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Abstract—Uniquely capable of simultaneous imaging of 

the hemoglobin concentration, blood oxygenation, and flow 
speed at the microvascular level in vivo, multi-parametric 
photoacoustic microscopy (PAM) has shown considerable 
impact in biomedicine. However, the multi-parametric PAM 
acquisition requires dense sampling and thus a high laser 
pulse repetition rate (up to MHz), which sets a strict limit on 
the applicable pulse energy due to safety considerations. A 
similar limitation is shared by high-speed PAM, which also 
uses lasers with high pulse repetition rates. To achieve high 
quantitative accuracy besides good structural visualization 
at low levels of laser fluence in PAM, we have developed a 
new, sparse coding-based two-step denoising technique. In 
the setting of intravital brain imaging, we demonstrated that 
this unsupervised learning approach enabled the reduction 
of the laser fluence in PAM by 5 times without compromise 
of the image quality (structural similarity index measure or 
SSIM: >0.92) and the quantitative accuracy (errors: <4.9%). 
Offering a significant relaxation in the requirement of PAM 
on laser fluence while maintaining the quality of structural 
imaging and accuracy of quantitative measurements, this 
sparse coding-based approach is expected to facilitate the 
application and clinical translation of multi-parametric PAM 
and high-speed PAM, which have a tight photon budget due 
to either safety considerations or laser source limitations.   

 
Index Terms—Photoacoustic microscopy, low-fluence 

functional imaging, quantitative imaging, sparse coding, 
denoising 

 

I. INTRODUCTION 
IGHLY sensitive to the optical absorption-based molecular 
contrast, photoacoustic microscopy (PAM) has attracted 

considerable attention since being introduced to the biomedical 
community as an intravital imaging technique [1]. Capitalizing 
on the light absorption of hemoglobin, PAM enables label-free, 
comprehensive characterization of microvascular structure and 
function in vivo [2], [3]. Providing new functional and oxygen-
metabolic insights into various physiological and pathological 
processes, PAM has found broad applications in both basic and 
translational biomedicine [4], [5]. 

Recent advances in the multi-parametric PAM [6], [7], which 
enables simultaneous imaging of the hemoglobin concentration 
(CHb), oxygen saturation of hemoglobin (sO2), and blood flow 
at the microscopic level, further expand its promise. However, 
quantification of CHb and blood flow relies on dense sampling, 
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which requires a high laser pulse repetition rate (PRR) [8], [9]. 
Moreover, recent efforts on improving the speed of PAM boost 
the use of lasers with high PRRs (up to MHz) [10], [11], which 
leads to increased photon energy deposition in biological tissue 
per unit time and thus limits the applicable pulse energy due to 
laser safety considerations [12]. Besides safety concerns, high 
laser fluence may cause the saturation of optical absorption and 
thus inaccurate measurement of sO2 [13]. 

Although imperative, achieving high structural image quality 
and quantitative accuracy with low-fluence excitation remains 
a challenge. At low-fluence levels, the signals generated by the 
microvasculature are comparable to the noise of PAM systems, 
resulting in a low signal-to-noise ratio (SNR) that is inadequate 
for microvascular visualization [14]. Even if some microvessels 
remain visible under low-fluence excitation, the reduced SNR 
causes errors in functional measurements as shown by us before 
[15]. To address this challenge, different techniques have been 
developed/adopted to improve the quality of low-fluence 
photoacoustic images [16]–[21], among which sparse coding 
has shown strong promise for denoising and artifact removal. 

Widely used in computer vision and image processing [22]–
[24], sparse coding is an unsupervised learning method seeking 
to represent the image data with a sparse, linear combination of 
dictionary atoms [25]. Given that unfeatured noise patterns are 
less correlated and have less sparse representations than signals, 
sparse coding can differentiate them and has been applied by us 
and others to remove noise and artifacts in the structural images 
acquired by PAM [19], [21]. Although demonstrating marked 
improvement in the SNR of trunk vessels, these efforts have not 
led to appreciable enhancement in microvascular visualization. 
More importantly, most of the current studies have been limited 
to improving the structural image quality—leaving quantitative 
imaging of the microvascular function unattended. Recently, a 
deep learning-based technique was developed for denoising the 
maximum amplitude projection (MAP) image in PAM [26]. 
Although quantitative imaging of the sO2 is achieved with 50% 
reduction in the laser pulse energy, this method cannot improve 
the quantification of blood flow, which requires direct analysis 
of depth-resolved A-lines. 

In this paper, we present a new two-step sparse coding-based 
image processing technique that enables significantly enhanced 
microvascular visualization and highly accurate quantification 
of microvascular functions in multi-parametric PAM with low-
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fluence excitation. After testing the feasibility of this technique 
in a fiber phantom, we demonstrated its utility by imaging the 
microvascular structure, CHb, sO2, and blood flow speed in the 
same mouse brain at normal (100 nJ pulse energy) and reduced 
(20, 10, and 5 nJ) fluence levels. Comparison of the structural 
and functional images before and after the two-step denoising 
against those acquired with the normal laser fluence provides a 
comprehensive assessment of its performance in vivo. 

