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1. Introduction

1 1
In 1944 Atle //
0 0

Selberg proved H FA+jy) Tla+(G-D)NIFB+0 -1
I'(147) Ma+B+(n+j—2)y)

(z; — x;)* H:E?_l(l — ;) dxy .. . dx,
i=1

1<1'<j<n

the  following

integral formula: (1.1)

see [Sel, AAR]L. Hundreds of papers are devoted to the generalizations of the Selberg integral
formula and its applications, see for example [AAR, FW] and references therein. There are g-
analysis versions of the formula, the generalizations associated with Lie algebras, elliptic
versions, finite field versions, see some references in [AAR, FW, As, Ha, Ka, Op, Ch, TV1, TV2,

1In [Se2] Selberg remarks: “This paper was published with some hesitation, and in Norwegian, since [ was
rather doubtful that the results were new. The journal is one which is read by mathematics-teachers in the
gymnasium, and the proof was written out in some detail so it should be understandable to someone who knew
a little about analytic functions and analytic continuation.” See more in [FW].
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TV3, Wal, Wa2, Wa3, Sp, vDS, R, FSV, An, Ev1, Ev2]. In the finite field versions, one considers
additive and multiplicative characters of a finite field, which map the field to the field of
complex numbers, and forms an analog of equation (1.1), in which both sides are complex
numbers. The simplest of such formulas is the classical relation between Jacobi and Gauss
sums, see [AAR, An, Ev1].

In this paper we suggest another version of the Selberg integral formula, in which the
FpSelberg integral is an element of the finite field Fp with an odd prime number p of
elements, see Theorem 4.1.

Our motivation comes from the theory of the Knizhnik-Zamolodchikov (KZ) equations, see
[KZ, EFK]. These are the systems of linear differential equations, satisfied by conformal
blocks on the sphere in the WZW model of conformal field theory. The KZ equations were
solved in multidimensional hypergeometric integrals in [SV1], see also [V1, V2]. The
following general principle was formulated in [MV]: if an example of the KZ type equations
has a one-dimensional space of solutions, then the corresponding multidimensional
hypergeometric integral can be evaluated explicitly. As an illustration of that principle in
[MV], an example of KZ equations with a one-dimensional space of solutions was considered,
the corresponding multidimensional hypergeometric integral was reduced to the Selberg
integral and then evaluated by formula (1.1). Other illustrations see in [FV, FSV, TV1, TV2,
TV3, V3, RTVZ].

Recently in [SV2] the KZ equations were considered modulo a prime number p and
polynomial solutions of the reduced equations were constructed, see also [SIV, V4, V5, V6,
V7].

The construction is analogous to the construction of the multidimensional hypergeometric
solutions, and the constructed polynomial solutions were called the Fp-hypergeometric
solutions.

In this paper we consider the reduction modulo p of the same example of the KZ equations,
that led in [MV] to the Selberg integral. The space of solutions of the reduced KZ equations is
still one-dimensional and, according to the principle, we may expect that the corresponding
Fp-hypergeometric solution is related to a Selberg type formula. Indeed we have evaluated
that Fp-hypergeometric solution by analogy with the evaluation of the Selberg integral and
obtained our Fp-Selberg integral formula in Theorem 4.1.

The paper contains three proofs of our Fp-Selberg integral formula. There might be more
proofs. It would be interesting to see if our formula can be deduced from the known relations
between the multidimensional Gauss and Jacobi sums, see for example [AAR, Section 8.11].

The paper is organized as follows. In Section 2 we collect useful facts. In Section 3 we
introduce the notion of Fp-integral and discuss the integral formula for the Fp-beta integral.
In Section 4 we formulate our main result, Theorem 4.1, and prove it by developing an
Fpanalog of Aomoto’s recursion, defined in [Ao] for the Selberg integral. In Section 5 we give
another proof of Theorem 4.1, based on Morris’ identity, which is deduced from the classical
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Selberg integral formula (1.1) in [Mo]. In Section 6 we sketch a third proof of Theorem 4.1
based on a combinatorial identity, also deduced from the Selberg integral formula (1.1). In
Section 7 we discuss in more detail how our Fp-Selberg integral formula is related to the Fp-
hypergeometric solutions of KZ equations reduced modulo p.

