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An introduction to Eisenstein measures

par Ellen EISCHEN

Résumé. Cet article fournit une introduction aux mesures d’Eisenstein, un
outil puissant pour construire certaines fonctions L p-adiques. Vues pour la
première fois dans la réalisation par Serre des fonctions zêta de Dedekind
p-adiques associées aux corps totalement réels, les mesures d’Eisenstein four-
nissent un moyen d’étendre les congruences de style kummerien, observées par
Kummer pour les valeurs de la fonction zêta de Riemann (dites congruences

de Kummer) à certaines autres fonctions L. En plus de retracer les dévelop-
pements clés, nous discutons certains défis qui se posent dans des contextes
plus généraux, en concluant par certains qui restent ouverts.

Abstract. This paper provides an introduction to Eisenstein measures, a
powerful tool for constructing certain p-adic L-functions. First seen in Serre’s
realization of p-adic Dedekind zeta functions associated to totally real fields,
Eisenstein measures provide a way to extend the style of congruences Kummer
observed for values of the Riemann zeta function (so-called Kummer congru-

ences) to certain other L-functions. In addition to tracing key developments,
we discuss some challenges that arise in more general settings, concluding
with some that remain open.

1. Introduction

In the mid 1800s, Kummer proved that the values of the Riemann zeta
function at negative odd numbers satisfy striking congruences modulo pow-
ers of any prime number p. More precisely, he proved that if k and k

Õ are
positive even integers not divisible by p≠ 1, then for all positive integers d,

1
1 ≠ p

k≠1
2

’(1 ≠ k) ©

1
1 ≠ p

kÕ
≠1

2
’

!
1 ≠ k

Õ
"

mod p
d
,

whenever k © k
Õ mod Ï(pd), with Ï denoting Euler’s totient function [52].

(By Euler’s work a century earlier, for all positive integers k, ’(1 ≠ k)
is the rational number (≠1)k+1Bk

k for all positive integers k, where Bk

denotes the k-th Bernoulli number, defined as the coe�cients in the Taylor
series expansion tet

et≠1 =
q

Œ

n=0Bn
tn

n! .) Kummer’s motivation for studying
these congruences stemmed from his interest in determining when a prime
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is (what we now call) regular, i.e. does not divide the class number of the
cyclotomic field Q (’p) with ’p œ C◊ a primitive p-th root of unity, in which
case Kummer could prove Fermat’s Last Theorem for exponents divisible
by p. As part of his investigations, Kummer had shown that the regularity is
equivalent to a condition on the values of the Riemann zeta function. More
precisely, Kummer showed that a prime p is regular if and only if does not
divide the numerator of the Bernoulli numbers B2, B4, . . . , Bp≠3 [50, 51].

After Kummer’s exciting discoveries, this topic then lay nearly dormant
for a century. Even though Hensel (who had been one of Kummer’s graduate
students) introduced the p-adic numbers soon after Kummer’s death [36],
the first formulation of a p-adic zeta function (a p-adic analytic function
that interpolates the values of a modified zeta function at certain points,
essentially encoding Kummer’s congruences) occurred only in the 1960s,
as a result of work of Kubota and Leopoldt [49]. These functions, too,
play a key role in the structure of cyclotomic fields, on a deeper level than
Kummer had originally developed (or presumably even envisioned, given
mathematical developments during the century following Kummer’s life).

In the 1960s, Iwasawa linked the behavior of Galois modules over towers
of cyclotomic fields to p-adic zeta-functions, forming the foundations of
Iwasawa theory, a p-adic theory for studying families of arithmetic data [43,
44]. For example, the subgroup � := Gal (QŒ/Q) ≥= Zp of Gal(Q(µpŒ)/Q)
acts on the p-part of the ideal class group of the pm-th cyclotomic extension
for each m Ø 1. The inverse limit (under a norm map) of these groups is a
module over the Iwasawa algebra � := ��,Zp = ZpJ�K ≥= ZpJT K. The main
conjecture of Iwasawa theory, proved in [57], says a realization ◊ œ � of a
p-adic L-function generates the characteristic ideal of this �-module. Thus,
the p-adic L-function controls substantial structural information about this
collection of class groups.

Iwasawa’s conjectures were further generalized. In particular, R. Green-
berg predicted the existence of more general p-adic L-functions (p-adic ana-
lytic functions that can be realized as elements of certain Iwasawa algebras
and whose values encode analogues of Kummer’s congruences for more gen-
eral L-functions) and their meaning in the context of certain Galois mod-
ules. In particular, the Greenberg–Iwasawa main conjectures [31, 32, 33]
predict that for a wide class of ordinary Galois representations fl, there is
a p-adic L-function Lfl interpolating values of an L-function associated to
fl ¢ ‰ as ‰ varies over certain Hecke characters and that Lfl can be realized
as the generator of the characteristic ideal of a certain �-module (a Selmer

group), where � := OJ�KK, with �K the Galois group of a compositum of
Zp-extensions of K and O an appropriate p-adic ring. In other words, the
main conjectures predict p-adic L-functions govern the structure of Selmer
groups as Galois modules.
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Given L-functions’ starring role in the main conjectures of Iwasawa the-
ory (and their conjectured existence, including not only in Greenberg’s
conjectures, but also in, for example, [15, 16]), it is natural to ask:
Question 1. Given an L-function whose values at certain points are known
to be algebraic, how might we construct a p-adic L-function encoding con-
gruences between values of (a suitably modifed at p) version of that L-
function?

The main goal of this paper is to introduce particular tools, Eisenstein
measures, which have proved to be especially useful for constructing p-adic
L-functions during the past half-century, at least under certain conditions.
Even putting aside the challenge of trying to prove main conjectures in
Iwasawa theory, it is generally hard to answer Question 1. One might first
look to Kummer or to Kubota–Leopoldt (who actually considered p-adic
Dirichlet L-functions) for answers, in the hope that earlier techniques could
be generalized. This would, however, require extending congruences coming
from Bernoulli polynomials to other settings, and unfortunately, we do not
generally have realizations of values of L-functions in terms of similarly
convenient polynomials. While there has been some successful work in that
direction (see, e.g., work of Barsky [4] and P. Cassou-Nogues [12], who
employed formulas of Shintani that have recently been further explored
in work of Charollois–Dasgupta [13]), one of the most powerful tools for
constructing p-adic L-functions in increasing generality during the past
half-century comes from the theory of p-adic modular forms.

In the early 1970s, Serre produced the first p-adic families of Eisenstein
series (the first instances of Eisenstein measures, which arose as part of
his development of the theory of p-adic modular forms) and used them
(together with Iwasawa’s construction of the p-adic zeta function as an el-
ement of an Iwasawa algebra) to construct p-adic Dedekind zeta functions
associated to totally real number fields [63]. Because modular forms are spe-
cial cases of automorphic forms and because the behavior of L-functions
is closely tied to the behavior of automorphic forms (at least, in certain
settings), this approach seemed more amenable to generalization. Indeed,
its promise was immediately realized, including by Coates–Sinnott [17],
Deligne–Ribet [18], and Katz [46], who employed Eisenstein measures in
constructions of p-adic L-functions associated to Hecke characters for qua-
dratic real fields, real number fields, and CM fields (with Katz proving the
CM case only for half of all primes, a restriction that stood for over four
decades until work of Andreatta–Iovita in 2019 [1]), respectively.

Given that Eisenstein series govern key properties of certain L-functions
(not only algebraicity, but also functional equations and meromorphic con-
tinuation), it is perhaps not surprising that they play key roles in our
context as well. Thus, another important question becomes:
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Question 2. How might we construct p-adic families of Eisenstein series
or, more specifically, p-adic Eisenstein measures?

Constructing p-adic Eisenstein measures is generally hard. Were it not for
the prestigious journal in which all those first papers following Serre’s intro-
duction of Eisenstein measures were published or the accomplished mathe-
maticians whose names are attached to these results, the reader could not
be blamed for thinking these results sound incremental. Instead, though,
this should be viewed as evidence that seemingly small tweaks to the data to
which L-functions are attached can lead to significant technical challenges
in constructing the corresponding p-adic L-functions.

