o[ M LS s

— T — 2

(lnw)”" = <2W\/_—1>2{_ii_i (t?)Q +}i 2sMg +1 “~ z2m, ]

-t Z(r-t])? 24 r -2 24 (T z)? |
v
Hence, (2 ~1)2(~(Inw)® - ((Inw)°)?) equals
i (1) I~ zam 22m,
;.’L'_tO_I_Z( t) _582:35_25__2 .’L’—Zs
1 - t?t;)
_ZM+V/2 Z _QZZto 10
=1 i=1 j: j#i
1 ¢ ZsZpmsm, 1 5 N
‘zzx_z Iy B x_zs+<wu/>zm_tQ
s=1 s=1 p:p#s i=1 i

1 slits t sllts t shlts
Y P Yy ey

to—zx—z
s= =1 s=1 i=1 s=1 $ s,

In the expression above for each i = 1,..,m the coefficient of (z—19)2 t )? equals zero. The coefficient

ofr—t tz equals

2t "L 02omy
(w2408 = 55+
S=

0 0
Peefii i e
=1 +1) O (2 — 10 +t9)m
S (AR e D D e Z ]
Jij#i g

n

_to[,u+u/2+1—l—2 m-1+ Y s 2t —Z Ztm]

0
Zg —t
JJ#] G

1—pu+v/2 2 " om
_ 0y2 s .

: ga

where the last equallty follows from the Bethe ansatz equatlons (5.1). For each s = 1,...,n the

coefficient of (1- w/zs)z equals -ms(ms+ 2) /4. The coefficient of 1- w/Zs equals
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1 1 Zpm, 1 — tm,
—M + =y — = 2)my :
2m+2m Zzs—zp_‘_Q('u_l—y/ Jm +Zt?—2’s
p: p#s =1
Mms [ (Z —Zs‘l‘Zs)m . to_Zs"‘Zs
~ v/2 — P AN D N }
2_+M+ / Z Zp_zs + Z t?_zs
p:p#£s =1
— ms [ s mp S 9
=3 _1+u+u/2—2mp— Z _28+221+2Z -—ZS]
p#s p:pis i=1 =
m 2sm Tz
= (14 p—v/2+m, 2 42 - ]
: (+u v/2+m +Z - Zp+ Zt?—zs
p:p#s i=1
ur
:ms(ms+2)/4+7[(M—V/2+m5/2 z;mp _ +22t0—z5}
p:p#s

= my(ms +2)/4+ k%, 2, ),
where ks(t%,z u) are defined in (5.3). Hence, E2 = —(Inw)%0 - ((Inw)9)2.

Corollary 6.2. The function w(x) lies in the kernel of Et;zp.

7. Function w'(x) in the kernel of Et;zy

7.1. Wronskian. The Wronskian of two functions f{a) and g(a) is
~,dg df

(7.1) Wra(f’ 9) = da ~ da¥

We have

(7.2) Wra(hf,hg) = h2 Wra(f,g) for any function h(a).
7.2. Wronskian and Bethe ansatz equations.

Lemma 7.1. The following two statements hold:

(i) LetH ¢35 + Lo, Let (£%z;u) be a solution of the Bethe ansatz equations (5.1) and
y(z) = [[iZ1 (2 — &), Then there exists a unique monic polynomial y"(x) of degree M — m,
such that

n

x,u,fu/Qfl H(l’ . Zs)ms
(7.3) Wrx(y(x),x#/2y"(x)) = const s=1 ,

where const is a nonzero constant.
(i) Let ¥ 7 5. Assume that¥(®) = [[iLi(z — 1) s q polynomial with distinct roots such
that y(zs) 6= 0, s = 1,..,n. Assume that there exists a polynomial y"(x) such that equation
(7.3) holds. Then (t1, - o3 2 1) s @ solution of the Bethe ansatz equations (5.1).

Proof. This lemma is a reformulation of Theorem 3.2 and Corollary 3.3 in [MV2].



20 A.SLINKIN, D.THOMPSON, A.VARCHENKO

7.3. Function w(x). Recall that we have a solution (t%z;u) of the Bethe ansatz equations, the

v/2-n n —mg /S
differential operator Ewzuand the function®(z) = y(x)z~ = [[ (z—2) /2, where

y(z) = [ (z — 1)

Theorem 7.2. Lett & 5220, Then there exists a unique monic polynomial y™(x) of degree M -
m, such that the function

n

i) = ja)a F [ —z)"
(74‘) s=1

lies in the kernel of Eto;zu. The functions w(x),w™(x) span the kernel of Eto;zu.

