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On the Interaction Between Autonomous
Mobility on Demand Systems and Power
Distribution Networks—An Optimal Power

Flow Approach
Alvaro Estandia , Maximilian Schiffer , Federico Rossi , Justin Luke , Emre Can Kara ,

Ram Rajagopal , and Marco Pavone

Abstract—In future transportation systems, the charg-
ing behavior of electric autonomous mobility on demand
(AMoD) fleets, i.e., fleets of electric self-driving cars that
service on-demand trip requests, will likely challenge
power distribution networks (PDNs), causing overloads or
voltage drops. In this article, we show that these challenges
can be significantly attenuated if the PDNs’ operational
constraints and exogenous loads (e.g., from homes or busi-
nesses) are accounted for when operating an electric AMoD
fleet. We focus on a system-level perspective, assuming
full coordination between the AMoD and the PDN operators.
From this single entity perspective, we assess potential co-
ordination benefits. Specifically, we extend previous results
on an optimization-based modeling approach for electric
AMoD systems to jointly control an electric AMoD fleet
and a series of PDNs, and analyze the benefit of coordi-
nation under load balancing constraints. For a case study
of Orange County, CA, USA, we show that the coordination
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between the electric AMoD fleet and the PDNs eliminates
99% of the overloads and 50% of the voltage drops that
the electric AMoD fleet would cause in an uncoordinated
setting. Our results show that coordinating electric AMoD
and PDNs can help maintain the reliability of PDNs under
additional electric AMoD charging load, thus significantly
mitigating or deferring the need for PDN capacity upgrades.

Index Terms—Electric autonomous mobility on demand,
network flow, smart grid, unbalanced optimal power flow.

NOMENCLATURE

AMoD system

A Set of expanded graph arcs.

AR Set of road arcs.

AS Set of expanded graph arcs representing a recharging

process.

AT Set of expanded graph arcs representing a physical

time-dependent movement in the road network.

C Set of discrete battery charge levels.

cv SoC associated with expanded vertex v ∈ V .

cv,w Energy consumption for traversing road arc (v, w) ∈
AR.

dv,w Distance of road arc (v, w) ∈ AR.

Ec Amount of energy in a charge level.

f0 Network flow for rebalancing vehicles.

f̄v,w Maximum capacity of road arc (v, w) ∈ AR.

f̄(v,w),t Residual road capacity.

M Set of customer trip requests.

MS,AS
Maps a charging station s for each time step t to all arcs

in AS that represent charging vehicles at this station.

MS,L Maps a charging station s to the associated control-

lable load � and distribution network d.

S Set of chargers in the road network.

S̄s Number of charging plugs in charging station s ∈ S .

T Set of time steps.

tm Departure timestep of trip request m ∈ M.

tv Time step associated with expanded vertex v ∈ V .

tv,w Time to traverse road arc (v, w) ∈ AR.

V Set of expanded graph vertices.
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VD Vehicle operation cost per unit distance (excluding

electricity).

Vel,d Price of electricity at the substation of network d ∈ D.

Vel,s Price of electricity in charging station s ∈ S .

vm Origin of trip request m ∈ M.

VR Set of road vertices.

vv Road vertex associated with expanded vertex v ∈ V .

wm Destination of trip request m ∈ M.

δC,s Charging rate of charger s ∈ S .

∆t Length of a time step.

λm Customer rate of trip request m ∈ M.

λ
c,dep
m Number of vehicles with charge c departing to serve

customer trip request m.

λ
t,c,arr
m Number of vehicles with charge c arriving at time t

after serving customer trip request m.

OPF problem

D Set of distribution networks.

E Set of links.

iφn,o Complex current through link (n, o) ∈ E .

L Set of controllable loads.

N Set of buses.

n� Reference bus of controllable load � ∈ L.

scon,� Complex power of controllable load � ∈ L.

sφinj,n Complex power injection at phase φ ∈ Φn in bus n ∈
N .

sunc,n Complex power of uncontrollable load in bus n ∈
N+.

vφn Complex voltage at phase φ ∈ Φn in bus n ∈ N .

Y n Shunt admittance matrix of bus n ∈ N .

Zn,o Impedance matrix of link (n, o) ∈ E .

Φ Set of phases.

I. INTRODUCTION

F
LEETS of electric self-driving cars servicing on-demand

trip requests promise affordable urban mobility with 1)

reduced greenhouse gas emissions [1]; 2) decreased need for

parking [2]; and 3) fewer road accidents [3]. Additionally, such

systems offer further benefits stemming from optimized central

coordination, e.g., increased vehicle utilization compared to

privately owned vehicles [2] and increased operational flexi-

bility and efficiency compared to taxi, car-sharing, and ride-

hailing services. Furthermore, electric autonomous mobility on

demand (AMoD) has the potential to foster the adoption of

electric vehicles (EVs) since, in a high-utilization fleet, EVs are

more economical than their gasoline-powered counterparts [1].

Nonetheless, operating an electric AMoD fleet also bears in-

herent challenges as EVs show range limitations, which require

time-consuming recharging that adds a sizable load on power

distribution networks (PDNs). Studies on private EVs showed

that uncoordinated charging may require costly PDN upgrades to

secure stabilization, as it can destabilize PDNs due to overloads

or undervoltages [4]–[6]. In contrast, we expect that intelligently

coordinating the vehicles’ charging would reduce such negative

impacts, in particular, by reducing or deferring the need for

power network upgrades.

Controlling AMoD systems entails solving a dispatching

problem to assign vehicles to on-demand trip requests. The

system’s performance increases if empty vehicles are proactively

repositioned (rebalanced) in anticipation of future demand [7]. In

the past decade, multiple approaches have been presented for the

control of AMoD systems with varying degrees of mathematical

complexity. A first family of algorithms relies on heuristic rules

to dispatch and rebalance a fleet [8], [9]. More sophisticated

methods use optimization algorithms to control the AMoD

system. Often, network flow models using fluidic relaxations,

i.e., allowing for fractional vehicles and fractionally serviced trip

requests, are used [7]. Models of this type have been extended

to consider road capacities and congestion [10].

To control an electric AMoD system, an operator must keep

track of a vehicle’s state of charge (SoC) and recharge a vehicle’s

battery accordingly. Again, some heuristic approaches exist [11],

[12]. Optimization-based algorithms are so far not amenable

to large-scale problems as they rely on mixed-integer linear

programs with discretized SoCs [13], [14].

At its core, the operation of an electric AMoD system induces

a coupling between the power network and the transportation

system. Specifically, the electric AMoD fleet represents a con-

trollable load in time and space. All previously mentioned

studies neglect the impact of an electric AMoD system on

the power grid, despite the fact that even a moderate amount

of EVs may significantly increase electricity prices [15] and

may negatively influence the power grid’s reliability [16], [17].

A few recent studies consider such a coupling implicitly via

available capacities [18] or prices [19], but the proposed control

algorithms for the electric AMoD fleet do not explicitly account

for the fleet impact on the power network. Only Rossi et al.

[20] consider the fleet impact on the power network explicitly,

introducing the power-in-the-loop AMoD model, a linear model

that combines a network flow model for the electric AMoD

system and a balanced single-phase dc model of a transmission

network. However, this model does not consider the PDN, which

is the more appropriate grid stage to analyze mesoscopic EVs’

fleet operations [21]. Notably, a single-phase dc model is not

sufficient to model a PDN as it assumes a constant voltage

magnitude and neglects reactive power and link resistances [22];

instead, a three-phase model is necessary [23, Ch. 1]. So far,

PDNs were only considered when determining optimal charging

schedules for privately owned EVs, which have to reach a certain

SoC by the end of a given planning horizon [5], [6], [24] as

opposed to centrally coordinated fleets. Here, an instance of the

optimal power flow (OPF) problem can be solved to balance

necessary charging loads with PDN-specific constraints.

