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Abstract— Charging infrastructure is the coupling link be-
tween power and transportation networks, thus determining
charging station siting is necessary for planning of power
and transportation systems. While previous works have either
optimized for charging station siting given historic travel
behavior, or optimized fleet routing and charging given an
assumed placement of the stations, this paper introduces a
linear program that optimizes for station siting and macroscopic
fleet operations in a joint fashion. Given an electricity retail
rate and a set of travel demand requests, the optimization
minimizes total cost for an autonomous EV fleet comprising of
travel costs, station procurement costs, fleet procurement costs,
and electricity costs, including demand charges. Specifically,
the optimization returns the number of charging plugs for each
charging rate (e.g., Level 2, DC fast charging) at each candidate
location, as well as the optimal routing and charging of the
fleet. From a case-study of an electric vehicle fleet operating
in San Francisco, our results show that, albeit with range
limitations, small EVs with low procurement costs and high
energy efficiencies are the most cost-effective in terms of total
ownership costs. Furthermore, the optimal siting of charging
stations is more spatially distributed than the current siting of
stations, consisting mainly of high-power Level 2 AC stations
(16.8 kW) with a small share of DC fast charging stations and
no standard 7.7kW Level 2 stations. Optimal siting reduces the
total costs, empty vehicle travel, and peak charging load by up
to 10%.

I. INTRODUCTION

Electrification and vehicle autonomy are driving down

the total cost of ownership for vehicle fleets. Presently,

autonomous electric vehicles (EVs) are being developed

for fleet applications such as passenger mobility-on-demand

services. The development of these Electric Autonomous

Mobility-on-Demand (E-AMoD) fleets are motivated by the

low maintenance and energy costs of EVs [1], low oper-

ating costs of shared autonomous vehicles [2], and pol-

icy mandates for the decarbonization of the transportation

sector [3]. Autonomous fleets also have the advantage of

highly controllable routing and charge scheduling compared

to privately owned human-operated EVs. However, in all

these developments, the optimal planning for the charging

infrastructure needed to support future mobility fleets at

scale is not well understood, considering the intersection
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of emerging trends in mobility-on-demand services, vehicle

electrification, and driving automation. Crucially, the opera-

tion of future E-AMoD systems will be strongly influenced

by the available charging infrastructure, which in turn should

be designed to accommodate the EVs’ charging activities

in the best possible way. These problems are intimately

coupled, calling for optimization methods to systematically

solve them. Against this background, this paper proposes a

convex optimization framework to jointly optimize the design

of the charging infrastructure and the operation of a centrally

controlled E-AMoD fleet.

a) Literature review: This paper contributes to two

main research streams. The first stream focuses on the

routing and charge scheduling problem of fleet EVs. Network

flow models have been successfully used to minimize fleet

travel and electricity costs subject to fulfilment of customer

trip requests, limited driving range, and charging constraints

imposed by congestion on the power transmission grid [4],

also accounting for the distribution grid [5]. A vehicle coor-

dination and charge scheduling algorithm is proposed in [6]

to efficiently optimize the operation of an E-AMoD fleet

accounting for the battery level of individual vehicles and the

energy availability in the power grid. A heuristic algorithm

for the electric traveling salesman with time windows is

developed in [7] to solve customer routing and recharging

in small-scale problems. However, the optimized operations

are determined for an assumed siting layout of charging

stations. The second stream focuses on the design of the

charging infrastructure considering the EVs’ operations as

exogenous data. Previous works have largely framed the sta-

tion siting problem as solving variants of mixed integer linear

programs [8]–[10]. Thereby, the objective terms commonly

include user access costs and station construction costs under

assumptions of desired user charging behavior, determined

from historic origin-destination travel data or parking dwell

times. However, this class of models do not consider the

greater charging flexibility of autonomous fleet vehicles,

due to their capability to operate after user drop-off and

reposition to alternate charging locations. Furthermore, these

combinatorial optimization approaches suffer from computa-

tional scalability as their complexity rises significantly with

the problem size. In conclusion, while the former research

stream focuses on optimizing the E-AMoD activities for

a given charging infrastructure, the latter stream bases the

infrastructure design problem on historic travel data and

frames it as a mixed-integer problem.

b) Statement of contribution: This paper bridges the

gap between the aforementioned research streams and, rather

than considering separate optimization problems, efficiently

solves for the station planning and macroscopic fleet oper-
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ations jointly. Specifically, we first propose a network flow

model describing the EVs’ routing and charging activities

and combine it with the design of the fleet size and the

infrastructure siting. Second, we frame the optimal design

and control problem minimizing the total cost incurred by the

E-AMoD operator (defined as the sum of the fleet’s routing

and charging costs, and the procurement costs for the fleet

and infrastructure design) as a linear program that can be

efficiently solved with off-the-shelf optimization algorithms.

