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Abstract. We present an Fp-Selberg integral formula of type An, in which the Fp-Selberg integral
is an element of the finite field Fp, where p is an odd prime. The formula is motivated by analogy
between multidimensional hypergeometric solutions of the KZ equations and polynomial
solutions of the same equations reduced modulo p. The Ai-type formula was proved in a
previous paper by the authors. The Az-type formula is proved in this paper. We also sketch the
proof of the Ax-type formula for n> 2.
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1. Introduction

In 1944 Atle / /O —%!”Hm“ Y1 —2) day .. day

1<1<j<k

Selberg proved B H (1 —l—J’}/ (a+(G-1)TB+ (G —1))
(1 Ma+ B+ (k+7—2))
the  following

integral formula: (1.1)

where a,f,y are complex numbers such that Rea > 0,Ref > 0,andRey >
-min[(Rea)/(n - 1)Ref)/(n — 1)]. See [Se, AAR]. Hundreds of papers are devoted to the
generalizations of the Selberg integral formula and its applications, see for example [AAR,
FW] and references therein. There are g-analysis versions of the formula, the generalizations
associated with Lie algebras, elliptic versions, finite field versions, see some references in
[AAR, FW, As, Ha, Ka, Op, Ch, TV1, TV2, TV4, Wal, Wa2, Sp, R, FSV, An, Ev]. In the finite field
versions, one considers additive and multiplicative characters of a finite field, which map the
field to the field of complex numbers, and forms an analog of equation (1.1), in which both
sides are complex numbers. The simplest of such formulas is the classical relation between
Jacobi and Gauss sums, see [AAR, An, Ev].

In [RV] we suggested another version of the Selberg integral formula, in which the
FpSelberg integral is an element of the finite field Fp with an odd prime number p of elements.

Our motivation in [RV] came from the theory of Knizhnik-Zamolodchikov (KZ) equations,
see [KZ, EFK]. These are the systems of linear differential equations, satisfied by conformal
blocks on the sphere in the WZW model of conformal field theory. The KZ equations were
solved in multidimensional hypergeometric integrals in [SV1], see also [V1, V2]. The
following general principle was formulated in [MuV]: if an example of the KZ-type equations
has a one-dimensional space of solutions, then the corresponding multidimensional
hypergeometric integral can be evaluated explicitly. As an illustration of that principle in
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[MuV], an example of the sl: differential KZ equations with a one-dimensional space of
solutions was considered, the corresponding multidimensional hypergeometric integral was
reduced to the Selberg integral and then evaluated by formula (1.1). See other illustrations
in [FV, FSV, TV1, TV2, TV4, V3, RTVZ].

Recently in [SV2] the KZ equations were considered modulo a prime number p and
polynomial solutions of the reduced equations were constructed, see also [S1V, V3, V4, V5,
V6, V7]. The construction is analogous to the construction of the multidimensional
hypergeometric solutions, and the constructed polynomial solutions were called the Fp-
hypergeometric solutions.

In [RV] we considered the reduction modulo p of the same example of the sl2 differential
KZ equations, that led in [MuV] to the Selberg integral. We evaluated the corresponding
Fphypergeometric solution by analogy with the evaluation of the Selberg integral and
obtained the Fp-Selberg integral formula in [RV, Theorem 4.1].

In [TV4, Theorem 3.3] the Selberg integral formula of type A2 was proposed and proved,

ko k1 ko

/ TLe 00— tn= TI0 - 52 TITThs —

kK
172[0,1] 554 j=1 =1 j=1

X H |tZ —ti/|2v H |Sj —Sj/|27 dtl dtkzl dSl ...dSk2

1<i<i'<k: 1< <j'<ka

H LB+ (1 —1)y) LB+ B2+ (1 — 2)7)
F(14+Go+ (i 4+ ke — ki —2)y) D(a+ B+ Ba+ (i + ka — 3)7)

D(1+ (i — k= DY) T(iy) 2 Dla+ (i — 1)7) D(iv)
: Hl I'(v) 11 I'(y) ‘

Here Rea > 0, Refs1> 0, Ref2> 0, Rey < 0 and |Rey] is sufficiently small. The integration cycle
Ckk2[0,1] is defined in [TV4, Section 3], also see its definition in [Wa1l, Wa2, FW].

The starting point of this formula was an example of the joint system of the sl3
trigonometric differential KZ equations and associated dynamical difference equations, an
example in which the space of solutions is one-dimensional. The As-type Selberg integral
formula for arbitrary n was obtained in [Wal, WaZ2], see also [FW].

In this paper we consider the reduction modulo p of the same example of the joint system
of the sln+1 trigonometric differential KZ equations and associated dynamical difference
equations, which led in [TV4, Wal] to the An-type Selberg integral formula. Using the
reduction modulo p of these differential and difference equations we obtain our Anr-type
FpSelberg integral formula for n > 1, see (3.11). For n = 1 the formula is proved in [RV,
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Theorem 4.1]. For n = 2 the formula is proved in Theorem 3.4 below. We sketch the proof of
the formula for n > 2 in Section 5.4. The details of that sketch will appear elsewhere.