The authors thank C.Biro’, I.Cherednik, P.Etingof, E.Rains, A.Slinkin for useful discussions
and the referee for helpful suggestions.

2. Preliminary remarks

2.1. Lucas’ Theorem.

Theorem 2.1 ([L]). For nonnegative integers m and n and a prime p, the following congruence

relation holds:
(n) = | | (n,) (mod p)
m o \mi

(m) =

2.2. Binomial lemma.

Lemma 2.2 ([V7]). Let a,b be positive integers such thata <p, b <p, p 6 a + b. Then we have an

b—1 b—1 alb!
b =0 = (=1 —
(a—l—b—p) (p—a—l) (=1) (a+b—p)!

2.3. Cancellation of factorials.

identity in Fp,

Lemma 2.3. If a,b are nonnegative integers and a + b = p — 1, then in Fpwe have
(2.3) alb! = (-1)+1,

Proof. We have a! = (-1)?(p-1)...(p—a) and p-a = b+1. Hence a!b! = (-1)?(p-1)! =
(-1)e*1 by Wilson'’s Theorem.

3. Fp-Integrals

3.1. Definition. Let p be an odd prime number and M an Fp-module. Let P(xy,..,.xx) be a
polynomial with coefficients in M,

(3.1) P(x1,...,Xk) = X caxdy...xdy,
d
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Let = (I,...Ik) € Zk.o. The coefficient chp-1...kp-11s called the Fp-integral over the cycle

[13,...,lk]p and is denoted by R[[l,...,Ik]pP(Xl,...,Xk)Xm . dXk.

Lemma 3.1. Fori=1,..,k - 1 we have
Z

(3.2) P(x1,...,Xi+1,Xiy..., Xk) dX1 ... Xk
[11,...,[i+l,1,',...,1k]p
Z

= P(x1,...,xk)dX1...dxk.
[l Ik]p

Lemma 3.2. For any i = 1,..,k, we have

or
(x1,...,2,) =0
/[;17"'71147}1—’ ax? 1 :

3.2. Fp-Beta integral. For nonnegative integers a,b the classical beta integral formula says

L alb!
1 —)de = ———— .
(3.3) /0“ z)dr (@+b+1)!
. Let 0 < a , 0< ,p—1<a .
Theorem (V7). Let0<a<p, 0<b<pp—l<a+d 3.3. Then in Fpwe have
alb!
2%(1 — x)’de = —
/mpr( z)'de (a+b—p+1)!
Ifa+b<p-1,then
Z
(3.5) x9(1 - x)bdx = 0.

(1]»

2 (1—2)" =3 _o(—1)F ()"

/mp 2*(1 — 2)’dr = (=11 (p B 11) B a)

Now Lemma 2.2 implies (3.4). Formula (3.5) is clear.
4. n-Dimensional Fp-Selberg and Fp-Aumoto integrals

4.1. n-Dimensional integral formulas. The n-dimensional Selberg integral formula for
nonnegative integers a,b,c is
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/ / —xj)QCHIf(l — ;)" dxy ... dx,
0 i=1

1<’L<]<77

_ H (Go)! (a+ (G — Do) (b+ ( — De)!
¢l (a+b+(n+j—2)c+1)

bl

J=1

and for k = 1,..,n - 1, the n-dimensional Aomoto integral formula is

(42) / / H:I:l _xj)QCHQT?(l —l'i)b dl’ldl'n

1<i<j<n
H a+(n—jle+1 - (a+ (G —1)) (b+ (G —1)e)!
B a+b+(2n—j—1)c+1 - c! (a+b+(n+j—2)c+2)

7=1

[Sel, Ao, AAR].
Theorem 4.1. Assume that a,b,c are nonnegative integers such that
(4.3) p-16a+b+(n-1)c a+b+(2n-2)c<2p-1.