For most readers of this paper, implicit in Question 2 is that we want
Eisenstein series that can be directly related to values of L-functions. It is
worth noting, though, that interest in Question 2 extends beyond number
theory. At least in the cases of modular forms and automorphic forms on
unitary groups of signature (1, n), p-adic families of Eisenstein series also
are of interest in homotopy theory [5, 40, 41].

Returning to Question 1, we note the favorable fact that (at least, as
it appears to this author) all known constructions of p-adic L-functions
seem to rely on building on the specific techniques employed in the proof of
the algebraicity of the values of the C-valued L-function in question. Thus,
if you know a proof of algebraicity, then you are at least in possession of
clues to the techniques needed to construct p-adic L-functions. For example,
Serre’s development of the theory of p-adic modular forms and its use for
constructing p-adic zeta functions built on the approaches of Klingen and
Siegel (who were, in turn, building on ideas of Hecke, as recounted in [6,
Section 1.3] and [42]) for studying algebraicity of values of zeta functions
by exploiting properties of Fourier coe�cients of modular forms [47, 69,
70]. Likewise, Katz’s construction of p-adic L-functions associated to Hecke
characters of CM fields employs Damerell’s formula, which was first used
by Shimura to prove algebraicity. In a similar spirit, Hida’s construction
of p-adic Rankin–Selberg L-functions attached to modular forms builds
on Shimura’s proof of algebraicity via the Rankin–Selberg convolution [37,
67]. In a more recent instance, the construction of p-adic L-functions for
unitary groups due to the author, Harris, Li, and Skinner [23] employs the
doubling method (a pull-back method of the sort used by Shimura to prove
algebraicity, e.g. in [68], and which specializes in the case of rank 1 unitary
groups to Damerell’s formula).

Organization of this paper. Now that we have established some history
and motivation for studying Eisenstein series, we spend the remainder in-
troducing their mathematical features. Section 2 introduces distributions
and measures from several viewpoints, each of which is useful for di�erent
aspects of working with p-adic L-functions. Section 3 then discusses the
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first example of an Eisenstein measure, produced by Serre as a tool for con-
structing p-adic Dedekind zeta functions associated to totally real fields.
This development inspired e�orts to construct Eisenstein measures valued
in the space of p-adic Hilbert modular forms, tools for constructing p-adic
L-functions attached to certain Hecke characters, as discussed in Section 4.
We conclude with a discussion of generalizations to other L-functions (Sec-
tion 5), as well as some of the significant challenges encountered as one tries
to construct useful Eisenstein measures.

Acknowledgements. I would like to thank the local organizers of Iwa-
sawa 2019, Denis Benois and Pierre Parent, for inviting me to give the four
lectures that eventually led to this paper, as well as for their patience as I
wrote it. I would also like to thank them, along with the scientific organizers
of Iwasawa 2019 (Henri Darmon, Ming-Lun Hsieh, Masato Kurihara, Ot-
mar Venjakob, and Sarah Zerbes), for organizing an exciting, educational
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each of my lectures influenced my approach to explaining the material in
this paper. I would especially like to thank Chi-Yun Hsu and Sheng-Chi
Shih for taking careful notes in my lectures and sharing them with me. In
addition, I would like to thank Pierre Charollois for alerting me to some
interesting aspects of the history of the approach of using constant terms
of modular forms to study zeta functions. I am also grateful to the referee
for providing helpful feedback.

2. p-adic distributions and measures

Motivated by Iwasawa’s and Greenberg’s conjectures about the Galois
theoretic role of p-adic L-functions, our goal is to find an element in an
Iwasawa algebra whose values at certain characters encode congruences
between certain (modified) L-functions. Distributions and measures will
provide a convenient tool for realizing p-adic L-functions inside Iwasawa
algebras.

For a more detailed treatment of distributions and measures, we espe-
cially recommend [56, Section 7] and [73, Sections 7.1–7.2 and Sections 12.1–
12.2].

2.1. Conventions and preliminaries. Throughout this paper, we fix a
prime number p. For convenience, we assume p is odd. We denote by Cp

the completion of an algebraic closure of Qp. We call a ring O a p-adic ring

if it is complete and separated with respect to the p-adic topology, i.e. O ≥=
lim
Ω≠

O/p
n
O. Given a p-adic ring O and a profinite group G = lim

Ω≠n
G/Gn

with each Gn a finite index subgroup of G, we define the Iwasawa algebra
�G := OJGK := lim

Ω≠
n

O [G/Gn] .
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Following the usual conventions in Iwasawa theory, we define
� := 1 + pZp

� := ZpJ�K ≥= ZpJT K.

We also denote by µp≠1 the multiplicative subgroup of order p ≠ 1 in Z◊
p .

Given a number field F , we denote by F (pŒ) the maximal abelian unram-
ified away from p extension of F .

In addition, throughout this section, let T be a locally compact totally
disconnected topological space, and let W be an abelian group. (For exam-
ple, T could be the Galois group of a Zp-extension and W could be the ring
of integers in a finite extension of Qp.) We denote by Step(T ) the group
of Z-valued functions on T that are locally constant of compact support.
For any compact open subset U ™ T , we denote by ‰U œ Step(T ) the
characteristic function of U .

2.2. Distributions. We begin by introducing distributions, which include
measures as a special case.

Definition 2.1. A distribution on T with values in W is a homomorphism
µ : Step(T ) ≠æ W.

We set the notation ⁄

T
Ï(t)dµ := µ(Ï)

for each Ï œ Step(T ).

The space of W -valued distributions on T is then
Dist(T,W ) := Hom(Step(T ),W ).

Observe that we have a bijection between Dist(T,W ) and the set A(T,W )
of finitely additive W -valued functions on compact open subsets of T . By
abuse of notation, given µ œ Dist(T,W ), we also denote by µ œ A(T,w) the
corresponding element under this bijection. More precisely, given a compact
open subset U µ T ,

µ(U) :=
⁄

U
dµ := µ (‰U ) =

⁄

T
‰Udµ.

2.2.1. Distributions on (pro)finite sets. Observe that if T is finite,
then since T is totally disconnected,Dist(T,W ) is identified with the abelian
group of W -valued functions on T . So if X is the inverse limit of a collection
of finite sets Xi, i œ I a directed poset, such that whenever i Ø j, we have
a surjection

fiij : Xi ≠⇣ Xj
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and whenever i Ø j Ø k, fijk ¶fiij = fiik, then we can reformulate the notion
of W -valued distribution on X as a collection of W -valued maps

µj : Xj ≠æ W

such that

µj(x) =
ÿ

{y|fiij(y)=x}

µi(y)

for all i Ø j and all x œ Xj . So we have

Dist(X,W ) = lim
Ω≠
n

Dist (Xn,W ) .

2.3. Measures. We now suppose that W is a finite-dimensional Banach
space over an extension K of Qp, as this case will be particularly interesting
to us.

Definition 2.2. A W -valued measure on T is a bounded W -valued distri-
bution on T .

Definition 2.3. If a measure µ takes values in a subgroup A ™ W , then
we call µ an A-valued measure.

Given topological spaces X and Y , we denote by C(X,Y ) the space of
continuous maps from X to Y . Observe that if T is compact and W is a
finite-dimensional K-Banach space, then there is a bijection

{W -valued measures on T}

Ωæ {bounded homomorphisms of K-Banach spaces C(T,K) ≠æ W} .

Likewise, if O is a p-adically complete ring, then we have bijections

{O-valued measures on Y } Ωæ {O-linear maps C(Y,O) ≠æ O}

Ωæ {Zp-linear maps C (Y,Zp) ≠æ O} .

