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Sparse Coding-enabled Low-fluence
Multi-parametric Photoacoustic Microscopy

Zhuoying Wang, Yifeng Zhou, and Song Hu

Abstract—Uniquely capable of simultaneous imaging of
the hemoglobin concentration, blood oxygenation, and flow
speed at the microvascular level in vivo, multi-parametric
photoacoustic microscopy (PAM) has shown considerable
impact in biomedicine. However, the multi-parametric PAM
acquisition requires dense sampling and thus a high laser
pulse repetition rate (up to MHz), which sets a strict limit on
the applicable pulse energy due to safety considerations. A
similar limitation is shared by high-speed PAM, which also
uses lasers with high pulse repetition rates. To achieve high
quantitative accuracy besides good structural visualization
at low levels of laser fluence in PAM, we have developed a
new, sparse coding-based two-step denoising technique. In
the setting of intravital brain imaging, we demonstrated that
this unsupervised learning approach enabled the reduction
of the laser fluence in PAM by 5 times without compromise
of the image quality (structural similarity index measure or
SSIM: >0.92) and the quantitative accuracy (errors: <4.9%).
Offering a significant relaxation in the requirement of PAM
on laser fluence while maintaining the quality of structural
imaging and accuracy of quantitative measurements, this
sparse coding-based approach is expected to facilitate the
application and clinical translation of multi-parametric PAM
and high-speed PAM, which have a tight photon budget due
to either safety considerations or laser source limitations.

Index Terms—Photoacoustic microscopy, low-fluence
functional imaging, quantitative imaging, sparse coding,
denoising

|. INTRODUCTION

HIGHLY sensitive to the optical absorption-based molecular
contrast, photoacoustic microscopy (PAM) has attracted
considerable attention since being introduced to the biomedical
community as an intravital imaging technique [1]. Capitalizing
on the light absorption of hemoglobin, PAM enables label-free,
comprehensive characterization of microvascular structure and
function in vivo [2], [3]. Providing new functional and oxygen-
metabolic insights into various physiological and pathological
processes, PAM has found broad applications in both basic and
translational biomedicine [4], [5].

Recent advances in the multi-parametric PAM [6], [7], which
enables simultaneous imaging of the hemoglobin concentration
(Cupb), oxygen saturation of hemoglobin (sO,), and blood flow
at the microscopic level, further expand its promise. However,
quantification of Cyp and blood flow relies on dense sampling,

which requires a high laser pulse repetition rate (PRR) [8], [9].
Moreover, recent efforts on improving the speed of PAM boost
the use of lasers with high PRRs (up to MHz) [10], [11], which
leads to increased photon energy deposition in biological tissue
per unit time and thus limits the applicable pulse energy due to
laser safety considerations [12]. Besides safety concerns, high
laser fluence may cause the saturation of optical absorption and
thus inaccurate measurement of sO; [13].

Although imperative, achieving high structural image quality
and quantitative accuracy with low-fluence excitation remains
a challenge. At low-fluence levels, the signals generated by the
microvasculature are comparable to the noise of PAM systems,
resulting in a low signal-to-noise ratio (SNR) that is inadequate
for microvascular visualization [14]. Even if some microvessels
remain visible under low-fluence excitation, the reduced SNR
causes errors in functional measurements as shown by us before
[15]. To address this challenge, different techniques have been
developed/adopted to improve the quality of low-fluence
photoacoustic images [16]-[21], among which sparse coding
has shown strong promise for denoising and artifact removal.

Widely used in computer vision and image processing [22]—
[24], sparse coding is an unsupervised learning method seeking
to represent the image data with a sparse, linear combination of
dictionary atoms [25]. Given that unfeatured noise patterns are
less correlated and have less sparse representations than signals,
sparse coding can differentiate them and has been applied by us
and others to remove noise and artifacts in the structural images
acquired by PAM [19], [21]. Although demonstrating marked
improvement in the SNR of trunk vessels, these efforts have not
led to appreciable enhancement in microvascular visualization.
More importantly, most of the current studies have been limited
to improving the structural image quality—leaving quantitative
imaging of the microvascular function unattended. Recently, a
deep learning-based technique was developed for denoising the
maximum amplitude projection (MAP) image in PAM [26].
Although quantitative imaging of the sO» is achieved with 50%
reduction in the laser pulse energy, this method cannot improve
the quantification of blood flow, which requires direct analysis
of depth-resolved A-lines.