In summary, individual aspects of the control problem ad-

dressed in this article, such as the control of an electric AMoD

system or considering PDN models to optimally charge private

EVs, have been addressed in the literature. However, to the

best of our knowledge, no studies that tightly couple an electric

AMoD system and PDN models currently exist.

This work addresses this gap. Specifically, our contribution is

threefold. First, we present a benchmark of convex three-phase

PDN power flow approximations and identify a model com-

patible with the characteristics of the electric AMoD problem.
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We then extend the mesoscopic model in [20] to capture the

operations of and interaction between an electric AMoD system

and a series of unbalanced PDNs. Second, we embed this model

within an optimization problem that assesses achievable bene-

fits with respect to full cooperation between the two systems.

The mesoscopic optimization’s solution enables comprehensive

analyses to identify bottlenecks in PDNs and inform operator

decisions in the day-ahead electricity market. Third, we provide

a case study of Orange County, CA, where we study the impact of

an electric AMoD system on the PDNs and evaluate the benefits

of coordination.

The remainder of this article is structured as follows. Section II

reports the mesoscopic model for an electric AMoD system

used in previous work for self-consistency. Section III surveys

existing PDN models and identifies a suitable model for the

electric AMoD application. Section IV discusses the interaction

between the electric AMoD system and a series of PDNs.

Section V details our case study of Orange County, CA and

presents results that characterize the impact of electric AMoD

systems on PDNs, highlighting the improvement potential stem-

ming from coordination. Finally, Section VI concludes this

article with a summary of its main findings and an outlook on

future research.

II. MODELING ELECTRIC AMOD SYSTEMS

In an AMoD system, a fleet of autonomous vehicles services

customer transportation requests, i.e., it picks up customers

from their origin and brings them to their destination [2]. A

fleet operator controls the AMoD fleet by assigning vehicles

to customer requests and by routing each vehicle. Besides

origin–destination trips of customers, the routing may comprise

rebalancing trips in-between two customer trips as spatial and

temporal mismatches between origins and destinations of differ-

ent customer requests arise. In an electric AMoD problem, the

fleet operator additionally controls vehicle charging schedules

and rebalances vehicles based on anticipated spatial–temporal

variations of vehicle SoCs and electricity prices.

We model an electric AMoD system with a network flow

model as originally presented in [20], reported in this section for

self-consistency. Sections III and IV then detail our main con-

tribution by integrating this model with PDNs. To avoid integer

variables, the model uses a fluidic vehicle approximation and

a road graph expanded along two dimensions: 1) discrete-time

and 2) vehicles’ SoC.

A. General Road Network Representation

We model the road network as a graph GR = (VR,AR) with

a set of vertices v ∈ VR and a set of road segment arcs (v, w) ∈
AR. Each arc (v, w) ∈ AR is characterized by a distance dv,w,

a traversal time tv,w, and energy consumption cv,w.

We consider a set T = 1, . . . , T of discrete equidistant time

steps (each of duration ∆t ∈ R
+) and a set C = {1, . . . , C}

of equidistant discrete battery charge levels (each has energy

Ec ∈ R
+).

While some vertices in GR merely represent intersections or

access points, others represent charging stations S ⊆ VR that

Fig. 1. Integration of an expanded road graph (left) and multiple power
distribution networks (PDNs) (right). Typically, a road network spans
across multiple PDNs and connects to the PDNs via charging station
vertices. Besides charging stations that represent controllable loads,
PDNs contain reference buses (typically substations) highlighted in
black and uncontrollable loads from residential and commercial cus-
tomers.

allow recharging of vehicles. Each charging station s ∈ S has

a charging rate δC,s ∈ {1, . . . , C} that denotes the amount of

SoC that can be recharged in a single time step. Additionally,

charging stations have a certain number of charging plugs S̄s ∈
N

+, which limits the number of concurrently charging vehicles.

We model congestion using a threshold model, i.e., we assume

that vehicles drive at the road’s free-flow speed as long as their

number is less than the road’s capacity f̄v,w ∈ R
+, as detailed

in [20].

B. Expanded Graph Representation

We use an expanded graph to model a vehicle’s location and

SoC over time. The expanded graph G = (V ,A) is directed and

has a vertex setV ⊆ VR × T × C. Each vertexv ∈ V is defined

by a tuple (vv, tv, cv) that represents a vertex vv of VR at a

specific time tv with a specific SoC cv. Fig. 1 (left) illustrates

the concept of SoC expansion; for ease of representation, the

time expansion is not shown. The resulting arc set A consists of

two subsets AT ∪ AS = A. Arcs (v,w) ∈ AT represent travel

in the road network and must meet the following condition:

AT = {(v,w) ∈ A | (vv, vw) ∈ AR,

tw − tv = tvv,vw
, cv − cw = cvv,vw

}

that is: 1) (vv, vw) is a road arc; 2) the time expansion tw − tv
equals its traversal time tvv,vw

; and 3) the SoC expansion cw −
cv equals its consumption cvv,vw

. Arcs (v,w) ∈ AS represent

recharging at a charging station and must meet the following

condition:

AS= {(v,w)∈A | vv=vw=s∈S, cw−cv=(tw − tv)δC,s}

that is: 1) vv and vw are equal and correspond to a charging

station and 2) the SoC difference cw − cv equals the amount of

energy recharged, that is (tw − tv)δC,s.

C. Customer Trip Requests

In addition to this graph representation, we define a set of

customer trip requests M = {1, . . . ,M}. Each trip m ∈ M is

defined by a quadruple (vm, wm, tm, λm) ∈ VR × VR × T ×
R

+ that denotes its origin vm, its destination wm, its departure

time step tm, and the number of customer trip requests (i.e.,
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the number of customers who wish to travel between vm and

wm departing at tm) λm. We assume a deterministic setting, in

which these requests are known or predicted for all time steps.

To reduce the number of decision variables, we use precomputed

vehicle routes for customer-carrying vehicles, corresponding to

shortest time paths rv→w that do not violate the congestion

constraints. As we use a threshold congestion model, we can

straightforwardly precompute such feasible shortest time paths

by solving a network flow problem as in [20]. Each shortest

time path has a traveling time tv→w and a charge requirement

cv→w. We denote λ
c,dep
m as the number of vehicles with charge c

departing to serve customer trip request m and λ
t,c,arr
m as the as

number of vehicles with charge c arriving at time t after serving

customer trip request m. Thus, we have

λ
t,c,arr
m =

{

λ
c+cvm→wm ,dep
m , if tm = t− tvm→wm

0, otherwise

∀t ∈ T , c ∈ C, ∀m ∈ M.

(1)

D. Electric AMoD Model

We introduce f0(v,w) : A → R
+ to represent the flow of

customer-empty vehicles on arc (v,w), which includes both

rebalancing and charging vehicles. Furthermore, NI(v) denotes

the initial location of the vehicles, i.e., the number of vehicles

available at vertex vv with charge level cv at tv = 1 and is zero

for all other time steps. Analogously,NF (v) denotes the desired

final location of the vehicles, i.e., the number of vehicles that

must be at node vv with charge level cv at tv = T . With this

notation, a multicommodity flow representation of the electric

AMoD model is given by

∑

w:(v,w)∈A

f0(v,w) +

M
∑

m=1

1vv=vm
1tv=tmλ

cv,dep
m +NF (v)

=
∑

u:(u,v)∈A

f0(u,v) +

M
∑

m=1

1vv=wm
λ
tv,cv,arr
m +NI(v)

∀v ∈ V (2)

C
∑

c=1

λ
c,dep
m =λm ∀m∈M,

T
∑

t=1

C
∑

c=1

λ
t,c,arr
m =λm ∀m∈M.