 

II. METHODS 

A. K-SVD-based Sparse Coding 
Under the sparse assumption, the image data admits a sparse 

decomposition over an overcomplete dictionary [24]. The goal 
of sparse coding is to describe the data with a trained dictionary 
and a sparse coefficient matrix [27]. In this work, we use the K-
SVD algorithm to train the dictionaries because of its efficiency 
and simplicity [28]. 

Given a noisy image 𝒚𝒚, the goal is to define an overcomplete 
dictionary 𝑫𝑫 and identify a sparse coefficient matrix 𝒙𝒙, which 
together best represent a noise-free version of the image 

                                𝒚𝒚� ≈ 𝑫𝑫𝑫𝑫.                                                  (1) 
The process can be described as an optimization problem 
                (𝒙𝒙,𝑫𝑫) = argmin

𝒙𝒙,𝑫𝑫
‖𝒙𝒙‖0 , s. t. ‖𝒚𝒚 − 𝑫𝑫𝑫𝑫‖22 ≤ 𝜖𝜖,            (2) 

in which 𝜖𝜖 is related to the noise in the raw image 𝒚𝒚. Since 𝒙𝒙 is 
sparse, this problem can be rewritten into 
               (𝒙𝒙,𝑫𝑫) = argmin

𝒙𝒙,𝑫𝑫
‖𝒚𝒚 − 𝑫𝑫𝑫𝑫‖22 , s. t. ‖𝒙𝒙‖0 ≤ 𝑆𝑆,             (3) 

where 𝑆𝑆 is the desired sparsity (i.e., the largest number of non-
zero entries of 𝒙𝒙).  

When sparse coding is applied to process a large image, the 
raw image is usually divided into small patches. In this case, the 
optimization problem can be solved for each patch as 
            (𝒙𝒙𝑖𝑖 ,𝑫𝑫) = argmin

𝒙𝒙𝑖𝑖,𝑫𝑫
‖𝑹𝑹𝑖𝑖𝒚𝒚 − 𝑫𝑫𝒙𝒙𝑖𝑖‖22 , s. t. ‖𝒙𝒙𝑖𝑖‖0 ≤ 𝑆𝑆,       (4) 

where 𝑖𝑖 denotes the patch index, and operator 𝑹𝑹𝑖𝑖 extracts patch 

𝑖𝑖 from the original large image 𝒚𝒚.  
To solve this problem, first, the K-SVD algorithm initializes 

the dictionary and coefficient matrix as 𝑫𝑫�  and 𝒙𝒙𝚤𝚤� , respectively. 
Specifically, the dictionary is initialized by a randomly valued 
matrix and the coefficient matrix is approximated by using the 
orthogonal matching pursuit (OMP) algorithm [29]. With this, 
the residual of an arbitrary column 𝑐𝑐 in 𝑫𝑫�  can be computed as 
      𝑒𝑒𝑖𝑖𝑐𝑐 = 𝑹𝑹𝑖𝑖𝒚𝒚 − ∑ 𝒅𝒅𝑘𝑘𝒙𝒙𝑖𝑖𝑘𝑘𝑘𝑘≠𝑐𝑐 = 𝑹𝑹𝑖𝑖𝒚𝒚 − 𝑫𝑫�𝒙𝒙𝚤𝚤� + 𝒅𝒅𝑐𝑐𝒙𝒙𝑖𝑖𝒄𝒄, 𝑖𝑖 ∈ 𝑃𝑃𝑐𝑐,   (5) 
where 𝒅𝒅𝑘𝑘 is the kth column of 𝑫𝑫� , 𝒙𝒙𝑖𝑖𝑘𝑘 is the coefficient in kth row 
of 𝒙𝒙𝚤𝚤� , respectively, and 𝑃𝑃𝑐𝑐 is the set of patches that use atom 𝒅𝒅𝑐𝑐: 
𝑃𝑃𝑐𝑐 = {𝑖𝑖|𝒙𝒙𝑖𝑖𝑐𝑐 ≠ 𝟎𝟎} . Traversing all columns leads to a residual 
matrix 
                                     𝑬𝑬𝑐𝑐 = {𝑒𝑒𝑖𝑖𝑐𝑐}, 𝑖𝑖 ∈ 𝑃𝑃𝑐𝑐.                                       (6) 
Then, the dictionary 𝑫𝑫�  is updated by minimizing the difference 
between 𝑹𝑹𝑖𝑖𝒚𝒚 and 𝑫𝑫�𝒙𝒙𝚤𝚤� , which can be solved by approximating 
𝑬𝑬𝑐𝑐 with a rank-one matrix via the singular value decomposition 
as 
                                         𝑬𝑬𝑐𝑐 = 𝑼𝑼𝚺𝚺𝑽𝑽𝑇𝑇,                                              (7) 
where 𝚺𝚺 is the diagonal singular values matrix, and 𝑼𝑼 and 𝑽𝑽 are 
the left and right singular vectors, respectively. Column 𝒅𝒅𝑐𝑐 of 
the updated dictionary is the first column of 𝑼𝑼. The coefficient 
𝒙𝒙𝑖𝑖𝑐𝑐 is calculated by multiplying the first column of 𝑽𝑽 by 𝚺𝚺(1,1). 
After all columns are updated, a new coefficient matrix can be 
generated using the OMP algorithm. Iterative updates of both 
the dictionary and the coefficient matrix eventually solve the 
optimization problem and generate a noise-free image. 