In this paper, we present a new two-step sparse coding-based
image processing technique that enables significantly enhanced
microvascular visualization and highly accurate quantification
of microvascular functions in multi-parametric PAM with low-
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fluence excitation. After testing the feasibility of this technique
in a fiber phantom, we demonstrated its utility by imaging the
microvascular structure, Cpp, SO2, and blood flow speed in the
same mouse brain at normal (100 nJ pulse energy) and reduced
(20, 10, and 5 nJ) fluence levels. Comparison of the structural
and functional images before and after the two-step denoising
against those acquired with the normal laser fluence provides a
comprehensive assessment of its performance in vivo.

[I. METHODS

A. K-SVD-based Sparse Coding

Under the sparse assumption, the image data admits a sparse
decomposition over an overcomplete dictionary [24]. The goal
of sparse coding is to describe the data with a trained dictionary
and a sparse coefficient matrix [27]. In this work, we use the K-
SVD algorithm to train the dictionaries because of its efficiency
and simplicity [28].

Given a noisy image Y, the goal is to define an overcomplete
dictionary D and identify a sparse coefficient matrix x, which
together best represent a noise-free version of the image

y = Dx. (1)
The process can be described as an optimization problem
(x,D) = argmin||x|lo,s.t. [ly — Dx|I <, 2
x,D

in which € is related to the noise in the raw image y. Since x is
sparse, this problem can be rewritten into
(x,D) = argmin|ly — Dx|I3,s.t.|lxll, < S, 3
x,D

where S is the desired sparsity (i.e., the largest number of non-
zero entries of x).

When sparse coding is applied to process a large image, the
raw image is usually divided into small patches. In this case, the
optimization problem can be solved for each patch as

(x;, D) = argmin||R;y — Dx;||5,s.t.[Ix;llo <S, (4

xi,D

where i denotes the patch index, and operator R; extracts patch
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i from the original large image y.

To solve this problem, first, the K-SVD algorithm initializes
the dictionary and coefficient matrix as D and X, respectively.
Specifically, the dictionary is initialized by a randomly valued
matrix and the coefficient matrix is approximated by using the
orthogonal matching pursuit (OMP) algorithm [29]. With this,
the residual of an arbitrary column ¢ in D can be computed as

eic =Ry - Zk:tc dkxi‘{ =Ry — ijfl + dcxiC' LEF, (%)
where d¥ is the k™ column of D, x¥ is the coefficient in k™ row
of X,, respectively, and P, is the set of patches that use atom d¢:
P. = {i|x{ # 0}. Traversing all columns leads to a residual
matrix
E.={e}, i€P. (6)
Then, the dictionary D is updated by minimizing the difference
between R;y and DX,, which can be solved by approximating
E . with a rank-one matrix via the singular value decomposition
as
E.=UVT, (7
where X is the diagonal singular values matrix, and U and V are
the left and right singular vectors, respectively. Column d€ of
the updated dictionary is the first column of U. The coefficient
x{ is calculated by multiplying the first column of V by £(1,1).
After all columns are updated, a new coefficient matrix can be
generated using the OMP algorithm. Iterative updates of both
the dictionary and the coefficient matrix eventually solve the
optimization problem and generate a noise-free image.

B. Two-step Denoising Strategy

Combining two-dimensional (2-D) transverse scan and time-
resolved ultrasonic detection, PAM produces three-dimensional
(3-D) image sets, consisting of a series of cross-sectional scans
(i.e., B-scans) acquired at different tissue locations. Due to the
considerable anisotropy in spatial resolution (lateral resolution:
a few um; axial resolution: tens of um), PAM images are often
presented in 2-D by projecting the maximum amplitude of each
A-line along the axial/depth direction (i.e., MAP images).

Denbiéed
low-fluence PAM

A J

STEP 1

|

STEP 2

Fig. 1. Flow diagram of two-step sparse coding-based denoising.



To fully exploit the 3-D imaging nature of PAM, we propose
a two-step sparse coding-based denoising strategy. As shown in
Fig. 1, sparse coding is applied first to each raw B-scan acquired
by low-fluence PAM and then to the MAP image composited
by the denoised B-scans. The two steps are complementary. In
the first step, sparse coding can effectively separate the vascular
signals from random noise in individual A-lines of the B-scan
because the noise is much less sparse compared to the signals.
Removing the noise while preserving the weak microvascular
signals in A-lines can significantly enhance the visualization of
microvessels. However, the noise and possible electromagnetic
interference (EMI) that present in patterns similar to that of the
spike-like vascular signal in A-lines remain largely unaffected.
In the second step, the MAP image, where the vascular pattern
is distinct from those of the noise and possible EMI, is sparsely
coded by the K-SVD algorithm for separation and removal of
the residual non-vessel components. Combining these two steps
of denoising results in a near-background-free vascular image.
The same K-SVD algorithm is applied in both steps for sparse
coding. Note that no other signal processing is involved besides
the two-step sparse coding-based denoising.