Then we have an integral formula in Fp:

(4.4) / H (:vi—xj)ZCHa:f(l—xi)b dxy...dx,
[Lslp 1<i<j<n i=1
_(—1y H o)t (a+ (G =D b+ (G —1)e)!
i c (a+b+(n+j5—-2)c+1-p)
Also, ifk=1,.,n-1, and
. p-16a+b+(n-1)c a+b+(2n-2)c<2p-2,
(4.5) 1 b+(n-1) b+ ((2n-2)c<2p-2

then

(4.6) /[1 1_[:5Z H — wj)2cl_11x?(1 — ;)" day ... dx,

""" 1p =1 1<i<j<n
k

_(_1>n1—[ a+(n—jle+1 21—[ C" (a+ (7 —De)l b+ (j —1)e)!

ta+b+(2n—j—1)e+ ey (a+b+(n+j—2)c+1—p)!
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The first proof of Theorem 4.1 is given in Sections 4.2 - 4.4, the second in Section 5, and
the third one is sketched in Section 6.
Remark. Formula (4.4) can be rewritten as

(4.7) Z H — ;) fo(l — ;)
1., €Fp 1<i<j<n =1

n

o)t (a+ (G =1)o)lb+ (G —1o)!
H cd (a+b+(n+j—2)c+1-p)!

7=1
if additionallya + b + (2n - 2)c < 2p - 2.

Remark. The fact that the Fp-Selberg integral on the left-hand side of (4.4) equals an explicit
alternating product on the right-hand side of (4.4) is surprising. But even more surprising is
the fact that the alternating product on the right-hand side of (4.4) is simply given by the
alternating product on the right-hand of the classical formula (4.1) with just several of
factorials shifted by p.

Remark. The Selberg integral (4.1) is related to the sl2 KZ differential equations, see Section
7, and is called the Selberg integral of type A1. The Selberg integral of type An, related to the
sln+1 KZ differential equations, is introduced in [TV3, Wal, Wa2, Wa3].

We call the Fp-integral (4.4) the Fp-Selberg integral of type Ai. The Fp-Selberg integral of
type An, n > 1, is introduced in [RV]. The Fp-Selberg integral formula of type Anis deduced in
[RV] from the Fp-Selberg integral formula (4.4) by induction on n.

Remark. The integral analogous to (4.4) but with x; - x; factors raised to an odd power

vanishes:
n

(4.8) Y (xi— Xj)2c+1 Yxai (1 = xi)pdx1...dxn= 0.
[L,.., 1] 16i<j6n i=1

Indeed, after expanding the (x1 - x2)%¢*1 factor, the integral (4.8) equals

2c+1
Z(_l)mﬂ 2c+1
m

m=0

a+m _a+(2¢+1—m) o
/ )", flzy,. .. x,) day .. .dx, =0

with fsymmetric in x1and x2. The terms corresponding to m and 2¢ + 1 — m cancel each other,
making the sum 0.

4.2. Auxiliary lemmas. Denote
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n

" (o)t (a+ (= 1)) (b+ (5 —1)e)!
Fy(a,b,¢) = cd (a+b+(n+j—2)c+1—p)

J=1

The polynomial

d(x1,..,xn0a,b,c) = Y (xi — xj)?¢ Yya; (1 -x)P
16i<j6n i=1
is called the master polynomial. Denote

Z
— Y (v v 2CY a — v:\b
Sn(a,b,c) = (xi — x7)%¢ " xi9 (1 = xi)bdx1...dxn,
[1,..,1]7 16i<jén i=1
k n
Z
Skn(a,bc) = YxiY (xi— Xj)2c Yxai (1 = xi)bdX1...dXn,
[1,..,1]pi=1 16i<j6n i=1

for k = 0,..,n. Then Son(a,b,c) = Sn(a,b,c), Snn(a,b,c) = Sn(a + 1,b,c). By (3.2), we also have
k n
Z

Skn(a,b,c) = Yxoi Y (Xi — Xj)2¢ YXai (1 = Xi)b dX1...dxn
[1,..,1]pi=1 16i<j6n i=1

forany 16 o1< - <0k6 n.
Lemma 4.2. We have Sn(a,b + p,c) = Sn(a,b,c).