(3)

Here, 1x is the indicator function. Equation (2) secures flow

conservation for rebalancing and charging vehicles, ensures a

sufficient number of empty vehicles in each vertex to cover

originating trip requests, and enforces initial and final conditions

on the vehicle locations through NI and NF . Equation (3)

distributes the demand for a given trip requestm to vehicles with

different SoCs and accumulates vehicles arriving at different

times with different SoCs for request m.

E. Electric AMoD Problem

We now extend the basic constraints of the electric AMoD

model to a full electric AMoD model. Specifically, we optimize

the vehicles’ rebalancing routes and charging schedules in order

to minimize the cost of operating the electric AMoD system,

that is,

minimize
f0,[λ

c,dep
m ]c∈C ,

[λt,c,arr
m ]c∈C,t∈T ,NI ,NF

VD

∑

(v,w)∈AT

dvv,vw
f0(v,w)

+
∑

(v,w)∈AS :vv=vw=s

Vel,s[tv]δC,sf0(v,w) (4a)

subject to

(1)–(3) electric AMoD model

∑

(v,w)∈AT :
vv=v,vw=w,tv=t

f0(v,w)≤ f̄(v,w),t ∀(v, w) ∈ AR, t ∈ T

(4b)

∑

(v,w)∈AS :
vv=vw=s,tv=t

f0(v,w)≤ S̄s ∀s ∈ S, t ∈ T (4c)

gI(NI)= 0, gF (NF ) = 0. (4d)

Here, we use the previously introduced concept of expanded

graph vertices: each vertex v ∈ V is defined by a tuple

(vv, tv, cv) ∈ VR × T × C. The objective function [see (4a)]

minimizes the operational cost of the electric AMoD system,

considering time-invariant operational cost per unit distance

(e.g., discounted cost for maintenance, tires, and depreciation)

VD ∈ R for rebalancing vehicles and time-varying electricity

costs Vel,s ∈ R for recharging vehicles at a charging station

s ∈ S . Fig. 1 depicts example arcs that model such rebalancing

and charging flows (f0), as well as λ
c,dep
m and λ

t,c,arr
m for an

example trip m marked with bold arrows. Equations (1)–(3) im-

pose general flow conservation, while (4b) applies the threshold

congestion model to rebalancing flows. As customer-carrying

flows are fixed, we do not consider these directly in (4b). Instead,

we use the residual road capacity f̄(v,w),t, which results from

subtracting the customer carrying flow on road arc (v, w) at time

step t from the corresponding road capacity f̄v,w. The prerouted

vehicles may congest a road link. In this case, we set the residual

capacity f̄(v,w),t for that link to zero. Thus, customer-carrying

flows and residual capacity are fixed and constant with respect to

the optimization of rebalancing flows. Equation (4c) limits the

number of vehicles that can use a charging station concurrently

according to the number of charging plugs at each station.

We impose initial and final conditions on vehicles with the

generic functions gI and gF in (4d). The brackets in the decision

variables denote concatenation. We will use this convention in

the rest of this article.

The electric AMoD problem [see (4)] has TC(|AR|+
|S|) + CM + TC|VR|+ C|VR| decision variables. The dom-

inant term is CM : there could be at most one customer trip

request from every origin to every destination at every time step

such that M ≤ |VR|
2T . It follows that CM ∈ O(C|VR|

2T ).
A few comments are in order. First, we consider discrete-

time steps as well as discrete SoC levels. From a mesoscopic

viewpoint, these discretizations bear sufficient accuracy while
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improving the model’s computational tractability significantly.

Second, the network flow model treats vehicles and customers

as fractional flows; accordingly, it is not readily suitable for

real-time control of electric AMoD fleets. Again, this accuracy

loss is acceptable at a mesoscopic level and is compatible with

our goal of assessing the achievable performance stemming from

the coordination between electric AMoD and PDN operators.

Note that our solution can still be used as a reference plan for

a lower level microscopic controller (cf.[25]). Third, we limit

the vehicle flow on a given road link to its capacity and assume

vehicles travel at free-flow speed accordingly. Such a threshold

congestion model is in line with the accuracy requirements

of our mesoscopic viewpoint. If necessary, more sophisticated

congestion models can easily be integrated into our modeling

approach, at the cost of computational tractability. Fourth, our

model does not explicitly account for congestion from non-

AMoD traffic. However, this type of traffic can be considered

by subtracting the corresponding flow from the residual road

capacity f̄(v,w),t. Fifth, we assume that future trip requests are

known or estimated with a high degree of accuracy. While the

development of tools to estimate AMoD demand is beyond

the scope of this article, remarkably accurate algorithms are

available in the literature (e.g.,[26]). Sixth, we optimize only re-

balancing trips and fix customer trips to their shortest time paths.

In principle, including the optimization of customer-carrying

trips could yield solutions with lower cost; however, our prior

work has shown that the inclusion of customer-carrying trips in

the optimization problem results in a small decrease in cost at the

price of a significant increase in computational complexity [20].

Also note that although the route of customer-carrying trips

is fixed, the SoC of customer-carrying vehicles is part of the

optimization problem. Finally, the electric AMoD problem [see

(4)] may become infeasible if the number or the distribution of

customer trip requests exceeds the customer-carrying capacity

of the electric AMoD system. Here, we assume that the problem

is always feasible as the fleet operator can reject or postpone

trip requests to ensure feasibility. This is in line with common

practice in today’s taxi or ride-hailing platforms. Nonetheless, a

mechanism to decide which trips should be rejected or postponed

is beyond the scope of this article.

III. MODELING UNBALANCED PDNS

This section provides the basics for modeling unbalanced

PDNs and presents the identification of a compatible convex

power flow surrogate to model the integration of PDN into an

electric AMoD model under a unified notation framework. First,

we introduce an unbalanced PDN model in Section III-A. Then,

we define the OPF problem in Section III-B. Finally, we compare

convex power flow surrogates in Section III-C and justify the

selected surrogate.

A. Unbalanced PDN Model

In the following, we consider only the radial network structure

that is the typical configuration for PDNs [23, Ch. 1.1] and base

our notation on [22]. A radial PDN is modeled as a directed

graph P = (N , E) with a tree topology, consisting of a set of

buses N = {0, . . . , N} and a set of links E ⊂ N 2.

Each PDN has a reference bus, which typically denotes a sub-

station that connects the PDN to the transmission network. The

set N+=N \ 0 contains all buses other than the reference bus

0. Buses are connected by links (e.g., power lines, transformers,

and regulators), such that (n, o) ∈ E represents a link between

n and o for which n lies in the single path between the reference

bus 0 and bus o. Note that there is only one such path because,

by assumption, P is a tree.

We consider unbalanced PDNs with three phases Φ =
{a, b, c}. In line with this, Φn,o ⊆ Φ is the set of phases in

link (n, o) ∈ E . Furthermore, the set of phases in bus n ∈ N
comprises the phases of all links connected to the bus

Φn =
(

∪(m,n)∈EΦm,n

)

∪
(

∪(n,o)∈EΦn,o

)

∀n ∈ N .

Each busnhas a time-invariant shunt admittance matrixY n ∈
C

|Φn|×|Φn|, representing the admittance between the bus and

the ground. Furthermore, each link (n, o) has a time-invariant

impedance matrix Zn,o ∈ C
|Φn,o|×|Φn,o|.

We consider a discrete-time model that tracks a series of

steady states in the power network and neglects dynamic effects.