B. Two-step Denoising Strategy 
Combining two-dimensional (2-D) transverse scan and time-

resolved ultrasonic detection, PAM produces three-dimensional 
(3-D) image sets, consisting of a series of cross-sectional scans 
(i.e., B-scans) acquired at different tissue locations. Due to the 
considerable anisotropy in spatial resolution (lateral resolution: 
a few µm; axial resolution: tens of µm), PAM images are often 
presented in 2-D by projecting the maximum amplitude of each 
A-line along the axial/depth direction (i.e., MAP images).  
 

 
Fig. 1. Flow diagram of two-step sparse coding-based denoising. 
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To fully exploit the 3-D imaging nature of PAM, we propose 

a two-step sparse coding-based denoising strategy. As shown in 
Fig. 1, sparse coding is applied first to each raw B-scan acquired 
by low-fluence PAM and then to the MAP image composited 
by the denoised B-scans. The two steps are complementary. In 
the first step, sparse coding can effectively separate the vascular  
signals from random noise in individual A-lines of the B-scan 
because the noise is much less sparse compared to the signals. 
Removing the noise while preserving the weak microvascular 
signals in A-lines can significantly enhance the visualization of 
microvessels. However, the noise and possible electromagnetic 
interference (EMI) that present in patterns similar to that of the 
spike-like vascular signal in A-lines remain largely unaffected. 
In the second step, the MAP image, where the vascular pattern 
is distinct from those of the noise and possible EMI, is sparsely 
coded by the K-SVD algorithm for separation and removal of 
the residual non-vessel components. Combining these two steps 
of denoising results in a near-background-free vascular image. 
The same K-SVD algorithm is applied in both steps for sparse 
coding. Note that no other signal processing is involved besides 
the two-step sparse coding-based denoising. 

In this denoising technique, there are four key parameters— 
dictionary atom size, desired sparsity, patch size, and iteration 
number. Proper selection of these hyperparameters is essential 
because of the tradeoff between removing noise and preserving 
signal. For example, smaller desired sparsity allows better noise 
suppression, but an excessively small desired sparsity may lead 
to changes in the amplitude or profile of vascular signals and 
affect quantitative measurements. Also, larger atom size better 
preserves vascular signal for quantitative measurements, but an 
overly large atom size may compromise the efficacy of noise 
removal. Moreover, the computational cost is a practical factor 
to consider when selecting the hyperparameters. Thus, the patch 
size and iteration number should not be too large while ensuring 
convergence. 

Balancing the denoising performance, quantitative accuracy, 
and computational cost, we have determined the parameters for 
the two-step sparse coding-based technique as follows:  

Step 1. atom size = 50, desired sparsity = 3, patch size = 
100×1, iteration = 50. 

Step 2. atom size = 50, desired sparsity = 7, patch size = 
250×1, iteration = 80. 

C. Experimental Setup 
A self-developed multi-parametric PAM system was used in 

this study. As shown in Fig. 2, the 532-nm output from a nano-
second pulsed laser (GLPM-10, IPG Photonics) is launched into 
an acousto-optic modulator (AOM, AOMO 3080-122, Crystal 
Technology) for pulse-by-pulse wavelength conversion. When 
the AOM is off, the pulsed light undergoes no diffraction and is 
coupled into a polarization-maintaining single-mode fiber (PM-
SMF, HB450-SC, Fibercore), in which the light wavelength is 
red-shift due to the stimulated Raman scattering effect [30]. The 
fiber output then passes a bandpass filter (BPF, CT560/10bp, 
Chroma) to select out the 558-nm component. When the AOM 
is on, ~60% of the 532-nm light is diffracted into a different 
optical path (i.e., 1st-order diffraction), where it experiences no 