The paper is organized as follows. In Section 2 we collect useful facts. In Section 3 we
introduce the notion of Fp-integral and discuss the integral formula for the Fp-beta integral.
In Section 3 we define the An-type Fp-Selberg integral and present its evaluation formula.
Theorem 3.4 states that the formula holds for n = 2. In Section 3 we also prove Theorem 3.7,
which is used in the transition from the An-1-type formula to the As-type formula, in
particular, in the transition from the known Ai-type formula to the new Az-type formula. In
Section 4 we sketch the proof of formula (1.2) following [TV4]. In Section 5 we adapt this
proof to prove Theorem 3.4.

The authors thank I.Cherednik, P.Etingof, E.Rains for useful discussions.

2. Preliminary remarks

In this paper p is an odd prime number.
2.1. Cancellation of factorials.

Lemma 2.1. If a,b are non-negative integers and a + b = p — 1, then in Fp we have
(2.1) a'b! = (-1)a+1,
Proof. We have a! = (-1)?(p-1)...(p—a) and p-a = b+1. Hence a!b! = (-1)?(p-1)! =

(-1)e*1 by Wilson’s Theorem.

2.2. Dyson’s formula. We shall use Dyson’s formula

T [] O —wi/a) (1 —a/w) =

1k
1<i<j<k (c!)

where C.T. denotes the constant term. See the formula in [AAR, Section 8.8].

2.3. Fp-Integrals. Let M be an Fp-module. Let P(x3,..,xk) be a polynomial with coefficients in M,

(2.3) P(x1,...,Xk) = X caxd...xdy,
d
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Lemma 2.2. Fori=1,.,k -1 we have
yA

(2.4) P(x1,...,Xi+1,Xiy.., Xk) AX1 ... Xk
[1,... i+ 1L, ] p

Z

= P(x1,...,xk)dx1...dXk.
[l Ik]p

Lemma 2.3. For any i = 1,..,k, we have

oP
/[ll ..... wl, 0T 1

:(kl,...7]€n)€Z7>Lo

(2.5) [k]p:= [(1)ks; (k1) kz;er; (Kn-1)ka] ps

where xy denotes the y-tuple (x,..,x). For example for n = 2, k = (3,2), we have [k]p =
[1,1,1;3,3]p.
2.4. Fp-Beta integral. For non-negative integers the classical beta integral formula says

1 bl
/ 2(1 — z)bdz = _aldl
0 (a+b+1)!

Theorem 2.4 ([V7]). Leta<p,b<p,p—-16a+b. Then in Fpwe have

! b
/ (1 —2)lde = — ¢
1], (a+b+1—p)'

Ifa+b<p-1,then
/ 2*(1 — 2)’dxr =0
(1]p

3. Fp-Selberg integral of type An

3.1. Admissible parameters. Let k = (ki,..., kn) € Z">0and ki > ki+1,i1=1,..,n - 1.
Set kO = kn+1 =0.
Let a,b1,...,bn,c € Z>0. Denote b = (by,...,bn) and
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(3.1)
Ryi(a,b,c) =

kr—Fkry1

H H (r—s+bs+--+b+({@+s—r—1)c)
(r—s+1l4as+bs+---+b+(+s—r+ks—Fksy—2)c—0ds1p)!

1<s<r<n =1

T

1

X(_l)z:;lki< (ar + (i — e )(HH )(HHp+ z—rl—l)))

1 r=

-
Il

whereai=a,az2=++=an=0; ds51is 1 if s =1 and is zero otherwise.

We say that a,bx,....bn,c € Z>0 are admissible if a+(ki-1)c < p—1 and for any factorial x! on the
right-hand side of (3.1) we have 0 6 x < p. The set of all admissible (a,b,c) is denoted by Ax.

/e
(3.2) 06r—s+bs+-+br+(s—-r)c
r-s+bs+-+br+(kr—kre1+s-r-1)c6p-1,
for16s6r6n;
(3.3) 06r-s+1+bs+-+br+(s-r+ks—ks-1—1)c,r=s+1+bs+ - +br+(s
-r+ki—kr1+ks—ks-1—-2)c6p-1,
for26s6r6n;
(3.4) pér+a+bi+-+br+ (ki-r)c
r+a+bi+-+br+ (kr—krei+ki-r-1)c<2p,
for16r6n;

(3.5) a+(ki-1)c<p-1, bi>p-1-(a+ (ki-1)c), 0 <kic<p.

Lemma 3.2. Assume that (a,b,c) € A«x. Then
(3.6) bi>p-1-(a+ (ki-1)o), bs> (ks-1—ks+ 1)c -1, §=2,.,Nn
Proof. The inequality bs> (ks-1—ks+1)c-1 for s = 2,..,n follows from the first inequality in (3.3)

for r = s. The inequality b1 > p—1-(a+(k1-1)c) follows from the first inequality in (3.4) for r =
1.

Example. Let n =1, k = (k1). Then
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- k1 (ic)! (a+ (i —1)c)! (by + (i — 1)c)!
R(kl)(ajth)_H dd (I4+a+b+(+k —2)c—0p)

=1
and Ak consists of a,b,c € Z-o such that
38)a+(ki-1Nc<p-1,bi+(ki-1)c6p-1 kicbp-1,p-16a+bi+(ki-1)ca+
bi+ (2ki-2)c<2p-1.
= (k1,...,ky) € Z2,
D=, 8, i=1,....n

Define the master polynomial

n—1kiy1 k;
k(t:a,b,c) H(Ht§ I | ) TT T =40y
j=1 1< <y’ <ki i=1 j=1 j/=1
Denote
Z
(3.10) Sk(a,b,c) = o dt.