Proof. We have (1-xi)b*P = (1-xi)?(1-xi)P = (1-x:)?(1-x»i). Hence the factors (1-xi)®
and (1 - xi)?*P contribute to the coefficient of x?;-1in the same way.
Lemma4.3.Ifa+b+ (2n-2)c<2p-2andc>0,thenn<p.

Lemma 4.4.Ifa+b+ (n-1)c<p -1, then Sa(a,b,c) = 0.

p—1 p—1
b
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ot I p<at(n—1)c

Lemma 4.6. Ifa + b + (2n - 2)c < 2p - 1, then Sn(a,b,c) = Su(b,a,c).
gt adn Mfa+b+ (2n—2)e < 2p —

P gl

q)(l_ylu"'vl_ynuavbac): H (yl_yJ)QCHy;l(l
=1

1<i<j<n
This transformation does not change the Fp-integral due to Lucas’ Theorem and property
(a), see a similar reasoning in the proof of [V5, Lemma 5.2].
43.Casea+b+(n-1)c=p-1.
Lemma 4.7.Ifa+b+ (n-1)c=p -1, then

_ (__1\bn+ten(n—1)/2 (cn)‘
Sn(av b7 C) - ( 1) (C!)n
cn(n— cn)!
—1)en(n=/2en)
cn)!
T. H —xi/x;) (1 — xj/2;)" = ((Cl))n

16i<j6n
Here C.T. denotes the constant term. See the formula in [AAR, Section 8.8].
Lemma 4.8.Ifa+b+ (n-1)c=p-1, then

n+cn(n— (Cn)'
Pn(a>b7c) = (_1)b ten(n=1)/2 (C')"

Proof. We have

Poabe) = (1 UL (et (G- Dolb+ (G~ Do)l

cd (a+b+(n+j—2)c+1—-p)!

G (a+ (G —1De) b+ (— 1)
= (=" ,li[l(jc!) ( cgj(Qc)'))(((n—(i)c)‘>)

By Lemma 2.2 we have a!(b + (n - 1)c)! = (-1)b+(n-De+l (g + ¢)!(b + (n - 2)c)! =
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(=1)b+(n-2)e+1 and so on. This proves the lemma.

Lemmas 4.7 and 4.8 prove formula (4.4) fora+ b+ (n-1)c=p - 1.

4.4. Aomoto recursion. We follow the paper [Ao], where recurrence relations were
developed for the classical Selberg integral. See also [AAR, Section 8.2]. Using Lemma 3.2,

for k =1,..,n we have

9 k
(4.13) 0= /[1 I 71 l(l — 1) Haﬁ@(aﬁ, a,b, c)] dx; .

.....

k

=(a+1) /[1 , (1—) H:pi@(:ﬂ, a,b,c)dz ..

oo llp i=2
k

—(b+ 1)/ H:Ui@(x, a,b,c)dxy ... dx,
[

1 — T
+ 20/ z;®(x,a,b,c)dx; ..
[1,00:1] JZ T H

k
1
x; ®(x,a,b,c)dry .. .dz,
/{1 1, £1 7 11

geoey

equals 0if 2 6 j 6 k and equals Sk-1,n/2 if k < j 6 n. The Fp-integral
k

/ al Hxiq)(x,a,bjc) dz; . ..
(L-1]p

=1

.....

equals Skn/2 if 2 6 j 6 k and equals Sknifk <j 6 n.

1T L B g Y | + i

T1—T; Tj—T1 } x1—Tj Tj—T1
2 12
T
1 J —
+ = T + fL’j

."171—.7:.7' Ij—.’[}l

Lemma 4.10. For k= 1,..,n we have
a+(n—k)e+1

Sen = a+b+(2n—k—1)c+2

Sk—l,n

Proof. Using Lemma 4.9 we rewrite (4.13) as

..dx,

.dx,

.dx,,

dzx,,

220
— TIT;

? -

0=(a+1)Sk-1n-(a+b+2)Skn+c(n - k)Sk-1,n— c(2n — k — 1)Skn.