More generally, given an O-valued measure µ on Y and a homomorphism
Ï : O æ O

Õ, with O
Õ also a p-adic ring, we get an O

Õ-valued measure µ
Õ on

Y defined by
⁄

Y
fdµÕ := Ï

3⁄

Y
fdµ

4

for all f œ C(Y,Zp).
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2.3.1. Measures on profinite groups. Our main case of interest is the
case where T is a profinite group. We write T = lim

Ω≠j
T/Tj with the sub-

groups Tj the ones that are open for the topology on T . (So the groups Tj

are the finite index, normal subgroups of T .) Then for any p-adic ring O,
we have an isomorphism of O-modules

(2.1)

Â : Dist (T,O) ≥
≠æ �T = OJT K

µ ‘≠æ –µ :=

Q

a
ÿ

T/Tj

µj(g)g

R

b

jØ0

,

where µj is as in Section 2.2.1.
Note that each f œ C(T,O) can be extended O-linearly to a function on

the group ring O[T ], via

f

A
ÿ

gœT

agg

B

=
ÿ

gœT

agf(g)(2.2)

for each finite sum
q

gœT agg œ O[T ] with ag œ O. (Since O[T ] is a group
ring, ag = 0 for all but finitely many g.) Also, note that O[T ] is a subring
of OJT K, via

O[T ] Ò≠æ OJT K

ÿ

gœT

agg ‘≠æ

Q

a
ÿ

T/Tj

ag(g mod Tj)

R

b

jØ0

Since O[T ] is dense in OJT K, we extend the map in Equation (2.2) continu-
ously to OJT K. (The rings O[T/Tj ] are endowed with the product topology
coming from O, and so the same is true for OJT K.) Of particular inter-
est is the case where T is generated by a topological generator “ (e.g.
“ = 1 + p in T = 1 + pZp) and f : T æ O

◊ is a group homomorphism,
in which case the elements of OJT K can be identified with power seriesq

j aj“
j , and f(

q
j aj“

j) =
q

j ajf(“)j . Similarly, if T = �1 ◊ · · · ◊ �d

with �i = 1 + pZp, i = 1, . . . , d, with generators “i = 1 + pZp, respec-
tively, then each element of OJT K can be expressed as a power series in
“1, . . . , “d, and for h =

q
n1,...,ndØ0 an1,...,nd“

n1
1 · · · “

nd
d œ OJT K, f(h) =q

n1,...,ndØ0 an1,...,ndf (“1)n1
· · · f (“d)nd œ OJT K.

The inverse map Â
≠1 is given by

µ– Ω≠[ –,

where for each f œ C(T,O)

µ–(f) := f(–).
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If O is flat over Zp, then each element – œ �T corresponding to a measure
µ– is completely determined by

s
T ‰dµ–, where ‰ varies over finite order

characters with values in extensions of Qp (see Proposition 2.13).

2.3.2. First examples. Let K be a finite extension of Qp, and let T be
an infinite profinite group.

Example 2.4. It is a simple exercise to show that the K-valued Haar dis-

tributions µHaar (i.e. translation invariant distributions, so µHaar(U+y) =
µHaar(U) for all y œ T and compact open subsets U µ T ) on T are not
measures if T is a pro-p group (but are measures if T is a pro-¸ group with
¸ ”= p).

Example 2.5. Fix an element g œ T . The Dirac distribution ”g defined by

”g(U) :=
I
1 if g œ U

0 else,

for all compact open subsets of T , is a measure on T . Under the isomorphism
Â in (2.1), µg corresponds to the element g œ �T .

2.4. Bernoulli distributions and Dirichlet L-functions. We now
briefly introduce a measure that produces a p-adic Dirichlet L-function.
More details are available in [73, Section 12.2].

Given a Dirichlet character ‰ be a Dirichlet character, let L(s,‰) be the
associated Dirichlet L-function. Then for all positive integers n,

L(1 ≠ n,‰) = ≠
Bn,‰

n
,

where the numbers Bn,‰ are the generalized Bernoulli numbers, i.e. the
numbers defined by

fÿ

a=1

‰(a)teat
eft ≠ 1 =

Œÿ

n=0
Bn,‰

t
n

n! ,

with f denoting the conductor of ‰. We also define a modified Dirichlet
L-function L

(p)(1 ≠ n,‰) =
!
1 ≠ ‰(p)pn≠1"

L (1 ≠ n,‰). If ‰ is the trivial
character, so f = 1, then Bn,‰ = Bn, where Bn denotes the n-th Bernoulli
number, and L(‰, 1 ≠ n) = ’(1 ≠ n) is the Riemann zeta function studied
by Kummer in the mid-1800s, as discussed in Section 1.

Remark 2.6. As above, let n be a positive integer. Note that when ‰ is
odd and n is positive, L(1 ≠ n,‰) = 0. Likewise, when ‰ is even and n is
odd, L(1 ≠ n,‰) = 0, unless ‰ is the trivial character and n = 1 (in which
case we obtain ’(0) = ≠

1
2). This can be seen from the functional equation

for L(s,‰), as explained in, e.g., [73, Chapter 4].
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Let

Ê : Z◊

p ≠æ µp≠1 ™ Z◊

p

denote the Teichmüller character (so Ê(a) © a mod p for each a œ Z◊
p ).

Kummer’s congruences are a special case of the following:

Theorem 2.7 ([49]). Let ‰ be a Dirichlet character. Then there exists a

p-adic meromorphic (analytic, if ‰ ”= 1) function Lp (1 ≠ n,‰) on
)
x œ Cp

--

|s|p < p
p≠2
p≠1

*
such that

Lp (1 ≠ n,‰) =
1
1 ≠ ‰Ê

≠n(p)pn≠1
2 ≠Bn,‰Ê≠n

n
= L

(p)(1 ≠ n,‰Ê
≠n)

for all positive integers n.

This is the first example of a p-adic L-function, i.e. a p-adic analytic func-
tion whose values at certain points agree with values of (suitably modified)
C-valued L-functions.

Remark 2.8. Fix an integer n0 such that 0 < n0 < p ≠ 1. Then for all
n © n0 mod p ≠ 1, Ê

n = Ê
n0 and

Lp (1 ≠ n,Ê
n0) = ’

(p)(1 ≠ n).

Thus, we easily locate the values studied by Kummer among those p-
adically interpolated by Lp. Furthermore, by expressing Lp(s,‰) in terms
of a Zp-valued measure on Z◊

p (for example, by setting d = 1 in Equa-
tion (2.3) below), we recover the congruences of Kummer (as also noted
in [73, Corollary 12.3]).

For each nonnegative integer n, let Bn(X) denote the n-th Bernoulli
polynomial, i.e. the polynomial defined by

te
Xt

et ≠ 1 =
Œÿ

n=0
Bn(X) t

n

n! .

So

Bn(0) = Bn

Bn(1) =
I
Bn if n ”= 1
B1 + 1 if n = 1.

If ‰ is a Dirichlet character, f is the conductor of ‰, and F is a positive
integer divisible by f , then

Bn,‰ = F
n≠1

Fÿ

a=1
‰(a)Bn

3
a

F

4
.
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We also have Bk(X) =
qk

i=0

3
k

i

4
BiX

k≠i and Bk(1 ≠ X) = (≠1)kBk(X)
for all nonnegative integers k.

For each positive integer i, we define

Yi :=
1
i
Z/Z,

and for all positive integers j | i, we define
fiij : Yi ≠æ Yj

y ‘≠æ
i

j
◊ y.

Definition 2.9. The k-th Bernoulli distribution is the distribution „ =
(„i)iØ1 on Y := lim

Ω≠i
Yi defined for each positive integer i by

„i

3
a

i

4
:= i

k≠1
Bk

3;
a

i

<4
.

While the Bernoulli distribution is not a measure, we modify it to obtain
a measure on X := lim

Ω≠n
Xn, where Xn :=

!
Z/dpn+1"◊ and d is a fixed

integer, as follows. Fix c œ Z such that gcd(c, dp) = 1. For xn œ Xn, we
define

Ec (xn) := Ec,1 (xn) = B1

3;
xn

dpn+1

<4
≠ B1

AI
c

≠1
xn

dpn+1

JB

+ c ≠ 1
2 ,

where { · } denotes the fractional part of a number. Then, as further dis-
cussed in the proof of [73, Theorem 12.2], Ec is a Zp-valued measure, and
furthermore, letting È · Í denote the projection onto 1 + pZp, we have

⁄

(Z/dpZ)◊
◊(1+pZp)

‰Ê
≠1

È · Í
sdEc = ≠

1
1 ≠ ‰(c)ÈcÍs+1

2
Lp (s,‰) ,(2.3)

for all Dirichlet characters ‰ of conductor dpm withm a nonnegative integer
and s œ Zp.