[kl»

The Fp-integral Sk(a,b,c) is called the Fp-Selberg integral of type An.

Conjecture 3.3. Let n be a positive integer. Let k = (ka,...,kn) € 2750, ki > ki+1, 1 = 1,..,n = 1. Then
for any (a,b,c) € Axwe have the equality in Fp:

(3.11) Sk(a,b,c) = Re(a,b,c).

Forn =1 formula (3.11) is proved in [RV, Theorem 4.1]. For n = 2 formula (3.11) is proved
in the next theorem.

Theorem 3.4. Let k = (k1,k2) € Z2-0, k1> k2. Then for any (a,b,c) € Axwe have the equality in Fp:
(3.12) Sk(a,b,c) = Re(a,b,c).

Formula (3.11) for n = 2 is deduced from formula (3.11) for n = 1 in Section 5.

More generally, for any k formula (3.11) for n = k can be deduced from formula (3.11) for
n = k — 1 similarly, see the sketch of that in Section 5.4. Details of that deduction will appear
elsewhere. Because of that formula (3.11) for any n is formulated as a conjecture and not as
a theorem.
Remark. Theorem 3.4 can be extended to the case of k such that k1> k2, but the structure of
inequalities in Lemma 3.1 will depend on the appearance of the equality k1 = k2 in k, and the
proof of Theorem 3.4 will split into different sub-cases. To shorten the exposition we restrict
ourselves to k such that ki1 > k.
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Example. Here is the simplest A2-type Fp-Selberg integral formula with k1= k2= 1.

Theorem 3.5. Assume that a,b1,b2,c are integers such that
0O6a<p, O<cbp, 06b2-c+1<p,
06bi+b2-c+1<p, p-16a+bi+b2-c+1<2p-1.
Then in Fp we have
_ P(by + by —c+1)! (p— ) (by)!
3.13 191 — )1 (s — )P¢(1 — s)2dt ds = — L
( )/u:,up( S s = = )t ds = e e ) (b —ct 1)

Proof. Change variables s = t + (1 - t)v, then the Fp-integral becomes equal to

Z ta(1 = t)b1+b2-c+1Vp-c(1 — v)bodtdv.
(L1l

Applying the Fp-beta integral formula we obtain the theorem.

The simplest As-type Fp-Selberg integral formula k1 = k2 = k3 = 1 is given by the next
theorem.

Theorem 3.6. Let a,b1,b2,b3,c be integers such that all factorials on the right-hand side of
formula (3.14) are factorials of non-negative integers less than p. Then in Fp we have

(3.14) / (1 — )" (s — t)P(1 — 5)"2(u — s)P~°(1 — u)*2dt ds du
J[L1:1]p

al (by +by+bs—2c+2) (p—oc)(ba+bs—c+ 1) (p—c)(b3)!
(@+by+by+bg—2c+3—p)!  (ba+b3—2c+2) (bg—c+1)!

Proof. The proof is the same as the proof of the previous theorem.
The versions of identities (3.13), (3.14) over complex numbers see in [MuV, Theorem 1].

3.3. Relation between the Fp-Selberg integrals of types An-1- and An.

Theorem 3.7. Let n > 1 and k = (ka,....kn), k° = (ku,...,kn-1), b = (b1,...,bn), b® = (b1,...,bn-1). Assume
that formula (3.11) holds for the Fp-Selberg integral Sixo1,(a,b0 c) of type An-1. Also assume that
bn = (kn-1 —kn+1)c-1. Then formula (3.11) holds for the Fp-Selberg integral Six.(a,b,c) of type
An.

(n)
t;

[T (87
(0
¢
Do) (ED,...,t0-1;a,b0,c) of Pip(t;a,b,c) and are used to calculate the coefficient of

k 1 _ n—1 k; 7 . p—
|§ G L § e ) (O L
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More precisely, under the assumptions of the theorem we have
(knc)!

Si(a, b, ) = ()it Sy (d b, )
C
_ 1)bnkn+(‘k‘n(kn71)/2 El;r;iz: H‘I;n L (t(n))k‘n 1p—1
kn kn-1
YY (n) (n-1) p—cY (n) (n) 2¢
G -t ) (G —to) ==t
16j<j%6kn

see Dyson’s formula. We have (—1)bnkntckn(kn-1)/2 = (=1) (kn-1kn-kn(kn+1)/2)c-kn. Hence

ky
Sk(a/, b’ C) — (_1)(knflk'rL_kn(k7L+1)/2)c_kn (( ')C) Sk: (a b’ )
c
= (- 1)(kn 1kn—Fkn (kn+1)/2)c—kn, (Knc)! Ry (a, b, c)
(ct)*n
where Sko(a,b?c) = Rro(a,b?c) holds by assumptions. To prove the theorem we need to show
that

_ i (K
R[k],,(a, (b',b,),¢) = (— 1)(kn 1kn—kn (kn41)/2)c—kn <<C) o)t Ry(a,b',c)

Indeed we have
k:TL . k:’VL
(ic)!