wavelength conversion. The undiffracted (i.e., 0th-order) light, 
accounting for ~40% of the energy, is insufficient to generate 
nonlinear Raman scattering and thus is removed by the BPF. As 
a result, the AOM switches the wavelength of the laser pulses 
between 532 and 558 nm. The two optical paths are combined 
by a dichroic mirror (DM, FF538-FDi01, Semrock). The energy 
of each laser pulse is modulated by an electro-optic modulator 
(EOM, 350-80, Conoptics) combined with a polarizing beam-
splitter (PBS, PBS121, Thorlabs). To compensate for possible 
laser fluctuation, ∼5% of the laser light is tapped off by a beam 
sampler (BS, BSF10-A, Thorlabs) and monitored by a high-
speed photodiode (PD, PDA36A2 Thorlabs). An objective lens 
(OL, AC254-050-A, Thorlabs) focuses the beam onto the object 
to be imaged through a ring-shaped ultrasonic transducer (UT, 
inner diameter: 1.1 mm; outer diameter: 3.0 mm; focal length: 
4.4 mm; center frequency: 40 MHz; 6-dB bandwidth: 69%). For 
acoustic coupling, the transducer is submerged into a water tank 
(WT) and a thin layer of ultrasound gel (Aquasonic CLEAR, 
Parker Laboratories) is applied between the target and the tank 
bottom. A correction lens (CL, LA1207-A, Thorlabs) is used to 
compensate for the optical aberration induced at the interface of 
the ambient air and water.  

 

 
Fig. 2. Schematic of multi-parametric PAM. AOM: acousto-optic 

modulator, PM-SMF: polarization-maintaining single-mode fiber; BPF: 
bandpass filter; DM: dichroic mirror; EOM: electro-optic modulator, PBS: 
polarizing beamsplitter, BB: beam block, BS: beam sampler, PD: 
photodiode, OL: objective lens, CL: correction lens, UT: ultrasound 
transducer, WT: water tank. 

 
By adjusting the voltage applied to the EOM, the laser pulse 

energy on the target is altered between 5, 1, 0.5, and 0.25 nJ for 
phantom imaging and 100, 20, 10, and 5 nJ for in vivo imaging, 
allowing simultaneous PAM of the same region of interest at 
different fluence levels. For in vivo experiments, the laser safety 
standards defined by the American National Standards Institute 
(ANSI) is considered when determining the laser fluence. The 
highest fluence levels (in the case of 100-nJ laser pulses) are 
19.7 mJ/cm2 (532 nm) and 18.0 mJ/cm2 (558 nm) at the surface 
of the mouse brain (beam waist: 1.75 µm, focal depth: 130 µm), 
which are within the ANSI limit (i.e., 20 mJ/cm2). For phantom 
imaging, the fluence is set at a much lower level because carbon 
fibers generate much stronger photoacoustic signals compared 
to microvessels in the mouse brain. Specifically, we used 5 nJ 
as normal fluence and 20%, 10% and 5% of it as low fluences 
(i.e., 1, 0.5, and 0.25 nJ), keeping the same ratio as the in vivo 
imaging to better benchmark the performance of our denoising 
method. Structural images of the carbon fibers and cerebral 
vasculature are generated by Hilbert transform and maximum 
amplitude projection of the depth-resolved A-lines, and CHb, 
sO2, and blood flow images of the cerebral vasculature are 
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generated by the statistical, spectroscopic, and correlation 
analyses, respectively [8] .  

The phantom used in this study was randomly placed carbon 
fibers (average diameter: ~6 µm). The in vivo experiment was 
performed in the brain of a CD-1 mouse (male, 12 weeks old, 
Charles River Laboratories) through a cranial window. During 
the imaging experiment, the animal was anesthetized with 1.5% 
isoflurane, and the body temperature was kept at 37°C using a 
temperature-controlled heating pad (Cole-Parmer, EW-89802-
52 and Omega, SRFG-303/10). All procedures were carried out 
in conformity with the laboratory animal protocol approved by 
the Institutional Animal Care and Use Committee (IACUC) at 
Washington University in St. Louis. 

In this work, all data were processed in MATLAB (R2019b, 
MathWorks) using a personal computer (Intel i7-7700 CPU @ 
3.60GHz). For the in vivo dataset, in the first step, 450 B-scan 
frames (128×7500 pixels each) were processed sequentially at 
a speed of 24 seconds/B-scan. In the second step, it took ~300 
seconds to process one MAP image (450×7500 pixels). The 
total runtime of the denoising algorithm was ~3 hours without 
paralleling computation. 

D. Quantitative Assessment of Denoising Performance  
To quantitively assess the performance of the sparse coding-

based two-step denoising technique, multiple key parameters, 
including the SNR, contrast-to-noise ratio (CNR) and structural 
similarity index measure (SSIM), are assessed and compared.  

The SNR is defined as [31] 
                                        𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐼𝐼 ̅ 𝜎𝜎𝑛𝑛⁄ ,                                             (8) 
where 𝐼𝐼 ̅is the average amplitude of the vascular signal, and 𝜎𝜎𝑛𝑛 
is the standard deviation of the amplitude of background noise.  

The CNR is defined as [31] 
                                  𝐶𝐶𝐶𝐶𝐶𝐶 = (𝐼𝐼 ̅ − 𝐼𝐼𝑛̅𝑛) 𝜎𝜎𝑛𝑛⁄ ,                                      (9) 
where 𝐼𝐼𝑛𝑛�  is the average amplitude of the background.  

