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Abstraci—In future transportation systems, the charg-
ing behavior of electric autonomous mobility on demand
(AMoD) fleets, i.e., fleets of electric self-driving cars that
service on-demand trip requests, will likely challenge
power distribution networks (PDNs), causing overloads or
voltage drops. In this article, we show that these challenges
can be significantly attenuated if the PDNs’ operational
constraints and exogenous loads (e.g., from homes or busi-
nesses) are accounted for when operating an electric AMoD
fleet. We focus on a system-level perspective, assuming
full coordination between the AMoD and the PDN operators.
From this single entity perspective, we assess potential co-
ordination benefits. Specifically, we extend previous results
on an optimization-based modeling approach for electric
AMoD systems to jointly control an electric AMoD fleet
and a series of PDNs, and analyze the benefit of coordi-
nation under load balancing constraints. For a case study
of Orange County, CA, USA, we show that the coordination
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between the electric AMoD fleet and the PDNs eliminates
99% of the overloads and 50% of the voltage drops that
the electric AMoD fleet would cause in an uncoordinated
setting. Our results show that coordinating electric AMoD
and PDNs can help maintain the reliability of PDNs under
additional electric AMoD charging load, thus significantly
mitigating or deferring the need for PDN capacity upgrades.

Index Terms—Electric autonomous mobility on demand,
network flow, smart grid, unbalanced optimal power flow.

NOMENCLATURE

AMoD system

A Set of expanded graph arcs.

Agr Set of road arcs.

As Set of expanded graph arcs representing a recharging
process.

Ar Set of expanded graph arcs representing a physical
time-dependent movement in the road network.

C Set of discrete battery charge levels.

Cy SoC associated with expanded vertex v € V.

Co,w Energy consumption for traversing road arc (v, w) €
Ag.

dyw Distance of road arc (v, w) € Ag.

B, Amount of energy in a charge level.

fo Network flow for rebalancing vehicles.

fv’w Maximum capacity of road arc (v, w) € Ag.

f(ow),e  Residual road capacity.

M Set of customer trip requests.

Mg 4, Maps acharging station s for each time step ¢ to all arcs
in Ag that represent charging vehicles at this station.

Ms . Maps a charging station s to the associated control-
lable load ¢ and distribution network d.

S Set of chargers in the road network.

S Number of charging plugs in charging station s € S.

T Set of time steps.

tm Departure timestep of trip request m € M.

ty Time step associated with expanded vertex v € V.

tyw Time to traverse road arc (v, w) € Ag.

vV Set of expanded graph vertices.
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Vb Vehicle operation cost per unit distance (excluding
electricity).

Vel,a Price of electricity at the substation of network d € D.

Ve,s Price of electricity in charging station s € S.

U, Origin of trip request m € M.

Vr Set of road vertices.

Uy Road vertex associated with expanded vertex v € V.
Wy, Destination of trip request m € M.

0c,s Charging rate of charger s € S.

At Length of a time step.

Am Customer rate of trip request m € M.

2&deP Number of vehicles with charge ¢ departing to serve
customer trip request m.

Abcarr Number of vehicles with charge ¢ arriving at time ¢
after serving customer trip request m.

OPF problem

D Set of distribution networks.

& Set of links.

i, Complex current through link (n, 0) € €.

L Set of controllable loads.

N Set of buses.

Ty Reference bus of controllable load ¢ € L.

Scon,e ~ Complex power of controllable load £ € L.

sﬁlm /C\;)mplex power injection at phase ¢ € ®,, inbusn €

Sunc,n ~ Complex power of uncontrollable load in bus n €
NT.

4 Complex voltage at phase ¢ € ®,, inbusn € N.

Y, Shunt admittance matrix of bus n € N.

Z0o Impedance matrix of link (n,0) € &.

d Set of phases.

[. INTRODUCTION

LEETS of electric self-driving cars servicing on-demand
F trip requests promise affordable urban mobility with 1)
reduced greenhouse gas emissions [1]; 2) decreased need for
parking [2]; and 3) fewer road accidents [3]. Additionally, such
systems offer further benefits stemming from optimized central
coordination, e.g., increased vehicle utilization compared to
privately owned vehicles [2] and increased operational flexi-
bility and efficiency compared to taxi, car-sharing, and ride-
hailing services. Furthermore, electric autonomous mobility on
demand (AMoD) has the potential to foster the adoption of
electric vehicles (EVs) since, in a high-utilization fleet, EVs are
more economical than their gasoline-powered counterparts [1].
Nonetheless, operating an electric AMoD fleet also bears in-
herent challenges as EVs show range limitations, which require
time-consuming recharging that adds a sizable load on power
distribution networks (PDNs). Studies on private EVs showed
that uncoordinated charging may require costly PDN upgrades to
secure stabilization, as it can destabilize PDNs due to overloads
or undervoltages [4]-[6]. In contrast, we expect that intelligently
coordinating the vehicles’ charging would reduce such negative
impacts, in particular, by reducing or deferring the need for
power network upgrades.

Controlling AMoD systems entails solving a dispatching
problem to assign vehicles to on-demand trip requests. The
system’s performance increases if empty vehicles are proactively
repositioned (rebalanced) in anticipation of future demand [7]. In
the past decade, multiple approaches have been presented for the
control of AMoD systems with varying degrees of mathematical
complexity. A first family of algorithms relies on heuristic rules
to dispatch and rebalance a fleet [8], [9]. More sophisticated
methods use optimization algorithms to control the AMoD
system. Often, network flow models using fluidic relaxations,
i.e., allowing for fractional vehicles and fractionally serviced trip
requests, are used [7]. Models of this type have been extended
to consider road capacities and congestion [10].

To control an electric AMoD system, an operator must keep
track of a vehicle’s state of charge (SoC) and recharge a vehicle’s
battery accordingly. Again, some heuristic approaches exist[11],
[12]. Optimization-based algorithms are so far not amenable
to large-scale problems as they rely on mixed-integer linear
programs with discretized SoCs [13], [14].

Atits core, the operation of an electric AMoD system induces
a coupling between the power network and the transportation
system. Specifically, the electric AMoD fleet represents a con-
trollable load in time and space. All previously mentioned
studies neglect the impact of an electric AMoD system on
the power grid, despite the fact that even a moderate amount
of EVs may significantly increase electricity prices [15] and
may negatively influence the power grid’s reliability [16], [17].
A few recent studies consider such a coupling implicitly via
available capacities [18] or prices [19], but the proposed control
algorithms for the electric AMoD fleet do not explicitly account
for the fleet impact on the power network. Only Rossi et al.
[20] consider the fleet impact on the power network explicitly,
introducing the power-in-the-loop AMoD model, a linear model
that combines a network flow model for the electric AMoD
system and a balanced single-phase dc model of a transmission
network. However, this model does not consider the PDN, which
is the more appropriate grid stage to analyze mesoscopic EVs’
fleet operations [21]. Notably, a single-phase dc model is not
sufficient to model a PDN as it assumes a constant voltage
magnitude and neglects reactive power and link resistances [22];
instead, a three-phase model is necessary [23, Ch. 1]. So far,
PDNs were only considered when determining optimal charging
schedules for privately owned EVs, which have to reach a certain
SoC by the end of a given planning horizon [5], [6], [24] as
opposed to centrally coordinated fleets. Here, an instance of the
optimal power flow (OPF) problem can be solved to balance
necessary charging loads with PDN-specific constraints.

