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Abstract—The DC optimal power flow (DCOPF) problem
is a fundamental problem in power systems operations and
planning. With high penetration of uncertain renewable resources
in power systems, DCOPF needs to be solved repeatedly for
a large amount of scenarios, which can be computationally
challenging. As an alternative to iterative solvers, neural networks
are often trained and used to solve DCOPF. These approaches
can offer orders of magnitude reduction in computational time,
but they cannot guarantee generalization, and small training
error does not imply small testing errors. In this work, we
propose a novel algorithm for solving DCOPF that guarantees
the generalization performance. First, by utilizing the convexity
of DCOPF problem, we train an input convex neural network.
Second, we construct the training loss based on KKT optimality
conditions. By combining these two techniques, the trained model
has provable generalization properties, where small training
error implies small testing errors. In experiments, our algorithm
significantly outperforms other machine learning methods.

I. INTRODUCTION

The optimal power flow (OPF) problem is a fundamental
tool used in the planning and operation of power systems [1]-
[3]. The OPF problem finds the least cost generator outputs
that satisfy the power flow equations and other operational
constraints. In this paper we specifically consider the DCOPF
formulation of the OPF problem, which linearizes the power
flow equations [4].

The DCOPF problem has been studied extensively for
almost half a century and is a workhorse of the power industry.
If the generator cost is linear, the DCOPF is a linear program
(LP). These LPs can be solved efficiently by a variety of
algorithms, which have been implemented in a number of
software packages [5], [6]. Today, a DCOPF problem can be
solved quickly for fairly large networks [4].

Even though solving a single instance of DCOPF problems
is easy, computational challenges are arising because of the in-
crease in renewable resources, since they introduce significant
uncertainties into generation and load [7], [8]. To account for
these uncertainties, operators often need to repeatedly solve
the DCOPF problem for a large number of scenarios [9]-[11].
If these scenarios are analyzed close to real-time, then using
standard solvers can become too inefficient. For example,
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suppose a single instance of DCOPF can be solved in 1 second.
Then solving a thousand instances would require more than
15 minutes, which would likely be too slow.

Recently, end-to-end neural network architectures have been
proposed as surrogates to conventional LP solvers [12]-[18].
These neural networks treat load as the input and output the
generation values. Since they only require simple function
evaluations, they offer orders of magnitude speedup compared
to iterative algorithms. Despite the increase in speed, these
machine learning approaches lack provable guarantees on their
performances. There are two broad classes of approaches using
neural networks for DCOPFE. In [12]-[15], the neural network
is used to directly approximate the functional mapping from
load to the optimal generations. In [16]-[18], neural networks
are used to identify the binding constraints and the solutions
are recovered by solving linear systems of equations. Both of
these approaches rely on training with a large set of labeled
data, then showing the performance of the algorithms through
simulations.

A fundamental barrier in adopting these methods in practice
is the need to show that small fraining error implies small
testing errors. That is, we need to show that the method
generalizes. Using machine learning for DCOPF is most useful
when operators are faced with unfamiliar conditions, but there
are many examples when machine learning precisely fails in
these conditions [19]-[21]. The hesitancy in using machine
learning (especially deep learning) methods also comes from
the perception that they rely on “black-boxes” that are hard to
understand [22], [23].

In this paper we propose a two-step approach for solv-
ing DCOPF. Firstly, a neural network is used to learn the
value (i.e., the optimal cost) of the DCOPF, and its gradient
with respect to the load is the locational marginal prices
(LMPs). Then the binding constraints are identified based
on the LMPs. This process is robust in the sense that if
they are approximately correct, and the binding constraints
are correctly identified. We provide formal guarantee to the
generalization capability of this method by directly designing
the fundamental features of the DCOPF problem into the
machine learning algorithm. Specifically, we constrain the
neural network architecture, and building KKT conditions into
the training process.

