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1. Introduction 

In 1944 Atle 

Selberg proved 

the following 

integral formula: (1.1) 

, 

see [Se1, AAR]1. Hundreds of papers are devoted to the generalizations of the Selberg integral 
formula and its applications, see for example [AAR, FW] and references therein. There are q-
analysis versions of the formula, the generalizations associated with Lie algebras, elliptic 
versions, finite field versions, see some references in [AAR, FW, As, Ha, Ka, Op, Ch, TV1, TV2, 

                                                        
1 In [Se2] Selberg remarks: “This paper was published with some hesitation, and in Norwegian, since I was 

rather doubtful that the results were new. The journal is one which is read by mathematics-teachers in the 
gymnasium, and the proof was written out in some detail so it should be understandable to someone who knew 
a little about analytic functions and analytic continuation.” See more in [FW]. 
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TV3, Wa1, Wa2, Wa3, Sp, vDS, R, FSV, An, Ev1, Ev2]. In the finite field versions, one considers 
additive and multiplicative characters of a finite field, which map the field to the field of 
complex numbers, and forms an analog of equation (1.1), in which both sides are complex 
numbers. The simplest of such formulas is the classical relation between Jacobi and Gauss 
sums, see [AAR, An, Ev1]. 

In this paper we suggest another version of the Selberg integral formula, in which the 
FpSelberg integral is an element of the finite field Fp with an odd prime number p of 
elements, see Theorem 4.1. 

Our motivation comes from the theory of the Knizhnik-Zamolodchikov (KZ) equations, see 
[KZ, EFK]. These are the systems of linear differential equations, satisfied by conformal 
blocks on the sphere in the WZW model of conformal field theory. The KZ equations were 
solved in multidimensional hypergeometric integrals in [SV1], see also [V1, V2]. The 
following general principle was formulated in [MV]: if an example of the KZ type equations 
has a one-dimensional space of solutions, then the corresponding multidimensional 
hypergeometric integral can be evaluated explicitly. As an illustration of that principle in 
[MV], an example of KZ equations with a one-dimensional space of solutions was considered, 
the corresponding multidimensional hypergeometric integral was reduced to the Selberg 
integral and then evaluated by formula (1.1). Other illustrations see in [FV, FSV, TV1, TV2, 
TV3, V3, RTVZ]. 

Recently in [SV2] the KZ equations were considered modulo a prime number p and 
polynomial solutions of the reduced equations were constructed, see also [SlV, V4, V5, V6, 
V7]. 
The construction is analogous to the construction of the multidimensional hypergeometric 
solutions, and the constructed polynomial solutions were called the Fp-hypergeometric 
solutions. 

In this paper we consider the reduction modulo p of the same example of the KZ equations, 
that led in [MV] to the Selberg integral. The space of solutions of the reduced KZ equations is 
still one-dimensional and, according to the principle, we may expect that the corresponding 
Fp-hypergeometric solution is related to a Selberg type formula. Indeed we have evaluated 
that Fp-hypergeometric solution by analogy with the evaluation of the Selberg integral and 
obtained our Fp-Selberg integral formula in Theorem 4.1. 

The paper contains three proofs of our Fp-Selberg integral formula. There might be more 
proofs. It would be interesting to see if our formula can be deduced from the known relations 
between the multidimensional Gauss and Jacobi sums, see for example [AAR, Section 8.11]. 

The paper is organized as follows. In Section 2 we collect useful facts. In Section 3 we 
introduce the notion of Fp-integral and discuss the integral formula for the Fp-beta integral. 
In Section 4 we formulate our main result, Theorem 4.1, and prove it by developing an 
Fpanalog of Aomoto’s recursion, defined in [Ao] for the Selberg integral. In Section 5 we give 
another proof of Theorem 4.1, based on Morris’ identity, which is deduced from the classical 
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Selberg integral formula (1.1) in [Mo]. In Section 6 we sketch a third proof of Theorem 4.1 
based on a combinatorial identity, also deduced from the Selberg integral formula (1.1). In 
Section 7 we discuss in more detail how our Fp-Selberg integral formula is related to the Fp-
hypergeometric solutions of KZ equations reduced modulo p. 