The SSIM, a quantitative measure of the similarity between 
two images, is defined as [32] 
                   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝑙𝑙𝛼𝛼(𝑥𝑥,𝑦𝑦)𝑐𝑐𝛽𝛽(𝑥𝑥,𝑦𝑦)𝑠𝑠𝛾𝛾(𝑥𝑥,𝑦𝑦),              (10) 
in which 𝑙𝑙(𝑥𝑥,𝑦𝑦), 𝑐𝑐(𝑥𝑥,𝑦𝑦), and 𝑠𝑠(𝑥𝑥,𝑦𝑦) respectively measure the 
differences between the luminance, contrast, and structure of 
the two images, and 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 are three constants. The SSIM 
map and average SSIM value of the result images are quantified 
against the reference images acquired with the normal fluence 
(i.e., 5 nJ or 100 nJ). By selecting the default value of 1 for 𝛼𝛼, 
𝛽𝛽, and 𝛾𝛾, a larger SSIM value indicates higher similarity. Note 
that since our PAM can simultaneously acquire multiple images 
at different fluence levels (i.e., 5, 1, 0.5, and 0.25 nJ or 100, 20, 
10, and 5 nJ), no image registration is needed prior to the SSIM 
calculation.  
 

III. RESULTS 
First, we demonstrated the feasibility of the two-step sparse 

coding-based denoising technique in a carbon fiber phantom by 
processing and comparing the images acquired at normal (pulse 
energy: 5 nJ) and low fluence levels (1, 0.5, and 0.25 nJ).  

As shown in Fig. 3a, the raw image of the phantom acquired 
with 20% of the normal fluence (i.e., 1 nJ) shows considerable 
noise. Sparse coding-based denoising of the B-scans (i.e., Step 
1) improves the visualization of carbon fibers by reducing the 
noise in individual A-lines (as shown in Fig. 4a). However, the 
noise and possible EMI that have signal-like patterns in A-lines, 
remain largely unremoved (indicated by black arrows in Fig.  

 

 
Fig. 3. Two-step denoising of carbon fiber images acquired by low-fluence PAM. (a) Step-by-step illustration of the performance of two-step 

denoising on images acquired with 20% of normal fluence. First row: low-fluence (i.e., 1 nJ pulse energy) PAM images of randomly distributed 
carbon fibers before denoising, after B-scan denoising alone, MAP denoising alone, and two-step denoising, as well as the reference image acquired 
with normal fluence (i.e., 5 nJ). Second row: Close-up views of non-fiber background. (b) Illustration of the denoising performance in images acquired 
with 10% and 5% of normal fluence (i.e., 0.5 nJ and 0.25 nJ, respectively) through side-by-side comparison of the low-fluence images before and 
after two-step denoising. PA: photoacoustic. 
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Fig. 4. Illustration of the performance of B-scan denoising on low-fluence PAM of the carbon fiber phantom. (a) Effective suppression of random 

noise in a representative A-line containing the carbon fiber signal. (b) Ineffective suppression of noise with signal-like patterns (indicated by the black 
arrows) in a representative A-line of the non-fiber background. The A-line signal is converted to a bipolar form by subtracting its mean. 

 
4b) and present as background fluctuation in the MAP image 
(the second row of Fig. 3a). By contrast, directly denoising the 
MAP image with sparse coding (i.e., Step 2) significantly 
suppresses the background fluctuation. However, the average 
amplitude of the background remains high, which hinders the 
enhancement of the image contrast, thus impedes improvement 
of microvascular visibility. Combining the two steps yields the 
best performance and generates a denoised image, whose 
quality is comparable to that acquired with the normal fluence 
(i.e., 5 nJ). Further testing the denoising technique in carbon 
fiber images acquired at 10% and 5% of the normal fluence (i.e., 
0.5 and 0.25 nJ), which are even noisier and have poor 
visualization of the fibers, shows that the two-step denoising 
significantly improves the image quality (Fig. 3b). 

To benchmark the performance of the denoising technique, 
the key parameters of the raw and denoised images, including 
the SNR, CNR, and SSIM (against the reference image acquired 
with 5 nJ pulse energy), are quantified and compared. As shown 
in Table I, the two-step denoising technique improves the SNR 
and CNR of the low-fluence images acquired with 20%, 10%, 
and 5% of the normal fluence by 4.3–6.1 times and 7.2–8.8 
times, respectively, whereas the SSIM is increased by 0.23–
0.47. The lower the laser fluence, the larger the improvements 
in the CNR and SSIM. Moreover, step-by-step analysis of the 
performance of the two-step denoising technique on the image 
acquired with 20% of the normal fluence shows that denoising 
the B-scans (i.e., Step 1) results in a larger improvement in the 
SSIM compared to directly denoising the MAP image (i.e., Step 
2), indicating a better visualization of the carbon fiber structure. 
By contrast, directly denoising the MAP image leads to a larger 
improvement of the SNR and CNR, suggesting a more effective 
suppression of background noise.   

