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Abstract. We present an Fp-Selberg integral formula of type An, in which the Fp-Selberg integral 
is an element of the finite field Fp, where p is an odd prime. The formula is motivated by analogy 
between multidimensional hypergeometric solutions of the KZ equations and polynomial 
solutions of the same equations reduced modulo p. The A1-type formula was proved in a 
previous paper by the authors. The A2-type formula is proved in this paper. We also sketch the 
proof of the An-type formula for n> 2. 
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1. Introduction 

In 1944 Atle 

Selberg proved 

the following 

integral formula: (1.1) 

, 

where α,β,γ are complex numbers such that Reα > 0, Reβ > 0, and Reγ > 
−min[(Reα)/(n − 1)Reβ)/(n − 1)]. See [Se, AAR]. Hundreds of papers are devoted to the 
generalizations of the Selberg integral formula and its applications, see for example [AAR, 
FW] and references therein. There are q-analysis versions of the formula, the generalizations 
associated with Lie algebras, elliptic versions, finite field versions, see some references in 
[AAR, FW, As, Ha, Ka, Op, Ch, TV1, TV2, TV4, Wa1, Wa2, Sp, R, FSV, An, Ev]. In the finite field 
versions, one considers additive and multiplicative characters of a finite field, which map the 
field to the field of complex numbers, and forms an analog of equation (1.1), in which both 
sides are complex numbers. The simplest of such formulas is the classical relation between 
Jacobi and Gauss sums, see [AAR, An, Ev]. 

In [RV] we suggested another version of the Selberg integral formula, in which the 
FpSelberg integral is an element of the finite field Fp with an odd prime number p of elements. 

Our motivation in [RV] came from the theory of Knizhnik-Zamolodchikov (KZ) equations, 
see [KZ, EFK]. These are the systems of linear differential equations, satisfied by conformal 
blocks on the sphere in the WZW model of conformal field theory. The KZ equations were 
solved in multidimensional hypergeometric integrals in [SV1], see also [V1, V2]. The 
following general principle was formulated in [MuV]: if an example of the KZ-type equations 
has a one-dimensional space of solutions, then the corresponding multidimensional 
hypergeometric integral can be evaluated explicitly. As an illustration of that principle in 
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[MuV], an example of the sl2 differential KZ equations with a one-dimensional space of 
solutions was considered, the corresponding multidimensional hypergeometric integral was 
reduced to the Selberg integral and then evaluated by formula (1.1). See other illustrations 
in [FV, FSV, TV1, TV2, TV4, V3, RTVZ]. 

Recently in [SV2] the KZ equations were considered modulo a prime number p and 
polynomial solutions of the reduced equations were constructed, see also [SlV, V3, V4, V5, 
V6, V7]. The construction is analogous to the construction of the multidimensional 
hypergeometric solutions, and the constructed polynomial solutions were called the Fp-
hypergeometric solutions. 

In [RV] we considered the reduction modulo p of the same example of the sl2 differential 
KZ equations, that led in [MuV] to the Selberg integral. We evaluated the corresponding 
Fphypergeometric solution by analogy with the evaluation of the Selberg integral and 
obtained the Fp-Selberg integral formula in [RV, Theorem 4.1]. 

In [TV4, Theorem 3.3] the Selberg integral formula of type A2 was proposed and proved, 

Here Reα > 0, Reβ1 > 0, Reβ2 > 0, Reγ < 0 and |Reγ| is sufficiently small. The integration cycle 
Ck1,k2[0,1] is defined in [TV4, Section 3], also see its definition in [Wa1, Wa2, FW]. 

The starting point of this formula was an example of the joint system of the sl3 

trigonometric differential KZ equations and associated dynamical difference equations, an 
example in which the space of solutions is one-dimensional. The An-type Selberg integral 
formula for arbitrary n was obtained in [Wa1, Wa2], see also [FW]. 

