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1. Introduction 

A quantum integrable model is a vector space V and an algebra B of commuting linear 
operators on V , called the Bethe algebra of Hamiltonians. The problem is to find eigenvectors 
and eigenvalues. If the vector space is a space of functions, then the Hamiltonians are 
differential or difference or integral operators.1 

We say that a quantum integrable model can be geometrized, if there is a topological space 
(a scheme) X with an algebra OX of functions on X, an isomorphism of vector spaces ψ : OX → 
V , an isomorphism of algebras τ : OX → B such that 

 ψ(fg) = τ(f)ψ(g), ∀f,g ∈ OX. 

These objects OX,ψ,τ identify the B-module V with the regular representation of the algebra 
OX of functions. 

If a quantum integrable model (V,B) is geometrized, then the eigenvectors of B in V are 
identified with delta-functions of points of X and the eigenvalues of an eigenvector in V 
correspond to evaluations of functions on X at the corresponding point of X. 

Our motivation to geometrize the Bethe algebras came from the examples considered in 
[MTV3, MTV5], where the algebra of Hamiltonians acting on a subspace of a tensor product 
of glN-modules was identified with the algebra of functions on the intersection of suitable 
Schubert cycles in a Grassmannian. That identification gave an unexpected relation between 
the representation theory and Schubert calculus. 

The examples in [MTV3, MTV5] are related to models with a finite-dimensional vector 
space V . How to proceed in the infinite-dimensional case of commuting differential 
operators is not clear yet. In this paper we discuss an example. In our infinite-dimensional 
space V we distinguish a family of finite-dimensional subspaces E[µ], µ ∈ C, each of which is 
invariant with respect to the algebra B of commuting differential operators. We geometrize 

each of the pairs ( ), thus constructing a family of topological spaces X[µ], µ ∈ C. 
We observe that natural interrelations between the subspaces E[µ] correspond to natural 
interrelations between the topological spaces X[µ]. For example, the Weyl involution V → V , 
available in our case, identifies E[µ] and E[−µ]. We show that this identification corresponds 
to a natural isomorphism X[µ] → X[−µ]. 

Representation theory provides a source of commuting differential or difference 
operators. In this paper we discuss the construction due to V.Rubtsov, A.Silantyev, 
D.Talalaev, [RST]. That quantum integrable model is called the quantum dynamical Gaudin 

                                                        
1 See examples of commuting integral operators in [Ko, EFKa] 
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model. We study the sl2 trigonometric version of the quantum dynamical Gaudin model, while 
in [RST] the glN elliptic version was considered. 

Consider the Lie algebra sl2 and its Cartan subalgebra h ⊂ sl2, dimh = 1. For s = 1,...,n, let Vms 

be the irreducible sl2-module of dimension ms + 1. Let , 

V [0] = {v ∈ V | hv = 0, ∀h ∈ h}, 
the zero weight subspace. The space V [0] is nontrivial if  
Funsl2V [0] be the space of V [0]-valued functions on h. Fix a subset z = {z1,...,zn} ⊂ C×. Having 
these data, Rubtsov, Silantyev, and Talalaev construct a family of commuting differential 
operators acting on Funsl2V [0] as follows. 

First, one constructs a 2 × 2-matrix , where x 
is a parameter, ∂x = ∂x∂ , and Lij(x) are some special differential operators on Funsl2V [0] 
depending on x. Let , where cdet is the column determinant of the 

matrix with non-commuting entries, cdet  Using the new variable u 
√  

with x = e−2π −1u, the operator C can be written in the form 

∂u2 + C1(x)∂u + C2(x), 

where C1(x),C2(x) are differential operators on Funsl [0], whose coefficients are rational 
functions of x. It turns out that for any a,b ∈ C − {z1,...,zn} and i,j = 1,2 the operators Ci(a), Cj(b) 
commute. The space Funsl  [0] with the algebra B generated by these commuting 
differential operators is called the quantum dynamical Gaudin model. 

We show that the algebra B is generated by the trigonometric differential KZB operators 
H0, H1(z), ..., Hn(z), see them in formula (2.13) and [FW, JV]. The KZB operator H0 is also 
known as the trigonometric Hamiltonian operator of the quantum two-particle 
CalogeroMoser system with spin space V . The operator H0 is a second order differential 
operator independent of z. 

For any µ /∈ Z we define in Section 3.2 the subspace E[µ] ⊂ Funsl2V [0] as the space of 

meromorphic eigenfunctions of H0 with eigenvalue  and prescribed poles. The 
subspaces E[µ] were introduced in [FV2] and studied in [JV]. We have dimE[µ] = dimV [0]. 
The Bethe algebra B preserves each of E[µ]. 

The sl2 Weyl involution acts on Funsl [0] and induces an isomorphism E[µ] → E[−µ], 
which is called in [FV2] the scattering matrix. The Bethe algebra B is Weyl group invariant. 
The scattering matrix E[µ] → E[−µ] is an isomorphism of B-modules. 

The basis of the geometrization procedure lies in the following observation. Let ψ ∈ E[µ] be 
an eigenvector of B, 
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 Ci(x)ψ = Ei(x,ψ)ψ, i = 1,2, 

where Ei(x,ψ) are scalar eigenvalue functions of the eigenvector ψ. We assign to ψ the scalar 
differential operator 

. 
We show that the kernel of Eψ is spanned by two quasi-polynomials x−µ/2f(x),xµ/2g(x), where 
f(x),g(x) are monic polynomials of degree M/2, with the property that the Wronskian of the 
two quasi-polynomials is 

n 

(1.1) Wr( . 
s=1 

This fact suggests that the space X[µ] geometrizing ( ) is the space of pairs 
(x−µ/2f(x), xµ/2g(x)) of quasi-polynomials with Wronskian given by (1.1). 

In this paper we show that this is indeed so. We show that the space of functions E[µ], 

with the commutative algebra  of differential operators acting on E[µ], is isomorphic to 
the algebra of functions on the space X[µ] of pairs of quasi-polynomials (x−µ/2f(x), xµ/2g(x)) 
with Wronskian given by (1.1). In particular, it means that the eigenfunctions of the algebra 

 are in bijection with the points of X[µ], see Corollary 11.6. 
We also show that the scattering matrix isomorphism E[µ] → E[−µ] corresponds to the 

natural isomorphism X[µ] → X[−µ] defined by the transposition of the quasi-polynomials, 
(x−µ/2f(x),xµ/2g(x)) 7→ (xµ/2g(x),x−µ/2f(x)). 

The results of this paper indicate the deep relation between the quantum dynamical Gaudin 
model (B,Funsl2V [0]) and the spaces of pairs of quasi-polynomials. 

It would be interesting to develop the elliptic version of this correspondence. In the elliptic 
version the pairs of quasi-polynomials are replaced with pairs of theta-polynomials, see 
[ThV], but the elliptic KZB operator H0 does depend on z and does not have apparent analogs 
of the family of subspaces E[µ]. 