Then, we examined the utility of the two-step sparse coding-
based denoising for enhancing the microvascular visualization 
and hemodynamic quantification accuracy of low-fluence PAM 
in an intravital brain imaging setting. Specifically, the brain of 
a live CD-1 mouse was concurrently imaged at normal (pulse 
energy: 100 nJ) and low fluence levels (20, 10, and 5 nJ). The 
performance of the two-step denoising technique in low-fluence 
PAM was benchmarked against the images acquired under the 
normal fluence condition.  

At 20% of the normal laser fluence (i.e., 20 nJ pulse energy), 
the two-step approach demonstrated excellent performance. As 
shown in Fig. 5a, the raw structural image acquired with 20 nJ 
laser pulses shows sparsely distributed microvessels, along with 
considerable non-vessel background. The sparse coding-based 
denoising of the B-scan (i.e., Step 1) significantly reduces the 
random noise in individual A-lines. Such noise removal in A-
lines containing weak microvascular signals (as shown in Fig. 
6a, where the noise indicated by the red arrow is comparable to 
the microvascular signal indicated by the green arrow) results 
in a much improved visualization of the microvessels that are 
barely visible in the raw image (blue arrows in Fig. 5a). 
However, the background in the B-scan denoised image still 
contains dotted patterns, likely due to ineffective suppression of 
the signal-like noise and/or EMI in A-lines (indicated by black 
arrow in Fig. 6b). Directly applying sparse coding to denoise 
the raw MAP image (i.e., Step 2 only) significantly reduces the 
fluctuation of the background noise but does not lead to 
significant improvement of microvascular visualization. 
Combining the two steps results in a more complete noise 
removal and a high-quality image of the microvascular 
structure—approaching that acquired with the normal fluence 
(i.e., 100 nJ). 

TABLE I 
STEP-BY-STEP ANALYSIS OF THE EFFECTS OF TWO-STEP DENOISING ON SNR, CNR, AND SSIM AT DIFFERENT FLUENCE LEVELS IN PHANTOM 

Metric 5 nJ 
1 nJ 0.5 nJ 0.25 nJ 

Raw Denoise 
B-scan 

Denoise 
MAP 

Two-step 
Denoise Raw Two-step 

Denoise Raw Two-step 
Denoise 

SNR 103.33 20.87 30.49 66.04 127.06 10.42 60.63 7.35 31.33 
CNR 98.22 15.72 27.20 49.94 113.47 5.29 46.47 2.18 19.23 
SSIM 1 0.66 0.82 0.74 0.89 0.40 0.83 0.24 0.71 
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Fig. 5. Step-by-step illustration of the performance of two-step denoising on cerebrovascular structural images acquired by low-fluence PAM in 

the live mouse. First row: low-fluence (i.e., 20 nJ pulse energy) images of the cerebral vasculature before denoising (raw), after B-scan denoising 
alone, MAP denoising alone, and two-step denoising, as well as the reference image acquired with normal fluence (i.e., 100 nJ). Second row: Close-
up views of the blue boxed region, showing the improvement of microvascular visualization (indicated by blue arrows). Third row: Close-up views of 
the green boxed region, showing the suppression of noise fluctuation in non-vessel background. (b) Pseudocolor-coded maps of the SSIM between 
the low-fluence PAM images (before and after denoising) and the reference image acquired with normal fluence. PA: photoacoustic. 

 
 

 
Fig. 6. Illustration of the performance of B-scan denoising on low-fluence PAM of the mouse cerebral vasculature in vivo. (a) Effective suppression 

of noise (indicated by the red arrow) with an amplitude comparable to that of the microvascular signal (indicated by the green arrow), in a 
representative A-line. (b) Ineffective suppression of noise with signal-like patterns (indicated by the black arrow) in a representative A-line of the 
non-vessel background. The A-line signal is converted to a bipolar form by subtracting its mean. 
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Quantitative comparison of the SNR, CNR, and SSIM values 

of the raw and denoised images acquired with 20 nJ laser pulses 
against the parameters of the image acquired with 100 nJ pulses 
in Table II shows three key observations. (1) The two-step 
denoising improves the SNR of the large vessels and 
microvessels by 4.9 and 5.7 times, respectively, and the CNR 
by 6.0 and 8.0 times, respectively. In addition, the two-step 
denoising improves the SSIM between the 20-nJ image and the 
reference image acquired at 100 nJ to 0.92, which indicates a 
high similarity (also shown in Fig. 5b). (2) The improvement in 
microvascular visualization is predominantly attributed to the 
B-scan denoising but not the MAP image denoising. Denoising 
the MAP image does not result in an appreciable increase in the 
microvascular SSIM (from 0.77 to 0.80). By contrast, denoising 
the B-scan leads to a significant increase in the microvascular 

SSIM (from 0.77 to 0.93). (3) Denoising the MAP image plays 
a dominant role in enhancing the SNR and CNR by suppressing 
the fluctuation of background noise. 