Proof. The differential operator Et;zu introduced in (5.5) has no first order term. Hence the
kernel of Et;zu consists of the functions "w(x) satisfying the equation

(7.5) Wru(w(x),w'(x)) = const.
By Lemma 7.1, there exists a unique monic polynomial y(x) of degree M — m, such that
equation (7.3) holds. Dividing both sides of (7.3) by x#-v/2 Q"s:1(x - Zs)™we obtain

n n

(7.6) Wr= const x~L
s=1

theorem is proved.

7.4. Bethe ansatz equations for triples (z;u;V [v]) and (z;-w;V [-V]).

v/2-yu _ u=-v/2 _ — p-2T -1u
Recall « y(X)x 2 Y (x - z) ms/2 Fo)x’ 2 Y (x - z) ms/2  thatx=e2 Lu,
v o s=1
au = - 2T[ - lxax
hence . This implies equation (7.5). The

Lemma 7.3. Let! & 5 220, Let (t%z;u) be a solution of the Bethe ansatz equations (5.1)
assigned to the triple (z;u;V [v]) in Section 5.1. Let
M-m

(7.7) vy =Y (x- 0
i=1

be the polynomial assigned to (t%z;u) in Theorem 7.2. If y"(x) has distinct roots and y™(zs) 6= 0
for s = 1,..,n, then (s tr—mi % —1) is a solution of the Bethe ansatz equations (5.1)
assigned to the triple (z;—w;V [-Vv]). Proof. Equation (7.3) can be rewritten as

n

(7.8) Wrx(x-p+v/2y(x)y (X)) = const x-u+v/2-1Y(X = Zs)ms.

s=1

Now the lemma follows from the equalities -v=-M + 2m = M - 2(M - m) and Lemma
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7.1.

Theorem 7.4 ([MV2, Theorem 5.7]). Under assumptions of Lemma 7.3 consider the Bethe
vectors w(tY,zu) € V[v] and w(t0,z,—u) € V [-v]. Then

(7.9) A<“+g_1>“(to’z’“

where const is a nonzero constant.

) = const w(t,z,—w),

Corollary 7.5. Under assumptions of Lemma 7.3, for s = 1,..,n, the eigenvalue of Ks(zu) on
w(t%zu) equals the eigenvalue of Ks(z,—u) on w(t0,zu).

Proof. The corollary follows from Lemma 4.5 and Theorem 4.6.

8. Conjugates of D and Eto;z

8.1. Conjugate of D. Recall the universal differential operator D = d.% +D2(x) introduced in
(4.2), where the coefficient D2(x) is determined by formula (4.3). We introduce the operator

1 n n
D° = (1‘ - Zs>m3/2 -D- (3: - Zs)_mS/Q
(8.1) (2mv/~12)? 1—[1 Hl

where the superscript ¢ stays for the word “conjugated”.

Theorem 8.1. We have

D = 8§+[1—Z s }ar_lzms/2+2":ms(m,s+2)/4

T -2 T -z o (T z)?
mem,, /4 24+ (e — ex) —eqqe
1 Z = _Z. )(;;/_ ~ M (e 41,222) 11€22
s#p s P
1y { ma(ms +2)/4+ Ka(2,p) | oma(ms + 2>/4]
2 s _ s —» )2 ’
(8.2) R z—Z ( — 2)
v_ v v

Proof. Recall that x = e=27 “lugy=-2mr  -1x0x, 0u*= (21 -1)?(x0x + x20x?). Denote

f= H::1(="3 - Zs)_ms/Q. We havef/ - 22:1 7;—//22 f,
., " m2/4 msm,,/4 ms/2
B (Z (z — 2)? * Z ( — 2)(x — 2) * Z (z — zs)2)f’

s=1 S#p s=1
where 9= d/dx. Therefore,
c i —1],292 1
D= [:13 0% + 20, + = m)QDQ(x)} f
_ i —1 2 2 / " ! 1
— [x (f8m+2f8m+f)+x(f8x+f)+—(27r\/__1)2D2(x)f]
1 1

= B4 2 ok [ e D),

22 (2my/—1)2
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which gives the right-hand side of formula (8.2).