Tj—x1 = xlﬂ:j
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4.5. Proof of Theorem 4.1. Theorem 4.1 is proved by induction on a and b. The base
induction stepa + b + (n-1)c=p - 1is proved in Section 4.3.
Lemma 4.10 gives

n

a+(n—jle+1
Sn _}_1’b7, = Sn aba -
(a c) (a C>Ea+b+(2n—j—1)c+1

Together with the symmetry Sn(a,b,c) = Sn(b,a,c) this gives formula (4.4). Then formula (4.16)
gives formula (4.6). Theorem 4.1 is proved.

4.6. Relation to Jacobi polynomials. The statements (4.6) for different values of k can be
captured in a single equation, which involves a Jacobi polynomial - like it was done by
K.Aomoto in [Ao] for the classical Selberg integral. Recall that the degree n Jacobi polynomial

) P n.i()ﬂmmﬁﬂ')ﬁ(“”(z;l)y

i=v—+1

Proposition 4. 11 Assuming inequalities (4.5) let a = (a + 1)/c 1,p=(b+1)/c-1. Then

e - S,(a,b
(4.17) / H x; —t) - ®(x,a,b,c)dx;...dr, = 2nnzc (a,b, ¢) . PTS“ A1 —2t)
..... 1p 321 IIL. (a+b+ic+2)
H;L:1(=Ti_t

Z Xo1Xo2..Xo® (x,a,b,C)dX1 ...dxn,
(1,115

which — by symmetry (3.2) — are equal to Skn(a,b,c). Substituting

k .
a+(n—jle+1
Skan(a,b, ) 25"(”°b’c)'Ea,+b+<2n—j—1>c+2

from (4.4) and (4.6) yields (4.17).

5. Fp-Selberg integral from Morris’ identity

5.1. Morris’ identity. In this section we work out the integral formula (4.4) for the FpSelberg
integral from Morris’ identity. Suppose that @, 5,y are nonnegative integers. Then

n

(5.1) CT. Y(1 - x)e(1 - 1/x)8Y (1 - x;/xx)Y
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i=1 1<j#k<n

7 () (a+ 6+ —1))
2 (a+ (G =DNHB+ - D!

j=1

Morris identity was deduced in [Mo] from the integral formula (4.1) for the classical Selberg
integral, see [AAR, Section 8.8].
The left-hand side of (5.1) can be written as

(5.2) CT.(-1)(n2)y+nBY (xi — Xj)2y YXi-p-(n-1)y(1 — Xi)a+B,
16i<jén i=1

while

n

Sn(a,b,c) = C.T. H (z; — )% Hx?’ﬂ_p(l — ;)

1<i<j<n i=1

where the constant term is projected to Fp.
Puttinga+1-p=-f-(n-1)y,b=a+p,c=y,or

(5.4) a=a+b+(n-1)c+1-p, f=p-a-(n-1)c-1, Yy=c
we obtain the following theorem.
Theorem 5.1. If the nonnegative integers a,b,c satisfy the inequalities
(5.5) p-16a+b+(n-1)c a+(n-1)cép-1,
then the Fp-Selberg integral is given by the formula: (5.6)
So(a,b,c) = (_1)(g)c+na

7 (o)! (b+ (G —1o)!
XH d p—a—(n—je—Dl(a+b+(n+j—2)c+1—p)!

where the integer on the right-hand side is projected to Fp.
Lemma 5.2. If both inequalities (4.3) and (5.5) hold, that is, if

(5.7) p-16a+b+(n-1)c a+b+(2n-2)c<2p-1,
(5.8) a+(n-1)c6p-1,

then in Fp we have
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c—i—nali (b + (J - 1>C)'

cd p—a—(n—75c—Dl(a+b+ (n+j—2)c)

nﬁ o)l (a+ (=10 b+ —1)c)
d (a+b+(n+j—2)c+1—-p)!’
and hence (5.6)

o T G 0t (= 1) b+~ 1))
Sn(a,b,c) = H c (a+b+(n+j—2)c+1-p)

7=1
Notice that by Lemma 4.5 we have Sn(a,b,c) = 0 if inequality (5.8) does not hold. Proof. We

have

(a+ (n—j)c)!
P (p—a—(n—=jle=1a+(n—j)e)

I
—=

” 1
.H(p—a—(n—j)c—l)!