The authors thank C.Biro´, I.Cherednik, P.Etingof, E.Rains, A.Slinkin for useful discussions 
and the referee for helpful suggestions. 

2. Preliminary remarks 

2.1. Lucas’ Theorem. 

Theorem 2.1 ([L]). For nonnegative integers m and n and a prime p, the following congruence 
relation holds: 

2.2. Binomial lemma. 

Lemma 2.2 ([V7]). Let a,b be positive integers such that a < p, b < p, p 6 a + b. Then we have an 

identity in Fp, 

 
2.3. Cancellation of factorials. 

Lemma 2.3. If a,b are nonnegative integers and a + b = p − 1, then in Fp we have 

(2.3) a!b! = (−1)a+1 . 

Proof. We have a! = (−1)a(p−1)...(p−a) and p−a = b+1. Hence a!b! = (−1)a(p−1)! = 
(−1)a+1 by Wilson’s Theorem.  

3. Fp-Integrals 

3.1. Definition. Let p be an odd prime number and M an Fp-module. Let P(x1,...,xk) be a 
polynomial with coefficients in M, 

(3.1) P(x1,...,xk) = X cd xd11 ...xdkk. 
d 
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Let l = (l1,...,lk) ∈ Zk>0. The coefficient cl1p−1,...,lkp−1 is called the Fp-integral over the cycle 

[l1,...,lk]p and is denoted by R[l1,...,lk]p P(x1,...,xk)dx1 ...dxk. 
Lemma 3.1. For i = 1,...,k − 1 we have 

Z 
(3.2) P(x1,...,xi+1,xi,...,xk)dx1 ...dxk 

[l1,...,li+1,li,...,lk]p 
Z 

 = P(x1,...,xk)dx1 ...dxk . 
[l1,...,lk]p 

 
Lemma 3.2. For any i = 1,...,k, we have 

 

3.2. Fp-Beta integral. For nonnegative integers a,b the classical beta integral formula says 

(3.3) 

3.3. Then in Fp we have Theorem 

If a + b < p − 1, then 
Z 

(3.5) xa(1 − x)bdx = 0. 
[1]p 

Now Lemma 2.2 implies (3.4). Formula (3.5) is clear.  
4. n-Dimensional Fp-Selberg and Fp-Aumoto integrals 

4.1. n-Dimensional integral formulas. The n-dimensional Selberg integral formula for 
nonnegative integers a,b,c is 
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and for k = 1,...,n − 1, the n-dimensional Aomoto integral formula is 

(4.2) 

, 

[Se1, Ao, AAR]. 

Theorem 4.1. Assume that a,b,c are nonnegative integers such that 

(4.3) p − 1 6 a + b + (n − 1)c, a + b + (2n − 2)c < 2p − 1 . 

Then we have an integral formula in Fp: 

(4.4) 

. 

Also, if k = 1,...,n − 1, and 

(4.5) p − 1 6 a + b + (n − 1)c, a + b + (2n − 2)c < 2p − 2 , 

then 
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The first proof of Theorem 4.1 is given in Sections 4.2 - 4.4, the second in Section 5, and 
the third one is sketched in Section 6. 
Remark. Formula (4.4) can be rewritten as 

if additionally a + b + (2n − 2)c < 2p − 2. 

Remark. The fact that the Fp-Selberg integral on the left-hand side of (4.4) equals an explicit 
alternating product on the right-hand side of (4.4) is surprising. But even more surprising is 
the fact that the alternating product on the right-hand side of (4.4) is simply given by the 
alternating product on the right-hand of the classical formula (4.1) with just several of 
factorials shifted by p. 

Remark. The Selberg integral (4.1) is related to the sl2 KZ differential equations, see Section 
7, and is called the Selberg integral of type A1. The Selberg integral of type An, related to the 
sln+1 KZ differential equations, is introduced in [TV3, Wa1, Wa2, Wa3]. 