8.2. Conjugate of Ew;zu. Similarly to the conjugation of D we conjugate Et,z, and consider the
differential operator

n n

1

C();Z: = —— (.T _ Zs)ms/2 . gto;z; . (x _ 2,8)7771,3/2
(8.3) = Gy 1 ! .
Lemma 8.2. The kernel o 0, is spanned by quasi-polynomials

v/2—p p—v/2 _
(8.4) e oy(r), x 7 gx)

where y(x) is the monic polynomial of degree m, defined in (6.1), and y'(x) is the monic
polynomial of degree M — m, defined in Theorem 7.2.

Lemma 8.3. Under assumptions of Lemma 7.3, let (t%z;u) be a solution of the Bethe ansatz
equations (5.1) assigned to the triple (z;u;V [v]). Assume that the numbersti:- -+ thr—m

defined in Lemma 7.3 are such that (17 - -1 2 —1) is a solution of the Bethe ansatz
equations (5.1) assigned to the triple (z;-u;V [-V]). Then
63 T

9. Space of V -valued functions of z1,...,zn

9.1. Spacevl®n[’/]. Recall the two-dimensional irreducible sl2-module V1 with basisvé ) Ull, see
(2.5). In the rest of the paper we assume that Vis the tensor power of V1,

(9.1) V= V1®n, where n>1.
The space V has a basis of vectors

1 1

labeled by partitions I = (I3,12) of {1,..,n}, where ij= 0 ifj € I, and ij= 1 if j € 2.
We have the weight decompositionV = DoV [N — 2m], where V [n - 2m] is of dimension
(m) and has the basis {vi| I = (I1,12), |I1| = m, |I2| = n - m}.

We use notationsv=n-2m, '=n-m,and hencem+ ‘=n.
9.2. Space V5. Let z = (z1,..,2n) be variables. The symmetric group S» acts on the algebra
C[z1,..,zn] by permuting the variables. Let 0s(2), s = 1,..,n, be the s-th elementary symmetric
polynomial in z1,..,zn. The algebra of symmetric polynomials C[z3,..,zx]5 is a free polynomial
algebra with generators 01(2),...,0n(2).

Let V be the space of polynomials in z1,...,z» with coefficients in Vl®n,
V = ‘/1®7l ®C|:21’ PN ,an
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The symmetric group S»acts on V by permuting the factors of Vi"" and the variables Z1,0,Zn
simultaneously, p(vi @ - ® van Q p(21,...,21n)) = V(-0 & *** Q V(p-)() @ p(Zp(1),---,Z0(m), P E Sn.

We denote by VSthe subspace of Sp-invariants in V.

Lemma 9.1 ([MTV3]). The space VSis a free C|z1,...,Zn]5-module of rank 2n.

Consider the grading on C|z3,..,zn] such that degzs =1 for all s = 1,..,n. We define a grading
on V by setting deg(v ® p) = degp for any? € V™" and p € C[z1,...,.zn]. The grading on V induces
a grading on End(V).

The Lie algebras sl2 c glz naturally act on VS. We have the weight decomposition

V=@ Vn - 2m], VS[n -2m] = (V [n - 2m] ® C[z1,...Zn])S.

Let M be a Z-o-graded space with finite-dimensional homogeneous components. Let
M;jc M be the homogeneous component of degree j. The formal power series in a variable
a, chyr(@) = E] =0(dimM;j)d, is called the graded character of M.

Lemma 9.2 ([MTV2]). The space VS[n — 2m] is a free C|z1,...,zn]5-module ofrank( )and

1 1
(9.2) m.wmamm):IIl_w‘Ill_w

[ 7 =1 =1

m n-m

9.3. Bethe algebra of V5[v]. Recall the differential operator D¢ introduced in (8.2) for
V =®_1Vn. and depending on parameter u € C. ForV = Vi™" the operator Dctakes the

form

where
1 &1
94) F((x) = ——
04) Fl@) = 53—
I < 1/2 " 3/4 1/4
Fy(z) = —— +y
T = — 2 ; (x — 24)? — (x — z5)(x — 2p)
2 n
M + ,U(611 — 622) — €11€29 1 3/4 -+ IC;(Z,/L) 9 3/4
42 x? Z = T — 2 % (T — 25)?

s=1

In formula (8.2) we had {zi,..,zn} being a subset of C*. From now on we consider zi,..,zn as

independent variables.
The operator F in formulas (9.3), (9.4), in which z,..,zn are variables, is called the universal
differential operator for VS with parameter u € C.