The first technique we use to guarantee generalization is
to constrain the neural network to have an input convex
structure, since the cost of the DCOPF is a convex function of
the loads. Therefore, we use input convex neural networks
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(ICNNs) to learn this relationship [24]-[26]. The ICNNs
represent functions that are convex from input to the output
by using ReLU as the activation functions and restricting the
weights to be nonnegative. Then the convex structure follows
from the composition of convex functions [25]. It turns out
that the convex structure of the neural network is key to its
generalization capability.

We show that a small training error for a finite number
of samples implies that the error would be small for entire
regions of inputs. Intuitively, this means that the gradient of
the function (the LMPs) would be roughly correct as long as
some points in the input region are sampled during training.
This result is in contrast with standard generalization results
in the literature, where most are of a statistical nature [27].
Instead, we show that the structure of the neural network is
the key, since if convexity is not imposed, we can construct
cases with zero training error but arbitrary large testing errors.

The second technique we use is to add KKT conditions to
the training process. Perhaps the most direct way to improve
generalization is to increase the number of labeled samples.
However, for even moderately large power systems, covering
the whole load space with labeled data is intractable due to
the curse of dimensionality. We overcome this challenge by
using that at optimality, the primal and dual variables satisfy
the KKT conditions [28]. Interpreting the dual variables as
the partial derivatives of the value function with respect to
different parameters, the KKT conditions can be written as
a set of partial differential equations. We train the ICNN by
minimizing the training loss that is based on this set of partial
differential equations. This enables us to include a much larger
set of inputs without explicitly adding labeled training data.

In summary, our contributions are:

1) We constrain the neural network to have an input convex
structure, which allows the model to generalize well. The
guarantees on generalization performance are given in
Theorem 6.4 and Theorem 6.5. These theorems prove our
method can generalize to testing data points from spaces
unseen in the training process. The effectiveness of our
method in improving generalization performance is also
demonstrated through simulations.

2) We add a term based on violations of KKT conditions to
the regression loss, enabling us to use large amounts of
unlabeled samples for training and further improving the
generalization performance.

The challenge in solving DCOPF repeatedly for different
loads is similar in spirit to solving linear systems of equa-
tions for changing right-hand-side vectors. In this paper we
are trying to solve a parametric optimization problem rather
than a parametric linear system [29]. However, unlike LU
factorization, it is hard to guarantee that the machine learning
methods would always recover the right answer. The approach
in [30] can bound the worst case errors for a trained neural
network with fixed parameters. But these types of ex post
analysis is hard to generalize and do not shed light on why a
method may perform better or worse. In this paper, we show
how designing the structure of the neural network can lead to

more robust guarantees. A similar observation was made in
the context of voltage regulation problems in [31].

This paper is organized as follows. Section III provides the
DCOPF model and Section IV describes the solution method.
Section V describes the neural network design and the training
loss based on KKT conditions, and Section VI states and
proves the generalization guarantees. Simulations illustrating
the results are shown in Section VII.

II. MOTIVATION AND APPLICATIONS

As stated in the introduction, the challenge we address in
this paper is the computational difficulties that come from
having to repeat solving a large number of DCOPF problems
either in real-time operations or in planning. The benefit of
using a machine learning enabled method is that we can speed
up the solution speed by an order of magnitude or more. We
list three possible application domains.

Real-time operations. The increase in renewables intro-
duces significant uncertainties into generation and load [7],
[8]. Hence stochastic optimization formulation of OPF has
received significant attention in recent years. The works in
in [32]-[35] consider generator scheduling for systems with
significant renewable penetration. The schedules are deter-
mined by solving multiple scenarios of DCOPF problems.
The main limitations of these approaches are actually the
number of scenarios that can be solved in real-time. In [32],
for a network of about 100 buses, less than 100 scenarios
can be considered because of computational limitations. The
work in [33] considered stochastic dispatch in the timescale
of hours, where the main bottleneck was number of scenar-
ios that can be solved in an hour. The works in [34] and
[35] treated more general stochastic linear programs used in
energy systems, both pointing out that the large number of
possible scenarios (or parametric LPs) is the main bottleneck
in real-time decision making under uncertainty. In all of the
above, different types of scenario reduction and approximation
methods were used to overcome the computational bottleneck.
Our approach can be seen as directly providing a faster solver
for DCOPEF, which eliminates the need to reduce the number
of scenarios.