In this denoising technique, there are four key parameters—
dictionary atom size, desired sparsity, patch size, and iteration
number. Proper selection of these hyperparameters is essential
because of the tradeoff between removing noise and preserving
signal. For example, smaller desired sparsity allows better noise
suppression, but an excessively small desired sparsity may lead
to changes in the amplitude or profile of vascular signals and
affect quantitative measurements. Also, larger atom size better
preserves vascular signal for quantitative measurements, but an
overly large atom size may compromise the efficacy of noise
removal. Moreover, the computational cost is a practical factor
to consider when selecting the hyperparameters. Thus, the patch
size and iteration number should not be too large while ensuring
convergence.

Balancing the denoising performance, quantitative accuracy,
and computational cost, we have determined the parameters for
the two-step sparse coding-based technique as follows:

Step 1. atom size = 50, desired sparsity = 3, patch size =
100x1, iteration = 50.

Step 2. atom size = 50, desired sparsity = 7, patch size =
250x1, iteration = 80.

C. Experimental Setup

A self-developed multi-parametric PAM system was used in
this study. As shown in Fig. 2, the 532-nm output from a nano-
second pulsed laser (GLPM-10, IPG Photonics) is launched into
an acousto-optic modulator (AOM, AOMO 3080-122, Crystal
Technology) for pulse-by-pulse wavelength conversion. When
the AOM is off, the pulsed light undergoes no diffraction and is
coupled into a polarization-maintaining single-mode fiber (PM-
SMF, HB450-SC, Fibercore), in which the light wavelength is
red-shift due to the stimulated Raman scattering effect [30]. The
fiber output then passes a bandpass filter (BPF, CT560/10bp,
Chroma) to select out the 558-nm component. When the AOM
is on, ~60% of the 532-nm light is diffracted into a different
optical path (i.e., 1%-order diffraction), where it experiences no
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wavelength conversion. The undiffracted (i.e., 0"-order) light,
accounting for ~40% of the energy, is insufficient to generate
nonlinear Raman scattering and thus is removed by the BPF. As
a result, the AOM switches the wavelength of the laser pulses
between 532 and 558 nm. The two optical paths are combined
by a dichroic mirror (DM, FF538-FDi01, Semrock). The energy
of each laser pulse is modulated by an electro-optic modulator
(EOM, 350-80, Conoptics) combined with a polarizing beam-
splitter (PBS, PBS121, Thorlabs). To compensate for possible
laser fluctuation, ~5% of the laser light is tapped off by a beam
sampler (BS, BSF10-A, Thorlabs) and monitored by a high-
speed photodiode (PD, PDA36A2 Thorlabs). An objective lens
(OL, AC254-050-A, Thorlabs) focuses the beam onto the object
to be imaged through a ring-shaped ultrasonic transducer (UT,
inner diameter: 1.1 mm; outer diameter: 3.0 mm; focal length:
4.4 mm; center frequency: 40 MHz; 6-dB bandwidth: 69%). For
acoustic coupling, the transducer is submerged into a water tank
(WT) and a thin layer of ultrasound gel (Aquasonic CLEAR,
Parker Laboratories) is applied between the target and the tank
bottom. A correction lens (CL, LA1207-A, Thorlabs) is used to
compensate for the optical aberration induced at the interface of
the ambient air and water.

PM-SMF
BPF DM Mirror
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Fig. 2. Schematic of multi-parametric PAM. AOM: acousto-optic
modulator, PM-SMF: polarization-maintaining single-mode fiber; BPF:
bandpass filter; DM: dichroic mirror; EOM: electro-optic modulator, PBS:
polarizing beamsplitter, BB: beam block, BS: beam sampler, PD:
photodiode, OL: objective lens, CL: correction lens, UT: ultrasound
transducer, WT: water tank.