Lemma 9.3 (cf. [MTV3, Section 2.7]). The Laurent expansions of F1(x) and F2(x) at infinity have
the form
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Fi(z) = ZFljf‘j : Fy(z) = Zwaj
7=1 7j=2

J

(9.5)
where

Frp = 1-n, Flj:_ZZL];_l
s=1 forj> 2.

For any j > 2, the element F2j is a homogeneous polynomial in zi,..,zn of degree j—2 with
coefficients in End(V ). The element F2j preserves the weight decomposition of V. Each of the
elements F1j, j > 1, F2j, j > 2, defines an endomorphism of the C|z1,...,zn]S-module V5.

Proof. The proof follows from straightforward calculations.

Lemma 9.4. The elements Fuj, j > 1, F2j, j > 2, considered as endomorphisms of the C|z1,...,zn]5-
module VS, commute.

Proof. The commutativity follows from the commutativity of the trigonometric Gaudin
operators in formula (8.2).

For a weight subspace VS[v], v = n-2m, * = n—-m, consider the commutative subalgebra
B(u;m;") of the algebra of endomorphisms of the C[z3,..,zn]5-module VS[v], generated by the
elements Fij, j > 1, F2j, j > 2. The subalgebra B(u;m;") is called the Bethe algebra of VS[v] with
parameter u € C.

Lemma 9.5. The Bethe algebra B(u;m;") contains the subalgebra of operators of multiplication
by elements of C|z1,...,zn]".

Proof. The subalgebra of operators of multiplication by elements of C[z3,..,zn]% is generated by
the elements Fij, j > 1, see Lemma 9.3.
Lemma 9.5 makes the Bethe algebra B(u;m;’) a C[z,...,zn]-module.

9.4. Weyl group invariance. For a weight subspace Vv =Vi*"[v ] recall the linear map
Alp+v/2=1): VY] — V[—l/]

(

pE G+ 2 That operator induces an isomorphism of C[z3,..,zn]5-modules,

, defined in (2.10). It is an isomorphism of vector spaces, if

(9.6) Alp+v/2—1) V] — VS[—U].

Lemma 9.6. Let! ¢ 5 T2, Let Fij(u,m,") be the generators of B(u;m;"), defined in (9.5), and
Fij(-u, ,m) the generators of B(-u; ;m). Then

Fij(—p, ,m) = A(“+Z - 1>F’ij(”’m’€)"4(u+z B 1)_1



forall ij. The map
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(9.8) B(u;m;") = B(wsm;), Fij(u;m;") 7- Fij(—p,,m),

is an isomorphism of algebras and of C|z1,...,zn]5-modules. The maps in (9.6) and (9.8) define an
isomorphism between the B(u;m;")-module VS[v] and the B(-u;;m)-module VS[-v].

Proof. The lemma follows from Lemma 4.5.

9.5. Generic fibers of V5[v]. Given a = (as,..,an) € C", denote by Ia C C[z1,...,zn] the ideal
generated by the polynomials os(z) - as, s = 1,..,n. Define

(9.9) V3[v] :=V5N (V[v] K Ia).
Assume that a is such that the polynomialxn +2 -1 (=1)%asx" ™" has distinct nonzero roots

bl,...,bn.

Lemma 9.7 ([MTV3, Lemma 2.13]). The quotient V5[v]/1aV5[v] is a finite-dimensional complex
vector space canonically isomorphic to V [v]. Under this isomorphism the Bethe algebra
B(w;m;") induces a commutative algebra of operators on V [v]. That commutative algebra of
operators is canonically isomorphic to the Bethe algebra B(ba,...bn;u;V [v]) introduced in
Section 4.2.