Finally, we showcase our framework on a case study for

San Francisco, CA, where we investigate the impact of the

EV type on the resulting optimal design and operation, and

highlight the importance of jointly optimizing the E-AMoD

system’s routing and charging with the infrastructure siting.

c) Organization: The remainder of the paper is struc-

tured as follows: Section II introduces the E-AMoD charging

station siting joint optimization model. Section III details our

case study of San Francisco, CA, and presents results on how

the joint optimization varies with EV models of differing

battery sizes, and how the joint optimization performs when

compared to a baseline based upon present-day charging

station siting. We conclude the paper in Section IV with

a summary of our key findings and an outlook for future

research.

II. MODELING THE JOINT OPTIMIZATION OF E-AMOD

SYSTEMS AND CHARGING STATION SITING

An E-AMoD system consists of electric autonomous fleet

vehicles that serve customer travel requests. When vehicles

are not serving customers, they may be recharging or per-

forming rebalancing trips. Recharging can vary spatially,

temporally, and also by charging rate. Rebalancing trips,

defined as vehicle travel without carrying a customer, serve

to reposition vehicles to charging stations in advance of

charging events, or to resolve spatial and temporal mis-

matches between the origins and destinations of customer

travel requests.

In previous works, the E-AMoD system is modeled as a

network flow problem, utilizing an expanded road graph that

has vertices representing coordinates in location, time, and

battery charge level [4][5]. In this section, we will present

a new E-AMoD model that extends from the original model

by introducing electricity demand charges, charge throttling,

and the joint optimization of charging station siting. We

will sequentially detail each component of model before

presenting the complete E-AMoD problem at the end of the

section.

a) Expanded graph representation: We model a trans-

portation network as a directed graph GR = (VR,AR) with

a set of vertices v ∈ VR representing locations and a set of

arcs (v, w) ∈ AR representing the route between v and w.

Each arc (v, w) ∈ AR is characterized by the route’s distance

dv,w, travel time tv,w, and energy required to traverse it

cv,w. In contrast with [4] and [5], we allow for self-loop

arcs to capture travel demand that begins and ends in the

same location, as the locations can represent city regions.

We define T = {1, ..., T} as the set of equidistant time

steps of duration ∆t ∈ R
+, and C = {1, ..., C} as the set

of equidistant battery charge level discretizations, each with

energy Ec ∈ R
+. The battery charge levels indicate the state-

of-charge (SoC) levels of an EV, with c = 1 representing an

empty battery and c = C representing a full battery.

The locations in VR represent destinations for customer

travel and also points of access to charging stations. We

define S as the set of charging stations in the network, with

each station s ∈ S defined by a tuple s = (vs, δs) where

vs ∈ VR is the station’s location and δs ∈ R
+ is the station’s

per-plug charging rate. Additionally, each station s ∈ S has

a number of plugs, S̄s ∈ R
+. Note that in contrast with [4]

and [5], this model allows for multiple stations with different

charging rates to be situated at the same location.

We then define the directed multigraph G = (V,A) as the

expanded transportation network, which expands GR along

the dimensions of time and battery charge level. The vertex

set V ⊆ VR×T ×C contains vertices v ∈ V that are defined

by the tuple (vv, tv, cv) in which entries specify location,

time, and SoC, respectively.

The arc set A is the union of two disjoint subsets, AT∪AS .

Travel in the transportation network is represented by arcs

(v,w) ∈ AT and is defined by

AT ={(v,w) ∈ A | (vv, vw) ∈ AR,

tw − tv = tvv,vw
, cv − cw = cvv,vw

}.