Ri(a, (¥, by),¢) = Ry (a,V,c) H v H(p + (i — kyoy — 1)e)!

y HH n—s+bg+-+b,+(i+s—n—1))
(n—s+14as+bs+-+b,+(i+s—n+ks—ke—2)c—0351p)

1<s<n i=1

H H m—s+as+bs+---+b,1+(i+s—n+ks— ks —3)c—0ds1p)!
m—1—s+bs+-+b,1+(@+s—r—1))

1<s<n—1 i=1

B 1 (O 1 (b + (i = 1)) (p+ (i — Ky — 1))
= Rl b0 [[77 11 A+ bnt (it — ey — 200

) L, i)l (G4 Ky — K)o — D (p4 (i — kpy — 1)c)!
Rk,(a,b?c)l—[(d) 11(( )((@'_)1()12))!( )c)

SR — 1\Fne1kn—kn (knt1)/2)c—kn, (knc)!
= Ry (a,b',c)(—1) (cl)kn

where in the last step we use the cancellation Lemma 2.1. The theorem is proved.

Corollary 3.8. Let n > 1, k = (ka,....kn), and (a,b1,c) € A(ki). Let b = (ba,...,bn), where bi= (ki-1 ki
+1)c-1 fori=2,..,n. Then formula (3.11) holds for the Fp-Selberg integral Six,(a,b,c) of type An.
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Proof. Formula (3.11) for the Fp-Selberg integrals of type A1 is proved in [RV]. Hence the
corollary follows from Theorem 3.7 by induction on n.

4. The A2-type Selberg integral over C

In this section we formulate the A2-type Selberg integral formula over C, formulated and
proved in [TV4], and sketch the proof of the formula, following [TV4]. In Section 5 we adapt
this proof to prove the A2-type Fp-Selberg integral formula, that is, formula (3.11) for n = 2.

4.1. The Az-formula over C. For k1> k2> 0 let t = (¢1,...,tk), S = (51,..,Sk2). Define the master
function

k1 k2 k1 k2
(4.1) D(t;5) = Ytai-1(1 - ti)pi-1 Y(1 = )1 YY|sj - ti| -y
i=1 j=1 i=1j=1

x Y |ti— tio|2y Y |Sj— Sjo|2y 16i<iv6ki: 16j<j%6k:

and the integral

(4.2) S (afnB2y) = ®(t;5)dtds,

Ck1k2[0,1]

where the integration cycle Ckvk2[0,1] is defined in [TV4, Section 3]. The explicit description
of this cycle is of no importance in this paper.

Theorem 4.1 ([TV4, Theorem 3.3]). Let a,1,82,y be complex numbers such that Rea >
0, Rep1> 0, RefB2> 0, Rey < 0 and |Rey| sufficiently small. Then

: T +(i= 1))

st = 11 Tt AT (b T

Tl L(f2 + (i — 1)) D(Bi+ B + (i = 2))
wr T+ Ba+ (i + ke — k1 = 2)y) T(a+ b+ Bot (i 4k —3)7)
S D+ (= by — 1)9) D) 17 Dle + (= 1)9) T(iv)

- H () H I'(y) |

In the next Sections 4.2, 4.3 we sketch the proof of formula (4.3) following [TV4].
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4.2. Weight functions. To evaluate SN(a,ﬁl,ﬁz,y) we introduce a collection of new integrals

Jiim(a,1,52,y), which also can be evaluated explicitly, see [TV4]. For a function f{ts,....tk) set

t1,. 0tk f(tl;; k k" Zf o1yt Uk

OESKk

Given k1> k2> 0, we say that a triple of non-negative integers (I1,l2,m) is allowable if 11 6 k1
- k2+ 12, [26 k2and m 6 min(/3,12). For any allowable triple (/1,I2,m) define the weight

function

Wi, lom(t1,..., tk1;81,...,Ske) =

- 1
sy ([Tt I[ -t 11 _Z H )

z o Cotky —ks
I k k
= Symug,.,tst Sym

a=1 a=1+1 =1 =2+1

and the integral

Z
Jnizm(a,B1,B2y) = D (t;5)Whizm(t;s)dtds.

Ck1k2[0,1]

In particular,

(4.4) Joro(aB1B2Y) = S (af1+ 1,B2y).

4.3. Representations of sls. Consider the complex Lie algebra sls with standard generators
fif2,e1,e2,h1,h2, simple roots o1, 02, fundamental weights w1, w2. Let Vi, Va.be the irreducible
slz3-modules with highest weights

« 61 62

Al =——uwrp, Ag = —— wj — — W

and highest weight vectors vi, v2. For k1> k2> 0 consider the weight subspace

V1@ Vi[A1+A2-kio1-k202] of the tensor product Vi@ Vi and the singular weight subspace
SingVy @ Va[A1+A2-ki01-k202] consisting of the vectors w € Vi@ Vaz[A1+A2-kio1—k202] such
that esw = 0, e2w = 0. A basis of Vi1 @ Vi:[A1+ A2 - kio1 - kz202] is formed by the
vectors
flh s gy okl @ FEf fol
b = g "y — b+ ) (ks — 1)1 (1 — m) ! m! (I — m)!
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labeled by allowable triples (I1,I2,m). It is known from the theory of KZ equations that the
vector

J= X (=D m(a,B1,B2,Y)vikm

I,lLm

is a singular vector, see [M, Theorem 2.4], [MaV, Corollary 10.3], cf. [RSV].