In this paper we consider the reduction modulo p of the same example of the joint system 
of the sln+1 trigonometric differential KZ equations and associated dynamical difference 
equations, which led in [TV4, Wa1] to the An-type Selberg integral formula. Using the 
reduction modulo p of these differential and difference equations we obtain our An-type 
FpSelberg integral formula for n > 1, see (3.11). For n = 1 the formula is proved in [RV, 
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Theorem 4.1]. For n = 2 the formula is proved in Theorem 3.4 below. We sketch the proof of 
the formula for n > 2 in Section 5.4. The details of that sketch will appear elsewhere. 

The paper is organized as follows. In Section 2 we collect useful facts. In Section 3 we 
introduce the notion of Fp-integral and discuss the integral formula for the Fp-beta integral. 
In Section 3 we define the An-type Fp-Selberg integral and present its evaluation formula. 
Theorem 3.4 states that the formula holds for n = 2. In Section 3 we also prove Theorem 3.7, 
which is used in the transition from the An−1-type formula to the An-type formula, in 
particular, in the transition from the known A1-type formula to the new A2-type formula. In 
Section 4 we sketch the proof of formula (1.2) following [TV4]. In Section 5 we adapt this 
proof to prove Theorem 3.4. 

The authors thank I.Cherednik, P.Etingof, E.Rains for useful discussions. 

2. Preliminary remarks 

In this paper p is an odd prime number. 
2.1. Cancellation of factorials. 

Lemma 2.1. If a,b are non-negative integers and a + b = p − 1, then in Fp we have 

(2.1) a!b! = (−1)a+1 . 

Proof. We have a! = (−1)a(p−1)...(p−a) and p−a = b+1. Hence a!b! = (−1)a(p−1)! = 
(−1)a+1 by Wilson’s Theorem.  

2.2. Dyson’s formula. We shall use Dyson’s formula 

where C.T. denotes the constant term. See the formula in [AAR, Section 8.8]. 

2.3. Fp-Integrals. Let M be an Fp-module. Let P(x1,...,xk) be a polynomial with coefficients in M, 

(2.3) P(x1,...,xk) = X cd xd11 ...xdkk. 
d 

Let l = (l1,...,lk) ∈ Zk>0. The coefficient cl1p−1,...,lkp−1 is called the Fp-integral over the p-cycle [l1,...,lk]p 

and is denoted by R[l1,...,lk]p P(x1,...,xk)dx1 ...dxk. 
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Lemma 2.2. For i = 1,...,k − 1 we have 
Z 

(2.4) P(x1,...,xi+1,xi,...,xk)dx1 ...dxk 
[l1,...,li+1,li,...,lk]p 

Z 
 = P(x1,...,xk)dx1 ...dxk . 

[l1,...,lk]p 

 

Lemma 2.3. For any i = 1,...,k, we have 

 

(2.5) [k]p := [(1)k1;(k1)k2;...;(kn−1)kn]p, 

where xy denotes the y-tuple (x,...,x). For example for n = 2, k = (3,2), we have [k]p = 
[1,1,1;3,3]p. 
2.4. Fp-Beta integral. For non-negative integers the classical beta integral formula says 

Theorem 2.4 ([V7]). Let a < p, b < p, p − 1 6 a + b. Then in Fp we have 

If a + b < p − 1, then 

3. Fp-Selberg integral of type An 

3.1. Admissible parameters. Let k = (k1,...,kn) ∈ Zn>0 and ki > ki+1, i = 1,...,n − 1. 
Set k0 = kn+1 = 0. 

Let a,b1,...,bn,c ∈ Z>0. Denote b = (b1,...,bn) and 



6 R.RIMANYI AND A. VARCHENKO´ 

 
where a1 = a, a2 = ··· = an = 0; δs,1 is 1 if s = 1 and is zero otherwise. 

We say that a,b1,...,bn,c ∈ Z>0 are admissible if a+(k1−1)c < p−1 and for any factorial x! on the 
right-hand side of (3.1) we have 0 6 x < p. The set of all admissible (a,b,c) is denoted by Ak. 