J=1

<.
Il

(=1 a4 (=)o)

|
=

<.
Il
—

by Lemma 2.3. This implies the Lemma 5.2.

5.2. More on values of Sx(a,b,c).

Theorem 5.3. If inequalities (5.5) holdanda=p -1 - (n - 1)c - k, then

. ne)l & (Pre=1
&@—1—@w&k—ha@::vn@%mﬁdﬂ[1§f§wi

where the integer in the right-hand side is projected to Fp.
(b+(j71)c)

k
(]—1k)c+k)

(@+B+G -1 fa+B+G -\ 1
(a+(G=—DNB+ (G- )7)'( 5 ) H

_ b+ (j—1)c R 1
B <p—a—(n—1)c—1) H p—a—(n—1c—1+i

=1
Ifa=p-1-(n-1)c-k, then this equals
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(b e UC) jigs (b ' (jkr_ 1)6) (= 1)e)! Hfi((j — )c+i)

1 (b+(j1:1)c)

(7 —1e)! ((jf1k)c+k.) )

Substituting this to (5.6) we obtain (5.11).

Example. Formula (5.11) gives

Salp—c - 1.b,c) = (_1)0(%) . Salp—c—2,b,c) = (—1)“<

C

2c> b(b+ c)

c c+1

and so on. Notice that these values are not given by Theorem 4.1. See more examples in
Figure 1.

5.3. Factorization properties. By Lemmas 4.2 and 4.5 we have Sn(a,b+p,c) = Sn(a,b,c) and
Sn(a,b,c) =0ifa>p - (n-1)c. Thus, for given ¢, it is enough to analyze Sn(a,b,c) in the rectangle
Q={(a,b)|ae[0p-1-(n-1)c]b €[0,p - 1]} This rectangle is partitioned into n smaller
rectangles :
Qo(n,c)
Qi(n,c)

{(a,b) |a€[0,p-1-(n-1)c], bel0,p-1-(n-1)]},
{(Cl,b) | ae [O, D - 1- (I’l - l)C],

belp-1-(n-Nc+1,p-1-(n-i-1)c]}, i=1,.,n-1,

see the tables in Figure 1. The values of Sx(a,b,c) in Qo(n,c) are given by Theorem 4.1 and
Lemma 4.4. The values of Sn(a,b,c) in arectangle Qi(n,c) are given by Theorem 4.1 and Lemma
4.4 also, but applied to Fp-Selberg integrals of smaller dimensions with the same value of ¢
and suitable choices of values for a and b. Namely, we have the following factorization

property.
Theorem 5.4. For (a,b) € Qi(n,c) with i >0, we have
§ _ _ 1\(n—i)ic nce
(5.12)  Snlab:0) (=1) (w)
n—i (p—1—(n—j)c—a 7 —1—(n—j)c—a
Hj:l (p (j(fl)jc) ) Hj:l (p (j(fl)]c) )

n —1—(n—j)c—a
Hj:l (P (j(—l)]c) )
X Sy_i(a+ic,b,c)Si(a+ (n—1i)c,b+ (n—i)c—p,c)
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1

0

Proof. The theorem follows from formula (5.11) and Lucas’ Theorem.
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the dotted lines enclose the region covered by Theorem 5.1. The structure of

integers a,b. Yellow shading indicates the range covered by Theorem 4.1, and
the gray shading is discussed in Section 5.3.

Figure 1. Tables of Si(a,b,-), S2(a,b,3), S3(a,b,3) values for p = 11 and small
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6. A remarkable combinatorial identity

In this section we sketch another proof of Theorem 4.1. We do this because at the heart of
this proof there is a remarkable identity (Theorem 6.1) for polynomials in two variables.
Notation. Let c,n be positive integers. For 1 6 i < j 6 n we will consider non-negative integers

0 6 mij6 2c and we set mij= 2c - mjj. For 1 6 k 6 n define
rk:Zmik+kai; Skzzmik+zmki

1<i<k k<i<n 1<i<k k<i<n

We will use the Pochhammer symbol (x)m = x(x + 1)(x + 2)---(x + m - 1).