In summary, individual aspects of the control problem ad-
dressed in this article, such as the control of an electric AMoD
system or considering PDN models to optimally charge private
EVs, have been addressed in the literature. However, to the
best of our knowledge, no studies that tightly couple an electric
AMoD system and PDN models currently exist.

This work addresses this gap. Specifically, our contribution is
threefold. First, we present a benchmark of convex three-phase
PDN power flow approximations and identify a model com-
patible with the characteristics of the electric AMoD problem.
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We then extend the mesoscopic model in [20] to capture the
operations of and interaction between an electric AMoD system
and a series of unbalanced PDNs. Second, we embed this model
within an optimization problem that assesses achievable bene-
fits with respect to full cooperation between the two systems.
The mesoscopic optimization’s solution enables comprehensive
analyses to identify bottlenecks in PDNs and inform operator
decisions in the day-ahead electricity market. Third, we provide
acase study of Orange County, CA, where we study the impact of
an electric AMoD system on the PDNs and evaluate the benefits
of coordination.

The remainder of this article is structured as follows. Section I1
reports the mesoscopic model for an electric AMoD system
used in previous work for self-consistency. Section III surveys
existing PDN models and identifies a suitable model for the
electric AMoD application. Section IV discusses the interaction
between the electric AMoD system and a series of PDNs.
Section V details our case study of Orange County, CA and
presents results that characterize the impact of electric AMoD
systems on PDNs, highlighting the improvement potential stem-
ming from coordination. Finally, Section VI concludes this
article with a summary of its main findings and an outlook on
future research.

[I. MODELING ELECTRIC AMOD SYSTEMS

In an AMoD system, a fleet of autonomous vehicles services
customer transportation requests, i.e., it picks up customers
from their origin and brings them to their destination [2]. A
fleet operator controls the AMoD fleet by assigning vehicles
to customer requests and by routing each vehicle. Besides
origin—destination trips of customers, the routing may comprise
rebalancing trips in-between two customer trips as spatial and
temporal mismatches between origins and destinations of differ-
ent customer requests arise. In an electric AMoD problem, the
fleet operator additionally controls vehicle charging schedules
and rebalances vehicles based on anticipated spatial-temporal
variations of vehicle SoCs and electricity prices.

We model an electric AMoD system with a network flow
model as originally presented in [20], reported in this section for
self-consistency. Sections III and IV then detail our main con-
tribution by integrating this model with PDNs. To avoid integer
variables, the model uses a fluidic vehicle approximation and
a road graph expanded along two dimensions: 1) discrete-time
and 2) vehicles’ SoC.

A. General Road Network Representation

We model the road network as a graph Ggr = (Vg, Ag) with
a set of vertices v € Vp and a set of road segment arcs (v, w) €
Ap. Each arc (v, w) € Ap is characterized by a distance d,, .,
a traversal time ¢, ,,, and energy consumption ¢, ;.

We consider a set 7 = 1,...,T of discrete equidistant time
steps (each of duration At € R') and a set C = {1,...,C}
of equidistant discrete battery charge levels (each has energy
E.cR™).

While some vertices in G merely represent intersections or
access points, others represent charging stations S C Vg that

----------- fo(v, w), (v,w) € Ar
— fow,w),(v,w) € A

———+  Example trip request m

Fig. 1. Integration of an expanded road graph (left) and multiple power
distribution networks (PDNs) (right). Typically, a road network spans
across multiple PDNs and connects to the PDNs via charging station
vertices. Besides charging stations that represent controllable loads,
PDNs contain reference buses (typically substations) highlighted in
black and uncontrollable loads from residential and commercial cus-
tomers.

allow recharging of vehicles. Each charging station s € S has
a charging rate ¢ s € {1,...,C} that denotes the amount of
SoC that can be recharged in a single time step. Additionally,
charging stations have a certain number of charging plugs S, €
N+, which limits the number of concurrently charging vehicles.

We model congestion using a threshold model, i.e., we assume
that vehicles drive at the road’s free-flow speed as long as their
number is less than the road’s capacity f, ., € R*, as detailed
in [20].

B. Expanded Graph Representation

We use an expanded graph to model a vehicle’s location and
SoC over time. The expanded graph G = (V, A) is directed and
has avertex set V C Vg x T x C.Eachvertex v € V is defined
by a tuple (vy, ty, ¢y) that represents a vertex vy, of Vi at a
specific time ¢, with a specific SoC ¢,,. Fig. 1 (left) illustrates
the concept of SoC expansion; for ease of representation, the
time expansion is not shown. The resulting arc set A consists of
two subsets Ar U Ag = A. Arcs (v, w) € Ay represent travel
in the road network and must meet the following condition:

Ar = {(v,w) € A| (vy,vw) € Ag,
tw —ty =

t'uv,vW7 Cy — Cw = cv‘,,'uw}

that is: 1) (vy, vy ) is a road arc; 2) the time expansion ty, — ty
equals its traversal time ¢, ., ; and 3) the SoC expansion ¢, —
¢y equals its consumption ¢, ., . Arcs (v, w) € Ag represent
recharging at a charging station and must meet the following
condition:

-AS: {(V,W)GA ‘ UVZUWZSESan_Cv:(tw - tv)ac,s}

that is: 1) v, and vy, are equal and correspond to a charging
station and 2) the SoC difference ¢, — ¢, equals the amount of
energy recharged, that is (tw — tv)dc,s.

C. Customer Trip Requests

In addition to this graph representation, we define a set of
customer trip requests M = {1,..., M }. Each trip m € M is
defined by a quadruple (v, Wi, tmy Am) € VR X VR X T X
R that denotes its origin v,,, its destination w,,,, its departure
time step t,,, and the number of customer trip requests (i.e.,
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the number of customers who wish to travel between v,,, and
wy, departing at ¢,,) A,,,. We assume a deterministic setting, in
which these requests are known or predicted for all time steps.
To reduce the number of decision variables, we use precomputed
vehicle routes for customer-carrying vehicles, corresponding to
shortest time paths r,_,,, that do not violate the congestion
constraints. As we use a threshold congestion model, we can
straightforwardly precompute such feasible shortest time paths
by solving a network flow problem as in [20]. Each shortest
time path has a traveling time ¢,_,,, and a charge requirement
Co—sw- We denote Af;LdEP as the number of vehicles with charge ¢
departing to serve customer trip request m and AL as the as
number of vehicles with charge c arriving at time ¢ after serving
customer trip request m. Thus, we have

).EFCom—wm ,dep
xt,c,arr _ m )
o =

0, otherwise (D

if tm =1- tUnL —Wm

VteT,ceC,Vme M.

D. Electric AMoD Model

We introduce fo(v,w): A — R7 to represent the flow of
customer-empty vehicles on arc (v, w), which includes both
rebalancing and charging vehicles. Furthermore, N (v) denotes
the initial location of the vehicles, i.e., the number of vehicles
available at vertex v, with charge level ¢, at ¢, = 1 and is zero
for all other time steps. Analogously, N (v) denotes the desired
final location of the vehicles, i.e., the number of vehicles that
must be at node v, with charge level ¢, at t, = T. With this
notation, a multicommodity flow representation of the electric
AMoD model is given by

M
Yo fovw) + ) Loymu Lig=t, Ay P + Ni(v)
wi(v,w)eAd m=1

M
= > folw,v)+ Y Ly, AT+ N (v)

u:(u,v)eA m=1

YwveVy )
c T C
Z}\.;‘;’?ldeP :)\,nl VmEM, szac’arr:)\m/VmeM'
c=1 t=1 c=1

3

Here, 1, is the indicator function. Equation (2) secures flow
conservation for rebalancing and charging vehicles, ensures a
sufficient number of empty vehicles in each vertex to cover
originating trip requests, and enforces initial and final conditions
on the vehicle locations through N; and Np. Equation (3)
distributes the demand for a given trip request m to vehicles with
different SoCs and accumulates vehicles arriving at different
times with different SoCs for request m.