(3.2) 0 6 r − s + bs + ··· + br + (s − r)c, 

r − s + bs + ··· + br + (kr − kr+1 + s − r − 1)c 6 p − 1, 

for 1 6 s 6 r 6 n; 

(3.3) 0 6 r − s + 1 + bs + ··· + br + (s − r + ks − ks−1 − 1)c, r − s + 1 + bs + ··· + br + (s 

− r + kr − kr+1 + ks − ks−1 − 2)c 6 p − 1, 

for 2 6 s 6 r 6 n; 

(3.4) p 6 r + a + b1 + ··· + br + (k1 − r)c, 

r + a + b1 + ··· + br + (kr − kr+1 + k1 − r − 1)c < 2p, 

for 1 6 r 6 n; 

(3.5) a + (k1 − 1)c < p − 1, b1 > p − 1 − (a + (k1 − 1)c), 0 < k1c < p. 
 

Lemma 3.2. Assume that (a,b,c) ∈ Ak. Then 

(3.6) b1 > p − 1 − (a + (k1 − 1)c), bs > (ks−1 − ks + 1)c − 1, s = 2,...,n. 

Proof. The inequality bs > (ks−1−ks+1)c−1 for s = 2,...,n follows from the first inequality in (3.3) 

for r = s. The inequality b1 > p−1−(a+(k1 −1)c) follows from the first inequality in (3.4) for r = 

1.  

Example. Let n = 1, k = (k1). Then 
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and A(k1) consists of a,b,c ∈ Z>0 such that 

(3.8) a + (k1 − 1)c < p − 1, b1 + (k1 − 1)c 6 p − 1, k1c 6 p − 1, p − 1 6 a + b1 + (k1 − 1)c, a + 

b1 + (2k1 − 2)c < 2p − 1 . 

Define the master polynomial 

Denote 
Z 

(3.10) Sk(a,b,c) = Φk dt. 
[k]p 

The Fp-integral Sk(a,b,c) is called the Fp-Selberg integral of type An. 

Conjecture 3.3. Let n be a positive integer. Let k = (k1,...,kn) ∈ Zn>0 , ki > ki+1, i = 1,...,n − 1. Then 
for any (a,b,c) ∈ Ak we have the equality in Fp: 

(3.11) Sk(a,b,c) = Rk(a,b,c). 

For n = 1 formula (3.11) is proved in [RV, Theorem 4.1]. For n = 2 formula (3.11) is proved 
in the next theorem. 

Theorem 3.4. Let k = (k1,k2) ∈ Z2>0 , k1 > k2. Then for any (a,b,c) ∈ Ak we have the equality in Fp: 

(3.12) Sk(a,b,c) = Rk(a,b,c). 

Formula (3.11) for n = 2 is deduced from formula (3.11) for n = 1 in Section 5. 
More generally, for any k formula (3.11) for n = k can be deduced from formula (3.11) for 

n = k − 1 similarly, see the sketch of that in Section 5.4. Details of that deduction will appear 
elsewhere. Because of that formula (3.11) for any n is formulated as a conjecture and not as 
a theorem. 
Remark. Theorem 3.4 can be extended to the case of k such that k1 > k2, but the structure of 
inequalities in Lemma 3.1 will depend on the appearance of the equality k1 = k2 in k, and the 
proof of Theorem 3.4 will split into different sub-cases. To shorten the exposition we restrict 
ourselves to k such that k1 > k2. 
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Example. Here is the simplest A2-type Fp-Selberg integral formula with k1 = k2 = 1. 

Theorem 3.5. Assume that a,b1,b2,c are integers such that 
0 6 a < p, 0 < c 6 p, 0 6 b2 − c + 1 < p, 

0 6 b1 + b2 − c + 1 < p, p − 1 6 a + b1 + b2 − c + 1 < 2p − 1. 
Then in Fp we have 

Proof. Change variables s = t + (1 − t)v, then the Fp-integral becomes equal to 
Z ta(1 − t)b1+b2−c+1vp−c(1 − v)b2dtdv. 

[1,1]p 

Applying the Fp-beta integral formula we obtain the theorem.  

The simplest A3-type Fp-Selberg integral formula k1 = k2 = k3 = 1 is given by the next 
theorem. 

Theorem 3.6. Let a,b1,b2,b3,c be integers such that all factorials on the right-hand side of 
formula (3.14) are factorials of non-negative integers less than p. Then in Fp we have 

Proof. The proof is the same as the proof of the previous theorem.  

The versions of identities (3.13), (3.14) over complex numbers see in [MuV, Theorem 1]. 