The paper is organized as follows. In Section 2 we define the sl2 quantum dynamical Gaudin 
model. In Section 3 we discuss properties of the spaces E[µ]. In Section 4 we introduce the 
quantum trigonometric Gaudin model (V [ν],B(z,µ,V [ν]) on a weight subspace V [ν] ⊂ V and 

show that the quantum dynamical Gaudin model ( ) is isomorphic to the quantum 
trigonometric Gaudin model (V [0],B(z,µ,V [0]) on the zero weight subspace. In Section 5 we 
describe the Bethe ansatz for the quantum trigonometric Gaudin model. In Sections 6 and 7 
we describe the kernel of the operator Eψ. In Sections 8 - 11 we develop the geometrization 
procedure. The constructions of Sections 9 - 11 are parallel to the geometrization 
constructions in [MTV3, MTV2]. 

The authors thank V.Tarasov for useful discussions. 



6 A.SLINKIN, D.THOMPSON, A.VARCHENKO 

 

2. Quantum dynamical Gaudin model 

2.1. gl2 RST-operator. Consider the complex Lie algebra gl2 with standard basis e11, e12, e21, 
e22. Denote by h the Cartan subalgebra of gl2 with basis e11,e22 and elements λ1e11 + λ2e22. 
Denote 

λ := λ1 − λ2. 

Let z = {z1,...,zn} ⊂ C× be a set of nonzero pairwise distinct numbers. 

Let V 1,...,V n be gl2-modules and V = ⊗nk=1V k. Let V = ⊕ν∈h∗V [ν] be the weight decomposition, 
where V [ν] = {v ∈ V | ejjv = ν(ejj)v for j = 1,2}. In particular, 

V [0] = {v ∈ V | e11v = e22v = 0}. 

For g ∈ gl2, denote g(s) = 1 ⊗ ··· ⊗ g ⊗ ··· ⊗ 1 ∈ End(V ), with g in the s-th factor. An element 

ejk acts on . 
Let u be a variable. Denote 

√ x 
= e−2π

 −1u. 

Let  and so on. 
Introduce a 2 × 2-matrix L, 

(2.1) 

. 

The entries of L are End(V )-valued trigonometric functions of u and λ. 
The universal dynamical differential operator (or the RST-operator) is defined by the 

formula 

(2.2) C = cdet(δjk∂u − δjk ∂λj + Ljk), 

where for a 2 × 2-matrix A = (ajk) with noncommuting entries the column determinant is 
defined by the formula 

cdetA = a11a22 − a21a12 . 

Write the RST-operator in the form 
(2.3) , 

where C1(x) and C2(x) are functions in x with values in the space of linear differential 
operators in variables λ1,λ2 with coefficients in End(V ). 

 L 11 L 12 
L 21 L 22 

 
= 

" π 
√ 

− 1 P n 
s =1 

z s + x 
z s − x e ( s ) 11 + π cot( πλ ) e 22 π 

√ 
− 1 P n 

s =1 
z s + x 
z s − x e ( s ) 21 − π cot( πλ ) e 21 

π 
√ 

− 1 P n 
s =1 

z s + x 
z s − x e ( s ) 12 + π cot( πλ ) e 12 π 

√ 
− 1 P n 

s =1 
z s + x 
z s − x e ( s ) 22 − π cot( πλ ) e 11 

# 
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Theorem 2.1 ([RST]). Fix z = {z1,...,zn} ⊂ C×. Then for any a ∈ C − {z1,...,zn} the operators 
C1(a),C2(a), restricted to V [0]-valued functions of λ1,λ2, define linear differential operators in 
λ1,λ2 with coefficients in End(V [0]). Moreover, for any a,b ∈ C−{z1,...,zn}, the differential 
operators Cj(a), Ck(b), j,k = 1,2, acting on the space of V [0]-valued functions of λ1,λ2 commute: 

(2.4) [Cj(a),Ck(b)] = 0, j,k = 1,2. 

The elliptic RST-operator for glN was introduced by V.Rubtsov, A.Silantyev, D.Talalaev in 
[RST]. The elliptic gl2 RST-operator was discussed in [ThV]. The RST-operator, defined in 
(2.3), is the trigonometric degeneration of the elliptic gl2 RST-operator. 

2.2. Dynamical Bethe algebra of Funsl2V [0]. In this paper, we are interested in the sl2 version 
of the RST-operator. 

The Lie algebra sl2 is a Lie subalgebra of gl2. We have gl2 = sl2 ⊕ C(e11 + e22), where e11 + e22 

is a central element. Let V 1,...,V n be sl2-modules, thought of as gl2-modules, where the central 
element e11 + e22 acts by zero. Let  be the tensor product of the sl2-modules. 

In this paper we consider only such tensor products. 

We consider the Cartan subalgebra of sl2 consisting of elements λ1e11+λ2e22 with λ1+λ2 = 0. 
We identify the algebra of functions on the Cartan subalgebra of sl2 with the algebra of 
functions in the variable 

λ = λ1 − λ2 , 

since the elements λ1e11 + λ2e22 with λ1 + λ2 = 0 are uniquely determined by the difference of 
coordinates. 

Denote by Funsl2V [0] the space of V [0]-valued meromorphic functions on the Cartan 
subalgebra of sl2. In other words, Funsl2V [0] is the space of V [0]-valued meromorphic 
functions in one variable λ. 

Each coefficient C1(x),C2(x) of the RST-operator, defines a differential operator acting on 
Funsl [0]. From now on we consider the coefficients C1(x), C2(x) as a family of commuting 
differential operators on Funsl [0], depending on the parameter x. 

The commutative algebra of differential operators on Funsl2V [0] generated by the identity 
operator and the operators {Cj(a) | j = 1,2, a ∈ C − {z1,...,zn}} is called the dynamical Bethe 
algebra of Funsl2V [0]. The dynamical Bethe algebra depends on the choice of the numbers 
{z1,...,zn}. 

2.3. Tensor product of sl2-modules. Given m ∈ Z>0, denote by Vm the irreducible sl2module 
with highest weight m. It has a basis  such that 

. 

From now on our tensor product V is of the form 
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(2.6)  . 

We have the weight decomposition V = ⊕ν∈ZV [ν] consisting of weight subspaces 
(2.7) 

If V [ν] is nonzero, then 

V [ν] = {v ∈ V | (e11 − e22)v = νv }. 

(2.8) 

n 

ν = Xms − 2k, 
s=1 

for some nonnegative integer k. The dimension of V [0] is positive if the sum  is even. 

2.4. Operator A(µ). The sl2 Weyl group W consists of two elements: identity and involution σ. 
The projective action of W on Vm is given by the formula 

 
for any k. We have σ2 = (−1)m. The Weyl group W acts on the tensor product V diagonally. 

Following [TV], introduce 

. 
The series p(µ) acts on Vm, since only a finite number of terms acts nontrivially. The formula 
for the action of p(µ) on a basis vector vkm becomes more symmetric if µ is replaced by 

1, where ν = m − 2k is the weight of vkm, 

(2.9) , 
see [TV, Section 2.5]. 

The series p(µ) acts on the tensor product V in the standard way. Introduce the operator 

(2.10) A(µ) : V → V, v 7→ σp(µ)v . 

The operator A(µ) is a meromorphic function of µ. For any ν, we have A(µ)V [ν] ⊂ V [−ν], and 
limµ→∞ A(µ) = σ . The operator A(µ) may be considered as a deformation of the Weyl group 
operator σ. 