This definition enforces that the time expansion for travel

from v to w is equal to the travel time tvv,vw and charge

expansion is equal to the travel charge cvv,vw
. Unlike in

GR, the distance, travel time, and travel energy between two

locations in G can be time-varying. Idling vehicles, which

only move forward in time from v to w but remain fixed in

location and SoC, are a subset of AT :

AI = {(v,w) ∈ AT | vv = vw, tw = tv + 1, cv = cw}

Recharging at charging stations is represented by arcs

(v,w) ∈ AS and is defined by

AS ={(v,w) ∈ A | vv = vw = vs ∀s ∈ S,

tw − tv = 1,

(cw − cv)Ec

∆t
= δ,

δ ∈ {
Ec

∆t
, 2

Ec

∆t
, ..., δs}}.

This definition enforces that for the recharging process repre-

sented by the arc (v,w), the location is fixed to the location

of a station s, the recharging occurs over one time step, and

the charge rate derived from the arc’s charge expansion is

at most the charge rating of the station. In contrast with [4]

and [5], we allow for charging at station s to include rates

below its rated capacity in order to model charge throttling,

a feature that is becoming increasingly common in modern

charging stations and EVs that allows for greater control

over power demand [11]. Note that at locations with multiple

charging stations, multiple edges will be defined for a given

pair (v,w), thereby making G a multigraph.

b) Customer travel requests: We define M =
{1, ...,M} as the set of travel requests which the E-AMoD

fleet must serve. Each request m ∈ M is defined by a tuple

m = (vm, wm, tm, λm) ∈ VR × VR × T × R
+ in which the
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entries represent the origin, destination, departure time, and

travel demand volume, respectively. We define

1(v,w,m) = 1(vv,vw,tv)=(vm,wm,tm).

as an indicator for whether arc (v,w) ∈ A fulfils request

m. The distance, travel time, and travel energy of each arc

(v,w) ∈ AT is consistent with the distance, travel time, and

travel energy of the travel request m which the arc fulfills.

c) Vehicle flows: In the E-AMoD network flow prob-

lem, we solve for vehicle flows on the expanded graph

G. We define f(v,w) : A → R
+ to represent vehicle

flow on arc (v,w). The activity of the vehicles depends

upon the arc (v,w). If (v,w) ∈ AI , then vehicles are

idling. If (v,w) ∈ AS , then the vehicles are recharging. If

(v,w) ∈ AT−AI , then vehicles could be carrying customers

or rebalancing. In the E-AMoD problem presented in this

paper, the fleet must serve all customer travel requests as

a hard constraint. Therefore, any travel along (v,w) ∈ AT

in excess of the customer travel demand volume must be

rebalancing flow. We define f0(v,w) : A → R
+ to represent

vehicle rebalance flow on arc (v,w). Note that f0(v,w) ≤
f(v,w) ∀(v,w) ∈ A as rebalancing flow on a given

arc must be a fraction of the total flow of that arc. Once

f is determined, the rebalancing flow f0 can be recovered

post-optimization. For every (v,w) ∈ AT and m ∈ M, if

1(v,w,m) = 1, we compute

f0(v,w) = max(
∑

(v′,w′)∈AT−AI :1(v
′,w′,m)=1

f(v′,w′)

− λm, 0)(
∑

(v′,w′)∈AT−AI :1(v
′,w′,m)=1

f(v′,w′))−1f(v,w).

Here, we assume rebalancing travel is distributed uniformly

among the arcs satisfying 1(v,w,m) = 1. For any arcs

(v,w) ∈ AT that do not correspond to any travel request,

f0(v,w) = f(v,w).

d) Electricity demand charges: To introduce the mod-

eling of electricity demand charges incurred by the fleet for

their peak charging load at each location, we define Pmax
v :

Pmax
v = max

t∈T

∑

(v,w)∈AS

1(vv,tv)=(v,t)f(v,w)
(cw − cv)Ec

∆t
∀v ∈ VR

(1)

Here, we compute the total charging demand at location v
and time t by including all associated charging arcs and

taking the sum product of vehicle flow of the arc and the

arc’s charge expansion, with appropriate conversions for

units of power. We then take the maximum over all times to

determine Pmax
v .

e) Charging station siting: To introduce optimal sizing

of stations of varying charging rate and location, we make

the number of plugs S̄s at each station s ∈ S an optimization

variable in the E-AMoD problem. Because our model allows

for charge throttling, the determination of number of plugs

for slower charging rate stations is dependent upon the

residual capacity of any co-located faster rate stations. To

assist with the derivation of the equations that determine

charging station sizing, we use an example.