E. Electric AMoD Problem

We now extend the basic constraints of the electric AMoD
model to a full electric AMoD model. Specifically, we optimize

the vehicles’ rebalancing routes and charging schedules in order
to minimize the cost of operating the electric AMoD system,
that is,

minimize Vb E vy vy fo(V, W)
c,dep W
, 0. leec, (v,w)eAr
[}‘7fLC'drr]ceC,teT*NI Nr

‘/el,s [tv]6C,st(Va W) (43)

DY

(v,w)EAg:vy =vyw =5

subject to

(1)=(3) electric AMoD model

>

(v,w)eAr:
Vy =0,V =W,t,=1

fov. W) flowye V(v,w) € Ap, t €T

(4b)
Z fo(v,w)< Sy, VseS,teT (4¢)
(v,w)eAs:
Vy =Vw=8,ty,=t
gr(Nr)=0, gr(Nr)=0. (4d)

Here, we use the previously introduced concept of expanded
graph vertices: each vertex v € V is defined by a tuple
(vy, ty, cv) € Vr X T x C. The objective function [see (4a)]
minimizes the operational cost of the electric AMoD system,
considering time-invariant operational cost per unit distance
(e.g., discounted cost for maintenance, tires, and depreciation)
Vp € R for rebalancing vehicles and time-varying electricity
costs Vi1s € R for recharging vehicles at a charging station
s € S. Fig. 1 depicts example arcs that model such rebalancing
and charging flows (fo), as well as A$9°P and ALS*™ for an
example trip m marked with bold arrows. Equations (1)—(3) im-
pose general flow conservation, while (4b) applies the threshold
congestion model to rebalancing flows. As customer-carrying
flows are fixed, we do not consider these directly in (4b). Instead,
we use the residual road capacity f(v’w)’t, which results from
subtracting the customer carrying flow on road arc (v, w) at time
step ¢ from the corresponding road capacity ﬁ,ﬂu. The prerouted
vehicles may congest a road link. In this case, we set the residual
capacity ﬁv,w),t for that link to zero. Thus, customer-carrying
flows and residual capacity are fixed and constant with respect to
the optimization of rebalancing flows. Equation (4c) limits the
number of vehicles that can use a charging station concurrently
according to the number of charging plugs at each station.
We impose initial and final conditions on vehicles with the
generic functions g7 and g in (4d). The brackets in the decision
variables denote concatenation. We will use this convention in
the rest of this article.

The electric AMoD problem [see (4)] has TC(|Ag| +
|S]) + CM + TC|Vg| + C|Vg| decision variables. The dom-
inant term is C'M: there could be at most one customer trip
request from every origin to every destination at every time step
such that M < |Vg|?T. It follows that CM € O(C|Vg|*T).

A few comments are in order. First, we consider discrete-
time steps as well as discrete SoC levels. From a mesoscopic
viewpoint, these discretizations bear sufficient accuracy while
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improving the model’s computational tractability significantly.
Second, the network flow model treats vehicles and customers
as fractional flows; accordingly, it is not readily suitable for
real-time control of electric AMoD fleets. Again, this accuracy
loss is acceptable at a mesoscopic level and is compatible with
our goal of assessing the achievable performance stemming from
the coordination between electric AMoD and PDN operators.
Note that our solution can still be used as a reference plan for
a lower level microscopic controller (cf.[25]). Third, we limit
the vehicle flow on a given road link to its capacity and assume
vehicles travel at free-flow speed accordingly. Such a threshold
congestion model is in line with the accuracy requirements
of our mesoscopic viewpoint. If necessary, more sophisticated
congestion models can easily be integrated into our modeling
approach, at the cost of computational tractability. Fourth, our
model does not explicitly account for congestion from non-
AMoD traffic. However, this type of traffic can be considered
by subtracting the corresponding flow from the residual road
capacity ﬁv,w),t- Fifth, we assume that future trip requests are
known or estimated with a high degree of accuracy. While the
development of tools to estimate AMoD demand is beyond
the scope of this article, remarkably accurate algorithms are
available in the literature (e.g.,[26]). Sixth, we optimize only re-
balancing trips and fix customer trips to their shortest time paths.
In principle, including the optimization of customer-carrying
trips could yield solutions with lower cost; however, our prior
work has shown that the inclusion of customer-carrying trips in
the optimization problem results in a small decrease in cost at the
price of a significant increase in computational complexity [20].
Also note that although the route of customer-carrying trips
is fixed, the SoC of customer-carrying vehicles is part of the
optimization problem. Finally, the electric AMoD problem [see
(4)] may become infeasible if the number or the distribution of
customer trip requests exceeds the customer-carrying capacity
of the electric AMoD system. Here, we assume that the problem
is always feasible as the fleet operator can reject or postpone
trip requests to ensure feasibility. This is in line with common
practice in today’s taxi or ride-hailing platforms. Nonetheless, a
mechanism to decide which trips should be rejected or postponed
is beyond the scope of this article.

[II. MODELING UNBALANCED PDNS

This section provides the basics for modeling unbalanced
PDNs and presents the identification of a compatible convex
power flow surrogate to model the integration of PDN into an
electric AMoD model under a unified notation framework. First,
we introduce an unbalanced PDN model in Section III-A. Then,
we define the OPF problem in Section I1I-B. Finally, we compare
convex power flow surrogates in Section III-C and justify the
selected surrogate.

A. Unbalanced PDN Model

In the following, we consider only the radial network structure
that is the typical configuration for PDNs [23, Ch. 1.1] and base
our notation on [22]. A radial PDN is modeled as a directed

graph P = (N, £) with a tree topology, consisting of a set of
buses N = {0,..., N} and a set of links £ C N2

Each PDN has a reference bus, which typically denotes a sub-
station that connects the PDN to the transmission network. The
set NT =N\ 0 contains all buses other than the reference bus
0. Buses are connected by links (e.g., power lines, transformers,
and regulators), such that (n,0) € £ represents a link between
n and o for which n lies in the single path between the reference
bus 0 and bus o. Note that there is only one such path because,
by assumption, P is a tree.

We consider unbalanced PDNs with three phases ¢ =
{a,b,c}. In line with this, ®, , C ® is the set of phases in
link (n,0) € £. Furthermore, the set of phases in bus n € N
comprises the phases of all links connected to the bus

(I)n = (U(m,,n)efq)m.,n) U (U(n,o)efq)n,o) Vn € N

Each bus n has a time-invariant shunt admittance matrix Y, €
C|®nIxI®n| representing the admittance between the bus and
the ground. Furthermore, each link (n,0) has a time-invariant
impedance matrix Z,, , € Cl®n.o/x[®nol,

We consider a discrete-time model that tracks a series of
steady states in the power network and neglects dynamic effects.
This is appropriate if the discretization time is substantially
longer than the time scale for the dynamic effects (i.e., in the
order of minutes). We consider a time span 7 = {1,...,T}
with time steps ¢t € T, each having a length At € R*. Each
bus n has a time-dependent complex voltage v¢[t] € C and a
complex power injection sf;j’n[t] € C for each of its phases.
Concurrently, each link shows a time-dependent current for
each of its phases i, ,[t] € C. For brevity, we use vectors for

per-phase quantities: v,, = [V%]ped,, s Sinjn = [S;z;j‘n]d)g(pn, and
tno = [iﬁ,obe%.o- Herein, superscripts represent the projec-
tion onto specific phases.