Then for any ν the operator 

(2.11)  

is an isomorphism of vector spaces. The composition of the operator  and the 
operator 

(2.12)  
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is the scalar operator on V [ν] of multiplication by  . 

Proof. The sl2 irreducible decomposition V = ⊕mVm of the tensor product V has the highest 
weights m of the form m = M − 2k for k ∈ Z>0, only. Now (2.11) is an isomorphism by formula 
(2.9). The statement on the composition is [TV, Theorem 10].  

Remark. The operator A(µ) is the (only) nontrivial element of the sl2 dynamical Weyl group 
of V , see definitions in [EV]. 

2.5. KZB operators. Introduce the following elements of gl2 ⊗ gl2 , 

 Ω12 = e12 ⊗ e21, Ω21 = e21 ⊗ e12, 

 Ω0 = e11 ⊗ e11 + e22 ⊗ e22, Ω = Ω0 + Ω12 + Ω21. 

The KZB operators H0,H1(z),...,Hn(z) are the following differential operators in variables λ1,λ2 

acting on the space Funsl2V [0] , 

 , 

 , 

cf. formulas in Section 3.4 of [JV]. The elliptic KZB operators were introduced in [FW]. In 
(2.13) we consider the trigonometric degeneration of the elliptic KZB operators. 

By [FW] the operators H0,H1(z),...,Hn(z) commute and  

Remark. The differential operator H0 is the Hamiltonian operator of the trigonometric 
quantum two-particle system with spin space V . 

2.6. Coefficients C1(x), C2(x). 

Lemma 2.3. We have 

. 

Hence the coefficient C1(x) acts by zero on Funsl2V [0].  Corollary 2.4. The RST-operator 
(2.3) has the form 
(2.14) as an operator on Funsl2V [0]. 

Theorem 2.5 ([ThV]). We have 
(2.15) 
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 , 
where c2 = e11e22 − e12e21 + e11 is a central element of gl2. 

Proof. This is the trigonometric degeneration of the elliptic version of this theorem, see [ThV, 
Theorem 4.9].  

Corollary 2.6. The dynamical Bethe algebra of Funsl2V [0] is generated by the identity operator 
and the KZB operators H0,H1(z),...,Hn(z). 

The commutativity of the KZB operators and formulas (2.14), (2.15) imply the 
commutativity [C2(a),C2(b)] = 0 independently of Theorem 2.1. 

2.7. sl2 Weyl group invariance. The Weyl group acts on V [0] as explained in Section 2.4. 
Hence the Weyl group acts on Funsl2V [0] by the formula 

(2.16) σ : ψ(λ) 7→ σ(ψ(−λ)), ψ ∈ Funsl2V [0] . 

This action extends to a Weyl group action on End(Funsl [0]), where for T ∈ End(Funsl2V [0]) 
the operator σ(T) is defined as the product σTσ−1 of the three elements of End(Funsl2V [0]). 

Lemma 2.7 ([ThV]). For any a ∈ C−{z1,...,zn} the operator C2(a) ∈ End(Funsl2V [0]) is Weyl group 
invariant. 

Proof. By [FW] the KZB operators H0,H1(z),...,Hn(z) are Weyl group invariant. The lemma 
follows from formula (2.15).  

3. Eigenfunctions of H0 

3.1. Trigonometric Gaudin operators. The trigonometric r-matrix is defined by 

(3.1) , 
where Ω , Ω  

For µ ∈ C the trigonometric Gaudin operators acting on V are defined as 

(3.2)  
Each operator Ks(z,µ) preserves each of the weight subspaces V [ν] and 

[Ks(z,µ),Kt(z,µ)] = 0 

for all s,t, see [Ch, EFK]. 
3.2. Dynamical Bethe algebra of E(µ). Let √  
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Let A be the algebra of functions in λ, which can be represented as meromorphic functions of 
Λ with poles only at the set {Λ = 1}. 

√  
For µ ∈ C introduce the A-module A[µ] of functions of the form eπ −1µλf, where f ∈ A. This 

module is preserved by derivatives with respect to λ1,λ2. Therefore the KZB operator H0 

preserves the space A[µ] ⊗ V [0]. Any ψ ∈ A[µ] ⊗ V [0] has the form 

. 

Theorem 3.1 ([FV2]). Let µ 6∈ Z>0. Then for any nonzero v ∈ V [0], there exists a unique ψ ∈ 
A[µ] ⊗ V [0] such that 

 

 . for some  and ψ0 = v. Moreover, 

Cf. [JV]. This function ψ is denoted by ψv. 
We denote by E[µ] the vector space of functions ψ ∈ A[µ] ⊗ V [0] such that H0 ψ = 

. For more information on this space see [JV, Section 9]. 
For the zero vector 0 in V [0] we define ψ0 to be the zero function of A[µ] ⊗ V [0]. 

Corollary 3.2. For µ /∈ Z>0, the map 

(3.3) V [0] → E[µ], v 7→ ψv, is an isomorphism of complex 

vector spaces. 

Theorem 3.3 ([JV]). Let µ /∈ Z>0. Then for s = 1,...,n, the KZB operators Hs(z) preserve the space 
E[µ]. Moreover, for any nonzero v ∈ V [0] we have 

Hs(z)ψv = ψw, 
√  

where w = −2π −1Ks(z,µ)v. 

Theorem 3.4. Let  , and v ∈ V [0]. Then 

C2(x)ψv = ψw , 

where 

 

Proof. One computes the action of C2(X) on ψv using Theorem 2.5. The computation is based 

on Theorem 3.3 and the fact that c2 acts on Vms as multiplication by .  
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By Theorem 3.3 the subspace E[µ] ⊂ Funsl2V [0] is invariant with respect to the action of 
the dynamical Bethe algebra. The restriction of the dynamical Bethe algebra to E[µ] is called 
the dynamical Bethe algebra of E[µ] and denoted by B(z;E[µ]). 

Notice that E[µ] is a finite-dimensional vector space of dimension dimV [0]. The space E[µ] 
does not depend on z, since the KZB operator H0 does not depend on z. The algebra B(z;E[µ]) 
is generated by the identity operator and the KZB operators H1(z),...,Hs(z) and does depend 
on z. 

3.3. Two-particle scattering matrix. 

Theorem 3.5 ([FV2, Lemma 6.2]). For µ /∈ Z, the action (2.16) of the Weyl group involution σ 
on Funsl2V [0] identifies the spaces E[µ] and E[−µ]. More precisely, for any v ∈ V [0] we have 

(3.5) , 

where ψvµ(λ) is the element of E[µ] with initial term v and  is the element of 
E[−µ] with initial term A(µ − 1)v. Here A(µ − 1) : V [0] → V [0] is the vector isomorphism, defined 
in (2.10). 

Proof. Formula (3.5) is proved in the example next to Lemma 6.2 in [FV2].  

4. Quantum trigonometric Gaudin model 

4.1. Universal differential operator. Let . Introduce a 2 × 2-matrix 

(4.1) , 

where r(x) is the trigonometric r-matrix defined in (3.1). More explicitly, 

 . 