First, we define Dv as the ordered set (least to greatest) of

charging station rates at location v ∈ VR. Let Dv(j) return

the jth element of Dv for all j ∈ {1, ..., |Dv|}, with Dv(0) =
0 kW. We will also define the following set, which includes

all charging arcs representing charging at location v at time

t charging at a rate that is greater than δ1 but at most δ2:

Av,t,δ1,δ2
S ={(v,w) ∈ AS | vv = v,

tv = t, δ1 <
(cw − cv)Ec

∆t
≤ δ2}

In this example, consider a location v with the option

to install charging stations of three charging rates: Dv =
{7.7 kW, 16.8 kW, 50.0 kW}. Only the 50.0 kW station can

charge at the rates from (16.8 kW, 50.0 kW], thus the con-

straint on charging flows with charging rates in this range

is: ∑

(v,w)∈Av,t,16.8,50.0
S

f(v,w) ≤ S̄(v,50.0)

Following, the constraint on charging flows with rates in

(7.7 kW, 16.8 kW] is given by the number of plugs of the

16.8 kW station plus any unused plugs at the 50.0 kW
station:

∑

(v,w)∈Av,t,7.7,16.8
S

f(v,w) ≤ S̄(v,16.8) + (S̄(v,50.0) −
∑

(v,w)∈Av,t,16.8,50.0
S

f(v,w))

Similarly, the constraint for flows with rates in

(0 kW, 7.7 kW] is given by:
∑

(v,w)∈Av,t,0,7.7
S

f(v,w) ≤ S̄(v,7.7) + (S̄(v,50.0) −
∑

(v,w)∈Av,t,16.8,50.0
S

f(v,w))

+ (S̄(v,16.8) −
∑

(v,w)∈Av,t,7.7,16.8
S

f(v,w))

After collecting like terms, the general form of the equations

that determine charging station sizing are:

|Dv|∑

i=j

(
∑

(v,w)∈

A
v,t,Dv(i−1),Dv(i)
S

f(v,w)− S̄(v,Dv(i))) ≤ 0 (2)

∀j ∈ {1, ..., |Dv|}, ∀v ∈ VR, ∀t ∈ T

f) E-AMoD model with station siting: The cost terms

that are considered in the E-AMoD problem are fleet pro-

curement, charging station procurement, electricity (both

energy consumption and demand charges), and vehicle

maintenance. We seek to jointly solve for the vehicle

flows f(v,w) ∀(v,w) ∈ A and charging station sizing

S̄s ∀s = (v, δ) ∈ S, ∀v ∈ VR, ∀δ ∈ Dv such that total fleet

costs are minimized:

minimize
f,[S̄s]s∈S ,

[Pmax
v ]v∈VR

,nfleet

∑

(v,w)∈AS

f(v,w)(cw − cv)Ecpenergy(tv) (3a)

+
∑

v∈VR

Pmax
v pdemand (3b)

+
∑

(v,w)∈AT−AI

f(v,w)dvv,vw
pdist (3c)

+ nfleetpfleet (3d)
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+
∑

v∈VR

|Dv|∑

j=1

S̄(v,Dv(j))pstn(Dv(j)) (3e)

subject to

1
T (−Aoutf) = nfleet (3f)
∑

(v,w)
∈AT−AI

f(v,w)1(v,w,m) = λm ∀m ∈ M (3g)

Ain[V2:T−1, :]f = −Aout[V2:T−1, :]f (3h)

Ain[VT , :]f = −Aout[V1, :]f (3i)
∑

(v,w)∈AS

1(vv,tv)=(v,t)f(v,w)
(cw − cv)Ec

∆t

≤ Pmax
v ∀v ∈ VR, ∀t ∈ T (3j)

Eq. (2) (3k)

Objective term (3a) is the electricity energy cost, with

time-varying electricity price penergy(t) : T → R
+ having

units of USD/kWh. Objective term (3b) is the electricity

demand cost, with demand charge pdemand ∈ R
+ having

units of USD/kW. Maximum power demand at each location

Pmax
v is defined from f in Eq. (3j), which follows from the

derivation of Eq. (1). Objective term (3c) is the maintenance

cost due to vehicle travel, with pdist ∈ R
+ representing

maintenance cost per distance traveled and has units of
USD/km. Objective term (3d) is the fleet procurement cost,

with vehicle price pfleet ∈ R
+ having units of USD/vehicle.