3.3. Relation between the Fp-Selberg integrals of types An−1- and An. 

Theorem 3.7. Let n > 1 and k = (k1,...,kn), k0 = (k1,...,kn−1), b = (b1,...,bn), b0 = (b1,...,bn−1). Assume 
that formula (3.11) holds for the Fp-Selberg integral S[k0]p(a,b0,c) of type An−1. Also assume that 
bn = (kn−1 −kn +1)c−1. Then formula (3.11) holds for the Fp-Selberg integral S[k]p(a,b,c) of type 
An. 

Φ[k0]p(t(1),...,t(n−1);a,b0,c) of Φ[k]p(t;a,b,c) and are used to calculate the coefficient of 
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More precisely, under the assumptions of the theorem we have 

kn kn−1 

 YY (n) (n−1) p−c Y (n) (n) 2c 
(tj − tj0 ) (tj − tj0 ) , j=1 j0=1

 16j<j06kn 

see Dyson’s formula. We have (−1)bnkn+ckn(kn−1)/2 = (−1)(kn−1kn−kn(kn+1)/2)c−kn. Hence 

where Sk0(a,b0,c) = Rk0(a,b0,c) holds by assumptions. To prove the theorem we need to show 
that 

Indeed we have 

 

where in the last step we use the cancellation Lemma 2.1. The theorem is proved.  

Corollary 3.8. Let n > 1, k = (k1,...,kn), and (a,b1,c) ∈ A(k1). Let b = (b1,...,bn), where bi = (ki−1 −ki 

+1)c−1 for i = 2,...,n. Then formula (3.11) holds for the Fp-Selberg integral S[k]p(a,b,c) of type An. 



10 R.RIMANYI AND A. VARCHENKO´ 

Proof. Formula (3.11) for the Fp-Selberg integrals of type A1 is proved in [RV]. Hence the 
corollary follows from Theorem 3.7 by induction on n.  

4. The A2-type Selberg integral over C 

In this section we formulate the A2-type Selberg integral formula over C, formulated and 
proved in [TV4], and sketch the proof of the formula, following [TV4]. In Section 5 we adapt 
this proof to prove the A2-type Fp-Selberg integral formula, that is, formula (3.11) for n = 2. 

4.1. The A2-formula over C. For k1 > k2 > 0 let t = (t1,...,tk1), s = (s1,...,sk2). Define the master 
function 
 k1 k2 k1 k2 
(4.1) Φ(t;s) = Ytαi −1(1 − ti)β1−1 Y(1 − sj)β2−1 YY|sj − ti|−γ 
 i=1 j=1 i=1 j=1 

× Y |ti − ti0|2γ Y |sj − sj0|2γ 16i<i06k1 16j<j06k2 

and the integral 
Z 

(4.2) S˜(α,β1,β2,γ) = Φ(t;s)dtds, 
Ck1,k2[0,1] 

where the integration cycle Ck1,k2[0,1] is defined in [TV4, Section 3]. The explicit description 
of this cycle is of no importance in this paper. 

Theorem 4.1 ([TV4, Theorem 3.3]). Let α,β1,β2,γ be complex numbers such that Reα > 
0, Reβ1 > 0, Reβ2 > 0, Reγ < 0 and |Reγ| sufficiently small. Then 

In the next Sections 4.2, 4.3 we sketch the proof of formula (4.3) following [TV4]. 
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4.2. Weight functions. To evaluate S˜(α,β1,β2,γ) we introduce a collection of new integrals 

Jl1,l2,m(α,β1,β2,γ), which also can be evaluated explicitly, see [TV4]. For a function f(t1,...,tk) set 

σ∈Sk 

Given k1 > k2 > 0, we say that a triple of non-negative integers (l1,l2,m) is allowable if l1 6 k1 

− k2 + l2, l2 6 k2 and m 6 min(l1,l2). For any allowable triple (l1,l2,m) define the weight 

function 

Wl1,l2,m(t1,...,tk1;s1,...,sk2) = 

 l k m k 

= Symt1,...,tk1 Sym 
 a=1 a= 1+1 =1 = 2+1 

and the integral 
Z 

 Jl1,l2,m(α,β1,β2,γ) = Φ(t;s)Wl1,l2,m(t;s)dtds. 
Ck1,k2[0,1] 

In particular, 

(4.4) J0,k2,0(α,β1,β2,γ) = S˜(α,β1 + 1,β2,γ). 