Theorem 6.1. Let n > 2, ¢ > 1 be positive

s 2c integers. In Z|x,y| we have the identi
! <(_1)21<J H( ).H(x)rk(y)% g [xy] ty

m.,
i<j K k=1

X
= DY), )it + v+ 2n— &~ 200,
k=1 a
(g) 2727:12:0 37:13:0 37:14:0 te Zijnfl,n:()
c(5)
c(3)
(x+2)(x+3)(y+2)(y +3), ~4x(x + 2)y(y + 2), 6x(x + 1)y(y + 1),
—4x(x + 2)y(y + 2), x+2)x+3)y+2)(y+3)

is12(x+y+ 2)(x +y + 3) (here we canceled the factor xy(x + 1)(y + 1), which appears in each
term and on the right-hand side as well). The explicit form of the identity for n = 3 is
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2c
Z (_1)m12+m13+m23( 2c ) ( 2c ) ( 2c )
mig mag mi3

mi2,m23,m13=0

mi2+miz—1 2c—mi2+maz—1 4c—mi13—maz—1

< I @+& JI G@+r J[ (@+k
k=0 k=0 k=0

4c—mi1a—mi3—1 2c—ma3+mia—1 mi13+mo3z—1

< JI w+h H w+k ] w+9)
k=0 k=0 k=0
2¢) ! <
= —D(y+k—1)(r+y+4c—k)

k=1
2c
Har+k—1 (y+k—1)(z+y+4dc—k)

Sketch of the proof of Theorem 6.1. Consider equation (4.1) for a positive integer c, that is, the
classical Selberg integral formula in n dimensions. On the left- hand side we decouple

the
<(_1)21<J "] <:;) . ﬁ (/01 20T (1 — :Ek)bdxk>>

- (a+ (G =1+ (j —1)o)!
_H (a+b+ (n+j—2)c+1)!

2 2 i
= )" = Yoo (mc])xzn ]( xj)m”. We obtain

variables, i.e. we substitute (Ii’

X

m

Now writing I'(a+rk+1)I'(b+1) /T (a+rk+b+2) for the one-dimensional Selberg integrals on the
left-hand side, and substituting

x=a+1, y=-(a+2(n-1)c+b+1),
the obtained identity rearranges to the statement in the theorem.

We believe that the identity in Theorem 6.1 is interesting in its own right, but here is a
sketch of how to use the identity to prove Theorem 4.1.

Consider the left-hand side of (4.4), and carry out the same decoupling of variables as we
did in the proof of Theorem 6.1. We obtain a sum, parameterized by choices of mij, and in
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each summand we get a product of one-dimensional Fp-Selberg integrals of the form

f[llp w’?k (1_xk)bdxkfor some Ak. Substituting the value -Ax!b!/(Ak+b+1-p)! for such a one-
dimensional integral (formula (3.4)), we obtain an explicit formula (no integrals anymore!)
for the left-hand side of (4.4). The summation Theorem 6.1 brings that sum to a product form,
and one obtains exactly the right-hand side of (4.4).

A
f[l}p lkk(l —l’k)bdl'k

7. KZ equations

7.1. Special case of sl KZ equations over C. Let ¢,fh be the standard basis of the complex
Lie algeba sl2 with [ef] = h, [h,e] = 2e, [h,f] = -2f. The element

1
Q:e®f—|—f®e+§h®h € sly ®sly

is called the Casimir element. For i € Z-o0let Vibe the irreducible i + 1-dimensional slzmodule
with basis v; fvi,...,fivisuch that evi= 0, hvi= ivi.