The current on each link obeys Ohm’s law, i.e.,
i t] = Yoo((Ua[t)®me — (vo[t])*™) (n,0) €E,t€T

n,0

with Y, , = Z;,lo [22]. Each bus is either specified by its
voltage or by its power injection such that the remaining quantity
is a dependent variable [27, Ch. 6.4]. We refer to specified
variables as direct variables and to those that are dependent
as indirect variables. The reference bus specifies the reference
voltage v? [t] € R for the network

ref

Vit = vl,t] e By, teT. (5)

ref

Accordingly, the complex voltage vy is the direct variable and
the complex power injection s;,,; o remains dependent.

For all other buses n € N, the complex power injection
Sinj,n 18 the direct variable, whereas the complex voltage v,
remains dependent. These buses are called PQ buses since the
active (p) and reactive power injection (q) are the direct variables.
Herein, each PQ bus has a time-varying uncontrollable load
with complex power Syyc,n [t] € Cl®nl, These loads represent
electricity demand from residential and commercial customers.
We consider uncontrollable loads to be exogenous but known in
advance within time span 7.
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Controllable loads ¢ € £ = {1,..., L} are defined by a tu-
ple (Scon,¢[t], ne) € Cl®nel x N denoting their complex power
Scon,¢ and its corresponding bus n,. These loads represent
dispatchable generators or loads that can be throttled. With this
notation, the power injections at PQ buses are

L
[t]—z ]171,:71,[ Scon,([t] nec NJra te T

(=1

(6)
Note that we model generators as negative loads without loss
of generality. Furthermore, we consider only wye-connected
constant power loads, which may require performing delta-to-
wye conversions for some loads and approximating constant
current and constant impedance loads as constant power ones.
This simplification is common in optimization frameworks [28].
Dependent variables result from the network topology and
its controllable and uncontrollable loads. Specifically, they are

related by the power flow equation [29]

Sinj,n [t]: —Sunc,n

Sinj,n[t] — dlag(vn[t]vn[t]HY'rI;I)
+ Y diag(oa® e f)(wa el
n:(n,0)e€
—v Y )T teT. 7

Collectively, these equations allow us to model a radial time-
invariant unbalanced PDN with time-varying controllable and
uncontrollable loads.

A few comments are in order. First, we consider a discrete-
time model that tracks a series of steady states in the power
network. As we are not interested in dynamic effects, this model
is appropriate, and the level of aggregation is aligned with our
mesoscopic transportation model. Second, we consider a time-
invariant PDN, which cannot model control elements, e.g., step
voltage regulators. Optimization frameworks commonly neglect
these elements (see [24] and [29]) as their inclusion substantially
increases complexity, while their omission results in a more
conservative optimization. This simplification is appropriate for
the purposes of a mesoscopic system-level analysis. Third, we
assume that high-quality estimates of uncontrollable electrical
loads are available. While deriving such estimates exceeds our
scope, techniques to accurately estimate future power demand
exist (see, e.g.,[30]).

B. OPF Problem

The OPF problem [see (8)] optimizes a power network’s state
subject to its operational constraints and is often used to support
grid-related decisions, e.g., operational or strategic planning,
and pricing [31]. Here, we use an OPF problem for operational
planning and decide on the controllable loads while optimizing
a generic objective function f(-) subject to the power flow
equation [see (7)] and additional operational constraints:

f0)

minimize
[['U n]nex\"yso 5 [Scon,l]léﬁ]tGT

(8a)

subject to

(5) Voltage at reference bus

(6) Power injections

(7) Power flow equation

WSlH]|> uiy,, PEPn NENTLET (8b)
WIS Ul PER,, NENT tET (8¢)
< 50 teT (8d)

> s

¢

e, LeL, teT
(8e)

@ @ @
qcon,min,é S qcon,é[t]S qcon,max,f ¢ € énw le ['7 te T
(8f)

o (] ()
pcon,min,ﬁ < pcon,é [t]g pcon,max,é

Equations (5)—(7) denote the general power network model.
Equations (8b) and (8c) constrain the voltage magnitude lv?[t]]|
to be within a minimal umm » € R and a maximal uf,,, ,, € R
value, according to regulatlons (e.g., ANSI C84.1). Equatlon
(8d) limits the apparent power injected to the reference bus
to be less than 35 € R™, typically, to respect the rating of
the substation transformer. Equations (8e) and (8f) model the
characteristics of controllable loads through lower and upper

bounds on active power (pCon min, 0> pfon ‘max,¢ € R), and reac-

tive power (qCorl min, 0> qcon max,¢ € R). The AMoD-OPF joint
problem described in Section IV-C will leverage approximations
of the operational constraints in (8) and include an electricity cost
objective term.

This OPF problem is nonconvex because of 1) the power flow
equation [see (7)] and 2) lower bound constraints on voltage
magnitudes [see (8b)]. Even the optimization of a balanced
single-phase approximation of this problem remains an NP-hard
problem [32].

C. Convex Power Flow Surrogates

We desire the joint AMoD-OPF problem to be convex and
ideally linear to preserve computational tractability.

Hence, we convexify the OPF problem [see (8)] using a
power flow surrogate that approximates the power flow equation
[see (7)] with a convex proxy, making the problem formulation
computationally tractable. Using such a power flow surrogate,
we lose exact knowledge of the indirect variables.

Given the high relevance of the OPF problem, a vast literature
on power flow surrogates exists [31], [33]. However, most of
these surrogates, as well as comparative studies, consider only
balanced single-phase models as typically used in transmission
networks [34].

For unbalanced three-phase models, only a few power flow
surrogates exist, and, to the best of our knowledge, no survey
or benchmark classifies the suitability of these surrogates for
specific problem structures, such as integration with the electric
AMoD problem. To close this gap, we analyzed and compared
three promising surrogates.

We compared a convex, semidefinite program (SDP) surro-
gate [22], the branch flow model SDP (BFM-SDP), against two
linear surrogates: the branch flow model linear program (BFM-
LP) [22], [35] and the linearized power flow manifold linear
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program (LPFM-LP) [36]. We used the charger maximization
problem, which maximizes the power delivered to a series of
charging stations across a distribution network as a benchmark,
as it challenges the surrogates by pushing the network’s opera-
tional constraints to its limits. For each surrogate, we evaluated
its accuracy in approximating the indirect variables used in
(8b)—(8d). Additionally, we analyzed the resulting constraint
violations and computational times We detail the methodology
of our comparison in [37] but omit it in this article due to space
limitations. In summary, BEM-SDP yielded exact solutions on
small instances but performed significantly worse than the other
two approaches in both solution quality and computational time
for large instances. LPFM-LP and BFM-LP showed a tradeoff
between solution quality and computational time, with a 91%
reduction on the mean average error in approximating bus volt-
age magnitudes (LPFM-LP) and 97.3% shorter computational
times (BFM-LP), while neither of both violated the substation
rating constraint. Based on these results, we use the BFM-LP
in this work as it preserves linearity in the joint problem while
yielding sufficient solution quality for our mesoscopic study and
relatively short computation times.