4.3. Representations of sl3. Consider the complex Lie algebra sl3 with standard generators 
f1,f2,e1,e2,h1,h2, simple roots σ1, σ2, fundamental weights ω1, ω2. Let Vλ1, Vλ2 be the irreducible 
sl3-modules with highest weights 

 

and highest weight vectors v1, v2. For k1 > k2 > 0 consider the weight subspace 
Vλ1⊗Vλ2[λ1+λ2−k1σ1−k2σ2] of the tensor product Vλ1⊗Vλ2 and the singular weight subspace 
SingVλ1⊗Vλ2[λ1+λ2−k1σ1−k2σ2] consisting of the vectors w ∈ Vλ1⊗Vλ2[λ1+λ2−k1σ1−k2σ2] such 
that e1w = 0, e2w = 0. A basis of Vλ1 ⊗ Vλ2[λ1 + λ2 − k1σ1 − k2σ2] is formed by the 
vectors 
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labeled by allowable triples (l1,l2,m). It is known from the theory of KZ equations that the 
vector 

J = X (−1)l1Jl1,l2,m(α,β1,β2,γ)vl1,l2,m 
l1,l2,m 

is a singular vector, see [M, Theorem 2.4], [MaV, Corollary 10.3], cf. [RSV]. 
The singular vector equations e1J = 0, e2J = 0 are calculated with the help of the formulas: 

[h1,[f1,f2]] = −[f1,f2], [h2,[f1,f2]] = −[f1,f2], [e1,[f1,f2]] = f2, [e2,[f1,f2]] = −f1. 

Here are some of the singular vector relations. 
Theorem 4.2 (cf. [TV4, Theorem 5.2]). We have 

Proof. We have 

Calculating the coefficient of = 0 we obtain 

(4.6) (k1 − k2 + i + 1)γ J0,i,0 + (β2 + iγ)J0,i+1,0 = 0. 

This implies the theorem.  

Hence 

Combining (4.4) and (4.7) we observe that formula (4.3) is equivalent to the formula 
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Denote by R0,0,0(α,β1,β2,γ) the right-hand side of (4.8). 
To prove (4.8) we use the following observation. The weight subspace Vλ1[λ1 − k1σ1 − k2σ2] 

⊂ Vλ1 is one-dimensional with a basis vector 

By [MaV, Theorem 5.1] the vector-valued function J0,0,0(α,β1,β2,γ)v0,0,0 satisfies the dynamical 
difference equations introduced in [TV3], 

(4.9) J0,0,0(α,β1 − 1,β2,γ)v0,0,0 = J0,0,0(α,β1,β2,γ)B1v0,0,0 , 

(4.10) J0,0,0(α,β1,β2 − 1,γ)v0,0,0 = J0,0,0(α,β1,β2,γ)B2v0,0,0 . 

Here B1, B2 are certain linear operators acting on Vλ1 and preserving the weight 
decomposition of Vλ1, see formulas for these operators in the example in [MaV, Section 7.1] 
and in [MaV, Section 3.1], also see [TV3, Formula (8)]. 

Written explicitly equations (4.9), (4.10) give us the difference equations for the scalar 
function J0,0,0(α,β1,β2,γ) with respect to the shift of the variables β1 → β1 − 1 and β2 → β2 − 1, 

(4.11)

  

(4.12) 
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. 

The difference equations for J0,0,0(α,β1,β2,γ) are the same as the difference equations for the 
function R0,0,0(α,β1,β2,γ) with respect to the shift of the variables β1 → β1 − 1 and β2 → β2 − 1. 
Therefore, the functions J0,0,0(α,β1,β2,γ) and R0,0,0(α,β1,β2,γ) are proportional up to a periodic 
function of β1,β2. The periodic function can be fixed by comparing asymptotics as Reβ1 → ∞, 
Reβ2 → ∞. This finishes the proof in [TV4] of formulas (4.8) and (4.3). 