We call the Fp-integral (4.4) the Fp-Selberg integral of type A1. The Fp-Selberg integral of 
type An, n > 1, is introduced in [RV]. The Fp-Selberg integral formula of type An is deduced in 
[RV] from the Fp-Selberg integral formula (4.4) by induction on n. 

Remark. The integral analogous to (4.4) but with xi − xj factors raised to an odd power 
vanishes: 

n 

Z 

(4.8) Y (xi − xj)2c+1 Yxai (1 − xi)b dx1 ...dxn = 0. 
 [1,...,1]p 16i<j6n i=1 

Indeed, after expanding the (x1 − x2)2c+1 factor, the integral (4.8) equals 

with f symmetric in x1 and x2. The terms corresponding to m and 2c + 1 − m cancel each other, 
making the sum 0. 

4.2. Auxiliary lemmas. Denote 
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The polynomial 
n 

Φ(x1,...,xn,a,b,c) = Y (xi − xj)2c Yxai (1 − xi)b 
 16i<j6n i=1 
is called the master polynomial. Denote 

n 

Z 

 Sn(a,b,c) = Y (xi − xj)2c Yxia (1 − xi)bdx1 ...dxn , 
 [1,...,1]p 16i<j6n i=1 
 k n 

Z 

 Sk,n(a,b,c) = Yxi Y (xi − xj)2c Yxai (1 − xi)b dx1 ...dxn , 
 [1,...,1]p i=1 16i<j6n i=1 

for k = 0,...,n. Then S0,n(a,b,c) = Sn(a,b,c), Sn,n(a,b,c) = Sn(a + 1,b,c). By (3.2), we also have 
 k n 

Z 

 Sk,n(a,b,c) = Yxσi Y (xi − xj)2c Yxai (1 − xi)b dx1 ...dxn 
 [1,...,1]p i=1 16i<j6n i=1 

for any 1 6 σ1 < ··· < σk 6 n. 

Lemma 4.2. We have Sn(a,b + p,c) = Sn(a,b,c). 

Proof. We have (1−xi)b+p = (1−xi)b(1−xi)p = (1−xi)b(1−xpi ). Hence the factors (1−xi)b 
and (1 − xi)b+p contribute to the coefficient of xpi−1 in the same way.  
Lemma 4.3. If a + b + (2n − 2)c < 2p − 2 and c > 0, then n < p. 

Lemma 4.4. If a + b + (n − 1)c < p − 1, then Sn(a,b,c) = 0. 

 



 THE Fp-SELBERG INTEGRAL 9 

Lemma 4.6. If a + b + (2n − 2)c < 2p − 1, then Sn(a,b,c) = Sn(b,a,c). 

This transformation does not change the Fp-integral due to Lucas’ Theorem and property 

(a), see a similar reasoning in the proof of [V5, Lemma 5.2].  

4.3. Case a + b + (n − 1)c = p − 1. 

Lemma 4.7. If a + b + (n − 1)c = p − 1, then 

16i<j6n 

Here C.T. denotes the constant term. See the formula in [AAR, Section 8.8].  

Lemma 4.8. If a + b + (n − 1)c = p − 1, then 

Proof. We have 

 

By Lemma 2.2 we have a!(b + (n − 1)c)! = (−1)b+(n−1)c+1, (a + c)!(b + (n − 2)c)! = 
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(−1)b+(n−2)c+1, and so on. This proves the lemma.  

Lemmas 4.7 and 4.8 prove formula (4.4) for a + b + (n − 1)c = p − 1. 

4.4. Aomoto recursion. We follow the paper [Ao], where recurrence relations were 
developed for the classical Selberg integral. See also [AAR, Section 8.2]. Using Lemma 3.2, 
for k = 1,...,n we have 

(4.13) 

. 