The BFM-LP assumes fixed link losses and fixed voltage
ratios between phases in a bus [22], [35]: let %mo € CI®n .ol e the
fixed link current in link (n, 0) € £ used to determine the fixed
link losses. Let ,, € C/®l be the voltage used to determine
the fixed voltage ratios in bus n € A'". Then, the matrix of
fixed voltage ratios for link (n,0) € £, T, , € Cl®n.olx®n.ol
has entries

(@n[t)*e)i
((@n[t])*e);
(n,o) €&, teT.

(Fmo[t])ij = 27.7 S {17~-~7|q)n,o|}>

We define the following matrices to ease the notation:

W, [t] = v, [tjv,[t]?
A olt] = diag((vn[t])(b’L'oin,o[t]H)
L, o[t] = tnolt]inolt] (n,0) €& teT.

Assuming fixed link losses and voltage ratios, the power flow
equation [see (7)] admits a linear approximation [29]:

> Awolt] - diag(Z L olt]) — diag(W,[t]Y )

m:(m,n)e€

+sminlt] = D (Anolt)* neN, teT
o:(n,0)e€
)
W,[t] = (W, [t])*e — (Ty,0[t] diag(An,0) ZE,

+ Zpo(Tnolt] diag(Ano)) ! + Zn oL olt| ZE,

(nyo)e &, teT. (10)

The constraints on voltage magnitudes then read as

1169
diag(W,[t])?) > (uiin ) ¢ € Pny, neNT teT

(1)
diag(Wa[t])?) < (ufhoxn)’ @ € T, neENT LET.

(12)

Now, each nonlinear term in (8) can be replaced with a linear
approximation to yield the BFM-LP: 1) the power flow equation
[see (7)] with the branch flow model (BFM) linearization [see
(9) and (10)] and 2) the voltage magnitude constraints [see (8b)
and (8c)] with their linear approximation [see (11) and (12)].
Note that (8d) constrains a complex scalar to lie within a circle
of radius §; in the complex plane. This constraint is nonlinear
but convex and can be represented as a second-order cone. To
obtain a linear program (LP), we approximate the circle with a
12-face regular polygon [38], which covers more than 95% of
the circle’s area.

The BFM-LP has T'(}", .y |®,,|2 + 2 med [Dy, 0] +
2(P0| +2> s [ Pnyl) decision variables. Here,
T ,cn |®n|? is the dominant term since, by assumption,
P has a tree topology such that || = |€| + 1. Since voltages
are complex-valued (i.e., two components per phase) and @,
has at most three phases, it follows that |®,|?> € O(1). Thus,
the dominant term grows proportional to the number of buses
|V| and the number of time steps 7. In line with this, it admits
an upper bound O(T'|N).

A few comments are in order. First, we use a linear power flow
surrogate, which entails the approximation of indirect variables.
We discuss its validity and attenuate potential constraint viola-
tions in Section V. Second, by using the BFM-LP surrogate,
we treat link losses and voltage ratios as fixed parameters.
Previous research has shown that BFM-LP achieves sufficient
accuracy even under the assumption of zero link losses and
perfectly balanced voltage ratios [22]. Our formulation is even
more accurate since we use reasonable estimates for the fixed
parameters instead of setting them to zero [35].

IV. INTERACTION BETWEEN AN ELECTRIC AMOD
SYSTEM AND PDNSs

In this section, we develop a model for the joint optimization
of an electric AMoD system and a series of PDNs. Specifically,
as an electric AMoD system usually spans across multiple
(disconnected) PDNSs, we first introduce the multi-OPF problem,
which combines multiple OPF problem instances. Then, we
formalize the coupling between the electric AMoD system and
the PDNs before we state the joint AMoD-OPF problem.

A. Multi-OPF Problem

The multi-OPF problem couples D instances of the OPF prob-
lem and results straightforwardly by extending the constraints
for each instance d € D = {1,...,D}.

We neglect couplings upstream of PDN substations through
the transmission network as this article focuses solely on the
interaction between an electric AMoD system and a series
of PDNs. Couplings between the electric AMoD system and
the power network at the transmission and distribution level
occur on very different spatial scales (tens of kilometers versus
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hundreds of meters) and result in largely orthogonal effects:
specifically, couplings at the transmission level mainly influence
bulk electricity prices [20], whereas couplings at the distribution
level influence bus voltages and power losses. Accordingly, due
to the orthogonal nature of the two couplings, we envision that
a nested optimization approach could be used to first address
transmission-level couplings through existing algorithms (see,
e.g.,[20]) and then optimize distribution-level couplings through
the tools proposed in this article.

B. Coupling of the Electric AMoD System and PDNs

The charging stations, which appear as controllable loads in
the PDNSs, couple the electric AMoD system to the PDNs (see
Fig. 1). Formally, this coupling is established by two functions,
Ms, 4 and M ¢, defined in the following.

The function Mg 44 : S x T — Ag maps a charging station
s € S for each time step ¢ € 7 to all arcs in Ag that represent
charging vehicles at this station:

Ms, s (S,t)Z{(V,W) €As| vy =vw =5, cy <cCw, by StStw}-

Then, the load at charging station s is given by

Z fo(v,w)

(v,w) GMS«AS (s,t)

pslt] = Ecdc s seS, teT.
(13)
The function Ms » : & — (£ x D) maps a charging station
s € S to the associated controllable load ¢ € £ and distribution
network d € D. It follows that charging station s is attached
to bus nagg ., in PDN dgg (- As we consider three-phase
charging stations, we assume equally distributed loads, that is

1

a b c
Scon,/\/lgv/;(s) [t] = SCOH,Ms)[(S) [t] = SCOH,Ms)L(S) [t] = gps [t]

seS, teT. (14)

Note that we can model inverters that control the load power
factor since qfon’ M. o(s) MuUStnot necessarily be zero. Although
the charging station load is distributed equally among phases,
loads in distribution networks are inherently unbalanced, which
requires an unbalanced distribution model [23, Ch. 1.3] Also
note that charging stations are commonly modeled to operate at

unity power factor (no reactive power consumption) [39].

C. AMoD-OPF Problem

The joint AMoD-OPF problem results from coupling the
electric AMoD problem (4) with the multi-OPF problem through
(13) and (14), namely:

minimize
Jo, M Pcee,
[)L:r’zrc’arr]ccc,tchNIvNFﬁ

[[U"n,]ne.r'\"v [iﬁ,o] (n,0)eé>
SOw[SCOn,Z]Eec]teT, deD

+ Z At Z Ver,alt] Z Pg,d[t]

teT deD Ped

VD Z dv‘,,vwa(vaW)

(v,w)eA

(15a)

subject to

(1)—(3) and (4b)—(4d)
[(5), (6), (9), and (10)] ;. p and

[(8b)~(8D)] 4
(13) and (14)

Electric AMoD system

PDNs
Coupling from
charging stations.

The objective (15a) captures operating costs for both the elec-
tric AMoD fleet and the PDNs since we consider full cooperation
between both operators. Analogously to the isolated electric
AMoD problem (4a), we consider only rebalancing costs for
the AMoD fleet given fixed customer flows. In each distribution
network d € D, we account for the electricity cost that results
from charging vehicles, uncontrollable loads, and power losses.