2.5. Some convenient spaces for defining measures. When constr-
ucting more general measures, in particular Eisenstein measures, it will be
convenient to establish some particular subsets of characters on which it
is su�cient to define a measure in order for that measure to be uniquely
determined. More precisely, we have the following.

For each of the following two lemmas, let O be a p-adic ring.

Lemma 2.10. An O-valued measure on � = 1 + pZp is completely deter-
mined by its values on characters of finite order.

Lemma 2.11. An O-valued measure on � = 1 + pZp is completely deter-
mined by its values on È · Í

k : � æ � µ Zp for any infinite set of k œ Zp.
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Proof of Lemmas 2.10 and 2.11. Note thatOJ�K is isomorphic to the power
series ring OJT K (which, as explained in [73, Section 7.1], follows from
the isomorphisms O[�n] ≥= O[T ]/

!
(1 + T )pn ≠ 1

"
, “ ¡ 1 + T where �n =

�/�pn). The proofs of both lemmas then follow from the Weierstrass Prepa-
ration Theorem, which tells us that if 0 ”= f(T ) œ OJT K, then f(T ) =
fi
r
P (T )U(T ), with fi a non-unit in O, r a nonnegative integer, P (T ) a

monic polynomial whose non-leading coe�cients are all divisible by fi, and
U(T ) œ OJT K◊ [7, Chapter VII Section 4]. Consequently, each nonzero el-
ement of OJT K has only finitely many zeroes — œ Cp with |—|p < 1 (since a
polynomial can have only finitely many zeroes, and an element of OJT K◊

cannot have any zeroes with absolute value < 1).
Now, let µ be an O-valued measure on �, and let fµ œ OJT K be the power

series corresponding to µ as in Section 2.3.1. Then µ(‰) = fµ (‰(“) ≠ 1).
So if µ vanishes at infinitely many finite order characters or infinitely many
È · Í

k, then µ is identically 0. ⇤
More generally, we have the abstract Kummer congruences, a generaliza-

tion of the style of congruences established by Kummer.

Theorem 2.12 (Abstract Kummer congruences). Let Y be a compact,

totally disconnected space, let O be a p-adic ring that is flat over Zp, and

let I be some indexing set. Let {fi}iœI ™ C(Y,O) be such that the O
#1
p

$
-span

of the functions fi is uniformly dense in C
!
Y,O

#1
p

$"
. Let {ai}iœI ™ O. Then

there exists an O-valued p-adic measure µ on Y such that
⁄

Y
fi = ai

for all i œ I if and only if the elements ai satisfy the abstract Kummer
congruences, i.e.:

Given {bi}iœI µ O
#1
p

$
such that bi = 0 for all but finitely many i œ I,

together with a nonnegative integer n such that
q

iœI bifi(y) œ p
n
O

for all y œ Y , we have
q

iœI biai œ p
n
O.

Proof. This is [46, Proposition (4.0.6)], which is proved in loc. cit. ⇤
When working with a profinite abelian group, the following consequence

is particularly convenient for constructing Eisenstein measures in general.

Proposition 2.13 ([46, First half of Proposition (4.1.2)]). Let G be a
profinite abelian group. Let O be a p-adically complete ring that is flat
over Zp, and suppose that R contains a primitive n-th root of unity for all
n such that G contains a subgroup of index n. Let µ be an O-valued p-adic
measure on G, and let ‰0 be a continuous homomorphism from G to O

◊.
Then µ is completely determined by the values

s
G ‰0‰dµ as ‰ ranges over

finite order characters of G.
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O-linear functionals on Step(G)

✏✏

µ

bounded O-module
homomorphisms C(G,O) æ O

OO

✏✏

limi fi ‘æ limi µ (fi)
for all fi œ Step(G)

finitely additive O-valued
functions on compact open

subsets of G

OO

✏✏

g
i Ui ‘æ

q
i µ(‰Ui), where ‰Ui is

the characteristic function of the
open set Ui

collections of maps µj : Gj æ O

such that
µj(g) =

q
{y|fiij(h)=g} µi(h) for

all i Ø j and all g œ Gj

OO

✏✏

(µj)j , where µj(g) = µ(‰Ug),
with Ug = {(hi)i |fiij(hi) = g}

elements of
� = OJGK = lim

Ω≠j
O[Gj ]

OO

1q
gœGj

µj(g)g
2

j

Figure 2.1. Dictionary between several formulations of
p-adic measures

2.5.1. Dictionary between several approaches to defining p-adic
measures. We conclude this section with Figure 2.1, which summarizes
the connections between several formulations of the definition of an O-
valued p-adic measure given above, each of which is useful for di�erent
aspects of constructing p-adic L-functions. In the figure, O is a p-adic ring,
and G = lim

Ω≠i
Gi is a profinite p-adic group, with transition maps fiij : Gi æ

Gj whenever i Ø j and fijk ¶ fiij = fiik for all i Ø j Ø k.

3. A first look at p-adic Eisenstein measures

We are primarily interested in measures as a vehicle for obtaining p-
adic L-functions inside an Iwasawa algebra. While Bernoulli numbers were
useful constructing the measure in Equation (2.3), they do not necessarily
generalize to many other L-functions of interest. It turns out that p-adic
modular forms provide a convenient tool for constructing p-adic L-functions
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in much more generality, while also producing p-adic Dedekind zeta func-
tions associated to totally real fields.

Remark 3.1. Because of their links with L-functions, we will be particu-
larly interested in Eisenstein measures, measures whose values on certain
sets of characters (like those in Section 2.5) are Eisenstein series.

In this section, we briefly introduce p-adic modular forms, following
Serre’s approach. For more details, see [63]. We denote by vp the valua-
tion on Qp such that vp(p) = 1. For f(q) =

q
Œ

n=0 anq
n

œ QpJqK, we define

vp(f) := inf
n

vp (an) .

So vp(f) Ø m if and only if f © 0 mod p
m and vp(f) Ø 0 if and only if

f œ ZpJqK. Let {fi} ™ QpJqK. We write fi æ f and say “The sequence
f1, f2, . . . converges to f” if vp (fi ≠ f) æ Œ, i.e. the coe�cients of fi con-
verge uniformly to those of f as i æ Œ. We also write f © g mod p

m if
vp(f ≠ g) Ø m.

Example 3.2. Let k Ø 4 be an even integer. Consider the level 1, weight
k Eisenstein series Gk whose Fourier expansion is given by

Gk(z) =
’(1 ≠ k)

2 +
ÿ

nØ1
‡k≠1(n)qn

where q = e
2fiiz and ‡k≠1(n) =

q
d|n d

k≠1
. In the 1800s, Kummer proved

that if p≠1 - k, then ’(1≠k)
2 is p-integral, as well as that if k © k

Õ mod p≠1,
then ’(1≠k)

2 ©
’(1≠kÕ)

2 mod p [52]. So if we also apply Fermat’s little theorem
to the non-constant coe�cients, we see that

Gk © GkÕ mod p

whenever k © k
Õ
”© 0 mod p ≠ 1.

3.1. Congruences modpm. Recall that, for convenience, we assume p

is odd. The reader who is curious about p = 2 can find the analogous
statements for that case in [63].

Theorem 3.3 ([63, Théorème 1]). Let m œ ZØ1, and let f, g œ QJqK be

modular forms of weights k, k
Õ
, respectively, with vp (f ≠ g) Ø vp(f)+m. If

f ”= 0, then k © k
Õ mod (p ≠ 1)pm≠1

.

Ultimately, we want not just congruences but p-adic measures, which
leads us to Section 3.2.
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3.2. p-adic modular forms. Let Xm = Z/(p ≠ 1)pm≠1Z, and let X =
lim
Ω≠m

Xm = Zp ◊ Z/(p ≠ 1)Z. We identify X with the space of Z◊
p -valued

characters of Z◊
p = (Z/pZ)◊

◊ (1 + pZp), i.e.
X = Zp ◊ Z/(p ≠ 1)Z
k Ωæ (s, u)

corresponds to the Z◊
p -valued character of Z◊

p defined by

a ‘≠æ a
k := ÈaÍ

s
Ê
u(a).