Lemma 4.9. The Fp-integral 

equals 0 if 2 6 j 6 k and equals Sk−1,n/2 if k < j 6 n. The Fp-integral 

equals Sk,n/2 if 2 6 j 6 k and equals Sk,n if k < j 6 n. 

Lemma 4.10. For k = 1,...,n we have 

Proof. Using Lemma 4.9 we rewrite (4.13) as 

0 = (a + 1)Sk−1,n − (a + b + 2)Sk,n + c(n − k)Sk−1,n − c(2n − k − 1)Sk,n . 
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4.5. Proof of Theorem 4.1. Theorem 4.1 is proved by induction on a and b. The base 
induction step a + b + (n − 1)c = p − 1 is proved in Section 4.3. 

Lemma 4.10 gives 

Together with the symmetry Sn(a,b,c) = Sn(b,a,c) this gives formula (4.4). Then formula (4.16) 
gives formula (4.6). Theorem 4.1 is proved. 

4.6. Relation to Jacobi polynomials. The statements (4.6) for different values of k can be 
captured in a single equation, which involves a Jacobi polynomial – like it was done by 
K.Aomoto in [Ao] for the classical Selberg integral. Recall that the degree n Jacobi polynomial 
is 

Proposition 4.11. Assuming inequalities (4.5) let α = (a + 1)/c − 1, β = (b + 1)/c − 1. Then 

Z xσ1xσ2 ...xσkΦ(x,a,b,c)dx1 ...dxn, 
[1,...,1]p 

which — by symmetry (3.2) — are equal to Sk,n(a,b,c). Substituting 

 

from (4.4) and (4.6) yields (4.17). 

5. Fp-Selberg integral from Morris’ identity 

5.1. Morris’ identity. In this section we work out the integral formula (4.4) for the FpSelberg 
integral from Morris’ identity. Suppose that α,β,γ are nonnegative integers. Then 

n 

(5.1) C.T. Y(1 − xi)α(1 − 1/xi)β Y (1 − xj/xk)γ 
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Morris identity was deduced in [Mo] from the integral formula (4.1) for the classical Selberg 
integral, see [AAR, Section 8.8]. 

The left-hand side of (5.1) can be written as 
n 

(5.2) C.T.(−1)(n2)γ+nβ Y (xi − xj)2γ Yxi−β−(n−1)γ(1 − xi)α+β , 
 16i<j6n i=1 

while 

where the constant term is projected to Fp. 
Putting a + 1 − p = −β − (n − 1)γ, b = α + β ,c = γ, or 

(5.4) α = a + b + (n − 1)c + 1 − p, β = p − a − (n − 1)c − 1, γ = c. 

we obtain the following theorem. 

Theorem 5.1. If the nonnegative integers a,b,c satisfy the inequalities 

(5.5) p − 1 6 a + b + (n − 1)c, a + (n − 1)c 6 p − 1, 

then the Fp-Selberg integral is given by the formula: (5.6) 

, 

where the integer on the right-hand side is projected to Fp. 
Lemma 5.2. If both inequalities (4.3) and (5.5) hold, that is, if 

(5.7) p − 1 6 a + b + (n − 1)c, a + b + (2n − 2)c < 2p − 1 , 

(5.8) a + (n − 1)c 6 p − 1, 

then in Fp we have 
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and hence (5.6) 

Notice that by Lemma 4.5 we have Sn(a,b,c) = 0 if inequality (5.8) does not hold. Proof. We 

have 

 

by Lemma 2.3. This implies the Lemma 5.2.  

5.2. More on values of Sn(a,b,c). 

Theorem 5.3. If inequalities (5.5) hold and a = p − 1 − (n − 1)c − k, then 

where the integer in the right-hand side is projected to Fp.  

 
If a = p − 1 − (n − 1)c − k, then this equals 
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Substituting this to (5.6) we obtain (5.11).  

Example. Formula (5.11) gives 

and so on. Notice that these values are not given by Theorem 4.1. See more examples in 
Figure 1. 