Planning. Planning problems are not solved in real-time,
but they are typically very computationally intensive. The
majority of planning problems use DCOPF (or even simpler
versions) because of its computational tractability [36]. As
uncertainties arise from renewables increase, planning prob-
lems are starting to consider a larger number of scenarios as
well. When substantial uncertainties are present, both earlier
works (e.g. [37]) and more recent ones (e.g., [38]-[40]) are
all mainly dealing with the large number of parametric LPs
that need to be solved in a reasonable amount of time (say
within a day). Another example is the work in [41] considered
planning tie-line scheduling subject to security constraints. The
main algorithmic difficulty is the repeated computation of a
large of number DCOPF problems and a significant amount
of effort is on selecting which ones to solve. Therefore, our
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approach can be used as a subroutine to substantially speed
up these problems.

Markets. DCOPFs are used [4] to find the locational
marginal prices (LMPs) and the multipliers associate with line
flows used in financial transmission rights [4]. Here ACOPF
are typically not used because of convexity issues (regardless
if it can be solved to optimality). During probabilistic load
forecasting, the system operator are often interested in finding
the LMPs corresponding to each load scenario [29], [42].
The number of scenarios that can be considered is again
bounded by the speed of DCOPF solvers. By speeding up the
solver, we can potentially avoid situations where the LMPs are
prohibitively high. This also points out an advantage of our
approach compared to end-to-end solvers. Since end-to-end
methods do not yield the dual variables, they are not useful
for these types of market operations.

An important future direction is to extend this work to
ACOPF problems. For an ACOPF problem, if all the active
constraints can be determined, the resulting AC power flow
problem is still nonlinear, but in general simpler than the
original optimization problem [43]. It would be important to
compare against regression-based methods that learns a warm
start to the ACOPF problem [14].

III. DCOPF
A. Model

Consider a power system where the n buses are connected
by m edges. For each of the bus, we let x; denote the output
of the generator located at the bus, and let [; denote the
load consumed at the bus. Let x = (z1,...,z,) and £ =
(l1,...,1,) be the generation and load vectors, respectively.
The generation cost vector is denoted as ¢ € R™. We assume
that c is non-negative and has at least one positive component.
We assume the system is connected. For notational simplicity,
we assume that all buses have generation and load. Without
loss of generality, we assume z; is bounded by 0 and z;.! If
bus 7 does not have any generation capability, we set z; = 0.

The line flows are related to the bus power injections
through a linear relationship. Because of Kirchhoff’s laws, not
all flows in the m lines are independent. In particular, there
are only n — 1 fundamental flows and the rest of m —n + 1
flows are linear combinations of the fundamental ones [44],
[45]. Let £ € R™! denote these n — 1 fundamental flows.
More details on line flow modeling is given in Appendix A.

The DCOPF problem asks for the least cost generations
while satisfying all the loads and flow constraints:

J*(£) = mitp c’'x (1a)
st 0<x<x (1b)
—f<Kf<f (1c)

x+ Af =¢, (1d)

I'Since the power flow equations are linear, nonzero lower bounds can be
shifted to be zero by subtracting a constant from the generation values.

2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution recBnre_s IEEI% pem}issign.dSee h’t/lp
raries. bownloaded on

Authorized licensed use limited to: University of Washington Lil

where the matrix K € R™*(=1) maps f to the flows on all
edges, and the matrix A € R™*("~1) is the modified incidence
matrix that maps the fundamental flows to the nodal power
injections. The value of the optimization problem is denoted
as J*(£) and the optimal solution is denoted as x*(£).