Let u(z1,z2) be a function taking values in Vm @ Vm:and solving the KZ equations
Ju Q ou Q

KR = u R = U
821 Z1 — %2 ’ 822 Z9 — 21 ’

where k € C*is a parameter of the equations. Let Sing[m1 + m2 - 2n] denote the space of
singular vectors of weight m1+ mz2-2nin Vi @ Vi,

Sing[m1+ mz2-2n] ={v € Vi @ Vm:| hv = (m1+ mz2- 2n)v, ev = 0}.
This space is one-dimensional if the integer n satisfies 0 6 n 6 min(mimz2) and is

zerodimensional otherwise. According to [SV1], solutions u with values in Sing[m1+ m2 - 2n]
are expressible in terms of n-dimensional hypergeometric integrals

u(z1,z2) = Xur(z1,22)frvm Q fa-rvme

r

with

ur(z1,z2) = (z1 - z2)mimz/2x Wr(z1,22,t)¥ (21,22, t)dt1...dtn.
c

Here the domain of integration is the simplex C = {t € R"| 216 tn 6 -+ 6 t1 6 z2}. The function

Y(z1,22,t) is called the master function,
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W(z1,22,t) =Y (ti— )2/ Y(ti = z1)-miyic(ti = 22)-mz/x,

16i<j6n i=1
the rational functions W:(z1,22,t) are called the weight functions,

Wzt = 3 T = T

Lt — 2
IC{l ..... n} jeJ j¢J

The fact that u is a solution in Sing[m1+ m2 - 2n] implies that

(7.3) (n=-r)(mz-n+r+Dur+ (r+1)(mi-rjurs1=0, r=1,.,n-1

19

The coordinate functions urare generalizations of the Selberg integral. In fact, uo and un are

exactly the Selberg integrals. For example,

up(21,22) = (21 — 22 mlmz/?ﬁ/ H (t: —t;) 2 H(tz - 21)7%/%(% — 29) M/t

c 1<i<ji<n

The change of variables ti= (z2 - z1)si+ z1for i = 1,..,n gives

UO(ZhZQ) =

(—1)A(2 — 2)P - ( ml, Mo 1)

n!

11)’ A= n(nflﬁf'ml) +n

B— mima—2n(mi+ma)+2n(n—1)
- 2k

(74) wu(z1,22) = K

o (CDA(z1 = 2)" ﬁ L(1+2) D1 — =520 D(1 — =20
F(l 4 l) F(l o ml+mzfn*j+2)

j:1 K K
X i(—l)T (n) AP
r=0 r H] 1( ] + 1) Hj;lr(mQ _j + 1)
F,. Let V£ , VP,

Vi ®Vo,

Sing[my +my —2n], ={v € VE @ VI | hv = (m; +my —2n)v, ev =0}

.dt,
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This space is one-dimensional, if the integer n satisfies 0 6 n 6 min(mimz) and is
zerodimensional otherwise.

Choose the least positive integers M1,M2,M12,¢ such that

m; mM1Ma 1
]\[ = ——Z, M12 = y C = —
K 2K K

According to [SV2], solutions u with values in Sing[m1 + mz2 - 2n]p are expressible in terms of
n-dimensional Fp-hypergeometric integrals

(7.6) u(z1,z2) = Xur(z1,22)frvm @ fo-rvm:

r

with
ur(z1,z2) = (21— z2)Mw Wr(z1,22,t)Pp(21,22, t)dt1...dtn,
[1,..1],

where Wp(z1,22,t) is the master polynomial,

U, (21, 29,1) = H (ti — t;) QCHt —71 Z2)M2
i=1

1<i<j<n
Theorem 7.1. Assume that M1,M2,M12,c,n are positive integers such that
(7.7) Mi+ (n-1)c<p, M2+ (n-1)c<p,
p6Mi+ M2+ (n-1)c Mi+ M2+ (2n-2)c<2p-1.

Then the function u(z1,z2), defined by (7. 6) is given by the formula

3 v (My+ (j — 1)e)! (Ma + (5 — 1)c)!
(7.8)  u(z1, 29) (=" H (My + My + (n+j —2)c —p)!

n v n f?)1®fn_Tv2
< 2D () [T M+ G = DO T (Ma+ (= 1)e)

where
A=nM1+(n-1)c+1), B=Miz2+n(Mi+ M2+ (n-1)c - p).
For n =1 thisis [V7, Theorem 4.3].

Proof. The proof follows from the Fp-Selberg integral formula of Theorem 4.1 and formula

(7.3), cf. Section 7.1. References
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