5. The A2-type Selberg integrals over Fp 

5.1. Relations between Fp-integrals. For k = (k1,k2), k1 > k2 > 0 and integers 0 < 
a,b1,b2,c < p define the master polynomial 
 k1 k2 k1 k2 
(5.1) Φk(t;s;a,b1,b2,c) = Ytai (1 − ti)b1 Y(1 − sj)b2 YY(sj − ti)p−c 
 i=1 j=1 i=1 j=1 

× Y (ti − ti0)2c Y (sj − sj0)2c 16i<i06k1 16j<j06k2 

and the Fp-integral 
Z 

(5.2) Sk(a,b1,b2,c) = Φk(t;s;a,b1,b2,c)dtds, 
[k]p 

where the p-cycle [k]p is defined in (2.5). This is the A2-type Fp-Selberg integral, see (3.10). 
For an allowable triple (l1,l2,m) define the Fp-integral 

 

where Wl1,l2,m(t;s) is the weight function defined in Section 4.2. Clearly 
we have 

(5.4) I0,k2,0(a,b1,b2,c) = Sk(a − 1,b1,b2 − 1,c). 
Denote 
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(5.5) 

, 

Theorem 5.1. Assume that k1 < p. 
(i) Assume that every factor in B0 in the numerator or denominator is a nonzero element 

of Fp. Then 

(5.6) I0,k2,0(a,b1,b2,c) = B0(a,b1,b2,c)I0,0,0(a,b1,b2,c). 

(ii) Assume that every factor in B1 in the numerator or denominator is a nonzero element 
of Fp and b1 > 1, then 

(5.7) I0,0,0(a,b1 − 1,b2,c) = B1(a,b1,b2,c)I0,0,0(a,b1,b2,c). 

(iii) Assume that every factor in B2 in the numerator or denominator is a nonzero element 
of Fp and b2 > 1, then 

(5.8) I0,0,0(a,b1,b2 − 1,c) = B2(a,b1,b2,c)I0,0,0(a,b1,b2,c). 

Proof. Equation (5.6) is an Fp-analog of equation (4.7) and its proof is analogous to the proof 
of equation (4.7). 

More precisely, consider the complex Lie algebra sl3 with standard generators f1,f2, e1,e2, 
h1,h2, simple roots σ1, σ2, fundamental weights ω1, ω2. Let Vλ1, Vλ2 be the irreducible sl3modules 
with highest weights 
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labeled by allowable triples (l1,l2,m). 

Lemma 5.2. The vector 

I = X (−1)l1Il1,l2,lm(a,b1,b2,c)vl1,l2,m 
l1,l2,m 

Proof. Equations e1I = 0, e2I = 0 are Fp-analogs of equations e1J = 0, e2J = 0 over C. 
For i = 1,2, the vector eiJ is the integral of a certain differential k1 + k2-form µi. It is shown 

in [SV2, Theorems 6.16.2], [M, Theorem 2.4] that µi = dνi, where νi is some explicitly written 
differential k1 + k2 − 1-form. This implies eiJ = 0 by Stokes’ theorem. 

The vector eiI is the Fp-integral of the same µi reduced modulo p. It is explained in [SV2, 
Section 4] that the differential form νi also can be reduced modulo p and this implies that the 
Fp-integral eiI is zero by Lemma 2.3. Cf. the proof of [SV2, Theorem 2.4].  

Lemma 5.2 implies the equations 

(5.9) (k1 − k2 + i + 1)cI0,i,0 + (b2 + ic)I0,i+1,0 = 0 

for i = 0,...,k2 − 1, similarly to the proof of equations (4.6). The iterated application of equation 
(5.9) implies equation (5.6). 

The proof of equations (5.7), (5.8) is parallel to the proof of equations (4.11), (4.12). We 
prove (5.7). The proof of (5.8) is similar. 