10. Functions on pairs of quasi-polynomials

10.1. Space of pairs of quasi-polynomials. Let m, ,n be positive integers, m + * = n. Denote

v=n-2m, cf. Section 9.1. Let

1
-7
(eC-3Z

Let Q({,m,") be the affine n-dimensional space with coordinates p;, i = 1,..m, g;, j = 1,...,".
Introduce the generating functions

(10.1) p(x) = X (xM+ p1xml+ o + pm),
CI(X) = x¢ (X\+ qlx‘—l 4 oeee + q)

We identify points U of ({,m,") with two-dimensional complex vector spaces generated by
quasi-polynomials

(10.2) pr(xU) x=¢(xm+ p1(U)xmt + - + pm(U)),
q(xU) X (x'+ qu(U)x 1+ - + q(U)).
Denote by O({m,’) the algebra of regular functions on Q({m,"), O({m,") =

Clpy..mq1,...q").
Define the grading on O({;m,") by degpi= degqi=i for all i. Lemma 10.1.
The graded character of the algebra O({,m,") equals
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m

1 1
(10.3) ch. ocmn(@) == Tl1—
i =1 j=1
10.2. Wronski map. Let p(x),q(x) be the generating functions in (10.1). We have
2( + 0 — n
(10.4) w0 = SICE Z )

where X1,..,2n are elements of O({m,’). Notice that 2 +-m = 2{ +v /€ Z according to our

assumptions. The elements X1,..,2»are homogeneous with degZs=s. Define the Wronski map
Wr: Q(C,m, 7 - Cn, U7- (21(U),...Za(U)).

Lemma 10.2. For® € € — the Wronski map is a map of positive degree.

Proof. The proof is a slight modification of the proof of [MTV4, Proposition 3.1].

Let O5c O(¢{m,") be the subalgebra generated by X1,..,Xx. Let o01,..,0n be coordinates on C»,
which is the image of the Wronski map. Introduce the grading on C[o3,....on] by degos = s for
all s. The Wronski map induces the isomorphism C[o3,...,0n] = 05, 05s7— s, of graded algebras,
see Lemma 10.2. This isomorphism makes O({,m,’) a

C[o1,....on]-module.

10.3. Another realization of O({m, ). Define the differential operator G by

1 [p g p”-‘g: rdet Lq q q

(10.5) Wi (p, 9) ) OQJ

J

where rdet is the row determinant. We have
(106) G=02%+ Gl(X)Ox"‘ GZ(X),

where G1(x), G2(x) are rational functions in x with coefficients in O({,m,"), cf. [MTV3]. Notice
that

(Wr (p,9))°
(10.7) Gi=—- __ «x

Wrx(p,q)

Lemma 10.3 (cf. [MTV3, Section 2.7]). The Laurent expansions of G1(x) and Gz2(x) at infinity
have the form
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o
=> Gy, i=1,2
(10.8) i=i )

where for any i, the element Gijis a homogeneous element of O({,m,’) of degree j — i

Proof. The proof is by straightforward calculation.

Lemma 10.4 ([MTV3, Lemma 3.4], [MTV2, Lemma 4.3]). Let ¢ € C = 2Z, Then the elements
Gy 1=1,2,j > 1, generate the algebra O({,m,").

10.4. Fibers of Wronski map. Given a = (ai,..,an) € C", denote by J« € O({,m,) the ideal
generated by the elements Zs - as, s = 1,..,,n. Define

(109) 0.(¢m,0) i= O(¢m. )/,
The algebra 0Oq({;m,") is the algebra of functions on the fiber Wr-1(a) of the Wronski map. Let
(1010) Xn+ X(—l)n—s dsXn-s = Y(X - bs)

s=1 s=1

for some bs € C. Let U be a point of Q({;m,") and

m

p(x,U) =x¢ Y(x - t9), q(xU) = x¢ Y(x - t79),

i=1 i=1
for some t9%,£:0 € C.

Lemma 10.5. Let* € C = 3Z Then there exists a Zariski open subset X c Ctsuch that for any
a € X all the numbers bl,...,bn are nonzero and distinct. Moreover, for any point
U € Wr-(a) all the numbersbis - - - bns 10 10, 80, 1] are distinet.

Lemma 10.6. Ifa € X and U € Wr-1(a), then (11> - - tn3 b1 - 0ni 2C4+1/2) s g solution of the
Bethe ansatz equatzons (5.1) assigned to the trzple (b1, Lbn;20 + v/2;V [v]), and

(A0, by, —2C = v/2) s a solution of the Bethe ansatz equations (5.1) assigned
to the triple (b1,...,bn;—ZC -v/2;V [-V]).

Proof. We have

(. 0), gl U)) = 2T (o +Z ")

Now the lemma follows from Lemmas 10.5, 7.1.
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For U € Q({,m,") denote by Guthe monic differential operator with kernel hp(x,U),q(x,U)j,
(10.11) Gu = 0x* + G1,u(x) 0x + G2,u(X).