The universal (trigonometric) differential operator for V with parameter µ ∈ C is defined by the 
formula 

(4.2)  . 
Write the operator D in the form 

, 

where D1(x), D2(x) are End(V )-valued functions of x. It is clear that D commutes with the 
action on V of the Cartan subalgebra of sl2. In particular, it means that D1(x), D2(x) preserve 
the weight decomposition of V . 

4.2. Coefficients D1(x), D2(x) and Gaudin operators. 
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√  
Theorem 4.1. We have D1(x) = 0 and (2π −1)−2D2(x) equals 

. 
Proof. The proof is by straightforward calculation. We have 

. 
Then 

. 
 √  √  √  
Since x = e−2π −1u and ∂u = −2π −1x∂x, the coefficient of (2π −1)−2D2(x) equals 

. 

The constant term in (4.4) equals . For s = 1,...,n, the coefficient of 
1 

1 −x/zs in (4.4) equals 

 

The coefficient of (1 −x/z1 s)2 in (4.4) equals 

. 

The theorem is proved.  
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Lemma 4.2. For any a,b ∈ C−{z1,...,zn} the operators D2(a),D2(b) ∈ End(V ) commute. They also 
commute with the sl2 Cartan subalgebra. 

Proof. It is clear that the trigonometric Gaudin operators Ks(z,µ) commute with the sl2 Cartan 
subalgebra. Now the lemma follows from the commutativity of trigonometric Gaudin 
operators.  √  
Corollary 4.3. Choose a weight subspace V [ν] of V . Then (2π −1)−2D2(x) restricted to V [ν] 
equals 

(4.5) . 
 

The commutative algebra of operators on V [ν] generated by the identity operator and the 
operators {D2(a) | a ∈ C − {z1,...,zn}} is called the Bethe algebra of V [ν] with parameter µ and 
denoted by B(z;µ;V [ν]). The Bethe algebra B(z;µ;V [ν]) is generated by the identity operator 
and the trigonometric Gaudin operators K1(z,µ),...,Kn(z,µ). 

The pair (V [ν],B(z;µ;V [ν])) is called the trigonometric Gaudin model on V [ν]. 

Corollary 4.4. If µ /∈ Z>0, the isomorphism V [0] → E[µ] in (3.3) induces an isomorphism 
B(z;µ;V [0]) → B(z;E[µ]) between the Bethe algebra of V [0] with parameter µ and the 
dynamical Bethe algebra of the space E[µ]. 

Proof. The corollary is proved by comparing formulas (3.4) and (4.5).  

4.3. Gaudin operators and Weyl group. 

Lemma 4.5 ([TV, Lemma 18], cf. [MV2, Lemma 5.5]). For any weight subspace V [ν], any v ∈ V 
[ν], s = 1,...,n, we have 

(4.6)  
Theorem 4.6. For , denote . Assume that . 
Then for any ν the isomorphism of vector spaces 

(4.7)  
induces an isomorphism of Bethe algebras 

. 

Proof. The theorem is a corollary of Lemmas 2.2 and 4.5.  
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4.4. Commutative diagram. Assume that µ /∈ Z and M is even. Then V [0] is a nonzero weight 
subspace. 

Consider the B(z;µ;V [0])-module V [0] and B(z;−µ;V [0])-module V [0]. Consider the 
B(z;E[µ])-module E[µ] and B(z;E[−µ])-module E[−µ]. Consider the diagram relating these 
modules 

(B(z;µ;V [0]), V [0])  (B(z;−µ;V [0]), V [0]) 

(4.9)   . 
(B(z;E[µ]), E[µ])  (B(z;E[−µ]), E[−µ]) 

Here the map (B(z;µ;V [0]), V [0]) → (B(z;−µ;V [0]), V [0]) is the module isomorphism of 
Theorem 4.6. The map (B(z;E[µ]), E[µ]) → (B(z;E[−µ]), E[−µ]) is the module isomorphism 
induced by the action of the Weyl involution σ, see Lemma 2.7. The maps (B(z;µ;V [0]), V [0]) 
→ (B(z;E[µ]), E[µ]) and (B(z;−µ;V [0]), V [0]) → (B(z;E[−µ]), E[−µ]) are the module 
isomorphisms of Corollary 4.4. 

Theorem 4.7. Diagram (4.9) is commutative. 

Proof. The theorem follows from Theorems 3.3, 3.5, 4.6.  

5. Bethe ansatz 

5.1. Bethe ansatz equations for triple (z;µ;V [ν]). Let , as in (2.6), and 
. Let V [ν] be a nonzero weight subspace of V . Then ν = M − 2m for some 

nonnegative integer m. 
Let z = {z1,...,zn} ⊂ C× be a set of nonzero pairwise distinct numbers, as in Section 

2.1. Let µ ∈ C. 

Introduce the master function of the variables t = (t1,...,tm),µ,z, 

. 
The Bethe ansatz equations are the critical point equations for the master function Φ(t,z,µ) 
with respect to the variables t1,...,tm, 

(5.1)  

The master function Φ(t,z,µ) is the trigonometric degeneration of the elliptic master function 
considered in Section 5 of [ThV], see also [FV1, MaV]. 
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The symmetric group Sm acts on the critical set. If ( ) is a solution of the Bethe 
ansatz equations, then for any ρ ∈ Sm, the point ( ) is also a solution. 

5.2. Bethe vectors. Define 

, 

 ω`(t,z) = Sym , 

where Symf(t1,...,tm) = Pρ∈Sm f(tρ(1),...,tρ(m)). Introduce the weight function 

(5.2) ω(t,z) = X ω`(t,z)v`m11 ⊗ ··· ⊗ v`mnn , 
`∈C 

see Section 2.3. This weight function see in [MV2], also in [JV, MaV, SV]. 
Notice that the weight function is a symmetric function of the variables t1,...,tm. 
If (t0;z;µ) is a solution of the Bethe ansatz equations (5.1), then the vector ω(t0,z) is called 

the Bethe vector. 

Theorem 5.1 ([MTV6, V]). Let (t0;z;µ) be a solution of the Bethe ansatz equations (5.1). Then 
the Bethe vector ω(t0,z) is nonzero. 

Theorem 5.2 ([FV1, JV], cf. [RV]). Let (t0;z;µ) be a solution of the Bethe ansatz equations 
(5. 1). Then the Bethe vector ω(t0,z) is an eigenvector of the trigonometric Gaudin operators, 

 

Denote 

(5.3) 

. 

5.3. Bethe vectors and coefficient D2(x). 

Lemma 5.3. If (t0;z;µ) is a solution of the Bethe ansatz equations (5.1), then the Bethe vector 
ω(t0,z) is an eigenvector of all operators of the Bethe algebra B(z;µ;V [ν]). In particular, the 
operator D2(x) acts on ω(t0,z) by multiplication by the scalar 
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. 

Proof. The lemma follows from Theorem 5.2 and Corollary 4.3.  

For a solution (t0;z;µ) of the Bethe ansatz equations (5.1), we introduce the fundamental 
differential operator 

(5.5) Et0,z,µ = ∂u2 + E2(x,t0,z,µ), 
where the function E2(x,t0,z,µ) is given by formula (5.4). 