The singular vector equations e1f = 0, e2] = 0 are calculated with the help of the formulas:

hyvy = 2 Uy, hovy = 0, hivy = —= Vg, hovy = ——202,
Y Y Y
(b, fil = =2f1, [, fo] = fa, Do, il = £, [ha, fa] = =2f>
le1, f1] = P, ler, fo] = [ea, ]l = 0, lea, fa] = h
[hy, [fuf2]] = -[fufa], [h2,[fuf2]] = = [fuf2), e [fuf2]] = f2 lez[fuf2]] = -fu.

Here are some of the singular vector relations.
Theorem 4.2 (cf. [TV4, Theorem 5.2]). We have

lp—1

(k1 — ko +i+ 1)y
12 17— h2
]

JO,lQ,O -

Proof. We have

AT Bl ® frvs
2 (k’l /f2+l) (kQ_Z)'Z|

k1 —ko+i+1 ko—i—1 i
TS AT 0 ® fovs
(ky — k2+2+1)(k1—k2+2+ )(kQ_Z'_l)IZ'!

B N 0 ) N A
+ (_7_ +1)(k1 ko + ) (ke — @)1 (i — 1)1

k k %
Z o4 41 i "
£l 2 [f1.f2]*2 7 Lo ® fivg

in ey J

Calculating the coefficient of (k1—ka+i)! (kg —i)! a! = 0 we obtain
(4.6) (ki—-kz2+1i+ 1)yJoio+ (B2 +iy)Joi+10=0.
This implies the theorem.
Hence
ko — 1 .
) ko+i+1
JO,ICQ,O(a?/Bl?/BQ?’y) = (_1>k2‘]0,00 ﬁl?ﬁ?? E B22+27 )7

Combining (4.4) and (4.7) we observe that formula (4.3) is equivalent to the formula
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S T+ B+ (= 1))
JO,O,O(Q7517ﬂ2a’7) = E F(1+Oé+51+(7,+k'1 _2)7)
y H D(1+ B+ (i— 1)) C(1+ B + o + (i — 2)7)
paley F(14+ 6o+ (i+ke—k1—2)y) T(1+a+ 61+ P+ (i + ks —3)y)

S (= ki — D)9 D(iy) 1 Dl + (= 1)7) (i)
: 1} I'(v) 1} T(7) '

Denote by Ro,0,0(a,f1,82,y) the right-hand side of (4.8).

To prove (4.8) we use the following observation. The weight subspace Vu[A1 - kio1 - k202]
C Vuis one-dimensional with a basis vector

V0.0.0 = 1klikz[fth]kQUl ® vy
” (k1 — Ko)! (K2)!

By [MaV, Theorem 5.1] the vector-valued function Jo,00(a,f1,82¥)vo,0,0 satisfies the dynamical
difference equations introduced in [TV3],

(4.9) Jooo(a,f1— 1,B2,y)vo,0,0 = Joo,0(a,[1,52y)Bivooo,
(4.10) Joo0(a, 1,62 - 1,y)vo,0,0 = Jo0,0(a,51,52,y)B2vo,o0.

Here Bi, B2 are certain linear operators acting on Vi and preserving the weight
decomposition of Vi, see formulas for these operators in the example in [MaV, Section 7.1]
and in [MaV, Section 3.1], also see [TV3, Formula (8)].

Written explicitly equations (4.9), (4.10) give us the difference equations for the scalar
function Jo,0,0(a,B1,B2y) with respect to the shift of the variables f1 —» f1- 1 and 2 - f2- 1,

(4.11)

1 2 2
XE BitBet(i—2y
JO,O,O(avﬁlaBQ - ) = Jooo( Blaﬁzﬁ)

" H ﬁ2+ z+k2 ki —2)y a+ B+ Po+ (i + ka—3)y

+ (i —1)y P1+ Po+ (i —2)y
Ky —ko

a+ B+ (i+k —2)y
Jooo(a, 1 =1, B2,7) = Jopola, B, B2, 7) E Bt (i—1)n

a+f +8 +(@+k —3)y

ko

(4.12)
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The difference equations for Jo,0,0(, 51,52 y) are the same as the difference equations for the
function Ro,0,0(a,S1,82y) with respect to the shift of the variables f1 - f1- 1 and f2— f2- 1.
Therefore, the functions Jo,00(a,81,62y) and Roo0(a,[1,B2)) are proportional up to a periodic
function of f1,52. The periodic function can be fixed by comparing asymptotics as Reff1 = oo,
Ref2 — oo. This finishes the proof in [TV4] of formulas (4.8) and (4.3).

5. The A2-type Selberg integrals over Fp

5.1. Relations between Fp-integrals. For k = (ki,k2), k1 > k2 > 0 and integers 0 <
a,b1,bz,c < p define the master polynomial

k1 k2 k1 k2
(5.1) ®i(t;s;a,b1,b2,¢) = Ytai (1 - ti)p1 Y(1 = 5j)b2YY(5) = ti)p-c
i=1 j=1 i=1j=1

x Y (ti— tio)2c Y (Sj = Sjo)2c 16i<i%6k: 16j<j%6k:
and the Fp-integral
(5.2) Sk(a,b1,b2,c) = ®(t;s;a,b1,b2,c)dtds,
[kl»

where the p-cycle [k]pis defined in (2.5). This is the A2-type Fp-Selberg integral, see (3.10).