Definition 3.4 (Serre). A p-adic modular form is a power series f =q
nØ0 anq

n
œ QpJqK such that there exists a sequence of modular forms

f1, f2, . . . such that fi æ f .

As a consequence of Theorem 3.3, we see that a nonzero p-adic modular
form f = limi fi has weight k = limi ki œ X, where ki denotes the weight of
fi. A p-adic limit of p-adic modular forms is again a p-adic modular form
f , and if f ”= 0, the weights again converge as in Theorem 3.3.

Corollary 3.5 ([63, Corollaire 1]). Let f =
q

nØ0 anq
n be a p-adic modular

form of weight k œ X. Suppose the image of k in Xm+1 is nonzero. Then
vp (a0) +m Ø infnØ1 vp (an).

Proof. We briefly recall Serre’s proof. If a0 = 0, then the corollary is im-
mediate. Suppose now that a0 ”= 0. Let g = a0, so g is a modular form of
weight kÕ = 0, and

vp(f ≠ g) = inf
nØ1

vp (an) .

Also, since the image of k in Xm+1 is nonzero, k ”© k
Õ in Xm+1. So by

Theorem 3.3,
vp(f ≠ g) < vp(g) +m+ 1.

Consequently,
vp (a0) +m+ 1 > inf

nØ1
vp (an) ,

so
vp (a0) +m Ø inf

nØ1
vp (an) . ⇤

Corollary 3.6 ([63, Corollaire 2]). Consider p-adic modular forms f
(i) =

q
Œ

n=0 a
(i)
n q

m of weights k(i), for i = 1, 2, . . ., respectively. Suppose that both
of the following hold:

lim
≠æ
i

a
(i)
n = an œ Qp for all n Ø 1

lim
≠æ

k
(i) = k œ X, with k ”= 0.
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Then a
(i)
0 converges p-adically to an element a0 œ Qp, and f =

q
Œ

n=0 anq
n

is a p-adic modular form of weight k.
Example 3.7 (Application to Gk). Applying Corollary 3.6 to a sequence
of Eisenstein series Gki , i = 1, 2, . . ., with ki Ø 4 and even for all i and such
that ki æ Œ in the archimedean metric and also ki æ k œ X, we obtain a
p-adic modular form (in fact, a p-adic Eisenstein series, i.e. a p-adic limit
of Eisenstein series)

G
ú

k := G
(p)
k := lim

≠æ
i

Gki =
’

ú (1 ≠ k)
2 +

ÿ

nØ1
‡

ú

k≠1(n)qn

with ‡
ú

k≠1(n) := ‡
(p)
k≠1(n) :=

q
d|n
p-d

d
k≠1 and ’

ú(1 ≠ k) := limiæŒ ’ (1 ≠ ki).

Since the p-adic number ’
ú (1 ≠ k) is a p-adic limit of values of the Rie-

mann zeta function, it is natural to ask about its relationship to values of
the Kubota–Leopoldt p-adic zeta function. This is given in Theorem 3.8
below. More generally, a consequence of Theorem 3.10 is the construction
of p-adic Dedekind zeta functions as elements of � (i.e. as p-adic measures).

We say that an element of k = (s, u) œ X = Zp ◊ Z/(p ≠ 1)Z is even if
k œ 2X (equivalently, since we are assuming p is odd, u œ 2Z/(p ≠ 1)Z).
Otherwise, we say (s, u) is odd.
Theorem 3.8 ([63, Théorème 3]). If (s, u) ”= 1 is odd, then ’

ú(s, u) =
Lp

!
s,Ê

1≠u
"
, where Lp denotes the Kubota–Leopoldt p-adic zeta function

from Theorem 2.7.

Proof. We recall Serre’s proof. If ’
Õ denotes the function

(s, u) ‘≠æ Lp

1
s,Ê

1≠u
2
,

then ’
Õ is the Kubota–Leopoldt p-adic zeta function, and ’

Õ(1 ≠ k) =
(1 ≠ p

k≠1)’(1 ≠ k) for each positive even integer k.
If k œ 2X (so 1 ≠ k is odd), ki æ k in X, ki æ Œ in the archimedean

topology, then

’
Õ(1 ≠ k) = lim

iæŒ
’

Õ (1 ≠ ki) = lim
iæŒ

1
1 ≠ p

ki≠1
2

’ (1 ≠ ki)

= lim
iæŒ

’ (1 ≠ ki) = ’
ú(1 ≠ k). ⇤

For any fixed even u ”= 0 in Z/(p ≠ 1)Z, we can also prove that the
function s ‘æ ’

ú(1 ≠ s, 1 ≠ u) arises as an element of � := ��, without
reference to the work of Kubota–Leopoldt (and also without reference to
the work of Iwasawa, who proved this as well). First, we note that for
each positive integer m ”© 0 mod p ≠ 1, the rational numbers ’(1 ≠ m) =
(≠1)m+1Bm

m were already known in the mid-1800s to be p-integral, thanks
to the von Staudt–Clausen theorem [14, 71] and a result of von Staudt on
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numerators of Bernoulli numbers ([72], which was later rediscovered and
misattributed, as discussed on [26, p. 136]). So the p-adic limits ’

ú(1 ≠ s,

1 ≠ u) are elements of Zp whenever u ”= 0 in Z/(p ≠ 1)Z. (Alternatively,
Corollary 3.5 shows that because all the higher order Fourier coe�cients
of the Eisenstein series G

ú

(s,u) are p-integral, so is the constant term of
G

ú

(s,u).) Applying Corollary 3.6 to the p-adic Eisenstein series G
ú

(s,u) from
Example 3.7, we obtain congruences for the constant terms ’

ú(1≠s, 1≠u).
So applying Lemma 2.11 and Theorem 2.12, we see that for fixed even
u ”= 0 in Z/(p ≠ 1)Z, ’

ú(1 ≠ s, 1 ≠ u) can be obtained as an element of
�. Via di�erent methods, Iwasawa’s work also addressed the case where
u = 0 [44]. We summarize these results in Theorem 3.9.
Theorem 3.9. Let � := ��, and fix an even u œ Z/(p ≠ 1)Z. Then:

(1) If u ”= 0, then the function È · Í
s

‘æ ’
ú(1 ≠ s, 1 ≠ u) is an element of

� := ��.
(2) The function s ‘æ ’

ú(1 ≠ s, 1)≠1
is an element � ≥= ZpJT K, and

moreover, is of the form Tg(T ) with g(T ) invertible in ZpJT K.
For n Ø 1 the nth Fourier coe�cient of the p-adic Eisenstein series G

ú

k,
with k = (s, u), is of the form

‡
ú

k≠1(n) =
ÿ

d|n
p-d

d
≠1

Ê(d)kÈdÍ
k =

ÿ

d|n
p-d

d
≠1

Ê(d)uÈdÍ
s
,

which gives an element of �, when we fix u. Consequently, for fixed u ”=
0, the coe�cients of G

ú

(s,u) can be viewed as elements of � (by Theo-
rem 3.9(1)), and furthermore, for u = 0, the coe�cients of the normalized
Eisenstein series E

ú
s := (’ú(1 ≠ s, 1)/2)≠1

G
ú

(s,0) can be viewed as elements
of � (by Theorem 3.9(2)).

More generally, we have the following result.
Theorem 3.10 ([63, Théorèmes 17 and 18]). Let fs be a p-adic modular

form of weight k(s) = (sr, u) ”= 0 for some fixed r and u. Suppose the

function È · Í
s

‘æ an (fs) is in � := �� for all n Ø 1.
(1) If u ”= 0 in Z/(p ≠ 1)Z, then the same is true for n = 0.
(2) If u = 0 in Z/(p ≠ 1)Z, then È · Í

s
‘æ ’

ú(1 ≠ rs, 1)≠1
a0 (fs) is in �.