5.4. Basis of Bethe vectors. The Bethe ansatz method is the method to construct 
eigenvectors of commuting operators, see Lemma 5.3 as an example. The 
standard problem is to determine if the Bethe ansatz method gives a basis of 
eigenvectors of the vector space, on which the commuting operators act. In the 
case of Lemma 5.3 the answer is positive. 

Lemma 5.4. Let . Then for generic z = {z1,...,zn} ⊂ C×, the set of solutions 
(t0;z;µ) of system (5.1) of the Bethe ansatz equations is such that the corresponding Bethe 
vectors ω(t0,z,µ) form a basis of the space V [ν]. 

Proof. Here the word generic means that the subset of all acceptable sets {z1,...,zn} forms a 
Zariski open subset in the space of all sets {z1,...,zn}. The proof of the lemma is standard. It is 
a modification of [ScV, Theorem 8], cf. [MV1, Section 4.4], [MV2, Section 5.4], [MTV1, 
Section 10.6].  

6. Function w(x) in the kernel of Et0;z;µ 

Let (t0;z;µ) be a solution of system (5.1) of Bethe ansatz equations, where 
Define 

(6.1)  . 

Theorem 6.1. We have 

(6.2) . 

where 0 = ∂/∂u. In other words, 

(6.3) E2(x,t0,z,µ) = −(lnw)00 − ((lnw)0)2. 
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Remark. For ν = 0 this statement is the trigonometric degeneration of its elliptic version [ThV, 
Theorem 5.3]. 

√  
Proof. Recall that ∂u = −2π −1x∂x. We have 

. 

√  
Hence, (2π −1)−2(−(lnw)00 − ((lnw)0)2) equals 

. 

In the expression above for each i = 1,...,m the coefficient of  equals zero. The coefficient 
of  equals 

 
where the last equality follows from the Bethe ansatz equations (5.1). For each s = 1,...,n the 

coefficient of  equals −ms(ms + 2)/4. The coefficient of  equals 
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where ks(t0,z,µ) are defined in (5.3). Hence, E2 = −(lnw)00 − ((lnw)0)2.  

Corollary 6.2. The function w(x) lies in the kernel of Et0;z;µ. 

7. Function w˜(x) in the kernel of Et0;z;µ 

7.1. Wronskian. The Wronskian of two functions f(a) and g(a) is 

(7.1) Wr  
We have 

(7.2) Wra(hf,hg) = h2 Wra(f,g) for any function h(a). 

7.2. Wronskian and Bethe ansatz equations. 

Lemma 7.1. The following two statements hold: 
(i) Let . Let (t0;z;µ) be a solution of the Bethe ansatz equations (5.1) and 

. Then there exists a unique monic polynomial y˜(x) of degree M − m, 
such that 

(7.3) Wrx(y(x),xµ−ν/2y˜(x)) = const , 

where const is a nonzero constant. 
(ii) Let . Assume that  is a polynomial with distinct roots such 

that y(zs) 6= 0, s = 1,...,n. Assume that there exists a polynomial y˜(x) such that equation 
(7.3) holds. Then  is a solution of the Bethe ansatz equations (5.1). 

Proof. This lemma is a reformulation of Theorem 3.2 and Corollary 3.3 in [MV2].  
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7.3. Function w˜(x). Recall that we have a solution (t0;z;µ) of the Bethe ansatz equations, the 
differential operator Et0,z,µ and the function , where 

 
Theorem 7.2. Let . Then there exists a unique monic polynomial y˜(x) of degree M − 
m, such that the function 

(7.4)  

lies in the kernel of Et0;z;µ. The functions w(x),w˜(x) span the kernel of Et0;z;µ. 

Proof. The differential operator Et0;z;µ introduced in (5.5) has no first order term. Hence the 
kernel of Et0;z;µ consists of the functions ˜w(x) satisfying the equation 

(7.5) Wru(w(x),w˜(x)) = const . 

By Lemma 7.1, there exists a unique monic polynomial ˜y(x) of degree M − m, such that 
equation (7.3) holds. Dividing both sides of (7.3) by xµ−ν/2 Qns=1(x − zs)ms we obtain 
 n n 

(7.6) Wr= const x−1. 
s=1 

Recall that x = e−2π −1u, 

hence . This implies equation (7.5). The 

Lemma 7.3. Let . Let (t0;z;µ) be a solution of the Bethe ansatz equations (5.1) 
assigned to the triple (z;µ;V [ν]) in Section 5.1. Let 

M−m 

(7.7) y˜(x) = Y (x − t˜i0) 
i=1 

be the polynomial assigned to (t0;z;µ) in Theorem 7.2. If y˜(x) has distinct roots and y˜(zs) 6= 0 
for s = 1,...,n, then  is a solution of the Bethe ansatz equations (5.1) 
assigned to the triple (z;−µ;V [−ν]). Proof. Equation (7.3) can be rewritten as 

n 

(7.8) Wrx(x−µ+ν/2y(x),y˜(x)) = const x−µ+ν/2−1 Y(x − zs)ms. 
s=1 

Now the lemma follows from the equalities −ν = −M + 2m = M − 2(M − m) and Lemma 

theorem is proved. 

7.4. Bethe ansatz equations for triples (z;µ;V [ν]) and (z;−µ;V [−ν]). 

 

x  y ( x ) x 
ν/ 2 − µ 

2 Y ( x − z s ) − m s / 2 , ˜ y ( x ) x 
µ − ν/ 2 

2 Y 
s =1 

( x − z s ) − m s / 2  

√ 
∂ u = − 2 π 

√ 
− 1 x∂ x 
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7.1.  

Theorem 7.4 ([MV2, Theorem 5.7]). Under assumptions of Lemma 7.3 consider the Bethe 
vectors ω(t0 ,z,µ) ∈ V [ν] and ω(t˜0,z,−µ) ∈ V [−ν]. Then 

(7.9) ) = const ω(t˜0,z,−µ), 
where const is a nonzero constant. 

Corollary 7.5. Under assumptions of Lemma 7.3, for s = 1,...,n, the eigenvalue of Ks(z,µ) on 
ω(t0,z,µ) equals the eigenvalue of Ks(z,−µ) on ω(t˜0,z,µ). 

Proof. The corollary follows from Lemma 4.5 and Theorem 4.6.  

8. Conjugates of D and Et0;z;µ 

8.1. Conjugate of D. Recall the universal differential operator D = ∂u2 +D2(x) introduced in 
(4.2), where the coefficient D2(x) is determined by formula (4.3). We introduce the operator 

(8.1) , 
where the superscript c stays for the word “conjugated”. 

Theorem 8.1. We have 

(8.2)  
 √  √  √  
Proof. Recall that x = e−2π −1u, ∂u = −2π −1x∂x, ∂u2 = (2π −1)2(x∂x + x2∂x2). Denote 

. We have , 

 
where 0 = ∂/∂x. Therefore, 
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which gives the right-hand side of formula (8.2).  

8.2. Conjugate of Et0;z;µ . Similarly to the conjugation of D we conjugate Et0,z,µ and consider the 
differential operator 

(8.3) . 

Lemma 8.2. The kernel of  is spanned by quasi-polynomials 

(8.4) , 

where y(x) is the monic polynomial of degree m, defined in (6.1), and y˜(x) is the monic 
polynomial of degree M − m, defined in Theorem 7.2.  