The DCOPF problem in (1) is an LP and is readily solved
by most optimization packages such as CPLEX or Gurobi [5].
These solvers have been optimized to the point that a single LP
can be solved in the order of seconds even for large systems.
The challenge comes from the fact that repeatedly solving
(1) for changing loads can be time-consuming, even if the
time it takes for a single instance is small. The formulation in
(1) can be easily extended to quadratic costs and is given in
Appendix D.

B. Example

we present a small example that is used to illustrate many
of the points in this paper. Consider a single-bus system
with three generators (with cost $1/MW, $2/MW and $3/MW,
respectively) serving a load. The DCOPF problem becomes

J*(1) = min z1 + 225 + 323 (2a)
st.0<o; <7,1=1,2,3 (2b)
T, + 2o+ 23 =1. (2¢)

Figure 1 plots the cost against the load. In an end-to-end
approach, the goal is to learn the generations directly. In the
next section we will introduce a method that learns the curve
J*(1) and its derivatives.

J* (1)
I x1 =T

Ty _
To=1—17 _

To = Z1=7T1
QZ‘3=0 _

T3 Ty = T2

T3 =1—T) — 9

l

Fig. 1: The cost curve of a single bus load with three gen-
erators. The curve is piecewise linear, convex and increasing,
with each piece corresponding to a different generation profile.

IV. LEARNING ACTIVE CONSTRAINTS

The goal of using machine learning is to avoid resolving
(1) every time the load changes. A number of algorithms have
been proposed to directly learn the functional mapping from
£ to x*(€) [16]-[18]. However, it is difficult to ensure the
learned solutions satisfy the constraints in (1b) to (1d). For
the example in Fig. 1, each of the generations have upper
and lower bounds as well as the load balance constraint (sum
of generation is equal to the load). Instead of using end-to-
end neural networks, the mapping J*(£) is learned. Then
the associated dual variables are obtained from the global
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dependence on the right-hand-side vector in the LP. With the
value of the dual variables, we are able to find out a set of
active constraints for (1). The exact value of x*(€) is then
found by solving a system of linear equations.

A. Global dependence on the right-hand side vector

The global dependence of the optimal cost function J*(€)
on the load vector £ can be found through standard duality
theory [28]. The Lagrangian associated with (1) is

L(X7fvl77iaA7 5‘7 N) = CTX - ITX + 77'T(X — )2)—
AME+KEO +AT(KE - )+ pT (£ —x— Af), (3)

where 7,7 € R" are the dual variables associated with
generator capacity constraints (1b), A, A € R™ are the dual
variables associated with flow capacity constraints (1c), and
p € R™ are the dual variables associated with equality
constraints (1d). The dual variables p are called the locational
marginal prices (LMPs) since they represent the marginal cost

of supplying one more unit of power at a bus [46].

The dual problem of (1) is

max p,TE AT - AT - +Tx 4)
T, 7T AN

st. c—1+T7T—pu=0 (4a)

—K'A+K'A-ATp=0 (4b)

T, 7,22 >0. (4c)

We assume that the load £ is feasible. From the value of p,
we can learn the active constraints set for (1). To be specific,
the optimal solutions for (1) are associated with the following
active/inactive constraints through the value of p*:

0, if pf —c; <0
i =4 T, if pf—c; >0 (5)
(0,%;), otherwise,
and - ~
fis if X —AF >0
fz* = _fia if 5\2 —A: <0 (6)
(—fi, fi), otherwise,

where, given the value of u*, the value of A} — A/ can be
determined by solving the following optimization problem:

muin vl 7
afm)y = AT”»

where diag(-) is a diagonal matrix. The value of \¥ — A} is
related to v by Af — \F = v;/f;. Due to space constraints,
we skip the detailed derivations. They are straightforward and
can be found in the online companion in [18].

s.t. KT diag(fy,---

It turns out the learning problem becomes much simpler
from the dual problem. Instead of directly learning the optimal
solutions or the active constraints (neither are continuous in
the load), it suffices to learn J*, which is a scalar function that
is continuous in £. The multipliers y can be then recovered
from the following theorem about the global dependence of
the optimal cost J*(£) on load £:
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Theorem 4.1. A vector pu* is an optimal solution to the dual
problem (4) if and only if it is a (sub)gradient of the optimal
cost J*(€) at the point €, that is,

VeJ* = p*. (8)

The proof of this theorem is standard and can be found, for
example, in [47]. The subgradient part of the statement comes
from the fact that J* is differentiable for almost all £, but not
everywhere. If this is the case, pu* is customarily taken as the
(componentwise) largest vector in the set of subgradients.