Fleet size nfleet ∈ R
+ is defined from f in Eq. (3f). Lastly,

objective term (3e) is the charging station procurement cost,

with pstn(δ) : Dv → R
+ having units of USD/station.

We introduce A ∈ R
|V| ×R

|A|, the incidence matrix of the

expanded graph G, in which +1 entries indicate into node

and -1 indicates out of node. Aout is the incidence matrix

with only the -1 entries, whereas Ain is the incidence matrix

with only the +1 entries. We denote A[Vt, :] as the selection

of all columns and the rows corresponding to nodes in Vt, in

which Vt is defined as the set of all expanded graph nodes

associated with time t. Similarly, Vt1:t2 returns the set of

expanded graph nodes associated with a range of times, from

t1 to t2.

Eq. (3g) enforces the fleet to serve all customer travel

requests. Eq. (3h) enforces consistency and flow conservation

in the network flow problem, as detailed in [4] and [5].

Eq. (3i) enforces a periodicity constraint, ensuring vehicles

return to a state in the final time that is identical to its state

in the initial time. Eq. (3k) determines the station sizing

variables S̄s and enforces station plug capacities, as derived

in Eq. (2).

The E-AMoD problem Eq. (3) is a linear program that

is amenable for any general LP solver. It has |AR||C||T | +
|VR||Dv|+ |VR|+1 decision variables. The dominant term is

|AR||C||T |. Given that AR can be at most |VR|
2

if there is

a route between every location, it follows that |AR||C||T | ∈
O(|VR|

2
|C||T |).

A few comments are in order. First, the transportation

graph GR uses routes between destinations as arcs, as

opposed to road segments. The advantage of this modeling

choice is that origin-destination travel demand data sets,

with data on the traffic volume, distance, and travel time

of the route connecting an origin-destination pair, can be

readily used to formulate this graph; no assumptions are

needed about how a vehicle traverses physical road segments

in its routing. The disadvantage of this approach is that

traffic congestion along road segments cannot be accurately

modeled. However, if road topography data is available and

shortest-path routing can be assumed, then Eq. (3) can easily

be adapted to use road segments and enforce threshold

congestion constraints in the optimization, as presented in

[5]. Second, the flow solved by Eq. (3) allows for fractional

flows of vehicles. However, this is acceptable given the

macroscopic nature of the station siting problem, as arc flows

are on the order of thousands of vehicles and a fractional

vehicle has negligible impact on results. Third, although the

number of decision variables scales with O(|VR|
2
|C||T |), if

the operating region of the fleet remains fixed, increasing

the number of locations will increase the spatial granularity

which requires a finer charge and time discretization. In such

a case, the scaling would be more than quadratic with the

number of locations.

III. CASE STUDY IN SAN FRANCISCO, CA

A. Model parameters

To investigate how charging stations are sited when opti-

mized jointly with E-AMoD fleet operations, we conduct a

detailed case study of an E-AMoD system in San Francisco,

CA. The fleet operates for 24 hours, serving all travel demand

in the city on a typical weekday. The fleet additionally

serves San Francisco customers traveling to and from North

Bay, East Bay, and the Peninsula. The fleet operator installs

charging stations within San Francisco at which fleet vehicles

have exclusive use for recharging; these installations are de-

termined by the joint charging station siting optimization. To

evaluate the impact of the vehicle battery size and efficiency,

we conduct separate optimizations for the following three EV

models: the 2020 Tesla Model 3 Long Range AWD (75 kWh
battery), the 2020 Nissan Leaf S (40 kWh), and the 2021

Dacia Spring (27.4 kWh).

a) Data for expanded graph: We use travel demand

data provided by StreetLight Data from 2019, averaged

across Mondays-Fridays. The hourly origin-destination data

is given for the 190 transportation analysis zones (TAZ) of

San Francisco [12] and three pass-through zones measuring

traffic flow across the Golden Gate Bridge (to/from North

Bay), the Bay Bridge (to/from East Bay), and all roads

connecting the southern city boundary to the Peninsula. The

190 TAZs are then aggregated into 25 city zones determined

by dividing San Francisco into a 5x5 grid of 2.2 km x 2.2 km

cells. With 25 city zones and three pass-through zones, we

have |VR| = 28. In total, the E-AMoD serves 2.89 million

customer requests over the weekday. The distance and travel

time between origin-destination pairs are also given by this

data set. To account for the travel that occurs beyond the

city boundaries, we add 32 km, 24 km, and 48 km to the

distance and 40 min, 20 min, and 45 min to the travel time

for vehicles traveling to or from the North Bay, East Bay,

and Peninsula pass-through zones, respectively. To determine

the energy needed to travel between an origin-destination
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pair, we assume the EVs consume energy at the rate of their