Equation (4.11) follows from equation (4.9): 

The proof of (5.10) in [MaV] goes as follows. The left-hand side of (5.10) is a vector-valued 
integral of a suitable differential k1+k2-form µ. It is shown in [M, Theorem 5.1] that µ = dν, 
where ν is some explicitly written differential k1 +k2 −1-form. This implies (5.10) by Stokes’ 
theorem. 
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The p-analog of the left-hand side of (5.10) is the element 

This element is the Fp-integral of the same µ reduced modulo p. It is explained in [SV2, Section 
4] that the differential form ν also can be reduced modulo p and this implies that the Fp-
integral in the left-hand side of (5.11) equals zero by Lemma 2.3. Hence equation 
(5.7) is proved and Theorem 5.1 is proved.  

5.2. Proof of Theorem 3.4. Recall the set of admissible parameters Ak introduced in Section 
3.1 for k = (k1,k2), k1 > k2 > 0. 
Lemma 5.3. Assume that (a,b1 − 1,b2,c),(a,b1,b2,c) ∈ Ak. Then 

 

Assume that (a,b1,b2 − 1,c),(a,b1,b2,c) ∈ Ak. Then 

Proof. The lemma follows from formulas (5.4) and (5.6) and Theorem 5.1.  For n = 2 

formula (3.1) takes the form: 

Lemma 5.4. Assume that (a,b1 − 1,b2,c),(a,b1,b2,c) ∈ Ak. Then 
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By Lemmas 5.3 and 5.4 the functions Sk(a,b1,b2,c) and Rk(a,b1,b2,c) defined on Ak satisfy the 
same difference equations with respects to the shifts of variables b1 → b1 − 1 and b2 → b2 − 1. 

Lemma 5.5. Assume that a,c are positive integers such that 0 < k1c 6 p − 1, a + (k1 

− 1)c < p − 1. Then the point 

(5.17) (a,b1,b2,c) = (a,p − 1 − (a + (k1 − 1)c),(k1 − k2 + 1)c − 1,c) 

lies in Ak. 

Proof. If (a,b1,b2,c) is given by (5.17), then 

This proves the lemma.  

Lemma 5.6. Assume that a,˜ c˜ are non-negative integers such that 0 < k1c˜ 6 p − 1, a˜ + (k1 

−1)c˜ 6 p−1. Denote by Ak(a,˜ c˜) the set of all (a,b1,b2,c) ∈ Ak such that a = a˜, c = c˜. 

Then Ak(a,˜ c˜) consists of the pairs (b1,b2) of non-negative integers satisfying the inequalities 

(5.18) p − 1 − (a˜ + (k1 − 1)c˜) 6 b1, (k1 − k2 + 1)c˜− 1 6 b2 

and some other inequalities of the form 
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(5.19) b1 6 A1, b2 6 A2 b1 + b2 6 A12, 

where A1, A2, A12 are some integers such that 

A1 > p − 1 − (a˜ + (k1 − 1)c˜), A2 > (k1 − k2 + 1)c˜− 1, A12 > p − 

1 − (a˜ + (k1 − 1)c˜) + (k1 − k2 + 1)c˜− 1. 

Proof. The lemma follows from Lemmas 3.1 and 3.2.  

Corollary 5.7. Any point (a,b˜ 1,b2,c˜) ∈ Ak(a,˜ c˜) can be connected with the point (a,p˜ − 1 − (a˜ 
+ (k1 − 1)c˜),(k1 − k2 + 1)c˜− 1,c˜) ∈ Ak(a,˜ c˜) by a piece-wise linear path in Ak(a,˜ c˜) consisting 
of the vectors (0,−1,0,0) or (0,0,−1,0).  

Proof of Theorem 3.4. For n = 1, k = (k1) and the point (˜a,p − 1 − (a˜ + (k1 − 1)c˜),c˜) formula 
(3.11) holds by [RV, Theorem 4.1]. 

For n = 2, k = (k1,k2) and the point (˜a,p − 1 − (a˜ + (k1 − 1)c˜),(k1 − k2 + 1)c˜− 1,c˜) formula 
(3.11) holds by Lemma 5.5 and Theorem 3.7. 