This is appropriate if the discretization time is substantially

longer than the time scale for the dynamic effects (i.e., in the

order of minutes). We consider a time span T = {1, . . . , T}
with time steps t ∈ T , each having a length ∆t ∈ R

+. Each

bus n has a time-dependent complex voltage vφn[t] ∈ C and a

complex power injection sφinj,n[t] ∈ C for each of its phases.

Concurrently, each link shows a time-dependent current for

each of its phases iφn,o[t] ∈ C. For brevity, we use vectors for

per-phase quantities: vn = [vφn]φ∈Φn
, sinj,n = [sφinj,n]φ∈Φn

, and

in,o = [iφn,o]φ∈Φn,o
. Herein, superscripts represent the projec-

tion onto specific phases.

The current on each link obeys Ohm’s law, i.e.,

iφn,o[t] = Y n,o((vn[t])
Φn,o − (vo[t])

Φn,o) (n, o) ∈ E , t ∈ T

with Y n,o = Z
−1
n,o [22]. Each bus is either specified by its

voltage or by its power injection such that the remaining quantity

is a dependent variable [27, Ch. 6.4]. We refer to specified

variables as direct variables and to those that are dependent

as indirect variables. The reference bus specifies the reference

voltage vφref [t] ∈ R for the network

vφ0 [t] = vφref [t] φ ∈ Φ0, t ∈ T . (5)

Accordingly, the complex voltage v0 is the direct variable and

the complex power injection sinj,0 remains dependent.

For all other buses n ∈ N+, the complex power injection

sinj,n is the direct variable, whereas the complex voltage vn

remains dependent. These buses are called PQ buses since the

active (p) and reactive power injection (q) are the direct variables.

Herein, each PQ bus has a time-varying uncontrollable load

with complex power sunc,n[t] ∈ C
|Φn|. These loads represent

electricity demand from residential and commercial customers.

We consider uncontrollable loads to be exogenous but known in

advance within time span T .

Authorized licensed use limited to: Stanford University. Downloaded on September 19,2021 at 18:06:35 UTC from IEEE Xplore.  Restrictions apply. 



1168 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. 3, SEPTEMBER 2021

Controllable loads � ∈ L = {1, . . . , L} are defined by a tu-

ple (scon,�[t], n�) ∈ C
|Φn�

| ×N denoting their complex power

scon,� and its corresponding bus n�. These loads represent

dispatchable generators or loads that can be throttled. With this

notation, the power injections at PQ buses are

sinj,n[t]=−sunc,n[t]−
L
∑

�=1

1n=n�
scon,�[t] n ∈ N+, t ∈ T .

(6)

Note that we model generators as negative loads without loss

of generality. Furthermore, we consider only wye-connected

constant power loads, which may require performing delta-to-

wye conversions for some loads and approximating constant

current and constant impedance loads as constant power ones.

This simplification is common in optimization frameworks [28].

Dependent variables result from the network topology and

its controllable and uncontrollable loads. Specifically, they are

related by the power flow equation [29]

sinj,n[t] = diag(vn[t]vn[t]
H
Y

H
n )

+
∑

n:(n,o)∈E

diag(vn
Φn,o [t](vn

Φn,o [t]

− v
Φn,o
o [t])HY

H
n,o)

Φn , t ∈ T . (7)

Collectively, these equations allow us to model a radial time-

invariant unbalanced PDN with time-varying controllable and

uncontrollable loads.

A few comments are in order. First, we consider a discrete-

time model that tracks a series of steady states in the power

network. As we are not interested in dynamic effects, this model

is appropriate, and the level of aggregation is aligned with our

mesoscopic transportation model. Second, we consider a time-

invariant PDN, which cannot model control elements, e.g., step

voltage regulators. Optimization frameworks commonly neglect

these elements (see [24] and [29]) as their inclusion substantially

increases complexity, while their omission results in a more

conservative optimization. This simplification is appropriate for

the purposes of a mesoscopic system-level analysis. Third, we

assume that high-quality estimates of uncontrollable electrical

loads are available. While deriving such estimates exceeds our

scope, techniques to accurately estimate future power demand

exist (see, e.g.,[30]).

B. OPF Problem

The OPF problem [see (8)] optimizes a power network’s state

subject to its operational constraints and is often used to support

grid-related decisions, e.g., operational or strategic planning,

and pricing [31]. Here, we use an OPF problem for operational

planning and decide on the controllable loads while optimizing

a generic objective function f(·) subject to the power flow

equation [see (7)] and additional operational constraints:

minimize
[[vn]n∈N ,s0,[scon,�]�∈L]t∈T

f(·) (8a)

subject to

(5) Voltage at reference bus

(6) Power injections

(7) Power flow equation

|vφn[t]|≥ uφ
min,n φ∈Φn, n∈N+, t∈T (8b)

|vφn[t]|≤ uφ
max,n φ∈Φn, n∈N+, t∈T (8c)

∣

∣

∣

∣

∣

∣

∑

φ∈Φ

s0
φ[t]

∣

∣

∣

∣

∣

∣

≤ ŝ0 t∈T (8d)

pφcon,min,� ≤ pφcon,�[t]≤ pφcon,max,� φ∈Φn�
, �∈L, t∈T

(8e)

qφcon,min,� ≤ qφcon,�[t]≤ qφcon,max,� φ∈Φn�
, �∈L, t∈T .

(8f)

Equations (5)–(7) denote the general power network model.

Equations (8b) and (8c) constrain the voltage magnitude |vφn[t]|

to be within a minimal uφ
min,n ∈ R and a maximal uφ

max,n ∈ R

value, according to regulations (e.g., ANSI C84.1). Equation

(8d) limits the apparent power injected to the reference bus

to be less than ŝ0 ∈ R
+, typically, to respect the rating of

the substation transformer. Equations (8e) and (8f) model the

characteristics of controllable loads through lower and upper

bounds on active power (pφcon,min,�, p
φ
con,max,� ∈ R), and reac-

tive power (qφcon,min,�, q
φ
con,max,� ∈ R). The AMoD-OPF joint

problem described in Section IV-C will leverage approximations

of the operational constraints in (8) and include an electricity cost

objective term.

This OPF problem is nonconvex because of 1) the power flow

equation [see (7)] and 2) lower bound constraints on voltage

magnitudes [see (8b)]. Even the optimization of a balanced

single-phase approximation of this problem remains an NP-hard

problem [32].

C. Convex Power Flow Surrogates

We desire the joint AMoD-OPF problem to be convex and

ideally linear to preserve computational tractability.

Hence, we convexify the OPF problem [see (8)] using a

power flow surrogate that approximates the power flow equation

[see (7)] with a convex proxy, making the problem formulation

computationally tractable. Using such a power flow surrogate,

we lose exact knowledge of the indirect variables.

Given the high relevance of the OPF problem, a vast literature

on power flow surrogates exists [31], [33]. However, most of

these surrogates, as well as comparative studies, consider only

balanced single-phase models as typically used in transmission

networks [34].

For unbalanced three-phase models, only a few power flow

surrogates exist, and, to the best of our knowledge, no survey

or benchmark classifies the suitability of these surrogates for

specific problem structures, such as integration with the electric

AMoD problem. To close this gap, we analyzed and compared

three promising surrogates.