Besides the enhancement of microvascular visualization, the 
two-step approach also improves the accuracy of hemodynamic 
quantification at low-fluence levels. After denoising, the multi-
parametric images acquired with 20 nJ pulses show CHb, sO2, 
and flow speed values similar to those in the reference images 
acquired using 100 nJ pulses, as respectively shown in Fig. 7a–
c. The denoising-induced improvement in quantitative accuracy 
is benchmarked by the SSIM between the low-fluence images 
(before and after denoising) and reference images, as shown in 
Table III. For the CHb measurement, the denoising technique 
improves the SSIM from 0.74 to 0.97 in large vessels and from 
0.69 to 0.97 in microvessels. For the sO2 measurement, the 

 
Fig. 7. Two-step denoising improves the accuracy of CHb, sO2, and blood flow measurements at 20% of normal fluence (i.e., 20 nJ pulse energy). 

(a) Low-fluence CHb images before and after denoising, as well as the reference image acquired with normal fluence (i.e., 100 nJ). Pseudocolor-
coded maps of the SSIM between low-fluence CHb images (before and after denoising) and the reference image. (b) Low-fluence sO2 images before 
and after denoising, as well as the reference image acquired with normal fluence. Pseudocolor-coded maps of the SSIM between low-fluence sO2 
images (before and after denoising) and the reference image. (c) Low-fluence blood flow images before and after denoising, as well as the reference 
image acquired with normal fluence. Pseudocolor-coded maps of the SSIM between low-fluence blood flow images (before and after denoising) and 
the reference image. 

TABLE II 
STEP-BY-STEP ANALYSIS OF THE EFFECTS OF TWO-STEP DENOISING ON SNR, CNR, AND SSIM AT DIFFERENT FLUENCE LEVELS IN VIVO  

Metric Region a 100 nJ 
20 nJ 10 nJ 5 nJ 

Raw Denoise 
B-scan 

Denoise 
MAP 

Two-step 
Denoise Raw Two-step 

Denoise Raw Two-step 
Denoise 

SNR Large vessel 196.57 44.75 80.04 157.67 253.03 25.35 134.96 15.35 63.94 
Microvessel 33.54 7.18 11.31 24.99 35.35 4.85 18.73 4.05 9.88 

CNR Large vessel 192.41 41.09 77.64 145.04 245.70 21.70 127.56 11.71 57.74 
Microvessel 29.38 3.52 8.91 12.36 28.02 1.20 11.33 0.41 3.68 

SSIM 
Large vessel 

1 
0.97 0.98 0.97 0.98 0.94 0.97 0.89 0.95 

Microvessel 0.77 0.93 0.80 0.94 0.53 0.83 0.34 0.65 
Whole image 0.73 0.87 0.78 0.92 0.58 0.83 0.46 0.68 

aDifferential analysis on large vessels and microvessels is enabled by vessel segmentation shown in Supplementary Materials. 
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denoising not only maintains the high accuracy in large vessels 
(SSIM: 0.97 before denoising vs. 0.98 after denoising), but also 
substantially improves the accuracy in microvessels (SSIM: 
0.74 before vs. 0.93 after). For the flow speed measurement, the 
denoising significantly improves the accuracy in both large 
vessels (SSIM: 0.83 before vs. 0.94 after) and microvessels 
(SSIM: 0.78 before vs. 0.93 after).  

To test if this denoising technique permits a more aggressive 
relaxation of the fluence, we further reduced the pulse energy 
to 10% and 5% of the normal fluence level (i.e., 10 and 5 nJ). 
As shown in Fig. 8a and quantified in Table II, the two-step 
denoising respectively improves the SNR values of large 
vessels and microvessels by 5.3 and 3.9 times at 10% of the 
normal fluence, and by 4.2 and 2.4 times at 5% of the normal 
fluence. Similarly, after denoising, a significant enhancement 
in the CNR is observed in the images acquired with 10% (5.9 

and 9.4 times in large vessels and microvessels, respectively) 
and 5% (4.9 and 9.0 times in large vessels and microvessels, 
respectively) of the normal fluence. Although the image quality 
is significantly improved, the SSIM of microvascular structure 
between the denoised low-fluence images and reference image 
acquired with 100 nJ pulses remains considerably low (0.83 and 
0.65 at 10% and 5% of the normal fluence, respectively, as 
shown in Table II), which indicates only a partial retrieval of 
microvascular visualization. Similarly, this denoising technique 
improves the accuracy of the multi-parametric quantification. 
However, some SSIM values of the CHb, sO2, and flow speed 
measurements remain lower than 0.9 after denoising (as shown 
in Table III), implying that considerable errors still exist (also 
seen in Fig. 8b–d, respectively). 