Note that our joint problem formulation treats both operators
as a single entity, assuming complete information and coop-
eration. This assumption is in line with our mesoscopic view
and scope to estimate the achievable benefits of coordination
and cooperation between the two systems. We leave the study
of game-theoretical aspects to future work, where we intend
to develop pricing and coordination mechanisms to align the
goals of the electric AMoD operator and the PDN operators,
and to leverage distributed optimization algorithms to compute a
solution to the AMoD-OPF problem (15) in a distributed manner.
Furthermore, our joint model assumes that the electric AMoD
system is the dominant means of electric transportation, which
is in line with our system-level perspective [3]. However, the
model can readily accommodate other EVs by including their
traffic flow as residual capacity in (4b) and their charging as
exogeneous loads in (8).

V. CASE STUDY IN ORANGE COUNTY, CA

We evaluate the impact of an electric AMoD system on the
PDNSs and the benefit of optimized joint coordination through
a case study in Orange County, CA. Our case study considers
commuting trips within the cities of Fountain Valley, Irvine,
North Tustin, Orange, Santa Ana, Tustin, and Villa Park. In
the following, we detail our data (see Section V-A), outline the
experimental design (see Section V-B), and, finally, discuss our
results (see Section V-C).

A. Model Parameters

We focus on an 8-h commuting cycle from 5 A.M. to 1 PM.
on July 3, 2015 discretized into 6-min time steps, such that
|7 = 80. As we do not consider future grid storage devices,
which would charge/discharge over the span of a day, an 8-h
horizon is sufficient to model the power system. We chose
the time discretization to be close to the traversal time of the
shortest road link. As the power system considers hourly prices
and excludes transient effects, 6-min time steps are more than
sufficient to model PDNs for a mesoscopic analysis. For this pe-
riod, we model the charging station and transportation networks
at a mesoscopic aggregation level that allows a sufficient level
of detail to analyze the interaction between an electric AMoD
system and the PDNs, and ensures computational tractability.

1) Transportation Network Data: We derive trip demand
from Census Tract Flow data from the 2006-2010 American
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Fig. 2. Area considered in the Orange County, CA case study. The
aggregated road network is shown in orange, representing vertices as
dots and arcs as lines. Green dots show the substation locations. Blue
lines show the assignment of a charging station to its closest substation.

Community Survey. From these data, we take the estimated
commuting flows between the 143 census tracts that are part of
our case study. To align the granularity of aggregated charging
station network representations and census tracts, we cluster the
143 census tracts into 20 larger areas using a k-means algorithm.
We neglect commuting flows if they start or end outside the area
of our case study or if they start and end within the same cluster
since these types of flows cannot be accurately represented in our
model. Our planning horizon comprises 122 219 trips (32.8%
of the total daily trips).

The problem of fleet sizing for (electric) AMoD systems [40]
is beyond the scope of this article. For this case study, we
heuristically selected a sufficient fleet size, large enough to keep
the AMoD-OPF problem [see (15)] feasible with only a small
number of idle vehicles and corresponding to 140% of the peak
concurrent number of passenger-carrying trips.

We create an aggregated road network based on Open-
StreetMap data with the same granularity as the trip demand
data. For this, we select the road network vertices closest to the
centroids of the census tract clusters and add arcs between those
vertices if a connection exists in the real road network. We obtain
an aggregated road network with 20 vertices and 76 arcs (see
Fig. 2), which captures vehicle travel and charging between the
separate PDNSs of the case study region. Note that computational
complexity limits our model to coarse road networks; this is
discussed in detail below. For each aggregated road network
vertex, we consider three-phase 50-kW dc fast-charging stations
with S, = 40 plugs in total. Accordingly, each vertex has a
charging station with a maximum load of 2 MW (0.66 MW
per phase).

2) EV Data: We consider a homogeneous vehicle fleet based
on the characteristics of the 2018 Nissan Leaf, which has a
40-kWh battery and a range of 240 km. Based on fast-charging
guidelines, we reduce a vehicle’s battery capacity and its range
to 80% of their original values [11] and discretize this effec-
tive battery capacity into C' = 40 levels, resulting in energy
discretizations of 0.8 kWh, which remains close to the energy
necessary to traverse the lowest energy road link. To account for
the possibility that vehicles might not start the day with fully

charged batteries, we set the SoC at ¢t = 1 to 50%. Furthermore,
we require vehicles to recharge the amount of energy used over
a planning horizon such that the final SoC must be at a minimum
50% again. We set the vehicle operation cost per unit distance
(excluding electricity) to Vp = 0.3 USD/km [41].

3) PDN Data: We use a GridLAB-D model of the PL-1 dis-
tribution network, a primary feeder operated by the Pacific Gas
and Electric Company available for research purposes [42], as a
proxy for (sub-)urban distribution networks. The network com-
prises 322 buses and operates at a nominal voltage of 12.6 kV.
We set the uncontrollable loads to the model’s time-varying
loads.

We take the location of substations from the utility’s data [43]
and attach a model of the PL-1 distribution network to each
substation. We set the electricity price at each substation to the
corresponding locational marginal price [44] and conservatively
assume a base load utilization of 75% at the substation trans-
former. Typically, distribution networks are operated at 50-75%
of their load capacity so that loads can be transferred from one
distribution network to another if needed [45]. Accordingly, we
set the substation transformer rating $y to 1/0.75 times the
value of the peak base load (i.e., without charging stations),
yielding 59 = 10.42 MVA. In addition, we set the lower voltage
magnitude limit to 0.96 per unit and the upper limit to 1.04
per unit, which is 0.01 per unit tighter than required by ANSI
C84.1 to allow for the voltage drop in the secondaries of the
network.

We connect each charging station to the distribution network
whose substation is nearest. Since no data on the coordinates
of the distribution network buses exist, we randomly attach the
charging station to one of the PDN buses. Thus, the PDN is
the same for each substation, except for the varying number and
location of charging stations. In total, we consider 14 distribution
networks, each with one or two charging stations.

We set the price of electricity at each charging station to
be equal to the electricity price at the respective substation,
such that Ver,s[t] = Veray, ., [t] holds. Since we focus on the
total benefit from a systerh perspective and treat both opera-
tors as a single entity, only the spatial variation of electricity
prices that are closely linked to the substation prices affects our
solution.

Some comments on the distribution network modeling are in
order. First, we used the same network model and load values
for each distribution network, considering loads from a single
summer day. As PDNs are treated as critical infrastructure and
load data are usually confidential to protect customers, more ac-
curate data are not publicly available for research purposes [46].
However, our model can be rerun with more accurate data at any
time. Second, we set the electricity price at each substation to the
corresponding locational marginal price. Locational marginal
prices result from the power consumption at the transmission
grid level. As our focus is on the interaction of the electric AMoD
fleet with the distribution grids and the power used for recharging
represents only a negligible fraction at the transmission grid
level, neglecting the impact of this consumption on the marginal
prices only minimally affects the accuracy of our results. Third,
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we assume the electricity price for charging at a certain station
to be equal to the electricity price at the respective substation.
Neglecting the possible difference in electricity prices among
nodes in a single distribution network is consistent with our
mesoscopic transportation model.