We compared a convex, semidefinite program (SDP) surro-

gate [22], the branch flow model SDP (BFM-SDP), against two

linear surrogates: the branch flow model linear program (BFM-

LP) [22], [35] and the linearized power flow manifold linear
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program (LPFM-LP) [36]. We used the charger maximization

problem, which maximizes the power delivered to a series of

charging stations across a distribution network as a benchmark,

as it challenges the surrogates by pushing the network’s opera-

tional constraints to its limits. For each surrogate, we evaluated

its accuracy in approximating the indirect variables used in

(8b)–(8d). Additionally, we analyzed the resulting constraint

violations and computational times We detail the methodology

of our comparison in [37] but omit it in this article due to space

limitations. In summary, BFM-SDP yielded exact solutions on

small instances but performed significantly worse than the other

two approaches in both solution quality and computational time

for large instances. LPFM-LP and BFM-LP showed a tradeoff

between solution quality and computational time, with a 91%

reduction on the mean average error in approximating bus volt-

age magnitudes (LPFM-LP) and 97.3% shorter computational

times (BFM-LP), while neither of both violated the substation

rating constraint. Based on these results, we use the BFM-LP

in this work as it preserves linearity in the joint problem while

yielding sufficient solution quality for our mesoscopic study and

relatively short computation times.

The BFM-LP assumes fixed link losses and fixed voltage

ratios between phases in a bus [22], [35]: let ĩn,o ∈ C
|Φn,o| be the

fixed link current in link (n, o) ∈ E used to determine the fixed

link losses. Let ṽn ∈ C
|Φn| be the voltage used to determine

the fixed voltage ratios in bus n ∈ N+. Then, the matrix of

fixed voltage ratios for link (n, o) ∈ E , Γn,o ∈ C
|Φn,o|×|Φn,o|,

has entries

(Γn,o[t])ij =
((ṽn[t])

Φn,o)i
((ṽn[t])Φn,o)j

i, j ∈ {1, . . . , |Φn,o|},

(n, o) ∈ E , t ∈ T .

We define the following matrices to ease the notation:

W n[t] = vn[t]vn[t]
H

Λn,o[t] = diag((vn[t])
Φn,oin,o[t]

H)

L̃n,o[t] = ĩn,o[t]
H
ĩn,o[t] (n, o) ∈ E , t ∈ T .

Assuming fixed link losses and voltage ratios, the power flow

equation [see (7)] admits a linear approximation [29]:

∑

m:(m,n)∈E

Λn,o[t]− diag(Zm,nL̃n,o[t])− diag(W n[t]Y
H
n )

+ sinj,n[t] =
∑

o:(n,o)∈E

(Λn,o[t])
Φn n ∈ N , t ∈ T

(9)

W o[t] = (W n[t])
Φn,o − (Γn,o[t] diag(Λn,o)Z

H
n,o

+Zn,o(Γn,o[t] diag(Λn,o))
H +Zn,oL̃n,o[t]Z

H
n,o

(n, o) ∈ E , t ∈ T . (10)

The constraints on voltage magnitudes then read as

diag((W n[t])
φ) ≥ (uφ

min,n)
2 φ ∈ Φn, n ∈ N+, t ∈ T

(11)

diag((W n[t])
φ) ≤ (uφ

max,n)
2 φ ∈ Φn, n ∈ N+, t ∈ T .

(12)

Now, each nonlinear term in (8) can be replaced with a linear

approximation to yield the BFM-LP: 1) the power flow equation

[see (7)] with the branch flow model (BFM) linearization [see

(9) and (10)] and 2) the voltage magnitude constraints [see (8b)

and (8c)] with their linear approximation [see (11) and (12)].

Note that (8d) constrains a complex scalar to lie within a circle

of radius ŝ0 in the complex plane. This constraint is nonlinear

but convex and can be represented as a second-order cone. To

obtain a linear program (LP), we approximate the circle with a

12-face regular polygon [38], which covers more than 95% of

the circle’s area.

The BFM-LP has T (
∑

n∈N |Φn|2 + 2
∑

(n,o)∈E |Φn,o|+

2|Φ0|+ 2
∑

�∈L |Φn�
|) decision variables. Here,

T
∑

n∈N |Φn|
2 is the dominant term since, by assumption,

P has a tree topology such that |N | = |E|+ 1. Since voltages

are complex-valued (i.e., two components per phase) and Φn

has at most three phases, it follows that |Φn|
2 ∈ O(1). Thus,

the dominant term grows proportional to the number of buses

|N | and the number of time steps T . In line with this, it admits

an upper bound O(T |N |).
A few comments are in order. First, we use a linear power flow

surrogate, which entails the approximation of indirect variables.

We discuss its validity and attenuate potential constraint viola-

tions in Section V. Second, by using the BFM-LP surrogate,

we treat link losses and voltage ratios as fixed parameters.

Previous research has shown that BFM-LP achieves sufficient

accuracy even under the assumption of zero link losses and

perfectly balanced voltage ratios [22]. Our formulation is even

more accurate since we use reasonable estimates for the fixed

parameters instead of setting them to zero [35].

IV. INTERACTION BETWEEN AN ELECTRIC AMOD
SYSTEM AND PDNS

In this section, we develop a model for the joint optimization

of an electric AMoD system and a series of PDNs. Specifically,

as an electric AMoD system usually spans across multiple

(disconnected) PDNs, we first introduce the multi-OPF problem,

which combines multiple OPF problem instances. Then, we

formalize the coupling between the electric AMoD system and

the PDNs before we state the joint AMoD-OPF problem.

A. Multi-OPF Problem

The multi-OPF problem couplesD instances of the OPF prob-

lem and results straightforwardly by extending the constraints

for each instance d ∈ D = {1, . . . , D}.

We neglect couplings upstream of PDN substations through

the transmission network as this article focuses solely on the

interaction between an electric AMoD system and a series

of PDNs. Couplings between the electric AMoD system and

the power network at the transmission and distribution level

occur on very different spatial scales (tens of kilometers versus
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hundreds of meters) and result in largely orthogonal effects:

specifically, couplings at the transmission level mainly influence

bulk electricity prices [20], whereas couplings at the distribution

level influence bus voltages and power losses. Accordingly, due

to the orthogonal nature of the two couplings, we envision that

a nested optimization approach could be used to first address

transmission-level couplings through existing algorithms (see,

e.g.,[20]) and then optimize distribution-level couplings through

the tools proposed in this article.

B. Coupling of the Electric AMoD System and PDNs

The charging stations, which appear as controllable loads in

the PDNs, couple the electric AMoD system to the PDNs (see

Fig. 1). Formally, this coupling is established by two functions,

MS,AS
and MS,L, defined in the following.

The functionMS,AS
: S × T → AS maps a charging station

s ∈ S for each time step t ∈ T to all arcs in AS that represent

charging vehicles at this station:

MS,AS
(s, t)={(v,w)∈AS | vv=vw=s, cv<cw, tv≤ t≤ tw}.

Then, the load at charging station s is given by

ps[t] = EcδC,s

∑

(v,w) ∈MS,AS
(s,t)

f0(v,w) s ∈ S, t ∈ T .

(13)

The function MS,L : S → (L ×D) maps a charging station

s ∈ S to the associated controllable load � ∈ L and distribution

network d ∈ D. It follows that charging station s is attached

to bus nMS,L(s)
in PDN dMS,L(s)

. As we consider three-phase

charging stations, we assume equally distributed loads, that is

sacon,MS,L(s)
[t] = sbcon,MS,L(s)

[t] = sccon,MS,L(s)
[t] =

1

3
ps[t]

s ∈ S, t ∈ T . (14)

Note that we can model inverters that control the load power

factor since qφcon,MS,L(s)
must not necessarily be zero. Although

the charging station load is distributed equally among phases,

loads in distribution networks are inherently unbalanced, which

requires an unbalanced distribution model [23, Ch. 1.3] Also

note that charging stations are commonly modeled to operate at

unity power factor (no reactive power consumption) [39].