The operator Guis obtained from the operator G by evaluating the generating functions p,q
at the point U.

Lemma 10.7. Let a € X and U € Wr-1(a). Let (t%;b;2{ +v/2) be the solution of the Bethe ansatz

equations described in Lemma 10.6. Let t°;:2¢+v/2 be the differential operator defined in (8.3).
Then

c _
gt”; b;2¢+v/2 — gU,

Proof. The lemma follows from Lemma 8.2.
11. Isomorphisms

In Section 9 we introduced the B(y,m,)-module V5[v], wherey € C,v=n-2m,m+ "=n.In
Section 10 we discussed the properties of the algebra O({;m,") under the assumption that
(eC-3Z

We consider O({,m,) as the O({,m,)-module with action defined by multiplication.

In this section we construct an isomorphism between the B(y,m,)-module V5[v] and the
0(¢m, )-module O(¢;m,") under the assumption that

wov 1
=== cC—--Z
(11.1) ¢ 2 4 and ¢ 2,
where the last inclusion can be reformulated as
n
—+Z
(11.2) ne Stz

cf. the assumptions on ¢ and ¢ in Theorems 4.6, 7.2, Lemmas 7.1, 7.3 and Section 10.

The construction of the isomorphism is similar to the constructions in [MTV3, MTV2].

11.1. Isomorphism of algebras. Consider the map

t:0({m,) = B(um,), Gij7— Fi.

Theorem 11.1 (cf. [MTV3, Theorem 5.3], [MTV2, Theorem 6.3]). Under the assumptions
(11.1) the map t is a well-defined isomorphism of graded algebras.

Proof. Let a polynomial R(Gj) in generators Gijbe equal to zero in O({,m, ). Let us prove that
the corresponding polynomial R(Fj) is equal to zero in B(u,m,"). Indeed, R(Fj) is a polynomial
in z1,...,zn with values in End(V [v]). By Lemmas 10.5 - 10.7, 5.4, for generic bx,...,bn the value
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of the polynomial R(Fj) at z1 = bs,..,zn = bn equals zero. Hence, the polynomial R(Fj) equals
zero identically and the map 7 is a well-defined defined homomorphism of algebras.

The elements Gi, Fijare of the same degree. Hence 7 is a graded homomorphism.

Let a polynomial R(Gj) in generators Gjjbe a nonzero element of O({m,’). Then the value
of R(Gi) at a generic point U € Q({m,") is not equal to zero by Lemma 10.7. Then the
polynomial R(Fj) is not identically equal to zero. Therefore, the map 7 is injective.

Since the elements Fjjgenerate the algebra B(u,m, "), the map t is surjective.

The algebra C[zi,..,zn]° is embedded into the algebra B(u,m,’) as the subalgebra of
operators of multiplication by symmetric polynomials. The algebra C[z3,....zn]S is embedded
into the algebra O({,m, "), the elementary symmetric polynomials 01(z),..,on(z) being mapped
to the elements Xi,..,Zn. These embeddings give the algebras B(u,m,”) and O({m,") the
structure of C[z3,...,Zn]5-modules.

Lemma 11.2 ([MTV3, Lemma 6.4]). Under assumptions (11.1) the map t is an isomorphism of
C|z1,...,Zzn]S-modules.

Proof. The lemma follows from formulas (7.6), (10.7).
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11.2. Isomorphism of modules. The subspace of VS[v] of all elements of degree 0 is of
dimension one and is generated by the vector

Vs = X VI.

I=(I,12), | l1|=m,|I2|="

The subspace of O({m,’) of all elements of degree 0 is of dimension one and is generated by
the element 1. Define the C|[zy,...,Zzn]S-linear map

(11.3) ¢:0(¢{m,) = Vv], G7- 1(G)v-.

Theorem 11.3 ([MTV3, Theorem 6.7]). Under assumptions (11.1), the map ¢ is a graded
isomorphism of graded C|zi,..,zn|S-modules. The maps t and ¢ intertwine the action of
multiplication operators on O({,m,") and the action of operators of the Bethe algebra B(u,m,")
on VS[v), that is, for any f,g € O({,m,"), we have

(11.4) o(f9) = 1(No(g)-

In other words, the maps t and ¢ define an isomorphism between the O({,m,)-module O({,m,")
and the B(u,m,")-module VS[v].