5.3. Factorization properties. By Lemmas 4.2 and 4.5 we have Sn(a,b+p,c) = Sn(a,b,c) and 
Sn(a,b,c) = 0 if a > p − (n − 1)c. Thus, for given c, it is enough to analyze Sn(a,b,c) in the rectangle 
Ω = {(a,b) | a ∈ [0,p − 1 − (n − 1)c],b ∈ [0,p − 1]}. This rectangle is partitioned into n smaller 
rectangles : 

Ω0(n,c) = {(a,b) | a ∈ [0, p − 1 − (n − 1)c], b ∈ [0, p − 1 − (n − 1)c]}, 
Ωi(n,c) = {(a,b) | a ∈ [0, p − 1 − (n − 1)c],  

 b ∈ [p − 1 − (n − i)c + 1, p − 1 − (n − i − 1)c]}, i = 1,...,n − 1, 

see the tables in Figure 1. The values of Sn(a,b,c) in Ω0(n,c) are given by Theorem 4.1 and 
Lemma 4.4. The values of Sn(a,b,c) in a rectangle Ωi(n,c) are given by Theorem 4.1 and Lemma 
4.4 also, but applied to Fp-Selberg integrals of smaller dimensions with the same value of c 
and suitable choices of values for a and b. Namely, we have the following factorization 
property. 

Theorem 5.4. For (a,b) ∈ Ωi(n,c) with i > 0, we have 

(5.12) 

. 
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Proof. The theorem follows from formula (5.11) and Lucas’ Theorem.  

 

Figure 1. Tables of S1(a,b,−), S2(a,b,3), S3(a,b,3) values for p = 11 and small 
integers a,b. Yellow shading indicates the range covered by Theorem 4.1, and 
the dotted lines enclose the region covered by Theorem 5.1. The structure of 
the gray shading is discussed in Section 5.3. 
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6. A remarkable combinatorial identity 

In this section we sketch another proof of Theorem 4.1. We do this because at the heart of 
this proof there is a remarkable identity (Theorem 6.1) for polynomials in two variables. 
Notation. Let c,n be positive integers. For 1 6 i < j 6 n we will consider non-negative integers 

0 6 mij 6 2c and we set mij = 2c − mij. For 1 6 k 6 n define 

We will use the Pochhammer symbol (x)m = x(x + 1)(x + 2)···(x + m − 1). 

Theorem 6.1. Let n > 2, c > 1 be positive 
integers. In Z[x,y] we have the identity 

! 
X 

m 

(x + 2)(x + 3)(y + 2)(y + 3), −4x(x + 2)y(y + 2), 6x(x + 1)y(y + 1), 

 − 4x(x + 2)y(y + 2), (x + 2)(x + 3)(y + 2)(y + 3) 

is 12(x + y + 2)(x + y + 3) (here we canceled the factor xy(x + 1)(y + 1), which appears in each 
term and on the right-hand side as well). The explicit form of the identity for n = 3 is 
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Sketch of the proof of Theorem 6.1. Consider equation (4.1) for a positive integer c, that is, the 
classical Selberg integral formula in n dimensions. On the left- hand side we decouple 
the 

variables, i.e. we substitute ( . We obtain 

X 

m 

. 

Now writing Γ(a+rk +1)Γ(b+1)/Γ(a+rk +b+2) for the one-dimensional Selberg integrals on the 
left-hand side, and substituting 

 x = a + 1, y = −(a + 2(n − 1)c + b + 1), 

the obtained identity rearranges to the statement in the theorem.  

We believe that the identity in Theorem 6.1 is interesting in its own right, but here is a 
sketch of how to use the identity to prove Theorem 4.1. 

Consider the left-hand side of (4.4), and carry out the same decoupling of variables as we 
did in the proof of Theorem 6.1. We obtain a sum, parameterized by choices of mij, and in 
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each summand we get a product of one-dimensional Fp-Selberg integrals of the form 

for some Ak. Substituting the value −Ak!b!/(Ak+b+1−p)! for such a one- 
dimensional integral (formula (3.4)), we obtain an explicit formula (no integrals anymore!) 
for the left-hand side of (4.4). The summation Theorem 6.1 brings that sum to a product form, 
and one obtains exactly the right-hand side of (4.4). 