C. AMoD-OPF Problem

The joint AMoD-OPF problem results from coupling the

electric AMoD problem (4) with the multi-OPF problem through

(13) and (14), namely:

minimize
f0,[λ

c,dep
m ]c∈C ,

[λt,c,arr
m ]c∈C,t∈T ,NI ,NF ,

[[vn]n∈N ,[iφn,o](n,o)∈E ,

s0,[scon,�]�∈L]t∈T ,d∈D

VD

∑

(v,w)∈A

dvv,vw
f0(v,w)

+
∑

t∈T

∆t
∑

d∈D

Vel,d[t]
∑

φ∈Φ

pφ0,d[t] (15a)

subject to

(1)–(3) and (4b)–(4d) Electric AMoD system

[(5), (6), (9), and (10)]d∈D and

[(8b)–(8f)]d∈D PDNs

(13) and (14) Coupling from

charging stations.

The objective (15a) captures operating costs for both the elec-

tric AMoD fleet and the PDNs since we consider full cooperation

between both operators. Analogously to the isolated electric

AMoD problem (4a), we consider only rebalancing costs for

the AMoD fleet given fixed customer flows. In each distribution

network d ∈ D, we account for the electricity cost that results

from charging vehicles, uncontrollable loads, and power losses.

Note that our joint problem formulation treats both operators

as a single entity, assuming complete information and coop-

eration. This assumption is in line with our mesoscopic view

and scope to estimate the achievable benefits of coordination

and cooperation between the two systems. We leave the study

of game-theoretical aspects to future work, where we intend

to develop pricing and coordination mechanisms to align the

goals of the electric AMoD operator and the PDN operators,

and to leverage distributed optimization algorithms to compute a

solution to the AMoD-OPF problem (15) in a distributed manner.

Furthermore, our joint model assumes that the electric AMoD

system is the dominant means of electric transportation, which

is in line with our system-level perspective [3]. However, the

model can readily accommodate other EVs by including their

traffic flow as residual capacity in (4b) and their charging as

exogeneous loads in (8).

V. CASE STUDY IN ORANGE COUNTY, CA

We evaluate the impact of an electric AMoD system on the

PDNs and the benefit of optimized joint coordination through

a case study in Orange County, CA. Our case study considers

commuting trips within the cities of Fountain Valley, Irvine,

North Tustin, Orange, Santa Ana, Tustin, and Villa Park. In

the following, we detail our data (see Section V-A), outline the

experimental design (see Section V-B), and, finally, discuss our

results (see Section V-C).

A. Model Parameters

We focus on an 8-h commuting cycle from 5 A.M. to 1 P.M.

on July 3, 2015 discretized into 6-min time steps, such that

|T | = 80. As we do not consider future grid storage devices,

which would charge/discharge over the span of a day, an 8-h

horizon is sufficient to model the power system. We chose

the time discretization to be close to the traversal time of the

shortest road link. As the power system considers hourly prices

and excludes transient effects, 6-min time steps are more than

sufficient to model PDNs for a mesoscopic analysis. For this pe-

riod, we model the charging station and transportation networks

at a mesoscopic aggregation level that allows a sufficient level

of detail to analyze the interaction between an electric AMoD

system and the PDNs, and ensures computational tractability.

1) Transportation Network Data: We derive trip demand

from Census Tract Flow data from the 2006–2010 American
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Fig. 2. Area considered in the Orange County, CA case study. The
aggregated road network is shown in orange, representing vertices as
dots and arcs as lines. Green dots show the substation locations. Blue
lines show the assignment of a charging station to its closest substation.

Community Survey. From these data, we take the estimated

commuting flows between the 143 census tracts that are part of

our case study. To align the granularity of aggregated charging

station network representations and census tracts, we cluster the

143 census tracts into 20 larger areas using a k-means algorithm.

We neglect commuting flows if they start or end outside the area

of our case study or if they start and end within the same cluster

since these types of flows cannot be accurately represented in our

model. Our planning horizon comprises 122 219 trips (32.8%

of the total daily trips).

The problem of fleet sizing for (electric) AMoD systems [40]

is beyond the scope of this article. For this case study, we

heuristically selected a sufficient fleet size, large enough to keep

the AMoD-OPF problem [see (15)] feasible with only a small

number of idle vehicles and corresponding to 140% of the peak

concurrent number of passenger-carrying trips.

We create an aggregated road network based on Open-

StreetMap data with the same granularity as the trip demand

data. For this, we select the road network vertices closest to the

centroids of the census tract clusters and add arcs between those

vertices if a connection exists in the real road network. We obtain

an aggregated road network with 20 vertices and 76 arcs (see

Fig. 2), which captures vehicle travel and charging between the

separate PDNs of the case study region. Note that computational

complexity limits our model to coarse road networks; this is

discussed in detail below. For each aggregated road network

vertex, we consider three-phase 50-kW dc fast-charging stations

with S̄s = 40 plugs in total. Accordingly, each vertex has a

charging station with a maximum load of 2 MW (0.66 MW

per phase).

2) EV Data: We consider a homogeneous vehicle fleet based

on the characteristics of the 2018 Nissan Leaf, which has a

40-kWh battery and a range of 240 km. Based on fast-charging

guidelines, we reduce a vehicle’s battery capacity and its range

to 80% of their original values [11] and discretize this effec-

tive battery capacity into C = 40 levels, resulting in energy

discretizations of 0.8 kWh, which remains close to the energy

necessary to traverse the lowest energy road link. To account for

the possibility that vehicles might not start the day with fully

charged batteries, we set the SoC at t = 1 to 50%. Furthermore,

we require vehicles to recharge the amount of energy used over

a planning horizon such that the final SoC must be at a minimum

50% again. We set the vehicle operation cost per unit distance

(excluding electricity) to VD = 0.3 USD/km [41].

3) PDN Data: We use a GridLAB-D model of the PL-1 dis-

tribution network, a primary feeder operated by the Pacific Gas

and Electric Company available for research purposes [42], as a

proxy for (sub-)urban distribution networks. The network com-

prises 322 buses and operates at a nominal voltage of 12.6 kV.

We set the uncontrollable loads to the model’s time-varying

loads.

We take the location of substations from the utility’s data [43]

and attach a model of the PL-1 distribution network to each

substation. We set the electricity price at each substation to the

corresponding locational marginal price [44] and conservatively

assume a base load utilization of 75% at the substation trans-

former. Typically, distribution networks are operated at 50–75%

of their load capacity so that loads can be transferred from one

distribution network to another if needed [45]. Accordingly, we

set the substation transformer rating ŝ0 to 1/0.75 times the

value of the peak base load (i.e., without charging stations),

yielding ŝ0 = 10.42 MVA. In addition, we set the lower voltage

magnitude limit to 0.96 per unit and the upper limit to 1.04

per unit, which is 0.01 per unit tighter than required by ANSI

C84.1 to allow for the voltage drop in the secondaries of the

network.

We connect each charging station to the distribution network

whose substation is nearest. Since no data on the coordinates

of the distribution network buses exist, we randomly attach the

charging station to one of the PDN buses. Thus, the PDN is

the same for each substation, except for the varying number and

location of charging stations. In total, we consider 14 distribution

networks, each with one or two charging stations.

We set the price of electricity at each charging station to

be equal to the electricity price at the respective substation,

such that Vel,s[t] = Vel,dMS,L(s)
[t] holds. Since we focus on the

total benefit from a system perspective and treat both opera-

tors as a single entity, only the spatial variation of electricity

prices that are closely linked to the substation prices affects our

solution.

Some comments on the distribution network modeling are in

order. First, we used the same network model and load values

for each distribution network, considering loads from a single

summer day. As PDNs are treated as critical infrastructure and

load data are usually confidential to protect customers, more ac-

curate data are not publicly available for research purposes [46].