By adjusting the voltage applied to the EOM, the laser pulse
energy on the target is altered between 5, 1, 0.5, and 0.25 nJ for
phantom imaging and 100, 20, 10, and 5 nJ for in vivo imaging,
allowing simultaneous PAM of the same region of interest at
different fluence levels. For in vivo experiments, the laser safety
standards defined by the American National Standards Institute
(ANSI) is considered when determining the laser fluence. The
highest fluence levels (in the case of 100-nJ laser pulses) are
19.7 mJ/cm? (532 nm) and 18.0 mJ/cm? (558 nm) at the surface
of the mouse brain (beam waist: 1.75 um, focal depth: 130 um),
which are within the ANSI limit (i.e., 20 mJ/cm?). For phantom
imaging, the fluence is set at a much lower level because carbon
fibers generate much stronger photoacoustic signals compared
to microvessels in the mouse brain. Specifically, we used 5 nJ
as normal fluence and 20%, 10% and 5% of it as low fluences
(i.e., 1,0.5, and 0.25 nJ), keeping the same ratio as the in vivo
imaging to better benchmark the performance of our denoising
method. Structural images of the carbon fibers and cerebral
vasculature are generated by Hilbert transform and maximum
amplitude projection of the depth-resolved A-lines, and Chp,
sO,, and blood flow images of the cerebral vasculature are
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generated by the statistical,
analyses, respectively [8] .

The phantom used in this study was randomly placed carbon
fibers (average diameter: ~6 um). The in vivo experiment was
performed in the brain of a CD-1 mouse (male, 12 weeks old,
Charles River Laboratories) through a cranial window. During
the imaging experiment, the animal was anesthetized with 1.5%
isoflurane, and the body temperature was kept at 37°C using a
temperature-controlled heating pad (Cole-Parmer, EW-89802-
52 and Omega, SRFG-303/10). All procedures were carried out
in conformity with the laboratory animal protocol approved by
the Institutional Animal Care and Use Committee (IACUC) at
Washington University in St. Louis.

In this work, all data were processed in MATLAB (R2019b,
MathWorks) using a personal computer (Intel i17-7700 CPU @
3.60GHz). For the in vivo dataset, in the first step, 450 B-scan
frames (128x7500 pixels each) were processed sequentially at
a speed of 24 seconds/B-scan. In the second step, it took ~300
seconds to process one MAP image (450x7500 pixels). The
total runtime of the denoising algorithm was ~3 hours without
paralleling computation.

spectroscopic, and correlation

D. Quantitative Assessment of Denoising Performance
To quantitively assess the performance of the sparse coding-
based two-step denoising technique, multiple key parameters,
including the SNR, contrast-to-noise ratio (CNR) and structural
similarity index measure (SSIM), are assessed and compared.
The SNR is defined as [31]
SNR =1/0,, ®)
where [ is the average amplitude of the vascular signal, and o,
is the standard deviation of the amplitude of background noise.

1 nJ Raw Denoise B-scan

0.5 nJ Raw

0.5nJ Den0|se

Denoise MAP Two-step Denoise

0.25nd Raw 0.25nJ Den0|se
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The CNR is defined as [31]
CNR = (I__ I_n)/o-na )
where I, is the average amplitude of the background.
The SSIM, a quantitative measure of the similarity between
two images, is defined as [32]

SSIM(x,y) = 1“(x, y)c (x,y)s" (x, y), (10)
in which I(x, y), c(x,y), and s(x, y) respectively measure the
differences between the luminance, contrast, and structure of
the two images, and «, 8, and y are three constants. The SSIM
map and average SSIM value of the result images are quantified
against the reference images acquired with the normal fluence
(i.e., 5 nJ or 100 nJ). By selecting the default value of 1 for a,
B, and y, a larger SSIM value indicates higher similarity. Note
that since our PAM can simultaneously acquire multiple images
at different fluence levels (i.e., 5, 1, 0.5, and 0.25 nJ or 100, 20,
10, and 5 nJ), no image registration is needed prior to the SSIM
calculation.

lll. RESULTS

First, we demonstrated the feasibility of the two-step sparse
coding-based denoising technique in a carbon fiber phantom by
processing and comparing the images acquired at normal (pulse
energy: 5 nJ) and low fluence levels (1, 0.5, and 0.25 nlJ).

As shown in Fig. 3a, the raw image of the phantom acquired
with 20% of the normal fluence (i.e., 1 nJ) shows considerable
noise. Sparse coding-based denoising of the B-scans (i.e., Step
1) improves the visualization of carbon fibers by reducing the
noise in individual A-lines (as shown in Fig. 4a). However, the
noise and possible EMI that have signal-like patterns in A-lines,
remain largely unremoved (indicated by black arrows in Fig.