With the aid of vessel segmentation, the measurement errors 
are quantified for the raw and denoised CHb, sO2, and blood flow 

 
 

 
Fig. 8. Performance of two-step denoising on cerebrovascular structural and functional measurements in PAM with 10% and 5% of normal fluence 

(i.e., 10 and 5 nJ pulse energy, respectively). (a) Raw and denoised cerebrovascular structural images acquired with 10 nJ and 5 nJ pulse energy, 
and their SSIM maps against the reference image acquired with normal fluence (i.e., 100 nJ). (b) Raw and denoised CHb images acquired with 10 
nJ and 5 nJ pulse energy, and their SSIM maps against the reference image acquired with normal fluence. (c) Raw and denoised sO2 images 
acquired with 10 nJ and 5 nJ pulse energy, and their SSIM maps against the reference image acquired with normal fluence. (d) Raw and denoised 
blood flow images acquired with 10 nJ and 5 nJ pulse energy, and their SSIM maps against the reference image acquired with normal fluence. PA: 
photoacoustic. 
 

TABLE III 
SSIM BETWEEN CEREBROVASCULAR FUNCTION MEASURED AT LOW FLUENCES (BEFORE AND AFTER DENOISING) AND NORMAL FLUENCE   

Parameters Region a 100 nJ 
20 nJ 10 nJ 5 nJ 

Raw Denoise Raw Denoise Raw Denoise 

CHb 
Large vessel 1 0.74 0.97 0.49 0.89 0.25 0.67 
Microvessel 1 0.69 0.97 0.39 0.87 0.21 0.58 

sO2 
Large vessel 1 0.97 0.98 0.94 0.97 0.92 0.94 
Microvessel 1 0.74 0.93 0.59 0.83 0.48 0.69 

Flow Large vessel 1 0.83 0.94 0.80 0.91 0.73 0.88 
Microvessel 1 0.78 0.93 0.71 0.87 0.67 0.78 

aSame as Table II. 
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images acquired at different fluence levels against the reference 
images acquired with the normal fluence. As shown in Table 
IV, before denoising, the low-fluence images present 
considerable errors in the CHb and blood flow measurements 
and relatively small errors in the sO2 measurement. At 20% of 
the normal fluence, the errors in CHb, sO2, and blood flow 
measurements are 20.1%, 2.1%, and 10.0% before denoising 
and are reduced to 4.9%, 2.0%, and 3.2% after denoising, 
respectively. At even lower laser fluence levels, the denoising 
can still improve the quantitative accuracy, but the 
measurement errors remain considerably high after denoising. 
At 10% of the normal fluence, the denoising reduces the relative 
errors in CHb, sO2, and flow measurements from 50.0%, 2.5%, 
and 9.9% to 24.1%, 2.3%, and 4.4%, respectively. At 5% of the 
normal fluence, the denoising reduces the relative errors in CHb, 
sO2, and flow measurements from 69.9%, 3.6%, and 9.8% to 
49.3%, 3.1%, and 5.3%, respectively. 
 

IV. CONCLUSION AND DISCUSSION 
In conclusion, we have developed a sparse coding-based two-

step technique to improve the image quality and quantitative 
accuracy of low-fluence multi-parametric PAM. In an intravital 
brain imaging setting, we show that sequential sparse coding of 
the B-scans and the MAP image significantly removes the noise 
that accompanies the vascular signals in individual A-lines and 
that presents as the background fluctuation in the MAP image.  

Functional quantification of CHb, sO2, and blood flow speed 
is achieved by statistical, spectroscopic and correlation analysis 
of PAM data, respectively  [7]. As shown by our previous study 
[15], if the photoacoustic signal is contaminated by noise, its 
amplitude and standard deviation, as well as the correlation of 
sequentially acquired A-lines, will all be affected, resulting in 
inaccurate quantification of these functional parameters. 
Effectively removing the noise while maximally preserving the 
amplitude and profile of the signal in low-fluence PAM images, 
this denoising technique offers not only improved visualization 
of the microvascular structure but also enhanced measurement 
accuracy of the microvascular function, including CHb, sO2, and 
blood flow.  

As an unsupervised learning strategy, the sparse coding-
based denoising technique does not require a ground truth. 
Compared to supervised learning-based approaches [33], this 
technique is applicable in situations where the ground truth is 
not available.  

Although demonstrated in the setting of low-fluence multi-
parametric PAM, the sparse coding-based two-step denoising 
technique is not specific to noise type or source. It is applicable 

to other photoacoustic imaging systems, including high-speed 
PAM and deep-penetration photoacoustic tomography, where 
improved image quality is highly desired but often difficult to 
achieve due to the tight photon budget. 

The reported technique has a limitation that warrants further 
development. Implemented in a serial computing scheme, this 
technique processes B-scans one by one and is time-consuming 
(~3 hours for the in vivo brain dataset). Using the MATLAB 
Parallel Computing Toolbox to process B-scans in parallel can 
reduce the runtime by 45% (with four parallel workers). Future 
implementation using a dedicated GPU is expected to further 
reduce the processing time. 
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