B. Solving DCOPF with known marginal prices

Suppose we can learn the cost function J*. Then g (the
gradient with respect to the input) can be easily obtained
through back propagation. For a nondegenerative LP problem,
there would be exactly the same number of constraints as
there are variables. Therefore, after using p* to find the active
constraint sets, a linear system of equations is solved to find
the optimal solution.

We summarize the algorithm to solving problem (1) after the
value of p is known in Algorithm 1. This algorithm can offer
an order of magnitude speedup compared to iterative solvers,
since it only requires solving a sparse linear system of equa-
tions. This speed up is comparable to end-to-end regression
methods which uses a feed forward neural network to obtain
the generation solutions [12] (the detailed computation times
are given in [18]). Here we concentrate on the feasibility and
generalization properties of our proposed approach.

Algorithm 1: Solving DCOPF with given LMPs
Inputs: p, £

Parameters: A, K, c, f, %

1: Given p, identify active nodal constraints using (5)
2: Given p, identify active flow constraints using (6)
3: EquationSolver(x + Af = ¢, active constraints)
Outputs: Optimal solutions x* to (1)

TABLE I: Solving DCOPF for given LMPs.

V. NETWORK ARCHITECTURE AND TRAINING LOSS
DESIGN

The previous algorithm essentially states that if we can learn
p* well, then we can obtain the optimal solution to (1). Note
that p* need not to be learned perfectly. Take the middle
segment in Fig. 1 as an example. As long as the learned J(I)
has a derivative between 2 and 3 in this segment, we would
detect the correct binding constraints. Therefore the key to
success is to ensure that the learned p* always have small
error.

However, small training error does not guarantee small
generalization error. The effectiveness of most machine learn-
ing algorithms are demonstrated through simulations, but
engineering applications usually require some a priori guar-
antees, since well-trained models can fail to make reason-
able inference on unseen input samples. In this section, we
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Fig. 2: The architecture of the trained ICNN. The weights
Wl(z), cee W,ii)l are restricted to be nonegative. The pass through
links Wfl), R W,gﬁ)l are not sign restricted.

introduce two design features to guarantee the generalization
ability of the trained model. By generalization, we mean a
neural network that has a small training error in learning
p* should have small testing errors on new samples. To
guarantee generalization, we first utilize the convexity of
the cost function to train an Input Convex Neural Network
(ICNN). Then we leverage the Karush-Kuhn-Tucker (KKT)
optimality conditions to design the training loss.

A. ICNN architecture

A useful result from linear programming that constrain the
structure of J* is that it is a convex function:

Theorem 5.2. The optimal cost J*(€) is a convex function of
£ with its domain as the set of all feasible loads. .

The proof of this theorem is again standard and can be found
in [47]. We adopt a special category of deep neural networks
(DNNs), called Input Convex Neural Network (ICNN) to
leverage this result [24], [25]. The network architecture that
we use in this paper is shown in Fig. 2. The basic construction
of ICNNs comes from composition of convex functions. Given
two functions f and h, if f is convex and h is convex
and nondecreasing, ¢ = h o f is convex. ICNNs satisfy
this property by using ReLU as the activation functions and
restricting the weights of the network to be nonnegative. This
construction is shown to approximate all Lipschitz convex
functions arbitrarily closely [25].