Proof. Serre’s proof of each part of this theorem involves a careful analysis
of the element f

Õ
s := fsE

ú
≠rs œ �, which is of weight (0, u) and has the

same constant term as fs. Since we will not need the details in this paper,
we do not elaborate here and instead refer the reader to [63, proofs of
Théorèmes 17 and 18].

We note, however, that we can also give an alternate proof for Part (1),
i.e. when u ”= 0, using the results developed thus far in the present pa-
per: If an (fs) is in � for all n Ø 1, then Corollaries 3.5 (with m = 0)
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and 3.6 guarantee the constant terms meet the conditions necessary to ap-
ply Lemma 2.11 and Theorem 2.12, so we can realize the constant term
a0 (fs) as an element of �. ⇤

Serre uses Theorem 3.10 to obtain a p-adic Dedekind zeta function ’
ú

K ,
for K a totally real number field, as an element of � (where ’

ú

K is defined
analogously to ’

ú and occurs as the constant term of an Eisenstein series).

4. Hilbert modular forms and L-functions attached to Hecke
characters

Serre’s use of p-adic families of Eisenstein series to construct p-adic zeta
functions inspired constructions in other contexts. We now summarize a
generalization to the space of p-adic Hilbert modular forms, where realiza-
tions of Eisenstein measures enabled the construction of p-adic L-functions
attached to Hecke characters of totally real or CM fields.

4.1. The strategy of Deligne–Ribet. Our goal now is to introduce
the strategy of Deligne–Ribet from [18] to p-adically interpolate values of
L(s, fl) for fl a finite order Hecke character of a totally real field K unram-
ified away from p. Note that for negative integers s, L(s, fl) lies in the field
extension Q(fl) obtained by adjoining all values of fl to Q. Following the
conventions established in Section 2.1, for any number field F , we denote by
F (pŒ) the maximal abelian extension of F that is unramified away from p.

Theorem 4.1 ([18, Main Theorem (8.2)]). Fix a totally real field K and

a prime-to-p ideal A of K. Then there exists a Zp-valued p-adic measure

µA on G := Gal (K (pŒ) /K) such that for all positive integers k and finite

order characters fl on G,
⁄

G
fl ·Nkdµ– =

1
1 ≠ fl(A)NAk+1

2
L
(p) (≠k, fl) ,

where N denotes the norm and L
(p)(≠k, fl) =

r
p|p(1≠fl(p)N(p)k)L(≠k, fl).

To prove Theorem 4.1, Deligne and Ribet work in the space of Hilbert
modular forms. As one might expect from Serre’s approach to construct-
ing the p-adic zeta function, one step toward proving Theorem 4.1 is the
construction of Eisenstein series (this time, in the space of Hilbert modular
forms) of weight k with L(1 ≠ k, fl) as the constant term, for each positive
integer k. Similarly to the Eisenstein series G

ú

k, it is easy to see the non-
constant terms of the Eisenstein series in [18] satisfy congruences as the
weight k varies. Now that we are in the setting of Hilbert modular forms,
though, we need a new approach to proving that the constant terms satisfy
congruences. This requires the theory of p-adic Hilbert modular forms and
q-expansion principles, which require more geometry than the discussion
thus far.
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4.1.1. Ingredients from the theory of p-adic Hilbert modular

forms. We briefly delve into the setup of p-adic Hilbert modular forms,
the space where the families of Eisenstein series from [18, 46] live. For more
details, see [39, Chapter 4], [46, Chapter I], or [29].

We can give a formulation of Hilbert modular forms as sections of line
bundles over a moduli space M of Hilbert–Blumenthal abelian varieties
(with additional structure). More precisely, fix a totally real number field
K of degree g over Q, a fractional ideal c of K, and an integer N Ø 4 prime
to p. Let OK denote the ring of integers in K, and let d≠1 denote its inverse
di�erent. There is a scheme M := M (N, c) over Spec (OK) classifying
triples (X, i,⁄), consisting of an abelian scheme X of relative dimension g

together with an action of OK on it, a level structure i : d≠1
¢Z µN Òæ X,

and a c-polarization ⁄ : X‚ ≥
æ X¢OK c (where X‚ denotes the dual abelian

scheme to X).
We denote by fi : Auniv æ M the universal object, and we define Ê :=

fiú�1
Auniv/M

. The space of Hilbert modular forms of weight (k(‡))‡:KÒæR is
identified withH

0(M,⇥‡Ê(k‡)). Note that Ê (k‡) is a subsheaf of Symk(Ê),
where k =

q
‡ k(‡). Note that there exists a smooth toroidal compactifi-

cation M̄ of M that includes the cusps of M, and the universal abelian
scheme Auniv extends to the universal semi-abelian scheme over M̄. Also
note that when [K : R] > 1, Köcher’s principle guarantees that a Hilbert
modular form over M extends holomorphically to the cusps. As explained
in [18, Example 5.3], [39, Section 4.1] (see also [46, Section 1.1] on algebraic
q-expansions), when we work over a Q-algebra R (for example, R = C), the
cusps are in bijection with fractional ideals A of K (which we will call the
“cusp corresponding to A”).
Remark 4.2. While we shall not need this fact here (as we are working in
settings specific to Katz and Deligne–Ribet), it is worth noting that as dis-
cussed in [2, p. 2-3], the notion of “Hilbert modular form” for F ”= Q varies
slightly depending on where in the literature one looks. More precisely, the
moduli problem represented by M = M (N, c) corresponds to the group
G

ú = G ◊ResK/Q Gm Gm, where G = ResK/QGL2, G æ ResK/Q Gm is the
determinant morphism, and Gm æ ResK/Q Gm is the diagonal embedding.
On the other hand, there are also approaches to eigenforms on the group G,
but the moduli problem for G is not representable. For further discussion
about the relationship between automorphic forms on these two spaces,
see [2, p. 2-3].

Let W denote the ring of Witt vectors associated to an algebraic closure
of Z/pZ, and let Wm = W/p

m
W . We identify W with the ring of integers

in the maximal unramified extension of Qp inside an algebraic closure of
Qp. We fix an embedding K Òæ Q̄p. The image of OK under this embedding
lies in W .
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The space of p-adic Hilbert modular forms is defined over the ordinary
locus Mord (inside of M ◊SpecOK SpecW ), which can be described as the
nonvanishing locus of a lift of the Hasse invariant, like in [39, Section 4.1.7].
More precisely, the space of p-adic Hilbert modular forms is realized as
follows. We build an Igusa tower over Mord (as in, e.g, [39, Section 8.1.1]).
For each pair of positive integers n,m, Ign,m is defined to be a cover of
M

ord
◊W Wm classifying ordinary Hilbert–Blumenthal abelian varieties A

together with level pn-structure µpn Òæ A[pn]. So we have canonical maps
Ign,m æ IgnÕ,m for all nÕ

Ø n (and likewise for mÕ
Ø m), giving us a tower

of schemes. Following the notation of [39, Section 8.1.1], we set

Vn,m := H
0

1
Ign,m,OIgn,m

2

VŒ,m := lim
≠æ
n

Vn,m.

Following [46, Section 1.9] (or the more general discussion from [39, Sec-
tion 8.1.1]), the space of p-adic Hilbert modular forms is then

V := VŒ,Œ := lim
Ω≠
m

VŒ,m.

We identify VŒ,Œ with the ring of global sections of the structure sheaf of
a formal scheme parametrizing Hilbert–Blumenthal abelian varieties with
p

Œ-level structure.
An advantage of this construction is that is provides a canonical map

from the space of Hilbert modular forms to the space V of p-adic Hilbert
modular forms (as in, e.g., [46, Theorem (1.10.15)]).

Remark 4.3. More generally, this construction can be modified to produce
p-adic automorphic forms in other cases, such as in the setting of Shimura
varieties of PEL type. For a detailed treatment, see [11, 24, 39].

4.1.2. q-expansion principles. Like in Serre’s construction, Deligne and
Ribet’s approach also relies substantially on properties of q-expansions of
Eisenstein series. So we now will need some q-expansion principles, i.e. the-
orems that explain to what degree Hilbert modular forms are determined
by their q-expansions. In Proposition 4.4 and Theorem 4.6, we choose the
level structure so that the reduction of M is connected. (Alternatively, we
could modify the statements of Proposition 4.4 and Theorem 4.5 to take a
q-expansion at a cusp on each connected component.)