5nd

© Normalized =
PA amplitude

© Normalized =
PA amplitude

Fig. 3. Two-step denoising of carbon fiber images acquired by low-fluence PAM. (a) Step-by-step illustration of the performance of two-step
denoising on images acquired with 20% of normal fluence. First row: low-fluence (i.e., 1 nJ pulse energy) PAM images of randomly distributed
carbon fibers before denoising, after B-scan denoising alone, MAP denoising alone, and two-step denoising, as well as the reference image acquired
with normal fluence (i.e., 5 nJ). Second row: Close-up views of non-fiber background. (b) lllustration of the denoising performance in images acquired
with 10% and 5% of normal fluence (i.e., 0.5 nJ and 0.25 nJ, respectively) through side-by-side comparison of the low-fluence images before and

after two-step denoising. PA: photoacoustic.
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Fig. 4. lllustration of the performance of B-scan denoising on low-fluence PAM of the carbon fiber phantom. (a) Effective suppression of random
noise in a representative A-line containing the carbon fiber signal. (b) Ineffective suppression of noise with signal-like patterns (indicated by the black
arrows) in a representative A-line of the non-fiber background. The A-line signal is converted to a bipolar form by subtracting its mean.

4b) and present as background fluctuation in the MAP image
(the second row of Fig. 3a). By contrast, directly denoising the
MAP image with sparse coding (i.e., Step 2) significantly
suppresses the background fluctuation. However, the average
amplitude of the background remains high, which hinders the
enhancement of the image contrast, thus impedes improvement
of microvascular visibility. Combining the two steps yields the
best performance and generates a denoised image, whose
quality is comparable to that acquired with the normal fluence
(i.e., 5 nJ). Further testing the denoising technique in carbon
fiber images acquired at 10% and 5% of the normal fluence (i.e.,
0.5 and 0.25 nlJ), which are even noisier and have poor
visualization of the fibers, shows that the two-step denoising
significantly improves the image quality (Fig. 3b).

To benchmark the performance of the denoising technique,
the key parameters of the raw and denoised images, including
the SNR, CNR, and SSIM (against the reference image acquired
with 5 nJ pulse energy), are quantified and compared. As shown
in Table I, the two-step denoising technique improves the SNR
and CNR of the low-fluence images acquired with 20%, 10%,
and 5% of the normal fluence by 4.3-6.1 times and 7.2-8.8
times, respectively, whereas the SSIM is increased by 0.23—
0.47. The lower the laser fluence, the larger the improvements
in the CNR and SSIM. Moreover, step-by-step analysis of the
performance of the two-step denoising technique on the image
acquired with 20% of the normal fluence shows that denoising
the B-scans (i.e., Step 1) results in a larger improvement in the
SSIM compared to directly denoising the MAP image (i.e., Step
2), indicating a better visualization of the carbon fiber structure.
By contrast, directly denoising the MAP image leads to a larger
improvement of the SNR and CNR, suggesting a more effective
suppression of background noise.

Then, we examined the utility of the two-step sparse coding-
based denoising for enhancing the microvascular visualization
and hemodynamic quantification accuracy of low-fluence PAM
in an intravital brain imaging setting. Specifically, the brain of
a live CD-1 mouse was concurrently imaged at normal (pulse
energy: 100 nJ) and low fluence levels (20, 10, and 5 nJ). The
performance of the two-step denoising technique in low-fluence
PAM was benchmarked against the images acquired under the
normal fluence condition.

At 20% of the normal laser fluence (i.e., 20 nJ pulse energy),
the two-step approach demonstrated excellent performance. As
shown in Fig. 5a, the raw structural image acquired with 20 nJ
laser pulses shows sparsely distributed microvessels, along with
considerable non-vessel background. The sparse coding-based
denoising of the B-scan (i.e., Step 1) significantly reduces the
random noise in individual A-lines. Such noise removal in A-
lines containing weak microvascular signals (as shown in Fig.
6a, where the noise indicated by the red arrow is comparable to
the microvascular signal indicated by the green arrow) results
in a much improved visualization of the microvessels that are
barely visible in the raw image (blue arrows in Fig. 5a).
However, the background in the B-scan denoised image still
contains dotted patterns, likely due to ineffective suppression of
the signal-like noise and/or EMI in A-lines (indicated by black
arrow in Fig. 6b). Directly applying sparse coding to denoise
the raw MAP image (i.e., Step 2 only) significantly reduces the
fluctuation of the background noise but does not lead to
significant improvement of microvascular visualization.
Combining the two steps results in a more complete noise
removal and a high-quality image of the microvascular
structure—approaching that acquired with the normal fluence
(i.e., 100 nJ).