However, our model can be rerun with more accurate data at any

time. Second, we set the electricity price at each substation to the

corresponding locational marginal price. Locational marginal

prices result from the power consumption at the transmission

grid level. As our focus is on the interaction of the electric AMoD

fleet with the distribution grids and the power used for recharging

represents only a negligible fraction at the transmission grid

level, neglecting the impact of this consumption on the marginal

prices only minimally affects the accuracy of our results. Third,
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we assume the electricity price for charging at a certain station

to be equal to the electricity price at the respective substation.

Neglecting the possible difference in electricity prices among

nodes in a single distribution network is consistent with our

mesoscopic transportation model.

The resulting AMoD-OPF problem has 6 224 240 decision

variables, 1 463 600 from the electric AMoD part and 4 760 640

from the multi-OPF part. Since the multi-OPF part comprises D
PDNs, the number of variables in it admits the upper bound

O(TD|N |). Thus, the number of decision variables in the

whole AMoD-OPF problem admits the following upper bound:

O(T (C|VR|
2 +D|N |)). Recall that the complexity of solving

the LP with an interior point method is polynomial in the number

of variables with an exponent lower than 3.5 (depending on the

implementation) [47]. Nominally, the size of the electric AMoD

part of the problem increases quadratically with the number of

road vertices. However, if more vertices are added for the same

area, the road segment arcs will become shorter, and T and C
should be increased to capture the reduced travel duration and

energy consumption in the shorter road segment arcs. Thus, in

practice, the electric AMoD part of the problem grows more

than quadratically with the number of road vertices. This limits

our formulation to coarse road networks. In future work, we will

explore methods that improve the scalability of the AMoD-OPF

problem, extending its applicability to finer networks.

B. Experimental Design

To quantify the impact of an electric AMoD system on the

PDNs and the benefit of optimized joint coordination, our ex-

periments consider two cases. First, we analyze the impact of

an electric AMoD system on the PDNs without coordination,

i.e., the uncoordinated case. This study shows how electric

AMoD systems can negatively affect PDNs. Then, we focus

on the coordinated case in which the electric AMoD system

and the distribution networks are jointly optimized. Comparing

the results of both cases allow us to quantify the potential of

optimized coordination between these systems. In both cases,

we generate results as follows.

a) Computing controllable loads. We determine the load at

each charging station that results from the operation of the

electric AMoD system. Depending on the studied case, we solve

either (4) (uncoordinated) or (15) (coordinated).

b) Solving the power flow equation. To assess the quality of a

solution from step (a), we solve the exact power flow equation

[see (7)] to derive the true values of the indirect variables

(i.e., complex power injection at the reference bus and complex

voltage in all other buses).

c) Evaluating constraint violations. In step (a), we determine

controllable loads without an exact model of the PDNs as it is

either neglected (uncoordinated case) or approximated (coordi-

nated case). Hence, it is often the case that solutions do violate

some of the constraints. To quantify these violations, we evalu-

ate integral constraint violations as we consider a time-variant

model. Specifically, regulations require voltage magnitudes to

be kept within a given percentage of a nominal value (e.g.,

ANSI C84.1). Hence, we analyze the integral absolute voltage

magnitude constraint violation

uviol,int = ∆t
∑

t∈T

∑

d∈D

∑

n∈N+
d

∑

φ∈Φn,d

|uφ
viol,n,d[t]|

where

uφ
viol,n,d[t] = min(uφ

n,d[t]− uφ
min,n,d, 0)

+ max(uφ
n,d[t]− uφ

max,n,d, 0)

is the voltage magnitude constraint violation at phase φ ∈ Φn

in bus n ∈ N . Note that uφ
viol,n,d is negative when the voltage

magnitude is lower than uφ
min,n,d, positive when it is larger

than uφ
max,n,d, and zero when it is in-between. Additionally,

substations typically connect distribution networks to the higher-

voltage transmission network, requiring a transformer to lower

the voltage. To avoid overloading this transformer, the power

draw must be less than the transformer rating. Hence, we analyze

the integral substation transformer rating violation

ŝ0,viol,int =
∑

t∈T

∆t
∑

d∈D

ŝ0,d,viol[t]

where

ŝ0,d,viol[t] = max

⎛

⎝

∣

∣

∣

∣

∣

∣

∑

φ∈Φ0,d

s0,d
φ[t]

∣

∣

∣

∣

∣

∣

− ŝ0,d, 0

⎞

⎠

is the substation transformer rating violation for d ∈ D.

d) Evaluating energy consumption and cost. We analyze the

energy consumption of the electric AMoD system and its cost.

The total energy consumption Etotal, which includes the energy

consumed by exogenous loads and the electric AMoD system,

results from summing the energy draw of all substations. The

total energy consumption in the base case Etotal,base results

analogously without considering an electric AMoD system.

Consequently, the difference ofEtotal andEtotal,base represents

the additional energy consumption caused by the electric AMoD

system:

EAMoD = Etotal − Etotal,base

=
∑

t∈T

∆t
∑

d∈D

∑

φ∈Φ0,d

(p0,d
φ[t]− pφbase,d[t]).

Here, pφbase,d ∈ R is the power drawn in phase φ ∈ Φ0 from

substation d ∈ D in the base case.

Due to losses in the distribution networks, not all of EAMoD

relates to charging stations. The energy delivered to the charging

stations is given by

Echarge,AMoD =
∑

t∈T

∆t
∑

d∈D

∑

�∈Ld

∑

φ∈Φn�,d

pφcon,�,d[t].

The difference between EAMoD and Echarge,AMoD represents

the link losses caused by the electric AMoD system:

Eloss,AMoD = EAMoD − Echarge,AMoD.

Analogously, the cost of these losses is given by

Vel,loss,AMoD = Vel,AMoD − Vel,charge,AMoD
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Fig. 3. Histograms of voltage magnitude (u
φ

viol,n,d
) and substation

transformer rating (ŝ0,d,viol) violations. For clarity, we do not show the
cases where the violation is zero. All voltage magnitude violations are

negative because the upper limit u
φ

max,n,d
is never exceeded. The ver-

tical line indicates the threshold for serious voltage magnitude violation
events (i.e., those exceeding 0.005 p.u.) For both quantities, constraint
violations are significantly lower in the coordinated case. (a) Voltage
magnitude. (b) Substation transformer rating.

where Vel,AMoD is given by

Vel,AMoD =
∑

t∈T

∆t
∑

d∈D

Vel,d[t]
∑

φ∈Φ0,d

(p0,d
φ[t]− pφbase,d[t])

and Vel,charge,AMoD is the cost of Echarge,AMoD:

Vel,charge,AMoD =
∑

t∈T

∆t
∑

d∈D

Vel,d[t]
∑

�∈Ld

∑

φ∈Φn�,d

pφcon,�,d[t].

Our implementation builds on top of the authors’ AMoD

Toolkit,1 which relies on YALMIP [48] to formulate and solve

electric AMoD problems. Additionally, we built a general

codebase for unbalanced OPF problems, the Unbalanced OPF

Toolkit.2 To support future research in this field, we released

both the AMoD Toolkit and the Unbalanced OPF Toolkit under

an open-source license.

C. Results and Discussion

Following our experimental design, we evaluate constraint

violations (see Fig. 3), as well as energy consumption and costs.

Table I summarizes the key results.

Fig. 3(a) shows a histogram with all voltage magnitude con-

straint violations uφ
viol,n,d; each event represents the constraint

being violated in one phase during one of the 6-min time steps.

The base case shows no violations and, hence, is not plotted. In

contrast, violations appear in both cases that include the electric

AMoD system. ANSI C84.1, the power quality standard for

voltage ranges used across the USA, advises that service voltage

violations must be limited in extent, frequency, and duration.