Lemma 8.3. Under assumptions of Lemma 7.3, let (t0;z;µ) be a solution of the Bethe ansatz 
equations (5.1) assigned to the triple (z;µ;V [ν]). Assume that the numbers  
defined in Lemma 7.3 are such that  is a solution of the Bethe ansatz 
equations (5.1) assigned to the triple (z;−µ;V [−ν]). Then 

(8.5) . 
 

9. Space of V -valued functions of z1,...,zn 

9.1. Space . Recall the two-dimensional irreducible sl2-module V1 with basis  , see 
(2.5). In the rest of the paper we assume that V is the tensor power of V1, 

(9.1)  , where n > 1. 

The space V has a basis of vectors 

, 

labeled by partitions I = (I1,I2) of {1,...,n}, where ij = 0 if j ∈ I1, and ij = 1 if j ∈ I2. 
We have the weight decomposition ], where V [n − 2m] is of dimension 

 and has the basis {vI | I = (I1,I2), |I1| = m, |I2| = n − m}. 

We use notations ν = n − 2m, ` = n − m, and hence m + ` = n. 
9.2. Space VS. Let z = (z1,...,zn) be variables. The symmetric group Sn acts on the algebra 
C[z1,...,zn] by permuting the variables. Let σs(z), s = 1,...,n, be the s-th elementary symmetric 
polynomial in z1,...,zn. The algebra of symmetric polynomials C[z1,...,zn]S is a free polynomial 
algebra with generators σ1(z),...,σn(z). 

Let V be the space of polynomials in z1,...,zn with coefficients in , 
. 
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The symmetric group Sn acts on V by permuting the factors of  and the variables z1,...,zn 

simultaneously, ρ(v1 ⊗ ··· ⊗ vn ⊗ p(z1,...,zn)) = v(ρ−1)(1) ⊗ ··· ⊗ v(ρ−1)(n) ⊗ p(zρ(1),...,zρ(n)), ρ ∈ Sn. 

We denote by VS the subspace of Sn-invariants in V. 

Lemma 9.1 ([MTV3]). The space VS is a free C[z1,...,zn]S-module of rank 2n. 

Consider the grading on C[z1,...,zn] such that degzs = 1 for all s = 1,...,n. We define a grading 
on V by setting deg(v ⊗ p) = degp for any  and p ∈ C[z1,...,zn]. The grading on V induces 
a grading on End(V). 

The Lie algebras sl2 ⊂ gl2 naturally act on VS. We have the weight decomposition 
, VS[n − 2m] = (V [n − 2m] ⊗ C[z1,...,zn])S . 

 Let M be a Z>0-graded space with finite-dimensional homogeneous components. Let 
Mj ⊂ M be the homogeneous component of degree j. The formal power series in a variable 

(dimMj)αj, is called the graded character of M. 

Lemma 9.2 ([MTV2]). The space VS[n − 2m] is a free C[z1,...,zn]S-module of rank and 
 m n−m 

(9.2) ch. 
 =1 =1 

9.3. Bethe algebra of VS[ν]. Recall the differential operator Dc introduced in (8.2) for 
 and depending on parameter µ ∈ C. For  the operator Dc takes the 

form 
(9.3) , 
where 

 . 

In formula (8.2) we had {z1,...,zn} being a subset of C×. From now on we consider z1,...,zn as 
independent variables. 

The operator F in formulas (9.3), (9.4), in which z1,...,zn are variables, is called the universal 
differential operator for VS with parameter µ ∈ C. 

Lemma 9.3 (cf. [MTV3, Section 2.7]). The Laurent expansions of F1(x) and F2(x) at infinity have 
the form 
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(9.5) , 
where 

  for j > 2. 

For any j > 2, the element F2j is a homogeneous polynomial in z1,...,zn of degree j−2 with 
coefficients in End(V ). The element F2j preserves the weight decomposition of V. Each of the 
elements F1j, j > 1, F2j, j > 2, defines an endomorphism of the C[z1,...,zn]S-module VS. 

Proof. The proof follows from straightforward calculations.  

Lemma 9.4. The elements F1j, j > 1, F2j, j > 2, considered as endomorphisms of the C[z1,...,zn]S-
module VS, commute. 

Proof. The commutativity follows from the commutativity of the trigonometric Gaudin 
operators in formula (8.2).  

For a weight subspace VS[ν], ν = n−2m, ` = n−m, consider the commutative subalgebra 
B(µ;m;`) of the algebra of endomorphisms of the C[z1,...,zn]S-module VS[ν], generated by the 
elements F1j, j > 1, F2j, j > 2. The subalgebra B(µ;m;`) is called the Bethe algebra of VS[ν] with 
parameter µ ∈ C. 

Lemma 9.5. The Bethe algebra B(µ;m;`) contains the subalgebra of operators of multiplication 
by elements of C[z1,...,zn]S. 

Proof. The subalgebra of operators of multiplication by elements of C[z1,...,zn]S is generated by 

the elements F1j, j > 1, see Lemma 9.3.  

Lemma 9.5 makes the Bethe algebra B(µ;m;`) a C[z1,...,zn]S-module. 

9.4. Weyl group invariance. For a weight subspace ] recall the linear map 
], defined in (2.10). It is an isomorphism of vector spaces, if 

. That operator induces an isomorphism of C[z1,...,zn]S-modules, 

(9.6) . 

Lemma 9.6. Let . Let Fij(µ,m,`) be the generators of B(µ;m;`), defined in (9.5), and 
Fij(−µ,`,m) the generators of B(−µ;`;m). Then 

(9.7)  
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for all i,j. The map 
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(9.8) B(µ;m;`) → B(µ;m;`), Fij(µ;m;`) 7→ Fij(−µ,`,m), 

is an isomorphism of algebras and of C[z1,...,zn]S-modules. The maps in (9.6) and (9.8) define an 
isomorphism between the B(µ;m;`)-module VS[ν] and the B(−µ;`;m)-module VS[−ν]. 

Proof. The lemma follows from Lemma 4.5.  

9.5. Generic fibers of VS[ν]. Given a = (a1,...,an) ∈ Cn, denote by Ia ⊂ C[z1,...,zn] the ideal 
generated by the polynomials σs(z) − as, s = 1,...,n. Define 

(9.9) IaVS[ν] := VS ∩ (V [ν] ⊗ Ia). 
Assume that a is such that the polynomial  has distinct nonzero roots 
b1,...,bn. 

Lemma 9.7 ([MTV3, Lemma 2.13]). The quotient VS[ν]/IaVS[ν] is a finite-dimensional complex 
vector space canonically isomorphic to V [ν]. Under this isomorphism the Bethe algebra 
B(µ;m;`) induces a commutative algebra of operators on V [ν]. That commutative algebra of 
operators is canonically isomorphic to the Bethe algebra B(b1,...,bn;µ;V [ν]) introduced in 
Section 4.2. 