combined cycle energy efficiency rating, as rated by the US

Environmental Protection Agency (EPA) for the Model 3 and

Leaf S and the World harmonized Light-duty vehicles Test

Procedure (WLTP) for the Spring. These ratings are provided

in Table I. We can then determine travel energy directly from

the travel distance data.

The 24-hour horizon is discretized into fifteen-minute time

steps, such that |T | = 96. This time discretization was

chosen to be close to the travel time of the shortest duration

trip requests. It is also consistent with the frequency at which

power is metered by the electric utility, which is how the

utility determines energy and demand charges. We assume

the hourly travel demand is uniformly distributed over the

hour. For example, if the number of customer requests from

07:00 to 08:00 is 1000 for a particular origin and destination

pair, we assume the number of requests at the time steps

07:00, 07:15, 07:30, and 07:45 to be 250.

We conservatively assume the EVs operate with their

SoC between 0.2 and 0.8. This simple policy accounts for

having emergency reserve battery charge, avoiding battery

degradation effects at high SoCs [13], and the capacity loss

of the battery over its usage. The SoC-restricted vehicle

battery is then discretized into energy steps of 0.74 kWh,

such that |C| = 62, 33, and 23 for the Model 3, Leaf S, and

Spring, respectively. This charge discretization was chosen

to be close to the travel energy of the lowest energy trip

requests.

The fleet operator can install charging stations at any of

the 25 city zones. There are four different station options

with varying charging rates: two Level 2 AC options, 7.7 kW
and 16.8 kW, and two DC fast charging options, 50 kW and

150 kW. These options were chosen from common station

configurations used in present day [14]. However, as the

Spring has a smaller battery, the maximum charging rate

it can receive is 30 kW. Thus, for the Spring optimization,

although DC fast charging stations are considered, their

output charging rates are limited to 30 kW. All EVs are

assumed to recharge with a grid-to-battery efficiency of 90%.

b) Pricing data: We set the per-distance maintenance

cost of EV travel to pdist = 0.0464USD/km (0.0746USD/mi)

in accordance with the American Automobile Association

(AAA)[15].

For electricity pricing, we use the “Business Electric

Vehicle” electric schedule from Pacific Gas and Electric

Company (PG&E), the primary electric utility that serves

San Francisco [16]. This schedule consists of a time-of-use

(TOU) rate, penergy(t), a price per unit energy that varies

by time of day, and a subscription-based demand charge,

85.98USD/50kW, a price per unit power of maximum load

within a billing month. The TOU rate, shown in Fig. 3,

features a super-off-peak rate of 0.10320USD/kWh from

9 am to 2 pm to incentivize energy use during midday peak

solar production on the California grid, and a peak rate of

0.33474USD/kWh from 4 pm to 9 pm to disincentivize energy

use during peak grid load. As we are solving a macroscopic

planning problem, we assign demand charges at the city zone

level and make the demand charge continuous (instead of per

50 kW discretization) since the peak demand per zone is on

the order of thousands of kilowatts. This monthly demand

charge is then appropriately rescaled for the case study time

horizon (24 hours) such that pdemand = 0.056497USD/kW.

In determining the per-vehicle fleet procurement cost,

pfleet, we assume a depreciation rate of 20%/year on the

original sale price. Sale prices are provided in Table I. We

also add an annual cost of 2127USD/vehicle which includes

the cost of insurance, registration, and finance charges [15].

This yearly cost is then rescaled for the case study time

horizon such that pfleet = 20.09, 23.12, and 31.55USD/vehicle
for the Spring, Leaf S, and Model 3, respectively.

The per-station costs for charging station installation

are 2887USD, 5287USD, 28287USD, and 88187USD for

the 7.7 kW, 16.8 kW, 50 kW, and 150 kW stations, respec-

tively, based on Exhibit 1 of [14]. Assuming a station

lifetime of 10 years, we can compute the equivalent annual

cost and then rescale for the case study time horizon to

obtain pstn(7.7 kW) = 2.61USD/station, pstn(16.8 kW) =
3.55USD/station, pstn(50 kW) = 13.36USD/station, and

pstn(150 kW) = 41.37USD/station. Note that this cost ac-

counts for the procurement of charging station equipment,

cables, and accompanying transformers, but does not include

costs associated with land use, labor, and permitting, which

vary significantly by site.