For an allowable triple (1,12, m) define the Fp-integral

VVZ s m(t) S)
(5.3) iy gy m(a, by, be,c) = / Py (t;55a,b1, b, ) =
v (k]p Hf; ti(1—t) Hf;(l — 5;)

where Wh,i,m(t;s) is the weight function defined in Section 4.2. Clearly
we have

dtds,

(5.4) lokz0(a,b1,bz,c) = Sk(a — 1,b1,b2 - 1,c).
Denote
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(5.5) 2 (ke — ky i+ 1)e
B = (=" ]
O(Ga bla b?a C) ( ) 14 b2 + ic )
k1—k2 ke

a+b1+(i+k1—2)cl—1 a+by+by+ (i+ky —3)c

By(a,by,be,c) =
1(a, by, by, ) H by + (i —1)c by +by+ (i —2)c
ka

BQ(aablaan C) = H

i=1

b2+(i+/€2—k1—2)c a+b1+b2+(z’+k2—3)c
b2+(i—1)6 bl+b2—|—(7l—2)c

Theorem 5.1. Assume that ki1 < p.

(i) Assume that every factor in Bo in the numerator or denominator is a nonzero element
of Fp. Then

(5.6) lokz,0(a,b1,b2,c) = Bo(a,b1,bz,¢)l0,0,0(a,b1,bz,c).

(ii) Assume that every factor in B1in the numerator or denominator is a nonzero element
of Fpand b1 > 1, then

(5.7) loo0(a,b1 - 1,b2,c) = Bi(a,b1,bz,c)lo00(a,bi,bzc).

(iii) Assume that every factor in Bz in the numerator or denominator is a nonzero element
of Fpand b2 > 1, then

(5.8) loo0(a,b1,b2 - 1,c) = B2(a,b1,bz,c)lo,00(a,b1,bz,c).

Proof. Equation (5.6) is an Fp-analog of equation (4.7) and its proof is analogous to the proof
of equation (4.7).

More precisely, consider the complex Lie algebra sl3 with standard generators fi,f2, e1,e2,
h1,h2, simple roots o1, 02, fundamental weights w1, w2. Let Vi, Va:be the irreducible slsmodules

with highest weights
a by by
A = — , A = — —_
LT 2T T Mt T exp ™
T, fo] 20

S Rl f3 s

a by _ bo

c+p c+p’ c+p
vy
1
[T fol™2 o
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vy
Vir @ Vi [A 4+ Ao —
lFP lFP
V)\l ® V/\g
L iR Ry @ 1 f Sl e 0

Uidem =y — 1 + 1)) (ks — 1) (I — m)!m! (Iz — m)!
labeled by allowable triples (I1,I2,m).

Lemma 5.2. The vector

=% (-D)idnbia(a,b1,b2,c)vitm

I,l,m
F, F,
V)\l ® V>\2

Proof. Equations eil = 0, e2] = 0 are Fp-analogs of equations e1/ = 0, e2/ = 0 over C.

For i = 1,2, the vector ej is the integral of a certain differential k1 + k2-form pi. It is shown
in [SV2, Theorems 6.16.2], [M, Theorem 2.4] that ui= dvi, where viis some explicitly written
differential k1 + k2 — 1-form. This implies e/ = 0 by Stokes’ theorem.

The vector eil is the Fp-integral of the same pireduced modulo p. It is explained in [SV2,
Section 4] that the differential form vialso can be reduced modulo p and this implies that the
Fp-integral eil is zero by Lemma 2.3. Cf. the proof of [SVZ, Theorem 2.4].

Lemma 5.2 implies the equations
(5.9) (k1—kz2+ 1+ 1)clojio+ (b2 + ic)loi+1,0=0

fori=0,.,kz2- 1, similarly to the proof of equations (4.6). The iterated application of equation
(5.9) implies equation (5.6).

The proof of equations (5.7), (5.8) is parallel to the proof of equations (4.11), (4.12). We
prove (5.7). The proof of (5.8) is similar.

Equation (4.11) follows from equation (4.9):

Fp

Vi
The proof of (5.10) in [MaV] goes as follows. The left-hand side of (5.10) is a vector-valued
integral of a suitable differential ki+kz-form p. It is shown in [M, Theorem 5.1] that u = dv,

where v is some explicitly written differential k1 +k2 —1-form. This implies (5.10) by Stokes’
theorem.
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The p-analog of the left-hand side of (5.10) is the element

F
loo0(a,by —1,ba,c)vo o0 — loo0(a, by, b, ) Bivgoo € V)7

This element is the Fp-integral of the same p reduced modulo p. Itis explained in [SV2, Section
4] that the differential form v also can be reduced modulo p and this implies that the Fp-
integral in the left-hand side of (5.11) equals zero by Lemma 2.3. Hence equation

(5.7) is proved and Theorem 5.1 is proved.

5.2. Proof of Theorem 3.4. Recall the set of admissible parameters Axintroduced in Section
3.1 for k = (k1,k2), k1> k2> 0.
Lemma 5.3. Assume that (a,b1 - 1,bz,c),(a,b1,bz,c) € Ax. Then

k1—kso .
l+a+b+(@+k —2)c—
(512)  Sk(a.by—1,b2,¢) = Sk(a.bybac) [] b11+<(¢_11)c )e—p

i=1

ﬁ2+a+bl+b2+(i+k1—3)c—p

L+0b1+by+ (i —2)c

i=1

Assume that (a,b1,b2 - 1,c),(a,b1,b2,c) € Ax. Then
ko

Sk(a’7b17b2 - 176) - Sk(@, b17b27c>H

i=1

L4+by+ (i 4+ ko — k1 — 2)c
bz‘l‘(i—l)c

ko

HQ—}-a—i—bl—{—bg—l—(i—i—/ﬁ—S)c—p
L+b1 +by+ (i —2)c

i=1
Proof. The lemma follows from formulas (5.4) and (5.6) and Theorem 5.1. For n = 2

formula (3.1) takes the form:

k1—ko

by + (i — 1)c)!
‘b ‘b _ _1 k1+k2 ( !
Ri(a,bi, by, c) = (—1) E (1+a+b +(i+k —2)c—p)!