The resulting AMoD-OPF problem has 6 224 240 decision
variables, 1 463 600 from the electric AMoD part and 4 760 640
from the multi-OPF part. Since the multi-OPF part comprises D
PDNs, the number of variables in it admits the upper bound
O(TD|N]). Thus, the number of decision variables in the
whole AMoD-OPF problem admits the following upper bound:
O(T(C|Vg|? + D|N])). Recall that the complexity of solving
the LP with an interior point method is polynomial in the number
of variables with an exponent lower than 3.5 (depending on the
implementation) [47]. Nominally, the size of the electric AMoD
part of the problem increases quadratically with the number of
road vertices. However, if more vertices are added for the same
area, the road segment arcs will become shorter, and 7" and C'
should be increased to capture the reduced travel duration and
energy consumption in the shorter road segment arcs. Thus, in
practice, the electric AMoD part of the problem grows more
than quadratically with the number of road vertices. This limits
our formulation to coarse road networks. In future work, we will
explore methods that improve the scalability of the AMoD-OPF
problem, extending its applicability to finer networks.

B. Experimental Design

To quantify the impact of an electric AMoD system on the
PDNSs and the benefit of optimized joint coordination, our ex-
periments consider two cases. First, we analyze the impact of
an electric AMoD system on the PDNs without coordination,
i.e., the uncoordinated case. This study shows how electric
AMoD systems can negatively affect PDNs. Then, we focus
on the coordinated case in which the electric AMoD system
and the distribution networks are jointly optimized. Comparing
the results of both cases allow us to quantify the potential of
optimized coordination between these systems. In both cases,
we generate results as follows.

a) Computing controllable loads. We determine the load at
each charging station that results from the operation of the
electric AMoD system. Depending on the studied case, we solve
either (4) (uncoordinated) or (15) (coordinated).

b) Solving the power flow equation. To assess the quality of a
solution from step (a), we solve the exact power flow equation
[see (7)] to derive the true values of the indirect variables
(i.e., complex power injection at the reference bus and complex
voltage in all other buses).

c) Evaluating constraint violations. In step (a), we determine
controllable loads without an exact model of the PDNSs as it is
either neglected (uncoordinated case) or approximated (coordi-
nated case). Hence, it is often the case that solutions do violate
some of the constraints. To quantify these violations, we evalu-
ate integral constraint violations as we consider a time-variant
model. Specifically, regulations require voltage magnitudes to
be kept within a given percentage of a nominal value (e.g.,
ANSI C84.1). Hence, we analyze the integral absolute voltage

magnitude constraint violation

Uviol,int = Atzz Z Z |Ufio1}n,d[t”

teT deD ne/\/’j PPy, g

where
ufiol,n,d[t] = mln(ui,d[t] - u’ﬁ]in,n,d’ 0)
+ max(ui,d[t] - uiax,n,d’ 0)

is the voltage magnitude constraint violation at phase ¢ € ®,,
in bus n € N. Note that ufiol n.q 18 negative when the voltage

magnitude is lower than ul

min,n,d’
than uﬁlax’n’ 4 and zero when it is in-between. Additionally,
substations typically connect distribution networks to the higher-
voltage transmission network, requiring a transformer to lower
the voltage. To avoid overloading this transformer, the power
draw must be less than the transformer rating. Hence, we analyze

the integral substation transformer rating violation

§0,viol,int = Z At Z §0,d,vi01 [t]

teT deD

positive when it is larger

where

§O,d,vi01 [t] = max

Z s0.a°[t]| — 80,4, 0

PEPy,q

is the substation transformer rating violation for d € D.

d) Evaluating energy consumption and cost. We analyze the
energy consumption of the electric AMoD system and its cost.
The total energy consumption F,1, Which includes the energy
consumed by exogenous loads and the electric AMoD system,
results from summing the energy draw of all substations. The
total energy consumption in the base case Elotalbase results
analogously without considering an electric AMoD system.
Consequently, the difference of Eoa1 and Eyopal base Fepresents
the additional energy consumption caused by the electric AMoD
system:

EAMOD = Etotal - Etotal,base

=D ALY Y (poa®lt] — Dhse.alt])-

teT deD ¢pe®g 4

Here, pfase 4 € R is the power drawn in phase ¢ € ®q from
substation d € D in the base case.

Due to losses in the distribution networks, not all of EanioD
relates to charging stations. The energy delivered to the charging
stations is given by

Echarge,AMoD - Z At Z Z Z pfonj,d[t]'

teT deD LeLy p€Pp,,q

The difference between Fanop and Echarge, AMoD Tepresents
the link losses caused by the electric AMoD system:

Eloss,AMoD = EAMOD - Echarge,AMoD~

Analogously, the cost of these losses is given by

Vvel,loss,AMoD = Vvel,AMoD - V:el}(:harge,AMoD
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transformer rating (3¢, 4,vio1) Violations. For clarity, we do not show the
cases where the violation is zero. All voltage magnitude violations are
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events (i.e., those exceeding 0.005 p.u.) For both quantities, constraint
violations are significantly lower in the coordinated case. (a) Voltage
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where V1 aMop 1s given by

Vvel,AMoD - Z At Z V:?l,d[t] Z (pO,dd)[t] - pz)ase,d[t])

teT deD PEDg 4

and Vvel,charge,AMoD is the cost of Echarge,AMoD:

‘/el,charge,AMoD - Z At Z ‘/el,d[t] Z Z pf0n7é7d[t]'

teT deD lely ¢€<I’w‘d

Our implementation builds on top of the authors’ AMoD
Toolkit,! which relies on YALMIP [48] to formulate and solve
electric AMoD problems. Additionally, we built a general
codebase for unbalanced OPF problems, the Unbalanced OPF
Toolkit.> To support future research in this field, we released
both the AMoD Toolkit and the Unbalanced OPF Toolkit under
an open-source license.

C. Results and Discussion

Following our experimental design, we evaluate constraint
violations (see Fig. 3), as well as energy consumption and costs.
Table I summarizes the key results.

Fig. 3(a) shows a histogram with all voltage magnitude con-
straint violations ufiolm) 4> €ach event represents the constraint
being violated in one phase during one of the 6-min time steps.
The base case shows no violations and, hence, is not plotted. In
contrast, violations appear in both cases that include the electric
AMoD system. ANSI C84.1, the power quality standard for
voltage ranges used across the USA, advises that service voltage
violations must be limited in extent, frequency, and duration.
Optimized coordination between the electric AMoD system
and the PDNs helps to decrease voltage constraint violations
significantly. The number of voltage constraint violations is
reduced by 3.85% in the coordinated case, from 46 910 to
45 106. Notably, coordination reduces the number of serious
violation events [i.e., those exceeding 0.005 p.u., which are the
most concerning; see Fig. 3(a)] by 74.85%, from 21 734 to

Uhttps://github.com/Stanford ASL/ AMoD-toolkit
Zhttps://github.com/Stanford ASL/unbalanced- opf-toolkit

TABLE |
IMPACT OF COORDINATING AN ELECTRIC AMOD FLEET WITH PDNs
Unit Uncoord  Coord Change

Voltage violation ~ p.u. h 24.04 11.95 —50.28%
Capacity violation ~MVAh 7.89 0.02 —99.71%
Electricity cost, USDh 8.35k 8.49k 1.67%
charging
Electricity cost, USD 0.35k 0.33k —4.59%
losses
Electricity cost, USDh 8.69k 8.82k 1.42%
AMoD
Rebalancing cost USDh 97.79k  101.00k 3.28%
Total cost, AMoD  USD 106.49k  109.82k 3.13%
Energy, charging MWh 268.82 270.63 0.68%
Energy, losses MWh 11.01 10.43 —5.24%
Energy, AMoD MWh 279.82 281.06 0.44%

Coordination significantly reduces constraint violations at the cost of slightly higher
operational costs.