STEP-BY-STEP ANALYSIS OF THE EFFECTS OF TWO-STEP DENOISIN'IG‘AOITB\ILSET\IIR, CNR, AND SSIM AT DIFFERENT FLUENCE LEVELS IN PHANTOM
1 nJ 0.5n] 0.25nJ
Metric 5n] Denoise Denoise  Two-ste Two-ste Two-ste
Raw B-scan MAP Denoisé) Raw Denoiss Raw Denoiss
SNR 103.33 20.87 30.49 66.04 127.06 10.42 60.63 7.35 31.33
CNR 98.22 15.72 27.20 49.94 113.47 5.29 46.47 2.18 19.23
SSIM 1 0.66 0.82 0.74 0.89 0.40 0.83 0.24 0.71
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Fig. 5. Step-by-step illustration of the performance of two-step denoising on cerebrovascular structural images acquired by low-fluence PAM in
the live mouse. First row: low-fluence (i.e., 20 nJ pulse energy) images of the cerebral vasculature before denoising (raw), after B-scan denoising
alone, MAP denoising alone, and two-step denoising, as well as the reference image acquired with normal fluence (i.e., 100 nJ). Second row: Close-
up views of the blue boxed region, showing the improvement of microvascular visualization (indicated by blue arrows). Third row: Close-up views of
the green boxed region, showing the suppression of noise fluctuation in non-vessel background. (b) Pseudocolor-coded maps of the SSIM between
the low-fluence PAM images (before and after denoising) and the reference image acquired with normal fluence. PA: photoacoustic.
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Fig. 6. lllustration of the performance of B-scan denoising on low-fluence PAM of the mouse cerebral vasculature in vivo. (a) Effective suppression
of noise (indicated by the red arrow) with an amplitude comparable to that of the microvascular signal (indicated by the green arrow), in a
representative A-line. (b) Ineffective suppression of noise with signal-like patterns (indicated by the black arrow) in a representative A-line of the
non-vessel background. The A-line signal is converted to a bipolar form by subtracting its mean.



Quantitative comparison of the SNR, CNR, and SSIM values
of the raw and denoised images acquired with 20 nJ laser pulses
against the parameters of the image acquired with 100 nJ pulses
in Table II shows three key observations. (1) The two-step
denoising improves the SNR of the large vessels and
microvessels by 4.9 and 5.7 times, respectively, and the CNR
by 6.0 and 8.0 times, respectively. In addition, the two-step
denoising improves the SSIM between the 20-nJ image and the
reference image acquired at 100 nJ to 0.92, which indicates a
high similarity (also shown in Fig. 5b). (2) The improvement in
microvascular visualization is predominantly attributed to the
B-scan denoising but not the MAP image denoising. Denoising
the MAP image does not result in an appreciable increase in the
microvascular SSIM (from 0.77 to 0.80). By contrast, denoising
the B-scan leads to a significant increase in the microvascular

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. X, 2021

SSIM (from 0.77 to 0.93). (3) Denoising the MAP image plays
a dominant role in enhancing the SNR and CNR by suppressing
the fluctuation of background noise.

Besides the enhancement of microvascular visualization, the
two-step approach also improves the accuracy of hemodynamic
quantification at low-fluence levels. After denoising, the multi-
parametric images acquired with 20 nJ pulses show Chp, SO,
and flow speed values similar to those in the reference images
acquired using 100 nJ pulses, as respectively shown in Fig. 7a—
c. The denoising-induced improvement in quantitative accuracy
is benchmarked by the SSIM between the low-fluence images
(before and after denoising) and reference images, as shown in
Table III. For the Cu, measurement, the denoising technique
improves the SSIM from 0.74 to 0.97 in large vessels and from
0.69 to 0.97 in microvessels. For the sO, measurement, the