B. Experimental design

Using the model parameters outlined in Section III-A, we

conduct two experiments:

1) A comparison of E-AMoD fleet operations and station

siting determined by joint optimization Eq. (3) between

different fleet vehicle choices: the Model 3 (75 kWh),

the Leaf S (40 kWh), and the Spring (27.4 kWh).

2) A comparison of E-AMoD fleet operations and station

siting determined by joint optimization Eq. (3) versus

a “baseline” scenario in which an E-AMoD fleet op-

timizes operations on a fixed station siting based on

present-day stations. For this comparison, the middle-

sized EV, the Leaf S, is used.

In the baseline scenario comparison, we determine the

charging station siting from the US Department of Energy’s

Alternative Fuels Data Center (AFDC) API. The API returns

the number of Level 2 and DC fast charging plugs for every

recorded charging station in San Francisco. We assume Level

2 stations are 7.7 kW and DC fast charging stations are

50 kW, which are common charging rates currently used.

As EV penetration is much lower in present day compared

to our joint optimization future mobility scenario in which all

travel is served by EVs, we scale up the present-day station

distribution by a constant factor of 59.86 such that the city

total installed charging infrastructure capacity is equal to the

total installed capacity resulting from the joint optimization,

629.91MW.

C. Results and discussion

a) Comparison between EV models: A summary of

results for the comparison between EV models is presented

in Table I.

Fleet procurement cost is the most significant cost term,

accounting for 77.8% to 83.8% of total costs. For all

3344

Authorized licensed use limited to: Stanford University. Downloaded on January 10,2022 at 18:34:26 UTC from IEEE Xplore.  Restrictions apply. 







the day, they are not limited to charging during the midday

when there is a large share of vehicles in the commercial

zones. The ability for vehicles to autonomously take turns

recharging in the middle of the night, when they are largely

in non-commercial zones, allows for greater distribution of

charging throughout the day and a lower peak load in the

joint optimized scenario, as shown in Fig. 3b. Notably, there

is a 64% reduction in installed DC fast charging capacity in

favor of high-power Level 2 AC charging.

The joint optimization problem Eq. (3) for the Leaf S fleet,

which has 5.3 million decision variables, was solved using

Gurobi solver in 61 iterations over 2.33 hours on a compute

instance with 24 vCPU and 64GB RAM.

IV. CONCLUSION

This paper explored the benefits of optimizing the opera-

tions of a fleet of electric Autonomous Mobility-on-Demand

(E-AMoD) vehicles jointly with the siting of the charging

infrastructure. In particular, we devised a network flow

model capturing the movements and charging activities of the

electric vehicles (EVs) in time, and integrated it within the

static charging infrastructure siting problem. The resulting

joint design and control problem is convex and can be solved

to global optimality with off-the-shelf linear programming

algorithms. Our real-world case-studies compared the total

costs achievable with three different types of EVs, revealing

that the lightest and cheapest EV, despite its limited range,

would result in the lowest total cost, and that changing the

vehicle type would significantly affect the resulting infras-

tructure design. Finally, we quantified the benefits of jointly

optimizing the siting of the chargers. Our results revealed

that, compared to the case where the infrastructure siting

corresponds to a linear scale-up of the present-day layout

and only the E-AMoD operations are optimized, our joint

optimization framework can reduce the total cost incurred

by the E-AMoD operator, the peak charging load, and the

empty-vehicle distance traveled by up to 10%, and also lower

the charging station procurement cost by more than 30%. In

particular, the share of charging capacity provided by DC

fast charging stations is reduced nearly three-fold in favour

of high-power Level 2 AC stations.

This work can be extended as follows: First, we would

like to capture the effects of EV charging on the power grid,

potentially jointly optimizing its design and enabling vehicle-

to-grid operations. Second, it is of interest to study the

impact of heterogeneous fleets consisting of differently sized

EVs, and of hybrid electric and internal combustion engine

vehicles. Finally, we would like to investigate the sensitivity

of our results with respect to travel demand variability and

different energy consumption models.
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