For n = 2, k = (k1,k2) and arbitrary (˜a,b1,b2,c˜) ∈ Ak(a,˜ c˜) formula (3.11) holds by 
Lemmas 5.3, 5.4 and Corollary 5.7. Theorem 3.4 for n = 2 is proved.  Corollary 5.8. Let n 
> 2, k = (k1,...,kn), and (a,(b1,b2),c) ∈ A(k1,k2). Let b = (b1,...,bn), where bi = (ki−1 − ki + 1)c − 1 for i = 
3,...,n. Then formula (3.11) holds for the Fp-Selberg integral S[k]p(a,b,c) of type An. 

Proof. Formula (3.11) for the Fp-Selberg integrals of type A2 is proved in Theorem 3.4. Hence 

the corollary follows from Theorem 3.7 by induction on n.  

5.3. Evaluation of I0,0,0(a,b1,b2,c). In this section we evaluate I0,0,0(a,b1,b2,c) without using the 
evaluation of Sk(a,b1,b2,c). 

Theorem 5.9. Let k = (k1,k2), k1 > k2 > 0 and a,b1,b2,c ∈ Z>0. Assume that a + (k1 − 1)c < p and 
all factorials on the right-hand side of the next formula are factorials of the non-negative 
integers less than p. Then 

Proof. The proof is parallel to the proof of Theorem 3.4 for n = 2. 
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Denote by AIk the set of all a,b1,b2,c ∈ Z>0 satisfying the assumptions of Theorem 5.9. Notice 
that if (a,b1,b2,c) ∈ AIk, then 

(5.21) b1 > p − (a + (k1 − 1)c), b2 > (k1 − k2 + 1)c. 

k1 

Φ(k1)(t1,...,tk1,a − 1,b1,c) = Y (ti − ti0)2c Ytia−1(1 − ti)b1 
 16i<i06k1 i=1 

More precisely, under the assumptions of the theorem we have 

cf. the proof of Theorem 3.7. We have (−1)b2k2+ck2(k2−1)/2 = (−1)(k1k2−k2(k2+1)/2)c−k2. By [RV, 

Theorem 4.1] we have S(k1)(a − 1,b1,c) = R(k1)(a − 1,b1,c). Hence 

(5.22) 

. 

(5.23) 
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where we used the cancellation Lemma 2.1 in the last step. Hence 

Corollary 5.7.  

5.4. Sketch of the proof of formula (3.11) for n > 2. The proof is parallel to the proof of 
Theorem 3.4. 

 

and highest weight vectors v1, v2. Consider the PBW basis B = (u) of the weight subspace 

of that basis: 

For n = 2 these vectors are the vectors v0,0,0 and v0,k2,0 in the proof of Theorem 5.1. 
To any basis vector u ∈ B we assign the weight function Wu(t) defined in [RSV, Section 

6.1], here t is the collection of variables defined in (3.9). Then we consider the Fp-integrals Z 
 Iu(a,b,c) = Φ(t,a,b,c)Wu(t)dt. 

[k]p 

It follows from the formulas for the weight functions that 

Iu2(a,b,c) = Sk(a − 1,b1,b2 − 1,...,bn − 1,c), 

cf. (5.4). It is known from the theory of KZ equations that the vector 

I(a,b,c) = XIu(a,b,c)u 
u∈B 



22 R.RIMANYI AND A. VARCHENKO´ 

(5.24) Iu2(a,b,c) = B0(a,b,c)Iu1(a,b,c), where B0(a,b,c) is an explicit expression like in (5.6). 

(5.25) Iu1(a,b1,...,bi − 1,...,bn,c) = Bi(a,b,c)Iu1(a,b,c), i = 1,...,n, where Bi(a,b,c) are explicit 

products like in (5.7) and (5.8). 

Equation (5.24) and difference equations (5.25) imply that the two functions Sk(a,b,c) and 
Rk(a,b,c), defined on the set Ak, satisfy the same difference equations with respect to the shift 
of variables bi → bi − 1 for i = 1,...,n. By Corollary 3.8 we also know that the two functions are 
equal at the distinguished point 

(a,p − 1 − (a + (k1 − 1)c),(k1 − k2 + 1)c − 1,...,(kn−1 − kn + 1)c − 1,c) ∈ Ak . 

This implies that the two functions are equal (cf. Corollary 5.7) and formula (3.11) holds for 
any n. The details of this sketch will be published elsewhere. 
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