Optimized coordination between the electric AMoD system

and the PDNs helps to decrease voltage constraint violations

significantly. The number of voltage constraint violations is

reduced by 3.85% in the coordinated case, from 46 910 to

45 106. Notably, coordination reduces the number of serious

violation events [i.e., those exceeding 0.005 p.u., which are the

most concerning; see Fig. 3(a)] by 74.85%, from 21 734 to

1https://github.com/StanfordASL/AMoD-toolkit
2https://github.com/StanfordASL/unbalanced-opf-toolkit

TABLE I
IMPACT OF COORDINATING AN ELECTRIC AMOD FLEET WITH PDNS

Coordination significantly reduces constraint violations at the cost of slightly higher

operational costs.

5 467. All in all, there is a 50.28% reduction in integral absolute

voltage magnitude constraint violation, from 24.04 p.u.-hour

to 11.95 p.u.-hour. Consequently, coordination between the two

systems helps to achieve better compliance with regulations that

require the voltage magnitude to be kept close to its nominal

value.

Fig. 3(b) shows a histogram with all substation transformer

rating violations ŝ0,d,viol each event represents the constraint

being violated in one substation transformer during one of the

6-min time steps. Optimized coordination nearly eliminates

substation capacity constraint violations, reducing their count

by 94.05% from 168 to 10. The number of substations that

experience a transformer rating violation is reduced from six

to two. All in all, there is a 99.71% reduction in integral substa-

tion transformer rating violation, from 7.89 MVA-hour to 0.02

MVA-hour.

Transformers represent a significant investment by utilities.

For example, installing a transformer with a rating similar to the

one used in this case study (ŝ0 = 10.42 MVA) has a cost in the

order of 1.7 million USD [49]. Given transformers’ substantial

cost, increasing their useful life by reducing transformer capac-

ity threshold violations (as done by coordination) can lead to

significant monetary savings for utilities. We leave the precise

quantification of these savings for future research.

Fig. 4 shows the load at one representative substation along

with the applicable transformer rating. The load is shown for

the three cases: base, uncoordinated and coordinated. The base

case represents the substation load arising from the uncontrol-

lable loads. The other two cases show higher loads due to the

recharging vehicles. In the uncoordinated case, there is a signif-

icant transformer rating violation between 8 A.M. and 11 A.M.

Coordination helps to resolve the violation, as charging loads

that exceed the capacity constraint are shifted to later time steps.

Fig. 5 shows the number of charging vehicles and the electric-

ity price over time. The coordinated case shows steady charging

activity after 11 A.M. In contrast, charging activities decrease sig-

nificantly after 11 A.M. in the uncoordinated case. The charging

activity mirrors the substation load in Fig. 4, which is higher for

the coordinated case in later time steps. The increased charging
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Fig. 4. Load at one representative substation and the corresponding
transformer rating. The base case shows the load from uncontrollable
loads. The uncoordinated and coordinated cases show increased load
due to charging vehicles. The substation transformer rating is exceeded
in the uncoordinated case. In the coordinated case, charging vehicles
later during the day resolves the violation.

Fig. 5. Number of charging vehicles and electricity price over time.
Coordination shifts the charging load to later time steps when the elec-
tricity price is higher. The resulting cost increase is the price paid for
reducing system constraint violations, which improves voltage profiles
and prolongs transformer life.

activity later in the day and the ensuing load leads to increased

electricity expenditure as the electricity price is higher later in

the day.

Table I shows the impact of coordinating an electric AMoD

fleet with PDNs. The total operational costs of the electric

AMoD system during the studied 8-h time span increase slightly

by 3.13% (3329.61 USD). Rebalancing costs show an increase

of 3.28% (3206.47 USD) as vehicles charge at more distant

charging stations due to an increase in rebalancing detours. The

shift of charging activity to later in the day due to coordination

causes electricity costs to increase by 1.42% (123.15 USD). The

small increase in operational costs reflects the price paid for

reducing system constraint violations, which improves voltage

profiles and prolongs transformer life.

The energy delivered to the charging stations (see Table I)

increases by 1.82 MWh (0.68%) in the coordinated case be-

cause of increased rebalancing detours. However, the energy

attributable to the electric AMoD system consumed at the sub-

stations increases only by 1.24 MWh (0.44%). The difference

of 0.58 MWh is due to energy losses being reduced by 5.24%.

Reduced energy losses reflect more efficient power distribution:

a greater share of the energy leaving the substations reaches

the charging stations in the coordinated case (96.29% compared

with 96.07%).

The optimization was performed on an AWS r4.xlarge in-

stance (4 vCPU at 2.3 GHz, 30.5 GB RAM). The AMoD-OPF

problem [see (15)] was solved in 554 iterations over 8.1 h,

whereas solving the electric AMoD problem [see (4)] took

51 iterations over 0.7 h using Gurobi Optimizer. Thus, the

presented solution approach is currently not suitable for real-

time operations—the design of an operational version of this

framework is left for future research. One potential avenue for

reducing the computation time would be improving the scaling

of the AMoD-OPF problem [see (15)] to reduce the number

of iterations required by the solver. Despite the computation

times, the mesoscopic analyses presented herein can be used

to identify bottlenecks in PDNs that point at necessary grid

extension investments. Additionally, a grid operator can use this

approach to compute the amount of spinning reserves needed to

hedge on the day-ahead market to secure a reliable operation of

its PDNs.

VI. CONCLUSION

We presented the AMoD-OPF problem, which integrates an

electric AMoD problem with a multi-OPF problem. In this

context, we discussed power flow surrogates to obtain a compu-

tationally tractable convex problem formulation. The resulting

AMoD-OPF problem allows one to assess the achievable ben-

efit of coordinating an electric AMoD system and a series of

PDNs. With this methodological framework, we investigated

the impact of an electric AMoD system on the PDNs. Herein,

we especially focused on the benefits of coordination between

the two systems and discussed results for a case study in Orange

County, CA. We showed that in an uncoordinated system, the

electric AMoD fleet negatively affects the distribution networks:

the charging behavior of the electric AMoD vehicles caused

overloads at substation transformers and violated (lower) voltage

magnitude limits. Furthermore, we showed that a coordinated

system helps to balance the load in the PDNs in time and

space. Specifically, link losses were slightly reduced, substation

overloads were nearly eliminated, and voltage violations were

halved. Nonetheless, these reductions in constraint violations

increased the cost of operating the electric AMoD system by

3.13% caused by vehicles driving to charge in less congested

but more distant stations and charging when electricity prices

are higher. This indicates that distribution networks can support

more EVs before upgrades are needed if the vehicles are charged

in coordination with exogenous loads in the PDNs. Due to our

system-optimal objective, these findings remain an assessment

of the overall benefit of coordination between an electric AMoD

fleet and PDNs.

Our findings open the field for multiple directions of future

research. First, our AMoD-OPF problem is mesoscopic and

assumes perfect knowledge of future loads and trip requests.

To design a real-time algorithm, the integration of forecasts to

capture the stochastic nature of the problem is an interesting

avenue for further research. Second, we modeled the operators

of the AMoD fleet and the PDNs as a single entity, implying full

cooperation. In future work, one should address the interplay

between these two stakeholders, with the goal of designing in-

centive mechanisms, and investigate market dynamics, e.g., the

price of stability and the price of anarchy. Third, our case study

provides preliminary results about the benefit of coordinating

electric AMoD fleets with PDNs. To provide decision support

to practitioners, additional case studies that capture different

PDNs, different road network characteristics, varying instance
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sizes, and distributed renewable energy generation are required.

Fourth, our case study did not consider the EVs’ potential to

feed power back into the PDN. Hence, extending our modeling

approach for vehicle-to-grid options, evaluating regulation and

operating reserve potentials, remains a promising avenue for

future research.
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