Proof. First we show that the map ¢ is injective. Indeed, the algebra O({m,) is a free
polynomial algebra containing the subalgebra C|[zi,.,za]S. The quotient algebra
0(¢m,")/C|z1,...,zn]’ is finite-dimensional by Lemma 10.2. The kernel of ¢ is a proper ideal I
in O(¢m,"). Then t(I) is an ideal in B(x,m, ). Any proper ideal in B(y,m, ") has zero intersection
with C[z3,..,zn]S. Hence I has zero intersection with C[z3,....zn]Sand therefore is the zero ideal.
The injectivity is proved.

The map ¢ is graded. The graded characters of V5[v] and O({,m,") are equal by Lemmas 9.2
and 10.1. Hence ¢ is an isomorphism.

Corollary 11.4. Assume that a = (ai,..,an) € ¢ is such that the polynomial xn +

> 1 (=1)°as2™ ™" pas distinct nonzero roots bs,...,.bn. Then under assumptions (11.1), the
isomorphisms t, ¢ induce the isomorphism of the B(ba,...bn;i;V [v])-module V [v] and the
0a(¢;m,)-module Oa($;m, "), where Oa({;m, ") is the algebra of functions on the fiber Wr-1(a) of
the Wronski map, see (10.9).
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Proof. The corollary follows from Lemma 9.7 and Theorems 11.1, 11.3. Corollary 11.5. The
degree of the Wronski map Wr equals dim"' [V = (;)

11.3. Dynamical Bethe algebra and quasi-polynomials. The space V =V has a
nontrivial zero weight subspace if n is even. Let n = 2m. For the zero weight subspace V [0],
we have v=0, m =, and assumptions (11.1) take the form

(=t
(11.5) 2 and pu/€EZ

Let a = (ay,..,an) € C" be such that the polynomial 2"+ 320 (= 1)%as2" ™ has distinct
nonzero roots bi,..,bn. Consider the functional space E[u] as the module over the dynamical
Bethe algebra B(buy,....bn;E[1]), see Section 3.2. Consider the Oq({;m,m)-module Oq({;m,m),
where 0q({;m,m) is the algebra of functions on the fiber Wr-1(a) of the Wronski map.

Corollary 11.6. Under assumptions (11.5), the isomorphisms 1, ¢ and the isomorphism V [0]
— E[u] in Corollary 4.4 induce the isomorphism of the B(bu,....bn;E[u])-module E[u] and the
0a(¢;m,m)-module Oa({;m,m).

11.4. Weyl involution and transposition of quasi-polynomials. Consider the B(y,m,")-
module V5[v] and B(-y,,m)-module VS[-v]. Consider the O({m,)-module O({m,) and
0(-¢ ,m)-module O(-¢, ,m).

Under assumptions (11.1), consider the diagram,

(B(,u,m, ‘)I VS[V]) — (B(—u, ‘,m), VS[_V])
(11.6) l l
(0(¢m,), 0({m, 7)) —— (0(=¢, m), O(=(,,m))

Here VS[v] = 0({,m,") and VS[-v] = O(-{,,m) are the module isomorphisms of Theorem 11.3.
The map V¥[v] = V3[-v] is the module isomorphism of Lemma 9.6. The map O({m,") —
0(-¢,,m) is the module isomorphism defined by the transposition of the quasi-polynomials

p.q.

Theorem 11.7. The diagram (11.6) is commutative.
Proof. The theorem follows from Lemma 8.3.

The commutativity of diagram (11.6) implies the commutativity of the diagram of fibers
over a generic pointa € C7,

(B(b1,.., s, V [V]), V [V]) —— (B(b1,.... b=,V [-V]), V [-V])

(11.7) l l ,
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(0a(¢m,’), Oa(¢m,)) ——— (Oa(=(,;m), Oa(=¢,,m))

see notations in Section 11.2.
Combining commutative diagrams (11.7) and (4.9) we obtain the commutative diagram

(B(zE[u]), E[n]) ———————— (B(zE[-u]), E[-u])

(11.8) l l ,

(Oa(¢,m,m), 0a({,;m,m)) —— (Oa(-,m,m), Oa({;m,m))

which holds if n = 2m is even and u /€ Z. The diagram identifies the Weyl involution E[u] —

E[-u] in the functional spaces of eigenfunctions of the KZB operator Ho with the

isomorphism Oa({;m,m) = Oa(-{,m,m) induced by the transposition of quasi-polynomials.
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