Xﬁ (bs + (i — 1)c)! (1+ by + by + (i — 2)c)!
- (I+bo4+ (i +ko—k1 —2)e)! 24+a+b +by+ (i+k —3)c—p)!
x [Ja+ G- [+ =k = 1)) ] T %

i=1 i=1 r=1i=1

Lemma 5.4. Assume that (a,b1 - 1,bz,c),(a,b1,bz,c) € Ax. Then
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k1—ko

(5.15)  Ri(a,by—1,by,c) = Rila.bi,by0) ]

i=1

l+a+b+(i+k —2)c—p
b1+(i—1)c

ﬁ2+a+b1+bg+(i+k1—3)c—p

140+ by + (i — 2)c

i=1

ko

Rk(a,bl,bg—LC) = Rk(&,bl,bg,C)H
i=1
i 24a+bi+bo+(i+k —3)c—p

L+b+by+ (1 —2)c

1+b2+(2+k’2—k]—2)c
b2+(z—1)c

i=1

By Lemmas 5.3 and 5.4 the functions Sk(a,b1,b2,c) and Rk(a,b1,bz,c) defined on Axsatisfy the
same difference equations with respects to the shifts of variables b1 = b1 -1 and b2 - b2- 1.

Lemma 5.5. Assume that a,c are positive integers such that 0 < kic6 p -1, a + (k1
- 1)c <p - 1. Then the point

(5.17) (a,br,b2c)=(ap-1-(a+ (ki-1)c),(ki—k2+ 1)c-1,)
lies in Ay.

Proof. If (a,b1,b2,c) is given by (5.17), then

k1—k2

k1 +ko —1—(a+ k‘l—iC !

> ((ky — ke +i)c—1)! (p—1—(a+ (ks —i)c))!
% H (i — 1)e)! (k1 — k2 + i — 1)0)!

k1 ko kr

x [Ja+G=net TJe+ 6~k -] ] (i)

This proves the lemma.

Lemma 5.6. Assume that a,” ¢” are non-negative integers such that 0 < ki 6 p - 1, a” + (k1
-1)c” 6 p-1. Denote by Ax(a,” ¢*) the set of all (a,b1,b2,c) € Axsuch thata=a",c=c".

Then Ax(a,” ) consists of the pairs (b1,b2) of non-negative integers satisfying the inequalities
(5.18) p-1-(a +(ki-1)c)6 by, (ki-k2+1)c"-16 b2

and some other inequalities of the form
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(5.19) b16 As, b26 Az b1+ b26 A1z,

where A1, A2, A12 are some integers such that
Ai>p-1-(a +(ki-1)c), Az>(ki-k2+1)c-1,A12>p -
1-(a+(ki—-1)) + (k1—ka+1)c- 1.

Proof. The lemma follows from Lemmas 3.1 and 3.2.

Corollary 5.7. Any point (a,b™ 1,b2,c") € Ak(a,” ¢”) can be connected with the point (a,p” -1 - (a”
+ (k1- 1)), (k1 - k2 + 1)c"- 1,¢7) € Ak(a,” ) by a piece-wise linear path in Ax(a,” ¢”) consisting
of the vectors (0,-1,0,0) or (0,0,-1,0).

Proof of Theorem 3.4. For n = 1, k = (k1) and the point ("a,p - 1 - (a” + (k1 - 1)¢"),c”) formula
(3.11) holds by [RV, Theorem 4.1].

For n = 2, k = (k1,k2) and the point ("a,p - 1 - (a” + (k1 - 1)), (k1 - k2 + 1)c"™- 1,¢") formula
(3.11) holds by Lemma 5.5 and Theorem 3.7.

For n = 2, k = (k1,k2) and arbitrary ("a,b1,b2,c") € Ax(a,” ¢”) formula (3.11) holds by

Lemmas 5.3, 5.4 and Corollary 5.7. Theorem 3.4 for n = 2 is proved. Corollary 5.8. Let n
> 2, k = (ka,...,kn), and (a,(b1,b2),c) € Akik2). Let b = (by,...,bn), where bi= (ki-1- ki+ 1)c -1 fori =
3,..,n. Then formula (3.11) holds for the Fp-Selberg integral Siq,(a,b,c) of type An.

Proof. Formula (3.11) for the Fp-Selberg integrals of type Azis proved in Theorem 3.4. Hence

the corollary follows from Theorem 3.7 by induction on n.

5.3. Evaluation of /o,00(a,b1,b2,c). In this section we evaluate lo,0,0(a,b1,b2,c) without using the
evaluation of Sk(a,b1,bz,c).