Proposition 4.4 (algebraic q-expansion principle for Hilbert modular
forms). Let f be a Hilbert modular form defined over a ring R.

(1) If the algebraic q-expansion of f vanishes at some cusp, then f = 0.
(2) Let R0 ™ R be a ring. If the q-expansion of f at some cusp has

coe�cients in R0, then f is defined over R0.
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The proof of Statement (1) relies on the irreducibility results in [61, 62],
and Statement (2) can be proved as a consequence of (1) (similarly to the
proof of [45, Corollary 1.6.2]).

The Fourier coe�cients of the Eisenstein series needed for studying L-
values of totally real Hecke characters have coe�cients in the ring of integers
O of a number field. So as a consequence of Proposition 4.4(2) and the fact
that the algebraic and analytic q-expansions of a Hilbert modular form
agree (by [46, Equation (1.7.6)]), we have that our Eisenstein series are
actually defined over O.

In order to construct the p-adic L-functions, we will also need a p-adic
q-expansion principle for Hilbert modular forms.

Theorem 4.5 (p-adic q-expansion principle for Hilbert modular forms, [18,
(5.13)]). If f œ V and the q-expansion of f vanishes at some cusp, then

f = 0. Furthermore, if R0 is flat over Zp, then the R0-submodule VR0 of p-

adic modular forms defined over R0 consists of the elements f œ VR0 ¢ZpQp

whose q-expansion coe�cients lie in R0, and if the q-expansion of a p-adic

modular form f at some cusp has coe�cients in R0, then the same is true

at all the cusps.

As an important consequence of Theorem 4.5, we obtain Corollary 4.6.

Corollary 4.6 ([18, Corollary (5.14)]). Let f œ VR0 ¢ Qp, and suppose
that at some cusp, all the q-expansion coe�cients, aside possibly from the
constant term, of f lie in R0. Then the di�erence between the constant
terms of the q-expansions of f at any two cusps also lies in R0.

Proof. Let v œ VR0 ¢ Qp be such that at some cusp, all the q-expansion
coe�cients, aside possibly from the constant term, of f lie in R0. Let a be
the constant term of f at that cusp. Then a is a weight 0 modular form,
and all the coe�cients of f ≠ a œ VR0 ¢ Qp lie in R0. So by Theorem 4.5,
f ≠ a œ VR0 and all the q-expansion coe�cients of f ≠ a, in particular its
constant term, at any other cusp lie in R0. So the di�erence between any
two constant terms of f lies in R0. ⇤

As an immediate corollary of Corollary 4.6, we obtain:

Corollary 4.7. If the abstract Kummer congruences hold for all the non-
constant terms of the q-expansions of a family of p-adic modular forms f

at some cusp, then they also hold for the di�erence between the constant
terms at two cusps.

To prove Theorem 4.1, it then su�ces to realize L
(p)(1 ≠ k, fl) in the

constant term of a q-expansion of an Eisenstein series Ek,fl and observe
that the constant term of Ek,fl at a cusp corresponding to a fractional ideal
A is fl(A)N(A)kL(p)(1 ≠ k, fl), which is proved in [18, Theorem (6.1))].
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4.2. The case where ‰ is a Hecke character of a CM field. Given
that we just considered the case of Hecke characters of totally real fields,
it is natural now to move to CM fields K. Fix a CM type � for K, i.e. a
set of [K : Q]/2 embeddings K Òæ C such that exactly one representative
from each pair of complex conjugate embeddings {‡, ‡̄} lies in �. In [46],
Katz considered the case where ‰ : K◊

\A◊

K æ C is a Hecke character of
type A0, i.e. ‰ is of the form

‰ = ‰fin
Ÿ

‡œ�

3 1
‡

4k 3
‡̄

‡

4d(‡)
,

with k a positive integer, d(‡) a nonnegative integer for all ‡ œ �, and ‰fin
a finite order character. Building on ideas of Eisenstein, the study of the al-
gebraicity properties of the values L(0,‰) was initiated Damerell and later
extended and completed by Goldstein–Schappacher [27, 28], Shimura [66],
and Weil [74]. (A summary of the historical development is in [34, Sec-
tion 5].)

For ‰ of type A0 as above, the values L(0,‰) can be expressed (in what is
known as Damerell’s formula) as finite sums of values of Eisenstein series in
the space of Hilbert modular forms. Thus, it is natural to try to construct
Eisenstein measures suited to this application and adapt the techniques
introduced thus far.

Indeed, this is what Katz did in [46], but there are several new chal-
lenges Katz had to solve in this setting, which also helped uncover paths
toward generalizations. Because these challenges also arise more broadly,
we continue the discussion in Section 5.

5. Generalizations and challenges

Various constructions of automorphic L-functions are closely tied to
Eisenstein series. This includes Damerell’s formula, the Rankin–Selberg
method, and pullback methods like the doubling method. Each of these
methods was used to prove algebraicity of certain values of the correspond-
ing automorphic L-functions. Given the developments discussed thus far,
it is therefore natural to try to construct Eisenstein measures valued in
appropriate spaces of p-adic automorphic forms and use those to construct
p-adic L-functions. Those familiar with any of these methods might re-
call, though, that the Eisenstein series occurring in the constructions of
the L-functions can be quite intricate (and likewise for computations of
the Fourier coe�cients), and furthermore, the L-functions are not simply
realized as constant terms of these particular Eisenstein series.

In addition, on the p-adic side, the slightest modification to input can
have drastic geometric consequences. For example, changing a prime from
split to inert can lead to the entire ordinary locus employed in the definition
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of p-adic modular forms described above to disappear in certain settings.
In another direction, working with the full range of Hecke characters from
Section 4.2 requires considering Eisenstein series that are not holomorphic.

Extending the approach of constructing Eisenstein measures to produce
p-adic L-functions attached to Hecke characters of CM fields, as well as
those considered in higher rank generalizations like [20, 21, 23], involves
working in a setting where:

• The approach of using constant terms (from [18, 63]) no longer ap-
plies, due to the fact that for Eisenstein series occurring in particular
formulas for L-functions, the Fourier expansions of those Eisenstein
series at cusps where it is convenient to work lack constant terms.
For example, the Fourier expansions of the particular Eisenstein
series employed in the formulas in [46] turn out to lack constant
terms at the cusps where they computed, as seen in, e.g., [46, The-
orem (3.2.3)]. (That said, if one has a convenient way to compute
and study the Fourier coe�cients at a cusp where the constant term
is nonzero, then this issue disappears.)

• The Eisenstein series are substantially more complicated to con-
struct.

• The constructions of the L-functions require considering values of
C

Œ (not necessarily holomorphic) Eisenstein series.
• The points in the ordinary locus needed in the construction of the
L-functions might be empty.

Moving beyond Hecke characters to Rankin–Selberg L-functions and L-
functions associated to automorphic forms (e.g. through the doubling
method), we also must content with the following:

• L-functions might be represented not as finite sums of values of
Eisenstein series, but instead as integrals of cusp form(s) against
restrictions of Eisenstein series to certain spaces (e.g. as in the dou-
bling method)

5.1. Strategies of Katz, and beyond. As noted in Section 4.2,
Damerell’s formula expresses values of the L-functions associated to Hecke
characters of CM fields in terms of finite sums of values of Eisenstein series
from the space of Hilbert modular forms. In his construction of p-adic L-
functions for CM fields [46], Katz exploits the fact that the Eisenstein series
get evaluated only at CM points, i.e. Hilbert–Blumenthal abelian varieties
with complex multiplication. He constructs an Eisenstein measure and then
constructs a p-adic measure at each of these CM points A by evaluating
the Eisenstein series in the image of his Eisenstein measure at A.