Suppose the fully-connected ICNN has k + 1 layers, i.e., k
hidden layers with “passthrough” and one extra linear output
layer. The architecture can be written as follows:

zis1 =0(W2 + W%+ b,), fori=0,--- k-1 (9)
J=c"(z), (10)

where z; represents the output of the i-th hidden layer,
Wl(z) represents the weight that connects the ¢ — 1-th hidden
layer to the i-th hidden layer, and they are restricted to be
nonnegative. The weights WEZ represent the matrices that
directly connects the input £ to the :-th hidden layer. The
symbol o (-) represents the ReLU activation function.

We let @ denote all trainable parameters in (9) and (10),
ie., 0 = {Wf,i_l,w((f,)c_l,bo;k,l}, and the parameterized
function gg(-) denote the mapping from £ to J. Then (9) and
(10) can be written in a more compact form as .J = gg (£). The
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estimated value of p can be obtained by taking the derivative
of ge(€) with respect to £, and is denoted by i = V,ge(£).
We show in Section VI that convexity is fundamental to the
generalization property of the neural network.

The goal of training the network is to learn the value of 6
which minimizes a specified loss function L, i.e.,

6= argmeinﬁ(ge(g),vege(f))- an

Next, we illustrate how to construct this loss function.

B. Capturing KKT conditions

When the load vector £ changes by certain amounts, the
active constraint set and therefore the value of p* remain
unchanged. In fact, we can divide the feasible input space
of £ into a finite number of regions 2. Each of these region is
a convex polytope and corresponds to a different combination
of active constraints and a value of p*.

If we have a number of ground-truth values of (J*, u*) for
every possible region, then we can train the neural network
by minimizing the regression loss. However, the number of
possible regions grows quickly with respect to size of the
system. For moderately sized system, there maybe a large
number of regions and it is unlikely that historical observations
would include data in every region. Even if data is generated
offline, exhaustively covering all of the regions with labeled
data become cumbersome.

If the data set only samples a small number of regions,
the model trained by minimizing the regression loss performs
poorly for input samples that come from unseen regions. This
is not unexpected since there is no data to make prediction
for these unseen regions. But in practice the value of using
machine learning is to quickly determine what might happen
for a large number of loads where some would come from
unseen regions. Interestingly, because we are solving a well-
defined optimization problem, we can mitigate this data chal-
lenge again by looking at duality theory.

We develop an augmented training approach for the neural
network gg(£) based on violations of KKT conditions. Recall
KKT conditions for the LP in (1) is

c—T+7—pu=0 (12a)
— K" A+K"'X-ATp=0 (12b)
0<x<x (12¢)
—f<Kf<f (124d)
x+Af =¢ (12¢)
T, 7. AA>0 (12
T2 =0, Ti(x; —%;) =0, Vie {l,--- ,n} (12g)
A(fi+ Kif)=0 (12h)
N(KTE—f;)=0, Vje{l,--- ,m}, (12i)

2Note that the division of the feasible input space is just for the analysis
and illustrative purpose in the paper. We do not do the division in the practice
and the implementation of our algorithm does not require this division either.
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where K is the j—th column of matrix K7

Before introducing the loss term related to violations of
KKT conditions, we have the following lemma:

Theorem 5.3. The dual variables T,7, X, X, p satisfy the KKT
conditions in (12) if and only if they satisfy equations (13):

A+ (KfF-H)T-x=0 (13a)
A—(Kf+£)T-A=0 (13b)
[T+ (x—-%x)]"-7=0 (13¢)

[t -x]" -1 =0. (13d)

Proof. Here we consider (13a) and the rest follow in similar
fashions. In particular, we prove the following two conditions
are equivalent:

DKF<fA>0,(Kf-f)oAx=0
2) [ A+ (KfE-f)]F —x=0
where © represents element-wise multiplication.

First we show that 1) implies 2). If Kf < f, then we
must have A = 0 from the complementary slackness condition
(Kf —f) © A =0. So

A+ (Kf—f)]" — A= [Kf - f]T =0.
If Kf =f and X > 0, then we have
A+ EKE-H)]T—A=[A"-Xx=0.
Next we show 2) implies 1). The right-hand-side implies

the following dual feasibility since [A + (Kf —f)]f —A =0
gives

A=A+ (Kf —f)]" >o0.