Theorem 5.9. Let k = (k1,k2), k1> k2> 0 and a,b1,b2,c € Z>0. Assume that a + (k1— 1)c < p and
all factorials on the right-hand side of the next formula are factorials of the non-negative

integers less than p. Then
k1—ko

]010,0((]’7 b17 bQ, C) = (—1)k1+k2 H

=1

XH b2+ 2—1)) (b1+bg+(l—2))
(bo+ (i4+ ko —ki1 —2)c)! (a+by+by+ (i+k —3)c—p)!

(b1 + (i = 1)c)!
(a+b+ (i 4+ ki —2)c—p)!

Proof. The proof is parallel to the proof of Theorem 3.4 for n = 2.
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Denote by Alkthe set of all a,b1,b2,c € Z>0 satisfying the assumptions of Theorem 5.9. Notice
that if (a,b1,b2,c) € Aly, then
(5.21) b1>p - (a+ (ki-1)c), b2> (ki-k2+1)c.
(a,by, (k1 — ko +1)c,c) € AL

kn kip—1
H]:l Sj
k1

D) (t,...,tka — 1,b1,¢c) =Y (ti— tio)2c Ytia-1(1 = ti)b:
16i<i%6k1 i=1
k 1
H]l 1 tIZ)
More precisely, under the assumptions of the theorem we have

koc
Inoo(a, by, (ki — ks + 1)c, c) = (—1)Phateha(e=1)/2 ((c!Q)) Stk (a —1,b1,¢)

cf. the proof of Theorem 3.7. We have (—1)bzke+cke(ke-1)/2 = (=1)(kike-ke(ke+1)/2)c-k2. By [RV,
Theorem 4.1] we have S)(a - 1,b1,¢) = Rik)(a — 1,b1,c). Hence
(522)  Tooolab (b = ks + D) = (~1) bl e gyt

(koo)! 15 (GO (a+ (j — De— Db+ (j — 1)c)!
x (c!)k2 H c! (a+b+ (ki +75—2)c—p)!

J=1

'Ri(av bl: b27 c
(5.23)

k1—ko .
by + (1 —1)e)!
Rllc((h b, (k1 — ke + 1)c, c) = (_1)k1+k2 H (a+ b1(+1 (i -(I- ky —)2))0 —p)!

T (ki — ko + D)e + (i — 1)e)!
L (ks — k2 + e+ (i + ko — by — 2)c)!
- (by + (k1 — k2 + 1)e+ (1 — 2)e)!
XE (a+by+ (k1 —ko+ 1)e+ (i + kg — 3)e—p)!
< [T+ =ve=1! T[]+ = ki = 1) = 1) ]‘[H(—.

1 i=1

-
I
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_ (_1)k1+k2(_1>(k]krk2(k2+1)/z)c (K20)! 1—1[ (ic)! (a+(j —De—=1)!(b+ (j —1)c)!

(cl)kz pi c! (a+b+ (k1 +7—2)c—p)!

where we used the cancellation Lemma 2.1 in the last step. Hence
Tooo(a,by, (ky — ke + 1)c,¢) = Ri(a, by, (ky — ko + 1)c, ¢
Rl]c(aa b17 b27 c
Ré((l, bl, bg, C) on Ai

Corollary 5.7.

5.4. Sketch of the proof of formula (3.11) for n > 2. The proof is parallel to the proof of
Theorem 3.4.

VWY
a b 1 b n

w Ay = — Wy — e — w
ctp U T oewp c+p "

and highest weight vectors vi, v2. Consider the PBW basis B = (u) of the weight subspace
VP @V M+ e — S0 kioy

of that basis:

flklikQ[flv f2]k27k3 c. [flu [f27 R [fn—l; fn] " ']]knvl ® vy
(k1 — ko)l (ko — E3)! ... (kp)!

T ® 3 e

T () L (R

Uy =

For n = 2 these vectors are the vectors vo,0,0and vok.,0in the proof of Theorem 5.1.
To any basis vector u € B we assign the weight function Wy(t) defined in [RSV, Section

6.1], here t is the collection of variables defined in (3.9). Then we consider the Fp-integrals Z

lu(a,b,c) = ®(t,a,b,c)Wu(t)dt.
[Kl»

It follows from the formulas for the weight functions that
luiz(a,b,c) = Sk(a — 1,b1,b2 - 1,..,bn— 1,c),
cf. (5.4). It is known from the theory of KZ equations that the vector

I(a,b,c) = Xlu(a,b,c)u

ueB
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VP @ Vil [+ de — S0 ko

(5.24) L2(a,b,c) = Bo(a,b,c)1u:(a,b,c), where Bo(a,b,c) is an explicit expression like in (5.6).
ViAo —
> i kio

(5.25) Lu(a,by,....bi - 1,..,bn,c) = Bi(a,b,c)lu(a,b,c), i = 1,..,n, where Bi(a,b,c) are explicit
products like in (5.7) and (5.8).

Equation (5.24) and difference equations (5.25) imply that the two functions Sk(a,b,c) and
Rk(a,b,c), defined on the set Ay, satisfy the same difference equations with respect to the shift
of variables bi— bi— 1 for i = 1,..,n. By Corollary 3.8 we also know that the two functions are
equal at the distinguished point

(ap-1-(a+(ki-1)c),(ki-kz+ 1)c-1,..,(kn-1— kn+ 1)c - 1,c) € Ax.

This implies that the two functions are equal (cf. Corollary 5.7) and formula (3.11) holds for
any n. The details of this sketch will be published elsewhere.
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