10. Functions on pairs of quasi-polynomials 

10.1. Space of pairs of quasi-polynomials. Let m,`,n be positive integers, m + ` = n. Denote 
ν = n − 2m, cf. Section 9.1. Let 

. 
Let Ω(ζ,m,`) be the affine n-dimensional space with coordinates pi, i = 1,...,m, qj, j = 1,...,`. 
Introduce the generating functions 

(10.1) p(x) = x−ζ (xm + p1xm−1 + ··· + pm), 

 q(x) = xζ (x` + q1x`−1 + ··· + q`). 

We identify points U of Ω(ζ,m,`) with two-dimensional complex vector spaces generated by 
quasi-polynomials 

(10.2) p(x,U) = x−ζ (xm + p1(U)xm−1 + ··· + pm(U)), 

 q(x,U) = xζ (x` + q1(U)x`−1 + ··· + q`(U)). 

Denote by O(ζ,m,`) the algebra of regular functions on Ω(ζ,m,`), O(ζ,m,`) = 

C[p1,...,pm,q1,...,q`]. 

Define the grading on O(ζ,m,`) by degpi = degqi = i for all i. Lemma 10.1. 

The graded character of the algebra O(ζ,m,`) equals 



 DYNAMICAL BETHE ALGEBRA AND QUASI-POLYNOMIALS 27 

 

 m ` 

(10.3) ch. 
 =1 j=1 

10.2. Wronski map. Let p(x),q(x) be the generating functions in (10.1). We have 

(10.4) Wr , 
s=1 

where Σ1,...,Σn are elements of O(ζ,m,`). Notice that 2ζ +`−m = 2ζ +ν /∈ Z according to our 

assumptions. The elements Σ1,...,Σn are homogeneous with degΣs = s. Define the Wronski map 

 Wr : Ω(ζ,m,`) → Cn, U 7→ (Σ1(U),...,Σn(U)). 

Lemma 10.2. For , the Wronski map is a map of positive degree. 

Proof. The proof is a slight modification of the proof of [MTV4, Proposition 3.1].  

Let OS ⊂ O(ζ,m,`) be the subalgebra generated by Σ1,...,Σn. Let σ1,...,σn be coordinates on Cn, 
which is the image of the Wronski map. Introduce the grading on C[σ1,...,σn] by degσs = s for 
all s. The Wronski map induces the isomorphism C[σ1,...,σn] → OS, σs 7→ Σs, of graded algebras, 
see Lemma 10.2. This isomorphism makes O(ζ,m,`) a 
C[σ1,...,σn]-module. 

10.3. Another realization of O(ζ,m,`). Define the differential operator G by 

1 
(10.5)  , 

where rdet is the row determinant. We have 

(10.6) G = ∂x2 + G1(x)∂x + G2(x), 

where G1(x), G2(x) are rational functions in x with coefficients in O(ζ,m,`), cf. [MTV3]. Notice 
that 

(Wr (p,q))0 
(10.7) G1 = − x . 

Wrx(p,q) 

Lemma 10.3 (cf. [MTV3, Section 2.7]). The Laurent expansions of G1(x) and G2(x) at infinity 
have the form 
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(10.8) , 

where for any i,j, the element Gij is a homogeneous element of O(ζ,m,`) of degree j − i. 

Proof. The proof is by straightforward calculation.  

Lemma 10.4 ([MTV3, Lemma 3.4], [MTV2, Lemma 4.3]). Let . Then the elements 
Gij, i = 1,2, j > i, generate the algebra O(ζ,m,`). 
10.4. Fibers of Wronski map. Given a = (a1,...,an) ∈ Cn, denote by Ja ⊂ O(ζ,m,`) the ideal 
generated by the elements Σs − as, s = 1,...,n. Define 

(10.9) . 

The algebra Oa(ζ,m,`) is the algebra of functions on the fiber Wr−1(a) of the Wronski map. Let 
 n n 

(10.10) xn + X(−1)n−s as xn−s = Y(x − bs) 
 s=1 s=1 

for some bs ∈ C. Let U be a point of Ω(ζ,m,`) and 
 m ` 

 p(x,U) = x−ζ Y(x − t0i ), q(x,U) = xζ Y(x − t˜i0), 
 i=1 i=1 

for some t0i ,t˜i0 ∈ C. 

Lemma 10.5. Let . Then there exists a Zariski open subset X ⊂ Cn such that for any 
a ∈ X all the numbers b1,...,bn are nonzero and distinct. Moreover, for any point 
U ∈ Wr−1(a) all the numbers  are distinct.  

Lemma 10.6. If a ∈ X and U ∈ Wr−1(a), then  is a solution of the 
Bethe ansatz equations (5.1) assigned to the triple (b1,...,bn;2ζ + ν/2;V [ν]), and 

 is a solution of the Bethe ansatz equations (5.1) assigned 
to the triple (b1,...,bn;−2ζ − ν/2;V [−ν]). 

Proof. We have 

Wr . 
s=1 

Now the lemma follows from Lemmas 10.5, 7.1.  
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For U ∈ Ω(ζ,m,`) denote by GU the monic differential operator with kernel hp(x,U),q(x,U)i, 

(10.11) GU = ∂x2 + G1;U(x)∂x + G2,U(x). 

The operator GU is obtained from the operator G by evaluating the generating functions p,q 
at the point U. 

Lemma 10.7. Let a ∈ X and U ∈ Wr−1(a). Let (t0;b;2ζ +ν/2) be the solution of the Bethe ansatz 
equations described in Lemma 10.6. Let  be the differential operator defined in (8.3). 
Then 

. 

Proof. The lemma follows from Lemma 8.2. 
11. Isomorphisms 

In Section 9 we introduced the B(µ,m,`)-module VS[ν], where µ ∈ C, ν = n − 2m, m + ` = n. In 
Section 10 we discussed the properties of the algebra O(ζ,m,`) under the assumption that 

. 
We consider O(ζ,m,`) as the O(ζ,m,`)-module with action defined by multiplication. 

In this section we construct an isomorphism between the B(µ,m,`)-module VS[ν] and the 
O(ζ,m,`)-module O(ζ,m,`) under the assumption that 

(11.1)  and , 
where the last inclusion can be reformulated as 

(11.2) , 
cf. the assumptions on µ and ζ in Theorems 4.6, 7.2, Lemmas 7.1, 7.3 and Section 10. 

The construction of the isomorphism is similar to the constructions in [MTV3, MTV2]. 

11.1. Isomorphism of algebras. Consider the map 

 τ : O(ζ,m,`) → B(µ,m,`), Gij 7→ Fij. 

Theorem 11.1 (cf. [MTV3, Theorem 5.3], [MTV2, Theorem 6.3]). Under the assumptions 
(11.1) the map τ is a well-defined isomorphism of graded algebras. 

Proof. Let a polynomial R(Gij) in generators Gij be equal to zero in O(ζ,m,`). Let us prove that 
the corresponding polynomial R(Fij) is equal to zero in B(µ,m,`). Indeed, R(Fij) is a polynomial 
in z1,...,zn with values in End(V [ν]). By Lemmas 10.5 - 10.7, 5.4, for generic b1,...,bn the value 



30 A.SLINKIN, D.THOMPSON, A.VARCHENKO 

 

of the polynomial R(Fij) at z1 = b1,...,zn = bn equals zero. Hence, the polynomial R(Fij) equals 
zero identically and the map τ is a well-defined defined homomorphism of algebras. 