TABLE II
STEP-BY-STEP ANALYSIS OF THE EFFECTS OF TWO-STEP DENOISING ON SNR, CNR, AND SSIM AT DIFFERENT FLUENCE LEVELS IN VIVO
20 nJ 10 nJ 5n)
Metric Region * 100 nJ Denoise  Denoise  Two-step Two-step Two-step
Raw B-scan MAP Denoise Raw Denoise Raw Denoise
SNR Large vessel | 196.57 44.75 80.04 157.67 253.03 25.35 134.96 15.35 63.94
Microvessel 33.54 7.18 11.31 24.99 35.35 4.85 18.73 4.05 9.88
CNR Large vessel | 192.41 41.09 77.64 145.04 245.70 21.70 127.56 11.71 57.74
Microvessel 29.38 3.52 8.91 12.36 28.02 1.20 11.33 0.41 3.68
Large vessel 0.97 0.98 0.97 0.98 0.94 0.97 0.89 0.95
SSIM | Microvessel 1 0.77 0.93 0.80 0.94 0.53 0.83 0.34 0.65
Whole image 0.73 0.87 0.78 0.92 0.58 0.83 0.46 0.68
@Differential analysis on large vessels and microvessels is enabled by vessel segmentation shown in Supplementary Materials.
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Fig. 7. Two-step denoising improves the accuracy of Cup, SO,, and blood flow measurements at 20% of normal fluence (i.e., 20 nJ pulse energy).
(a) Low-fluence Cy, images before and after denoising, as well as the reference image acquired with normal fluence (i.e., 100 nJ). Pseudocolor-
coded maps of the SSIM between low-fluence Cy, images (before and after denoising) and the reference image. (b) Low-fluence sO: images before
and after denoising, as well as the reference image acquired with normal fluence. Pseudocolor-coded maps of the SSIM between low-fluence sO.
images (before and after denoising) and the reference image. (c) Low-fluence blood flow images before and after denoising, as well as the reference
image acquired with normal fluence. Pseudocolor-coded maps of the SSIM between low-fluence blood flow images (before and after denoising) and

the reference image.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. X, 2021

SSIM BETWEEN CEREBROVASCULAR FUNCTION MEASURED AT {g\?/LF]ilIJI;NCES (BEFORE AND AFTER DENOISING) AND NORMAL FLUENCE

Parameters Region * 100 nJ 20n] - 10nJ - > n) -
Raw Denoise Raw Denoise Raw Denoise

Cin Large vessel 1 0.74 0.97 0.49 0.89 0.25 0.67

Microvessel 1 0.69 0.97 0.39 0.87 0.21 0.58

$O, Large vessel 1 0.97 0.98 0.94 0.97 0.92 0.94

Microvessel 1 0.74 0.93 0.59 0.83 0.48 0.69

Flow Large vessel 1 0.83 0.94 0.80 0.91 0.73 0.88

Microvessel 1 0.78 0.93 0.71 0.87 0.67 0.78

2Same as Table Il.

denoising not only maintains the high accuracy in large vessels
(SSIM: 0.97 before denoising vs. 0.98 after denoising), but also
substantially improves the accuracy in microvessels (SSIM:
0.74 before vs. 0.93 after). For the flow speed measurement, the
denoising significantly improves the accuracy in both large
vessels (SSIM: 0.83 before vs. 0.94 after) and microvessels
(SSIM: 0.78 before vs. 0.93 after).

To test if this denoising technique permits a more aggressive
relaxation of the fluence, we further reduced the pulse energy
to 10% and 5% of the normal fluence level (i.e., 10 and 5 nJ).
As shown in Fig. 8a and quantified in Table II, the two-step
denoising respectively improves the SNR values of large
vessels and microvessels by 5.3 and 3.9 times at 10% of the
normal fluence, and by 4.2 and 2.4 times at 5% of the normal
fluence. Similarly, after denoising, a significant enhancement
in the CNR is observed in the images acquired with 10% (5.9

= © Normalized ~

SSIM

o

10 nJ Raw

PA amplitude

and 9.4 times in large vessels and microvessels, respectively)
and 5% (4.9 and 9.0 times in large vessels and microvessels,
respectively) of the normal fluence. Although the image quality
is significantly improved, the SSIM of microvascular structure
between the denoised low-fluence images and reference image
acquired with 100 nJ pulses remains considerably low (0.83 and
0.65 at 10% and 5% of the normal fluence, respectively, as
shown in Table II), which indicates only a partial retrieval of
microvascular visualization. Similarly, this denoising technique
improves the accuracy of the multi-parametric quantification.
However, some SSIM values of the Cpp, sO2, and flow speed
measurements remain lower than 0.9 after denoising (as shown
in Table III), implying that considerable errors still exist (also
seen in Fig. 8b—d, respectively).