7. KZ equations 

7.1. Special case of sl2 KZ equations over C. Let e,f,h be the standard basis of the complex 
Lie algeba sl2 with [e,f] = h, [h,e] = 2e, [h,f] = −2f. The element 

is called the Casimir element. For i ∈ Z>0 let Vi be the irreducible i + 1-dimensional sl2module 
with basis vi,fvi,...,fivi such that evi = 0, hvi = ivi. 

Let u(z1,z2) be a function taking values in Vm1 ⊗ Vm2 and solving the KZ equations 

where κ ∈ C× is a parameter of the equations. Let Sing[m1 + m2 − 2n] denote the space of 

singular vectors of weight m1 + m2 − 2n in Vm1 ⊗ Vm2, 

Sing[m1 + m2 − 2n] = {v ∈ Vm1 ⊗ Vm2 | hv = (m1 + m2 − 2n)v, ev = 0}. 
This space is one-dimensional if the integer n satisfies 0 6 n 6 min(m1,m2) and is 
zerodimensional otherwise. According to [SV1], solutions u with values in Sing[m1 + m2 − 2n] 
are expressible in terms of n-dimensional hypergeometric integrals 

u(z1,z2) = Xur(z1,z2)frvm1 ⊗ fn−rvm2 
r 

with 
Z 

 ur(z1,z2) = (z1 − z2)m1m2/2κ Wr(z1,z2,t)Ψ(z1,z2,t)dt1 ...dtn . 
C 

Here the domain of integration is the simplex C = {t ∈ Rn | z1 6 tn 6 ··· 6 t1 6 z2}. The function 
Ψ(z1,z2,t) is called the master function, 
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n 

Ψ(z1,z2,t) = Y (ti − tj)2/κ Y(ti − z1)−m1/κ(ti − z2)−m2/κ , 
 16i<j6n i=1 

the rational functions Wr(z1,z2,t) are called the weight functions, 

The fact that u is a solution in Sing[m1 + m2 − 2n] implies that 

(7.3) (n − r)(m2 − n + r + 1)ur + (r + 1)(m1 − r)ur+1 = 0, r = 1,...,n − 1. 

The coordinate functions ur are generalizations of the Selberg integral. In fact, u0 and un are 
exactly the Selberg integrals. For example, 

The change of variables ti = (z2 − z1)si + z1 for i = 1,...,n gives 
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This space is one-dimensional, if the integer n satisfies 0 6 n 6 min(m1,m2) and is 
zerodimensional otherwise. 

Choose the least positive integers M1,M2,M12,c such that 

According to [SV2], solutions u with values in Sing[m1 + m2 − 2n]p are expressible in terms of 
n-dimensional Fp-hypergeometric integrals 

(7.6) u(z1,z2) = Xur(z1,z2)frvm1 ⊗ fn−rvm2 
r 

with 
Z 

 ur(z1,z2) = (z1 − z2)M12 Wr(z1,z2,t)Ψp(z1,z2,t)dt1 ...dtn , 
[1,...,1]p 

where Ψp(z1,z2,t) is the master polynomial, 

Theorem 7.1. Assume that M1,M2,M12,c,n are positive integers such that 

(7.7) M1 + (n − 1)c < p, M2 + (n − 1)c < p, 

 p 6 M1 + M2 + (n − 1)c, M1 + M2 + (2n − 2)c < 2p − 1 . 

Then the function u(z1,z2), defined by (7.6), is given by the formula 

where 

 A = n(M1 + (n − 1)c + 1), B = M12 + n(M1 + M2 + (n − 1)c − p). 

For n = 1 this is [V7, Theorem 4.3]. 

Proof. The proof follows from the Fp-Selberg integral formula of Theorem 4.1 and formula 
(7.3), cf. Section 7.1.  References 
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