The elements Gij, Fij are of the same degree. Hence τ is a graded homomorphism. 
Let a polynomial R(Gij) in generators Gij be a nonzero element of O(ζ,m,`). Then the value 

of R(Gij) at a generic point U ∈ Ω(ζ,m,`) is not equal to zero by Lemma 10.7. Then the 
polynomial R(Fij) is not identically equal to zero. Therefore, the map τ is injective. 
Since the elements Fij generate the algebra B(µ,m,`), the map τ is surjective.  

The algebra C[z1,...,zn]S is embedded into the algebra B(µ,m,`) as the subalgebra of 
operators of multiplication by symmetric polynomials. The algebra C[z1,...,zn]S is embedded 
into the algebra O(ζ,m,`), the elementary symmetric polynomials σ1(z),...,σn(z) being mapped 
to the elements Σ1,...,Σn. These embeddings give the algebras B(µ,m,`) and O(ζ,m,`) the 
structure of C[z1,...,zn]S-modules. 

Lemma 11.2 ([MTV3, Lemma 6.4]). Under assumptions (11.1) the map τ is an isomorphism of 
C[z1,...,zn]S-modules. 

Proof. The lemma follows from formulas (7.6), (10.7). 
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11.2. Isomorphism of modules. The subspace of VS[ν] of all elements of degree 0 is of 
dimension one and is generated by the vector 

 v+ = X vI . 
I=(I1,I2),|I1|=m,|I2|=` 

The subspace of O(ζ,m,`) of all elements of degree 0 is of dimension one and is generated by 
the element 1. Define the C[z1,...,zn]S-linear map 

(11.3) ϕ : O(ζ,m,`) → VS[ν], G 7→ τ(G)v+ . 

Theorem 11.3 ([MTV3, Theorem 6.7]). Under assumptions (11.1), the map ϕ is a graded 
isomorphism of graded C[z1,...,zn]S-modules. The maps τ and ϕ intertwine the action of 
multiplication operators on O(ζ,m,`) and the action of operators of the Bethe algebra B(µ,m,`) 
on VS[ν], that is, for any f,g ∈ O(ζ,m,`), we have 

(11.4) ϕ(fg) = τ(f)ϕ(g). 

In other words, the maps τ and ϕ define an isomorphism between the O(ζ,m,`)-module O(ζ,m,`) 
and the B(µ,m,`)-module VS[ν]. 

Proof. First we show that the map ϕ is injective. Indeed, the algebra O(ζ,m,`) is a free 
polynomial algebra containing the subalgebra C[z1,...,zn]S. The quotient algebra 
O(ζ,m,`)/C[z1,...,zn]S is finite-dimensional by Lemma 10.2. The kernel of ϕ is a proper ideal I 
in O(ζ,m,`). Then τ(I) is an ideal in B(µ,m,`). Any proper ideal in B(µ,m,`) has zero intersection 
with C[z1,...,zn]S. Hence I has zero intersection with C[z1,...,zn]S and therefore is the zero ideal. 
The injectivity is proved. 

The map ϕ is graded. The graded characters of VS[ν] and O(ζ,m,`) are equal by Lemmas 9.2 
and 10.1. Hence ϕ is an isomorphism.  

Corollary 11.4. Assume that a = (a1,...,an) ∈ Cn is such that the polynomial xn + 

 has distinct nonzero roots b1,...,bn. Then under assumptions (11.1), the 
isomorphisms τ, ϕ induce the isomorphism of the B(b1,...,bn;µ;V [ν])-module V [ν] and the 
Oa(ζ;m,`)-module Oa(ζ;m,`), where Oa(ζ;m,`) is the algebra of functions on the fiber Wr−1(a) of 
the Wronski map, see (10.9). 
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Proof. The corollary follows from Lemma 9.7 and Theorems 11.1, 11.3.  Corollary 11.5. The 

degree of the Wronski map Wr equals dim .  

11.3. Dynamical Bethe algebra and quasi-polynomials. The space  has a 
nontrivial zero weight subspace if n is even. Let n = 2m. For the zero weight subspace V [0], 
we have ν = 0, m = `, and assumptions (11.1) take the form 

(11.5)  and µ /∈ Z. 
Let a = (a1,...,an) ∈ Cn be such that the polynomial  has distinct 

nonzero roots b1,...,bn. Consider the functional space E[µ] as the module over the dynamical 
Bethe algebra B(b1,...,bn;E[µ]), see Section 3.2. Consider the Oa(ζ;m,m)-module Oa(ζ;m,m), 
where Oa(ζ;m,m) is the algebra of functions on the fiber Wr−1(a) of the Wronski map. 

Corollary 11.6. Under assumptions (11.5), the isomorphisms τ, ϕ and the isomorphism V [0] 
→ E[µ] in Corollary 4.4 induce the isomorphism of the B(b1,...,bn;E[µ])-module E[µ] and the 
Oa(ζ;m,m)-module Oa(ζ;m,m).  

11.4. Weyl involution and transposition of quasi-polynomials. Consider the B(µ,m,`)-
module VS[ν] and B(−µ,`,m)-module VS[−ν]. Consider the O(ζ,m,`)-module O(ζ,m,`) and 
O(−ζ,`,m)-module O(−ζ,`,m). 

Under assumptions (11.1), consider the diagram, 

(B(µ,m,`), VS[ν])  (B(−µ,`,m), VS[−ν]) 

(11.6)   . 
(O(ζ,m,`), O(ζ,m,`))  (O(−ζ,`,m), O(−ζ,`,m)) 

Here VS[ν] → O(ζ,m,`) and VS[−ν] → O(−ζ,`,m) are the module isomorphisms of Theorem 11.3. 
The map VS[ν] → VS[−ν] is the module isomorphism of Lemma 9.6. The map O(ζ,m,`) → 
O(−ζ,`,m) is the module isomorphism defined by the transposition of the quasi-polynomials 
p,q. 

Theorem 11.7. The diagram (11.6) is commutative. 

Proof. The theorem follows from Lemma 8.3.  

The commutativity of diagram (11.6) implies the commutativity of the diagram of fibers 
over a generic point a ∈ Cn, 

(B(b1,...,bn;µ,V [ν]), V [ν])  (B(b1,...,bn;−µ,V [−ν]), V [−ν]) 

(11.7)   , 
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(Oa(ζ,m,`), Oa(ζ,m,`))  (Oa(−ζ,`,m), Oa(−ζ,`,m)) 

see notations in Section 11.2. 
Combining commutative diagrams (11.7) and (4.9) we obtain the commutative diagram 

(B(z;E[µ]), E[µ])  (B(z;E[−µ]), E[−µ]) 

(11.8)   , 
(Oa(ζ,m,m), Oa(ζ,m,m))  (Oa(−ζ,m,m), Oa(ζ,m,m)) 

which holds if n = 2m is even and µ /∈ Z. The diagram identifies the Weyl involution E[µ] → 
E[−µ] in the functional spaces of eigenfunctions of the KZB operator H0 with the 
isomorphism Oa(ζ,m,m) → Oa(−ζ,m,m) induced by the transposition of quasi-polynomials. 
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