With the aid of vessel segmentation, the measurement errors
are quantified for the raw and denoised Cup, SO», and blood flow

5 nJ Denoise

10 nJ Raw

10 nJ Denoise 5 nJ Raw

-
o
o

—o CHb(g/L)

SSIM

o

-
o

= © Flow (mml/s)

Fig. 8. Performance of two-step denoising on cerebrovascular structural and functional measurements in PAM with 10% and 5% of normal fluence
(i.e., 10 and 5 nJ pulse energy, respectively). (a) Raw and denoised cerebrovascular structural images acquired with 10 nJ and 5 nJ pulse energy,
and their SSIM maps against the reference image acquired with normal fluence (i.e., 100 nJ). (b) Raw and denoised Cy, images acquired with 10
nd and 5 nJ pulse energy, and their SSIM maps against the reference image acquired with normal fluence. (c) Raw and denoised sO, images
acquired with 10 nJ and 5 nJ pulse energy, and their SSIM maps against the reference image acquired with normal fluence. (d) Raw and denoised
blood flow images acquired with 10 nd and 5 nJ pulse energy, and their SSIM maps against the reference image acquired with normal fluence. PA:

photoacoustic.
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RELATIVE ERRORS (AGAINST 100 NJ) IN QUANTITATIVE MEASURE?/IEIE"FSIC\)Z’ CEREBROVASCULAR FUNCTION BEFORE AND AFTER DENOISING

Functional 20n] 10 nJ 5nJ

Parameter * Raw Denoise Raw Denoise Raw Denoise
Chp 20.1+4.7% 4.9+3.2% 50.0+£3.9% 24.1+3.9% 69.9+2.8% 49.3+3.2%
sOz 2.1+£1.4% 2.0+1.4% 2.5+£2.6% 2.3+£2.7% 3.6+£3.4% 3.1+£3.7%
Flow 10.0+5.6% 3.2+2.4% 9.9+6.8% 4.4+2.9% 9.8+5.5% 5.3£3.3%

2Parameters are measured in the 15 vessel segments shown in Supplementary Materials. Results are presented as mean + standard

deviation.

images acquired at different fluence levels against the reference
images acquired with the normal fluence. As shown in Table
IV, before denoising, the low-fluence images present
considerable errors in the Cyp and blood flow measurements
and relatively small errors in the sO, measurement. At 20% of
the normal fluence, the errors in Cpp, SO, and blood flow
measurements are 20.1%, 2.1%, and 10.0% before denoising
and are reduced to 4.9%, 2.0%, and 3.2% after denoising,
respectively. At even lower laser fluence levels, the denoising
can still improve the quantitative accuracy, but the
measurement errors remain considerably high after denoising.
At 10% of the normal fluence, the denoising reduces the relative
errors in Cpp, sO,, and flow measurements from 50.0%, 2.5%,
and 9.9% to 24.1%, 2.3%, and 4.4%, respectively. At 5% of the
normal fluence, the denoising reduces the relative errors in Cyp,
sO,, and flow measurements from 69.9%, 3.6%, and 9.8% to
49.3%, 3.1%, and 5.3%, respectively.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have developed a sparse coding-based two-
step technique to improve the image quality and quantitative
accuracy of low-fluence multi-parametric PAM. In an intravital
brain imaging setting, we show that sequential sparse coding of
the B-scans and the MAP image significantly removes the noise
that accompanies the vascular signals in individual A-lines and
that presents as the background fluctuation in the MAP image.

Functional quantification of Cyp, sO2, and blood flow speed
is achieved by statistical, spectroscopic and correlation analysis
of PAM data, respectively [7]. As shown by our previous study
[15], if the photoacoustic signal is contaminated by noise, its
amplitude and standard deviation, as well as the correlation of
sequentially acquired A-lines, will all be affected, resulting in
inaccurate quantification of these functional parameters.
Effectively removing the noise while maximally preserving the
amplitude and profile of the signal in low-fluence PAM images,
this denoising technique offers not only improved visualization
of the microvascular structure but also enhanced measurement
accuracy of the microvascular function, including Cyp, sO-, and
blood flow.

As an unsupervised learning strategy, the sparse coding-
based denoising technique does not require a ground truth.
Compared to supervised learning-based approaches [33], this
technique is applicable in situations where the ground truth is
not available.

Although demonstrated in the setting of low-fluence multi-
parametric PAM, the sparse coding-based two-step denoising
technique is not specific to noise type or source. It is applicable

to other photoacoustic imaging systems, including high-speed
PAM and deep-penetration photoacoustic tomography, where
improved image quality is highly desired but often difficult to
achieve due to the tight photon budget.

The reported technique has a limitation that warrants further
development. Implemented in a serial computing scheme, this
technique processes B-scans one by one and is time-consuming
(~3 hours for the in vivo brain dataset). Using the MATLAB
Parallel Computing Toolbox to process B-scans in parallel can
reduce the runtime by 45% (with four parallel workers). Future
implementation using a dedicated GPU is expected to further
reduce the processing time.
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