5467. All in all, there is a 50.28% reduction in integral absolute
voltage magnitude constraint violation, from 24.04 p.u.-hour
to 11.95 p.u.-hour. Consequently, coordination between the two
systems helps to achieve better compliance with regulations that
require the voltage magnitude to be kept close to its nominal
value.

Fig. 3(b) shows a histogram with all substation transformer
rating violations 3¢ 4 viol €ach event represents the constraint
being violated in one substation transformer during one of the
6-min time steps. Optimized coordination nearly eliminates
substation capacity constraint violations, reducing their count
by 94.05% from 168 to 10. The number of substations that
experience a transformer rating violation is reduced from six
to two. All in all, there is a 99.71% reduction in integral substa-
tion transformer rating violation, from 7.89 MVA-hour to 0.02
MVA-hour.

Transformers represent a significant investment by utilities.
For example, installing a transformer with a rating similar to the
one used in this case study (59 = 10.42 MVA) has a cost in the
order of 1.7 million USD [49]. Given transformers’ substantial
cost, increasing their useful life by reducing transformer capac-
ity threshold violations (as done by coordination) can lead to
significant monetary savings for utilities. We leave the precise
quantification of these savings for future research.

Fig. 4 shows the load at one representative substation along
with the applicable transformer rating. The load is shown for
the three cases: base, uncoordinated and coordinated. The base
case represents the substation load arising from the uncontrol-
lable loads. The other two cases show higher loads due to the
recharging vehicles. In the uncoordinated case, there is a signif-
icant transformer rating violation between 8 A.M. and 11 A.M.
Coordination helps to resolve the violation, as charging loads
that exceed the capacity constraint are shifted to later time steps.

Fig. 5 shows the number of charging vehicles and the electric-
ity price over time. The coordinated case shows steady charging
activity after 11 A.M. In contrast, charging activities decrease sig-
nificantly after 11 A.M. in the uncoordinated case. The charging
activity mirrors the substation load in Fig. 4, which is higher for
the coordinated case in later time steps. The increased charging
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Fig. 4. Load at one representative substation and the corresponding
transformer rating. The base case shows the load from uncontrollable
loads. The uncoordinated and coordinated cases show increased load
due to charging vehicles. The substation transformer rating is exceeded
in the uncoordinated case. In the coordinated case, charging vehicles
later during the day resolves the violation.
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Fig. 5. Number of charging vehicles and electricity price over time.
Coordination shifts the charging load to later time steps when the elec-
tricity price is higher. The resulting cost increase is the price paid for
reducing system constraint violations, which improves voltage profiles
and prolongs transformer life.

activity later in the day and the ensuing load leads to increased
electricity expenditure as the electricity price is higher later in
the day.

Table I shows the impact of coordinating an electric AMoD
fleet with PDNs. The total operational costs of the electric
AMoD system during the studied 8-h time span increase slightly
by 3.13% (3329.61 USD). Rebalancing costs show an increase
of 3.28% (3206.47 USD) as vehicles charge at more distant
charging stations due to an increase in rebalancing detours. The
shift of charging activity to later in the day due to coordination
causes electricity costs to increase by 1.42% (123.15 USD). The
small increase in operational costs reflects the price paid for
reducing system constraint violations, which improves voltage
profiles and prolongs transformer life.

The energy delivered to the charging stations (see Table I)
increases by 1.82 MWh (0.68%) in the coordinated case be-
cause of increased rebalancing detours. However, the energy
attributable to the electric AMoD system consumed at the sub-
stations increases only by 1.24 MWh (0.44%). The difference
of 0.58 MWh is due to energy losses being reduced by 5.24%.
Reduced energy losses reflect more efficient power distribution:
a greater share of the energy leaving the substations reaches
the charging stations in the coordinated case (96.29% compared
with 96.07%).

The optimization was performed on an AWS r4.xlarge in-
stance (4 vCPU at 2.3 GHz, 30.5 GB RAM). The AMoD-OPF
problem [see (15)] was solved in 554 iterations over 8.1 h,
whereas solving the electric AMoD problem [see (4)] took
51 iterations over 0.7 h using Gurobi Optimizer. Thus, the

presented solution approach is currently not suitable for real-
time operations—the design of an operational version of this
framework is left for future research. One potential avenue for
reducing the computation time would be improving the scaling
of the AMoD-OPF problem [see (15)] to reduce the number
of iterations required by the solver. Despite the computation
times, the mesoscopic analyses presented herein can be used
to identify bottlenecks in PDNs that point at necessary grid
extension investments. Additionally, a grid operator can use this
approach to compute the amount of spinning reserves needed to
hedge on the day-ahead market to secure a reliable operation of
its PDNs.

VI. CONCLUSION

We presented the AMoD-OPF problem, which integrates an
electric AMoD problem with a multi-OPF problem. In this
context, we discussed power flow surrogates to obtain a compu-
tationally tractable convex problem formulation. The resulting
AMoD-OPF problem allows one to assess the achievable ben-
efit of coordinating an electric AMoD system and a series of
PDNs. With this methodological framework, we investigated
the impact of an electric AMoD system on the PDNs. Herein,
we especially focused on the benefits of coordination between
the two systems and discussed results for a case study in Orange
County, CA. We showed that in an uncoordinated system, the
electric AMoD fleet negatively affects the distribution networks:
the charging behavior of the electric AMoD vehicles caused
overloads at substation transformers and violated (lower) voltage
magnitude limits. Furthermore, we showed that a coordinated
system helps to balance the load in the PDNs in time and
space. Specifically, link losses were slightly reduced, substation
overloads were nearly eliminated, and voltage violations were
halved. Nonetheless, these reductions in constraint violations
increased the cost of operating the electric AMoD system by
3.13% caused by vehicles driving to charge in less congested
but more distant stations and charging when electricity prices
are higher. This indicates that distribution networks can support
more EVs before upgrades are needed if the vehicles are charged
in coordination with exogenous loads in the PDNs. Due to our
system-optimal objective, these findings remain an assessment
of the overall benefit of coordination between an electric AMoD
fleet and PDNSs.

Our findings open the field for multiple directions of future
research. First, our AMoD-OPF problem is mesoscopic and
assumes perfect knowledge of future loads and trip requests.
To design a real-time algorithm, the integration of forecasts to
capture the stochastic nature of the problem is an interesting
avenue for further research. Second, we modeled the operators
of the AMoD fleet and the PDNSs as a single entity, implying full
cooperation. In future work, one should address the interplay
between these two stakeholders, with the goal of designing in-
centive mechanisms, and investigate market dynamics, e.g., the
price of stability and the price of anarchy. Third, our case study
provides preliminary results about the benefit of coordinating
electric AMoD fleets with PDNs. To provide decision support
to practitioners, additional case studies that capture different
PDNs, different road network characteristics, varying instance
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sizes, and distributed renewable energy generation are required.
Fourth, our case study did not consider the EVs’ potential to
feed power back into the PDN. Hence, extending our modeling
approach for vehicle-to-grid options, evaluating regulation and
operating reserve potentials, remains a promising avenue for
future research.
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