Constructing the Eisenstein series and measure is considerably more in-
volved than in the examples mentioned so far, though, and it is the subject
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of [46, Chapter III and Section 4.2]. Part of Katz’s strategy is to introduce a
partial Fourier transform ([46, Section 3.1]), which allows him to construct
an Eisenstein series amenable to computations for L-functions but which
also has q-expansion coe�cients that satisfy congruences (so that he can
employ the q-expansion principles from above). The key point with the par-
tial Fourier transform is to take the Fourier transform of appropriate data
that interpolates well to produce the Eisenstein series and then exploit the
close relationship between the Fourier transform and the Fourier transform
of the Fourier transform, namely that the Fourier transform of the Fourier
transform of t ‘æ f(t) is t ‘æ f(≠t). Hence we get an Eisenstein measure
whose coe�cients interpolate well.

To handle the C
Œ Eisenstein series that occur in the construction of L-

functions for CM fields, Katz must consider certain di�erential operators.
The C

Œ Eisenstein series in the construction can be obtained by applying
the Maass–Shimura di�erential operators to holomorphic Eisenstein series.
Katz exploits the Hodge theory of Hilbert–Blumenthal abelian varieties to
construct p-adic analogues (built out of the Gauss–Manin connection and
Kodaira–Spencer morphism) of those di�erential operators [46, Chapter II].
On q-expansions, these operators are a generalization of the operator q d

dq ,
and they preserve interpolation properties of the Hilbert modular forms to
which they are applied.

These techniques for constructing Eisenstein measures have since been
extended to the PEL setting. For example, di�erential operators on p-adic
automorphic forms on unitary groups are the subject of [19, 22] (which also
builds on [35]), and they were used as a starting point in the construction
of Eisenstein measures taking values in the space of p-adic automorphic
forms on unitary groups in [20, 21], which were in turn employed in the
constructions of p-adic L-functions in [23, 25].

Like in Section 4.1.1, Katz’s construction is over the ordinary locus. This
introduces a serious obstacle, namely that there are no ordinary CM points,
if p is inert. Given that Damerell’s formula is a sum over CM points, this
means Katz’s approach did not address p inert.

Over four decades passed before an approach to p inert was introduced.
In [1], Andreatta and Iovita explain how to adapt Katz’s approach to the
case of quadratic imaginary fields with p inert. In separate work [48], Kriz
also introduced an approach for inert p. Parts of [1] are also being ex-
tended to the case of CM fields in [3, 30]. The idea of Andreatta and Iovita
is to work instead with overconvergent p-adic modular forms and modify
the approach to handling the di�erential operators. Whereas Katz exploits
Dwork’s unit root splitting that exists over the ordinary locus, Andreatta
and Iovita build an operator from the Gauss–Manin connection and then
take pairings that do not require projecting modulo a unit root splitting.
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5.2. Working with pairings and pullback methods. Katz’s approach
to constructing Eisenstein measures provides a starting point for other
cases, in particular automorphic forms in the PEL setting. Since we are of-
ten faced with representations of L-functions not as a finite sum but rather
as an integral of an Eisenstein series against cusp form(s), we now briefly ex-
plain the key ideas for adapting such a representation to the p-adic setting.
We discuss this strategy in the context of the Rankin–Selberg zeta function,
where it was first developed (by Hida in [37]), but it has also since been
extended to various settings, including, among others, in [23, 38, 53, 54, 58].

The Rankin–Selberg product of a weight k holomorphic cusp form f =q
nØ1 anq

n and a weight ¸ Æ k holomorphic modular form g =
q

nØ0 bnq
n

is a zeta series

D(s, f, g) =
Œÿ

n=1

anbn

ns
.

Shimura and Rankin proved in [60, 67] that

D(k ≠ 1 ≠ r, f, g) = cfi
l
È Âf, g”

(r)
⁄ EÍ,

where E denotes a particular weight ⁄ := k ≠ ¸ ≠ 2r Eisenstein series,
Âf(z) := f (≠z̄), ”

(r)
⁄ is a Maass–Shimura operator that raises the weight

of a modular form of weight ⁄ by 2r (so ”
(r)
⁄ := ˆ⁄+2r≠2 ¶ ˆ⁄+2 ¶ ˆ⁄ with

”⁄ := 1
2fii

1
⁄
2iy + ˆ

ˆz

2
), c = �(k≠¸≠2r)

�(k≠1≠r)�(k≠¸≠r)
(≠1)r4k≠1N

3
r

p|N

!
1 + p

≠1"
(with

N the level of the modular forms), and È · , · Í denotes the Petersson inner
product. As a consequence, Shimura proved in [67, Theorem 2] that

fi
≠k

D(m, f, g)
Èf, fÍ

is algebraic for all integers k, ¸,m satisfying ¸ < k and k+¸≠2
2 < m < k.

In [37], Hida constructed p-adic Rankin–Selberg zeta functions by build-
ing on Shimura’s approach to studying algebraicity. In particular, the idea
to interpret the Rankin–Selberg zeta function in terms of the Peterssen
pairing plays a key role, and this remains true in extensions to higher rank
groups (including in the discussions of algebraicity in [35] and in exten-
sions to the p-adic case in PEL settings involving the doubling method
in [23, 53, 54]). The idea is to reinterpret the linear Petersson pairing
Èh1, h2Í as a functional ¸h1 (h2). This suggests identifying a space of modular
forms with its dual space, which in turn leads to use of the associated Hecke
algebra. This is the point that allows Hida to integrate Eisenstein measures
(generally coming from familiar families of Eisenstein series, at least in the
case of modular forms) into the construction of p-adic L-functions. While
this approach makes sense in higher rank (e.g. in the context of the doubling
method), putting it into practice is nontrivial for various reasons, including
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geometric issues (like those mentioned above) and new properties of the
Hecke algebra that must be taken into account.

5.3. Some remaining challenges and future directions. Putting
aside the bigger goal of proving the Greenberg–Iwasawa main conjectures,
challenges still remain for producing p-adic L-functions. Even in settings
where we have constructions of L-functions closely tied to the behavior of
Eisenstein series and we anticipate the existence of Eisenstein measures,
actually carrying out the construction can be nontrivial. We conclude by
highlighting three categories of challenges and suggest some future direc-
tions toward resolving them:

(1) As noted in Section 5.2, the pairings that arise from integral repre-
sentations of L-functions can be useful for p-adic interpolation, but
one often has to deal with significant technical challenges. Prop-
erties of Hecke algebras (and the ordinary Hecke algbras where
one often works in practice) can present obstacles. For example,
a Gorenstein property is often useful, but not necessarily known, in
this context. Pilloni’s higher Hida theory seems to present a promis-
ing and natural alternative framework for interpreting these pair-
ings [8, 55, 59].

(2) As noted in Section 5.1, cases where the prime p does not split can
lead to considerable geometric challenges, which have been recently
addressed in low rank in [1]. For unitary groups, work on di�erential
operators in [24, 64, 65] and Hecke operators in [9] addresses some
challenges that arise when the ordinary locus is empty, but work
remains in the inert case (even just for constructing appropriate
Eisenstein series for the Eisenstein measure) to construct the full p-
adic L-functions. In one of the most promising directions, the work
in [3, 30] suggests the possibility of extending the techniques of [1]
to the PEL setting, but again, details of the Eisenstein measures
would still need to be worked out by adjusting the choices of local
data that feed into the partial Fourier transforms in [21].

(3) At a more fundamental level, before one can construct p-adic L-
functions via the method of Eisenstein measures, one needs a rep-
resentation of the L-function in terms of Eisenstein series. Such a
representation, though, is insu�cient unless we also can reinterpret
it algebraically. For example, given the success in adapting the dou-
bling method to the p-adic setting in [23, 25, 53], it is natural to try
to adapt the twisted doubling representation of L-functions (i.e. for
producing L-functions associated to a twist of a cuspidal automor-
phic representation by a representation of GLn for some n) in [10] to
the p-adic setting. As of yet, though, we do not have an appropriate
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interpretation in terms of algebraic geometry or another familiar al-
gebraic tool, and without an algebraic interpretation, are unlikely
to see a path toward a p-adic realization. There is currently active
work to produce integral representations of various L-functions. It
will be interesting to see which ones become suitable for proving al-
gebraicity results, either in terms of the techniques described above
or in terms of those yet to be discovered.
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