Suppose the primal feasibility does not hold, i.e., Kf — f>0,
then

A+ (Kf—f)]T - (14)
=X+ (Kf—f) - A (15)
=Kf —f (16)
=0. (17)

Therefore, we at most have Kf = f and Kf cannot exceeds
f.

For complementary slackness, suppose Kf < f but X # 0,
then we have

A+ (Kf—£)]7 - X (18)
_ f either A+ (Kf —f) —~A=Kf-f=0 (19)
"]l or0—X=0,

which contradicts our assumption. So, if Kf < f, we must
have A = 0. Suppose A > 0 but Kf < f, we arrive a similar
contradiction. ]

Authorized licensed use limited to: University of Washington Lil

6

Note that dual variables 7,7, A, and X can all be repre-
sented in terms of p. To be specific, based on (12a) and (12f),
we can express the dual solutions T and T as follows

T(u)=[p—ct —(n—c) (20a)

7(p) = [ — ", (20b)

where the notation [a]™ represents [a|T = max{a,0}. The
dual solutions A and X can be expressed in terms of g by
solving the ¢1-minimization problem in (7), and we denote
them by A(u) and A(u), respectively.

Plugging the expressions T(u), 7(t), A(p) and A(p) into
(13a)-(13d), we obtain a system of equations only related to p.
To capture the KKT optimality conditions in (12), we define
violation degrees associated with equations (13) as follows

vi=[A+ (KfE=f)]T - (21a)
= (Kf+6)F -2 (21b)
ve= [T+ (x—-x)]" -7 (21¢)
v,=lr—-x" -~ (21d)

v, =€ —x— Af 21e)

Based on violation degrees given in (13a)-(13d), we define the
loss term to minimize violations of KKT conditions as follows

Lrc(0) = |v5(Vege (€))II3 + lvx(Vege ()13
+lvr (Vege (€)1 + 1 (Vege (O))3 + 1113 (22)

We also define the regression loss as follows
Lr = [g0(€) = T*[| + [[Vego(€) — p*I,

where the first term is the regression loss defined between
ge(£) and J* over the neural network’s outputs, and the second
term is the regression loss between Vegg(€) and p* over
calculated derivatives.

(23)

By combining the the regression loss defined in (23) and
the KKT-related loss term (22), we can express the training
loss for our proposed algorithm as follows

L(0) = Lr(0) + Lxc(0).

By minimizing the loss function in (24), we can get the trained
model gg(€) and use it to make predictions in an on-line way.

(24)

Note that the KKT-related loss term in (22) can be cal-
culated for both labelled and unlabelled datasets. For the
unlabelled dataset, denoted as D,, /> the data points in it only
contain the input load, i.e., {£(1), £3) ... (")} To calculate
the KKT-related loss on D,,/; does not require any ground-
truth labels. Since dual variables 7,7, A, and A\ can all be
represented in terms of p by solving the ¢1-minimization
problem in (7) and using the expressions in (20), they can be
obtained by learning g from the input load. Besides, as shown
in the architecture of the ICNN in Fig. 2, we can interpret the
layer before the output layer as the prediction of the power
generation x, from which we can get the value of the flow f
using the equation (12e). Then we do not have to consider the
violation degree in (21e). For calculating the rest of violation
degrees in (21), all the information required can be obtained
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by learning from the load. Therefore, to construct the KKT-
related loss on D, /;, we do not ask for ground-truth labels.

We summarize our proposed algorithm for training the
ICNN in Table II, and call it Algorithm 2. Although adding
KKT-related loss term makes the loss function complex, we do
not observe any numerical issues during the training process.
In the simulations, the loss function always decreases and
converges to a low level.

Algorithm 2: Algorithm for Training the ICNN
Inputs: Samples with labels D,,

Inputs: Samples without labels D, /;

Inputs: Model to be trained go(£)

Parameters: A, K, f, %, x

1: Calculate regression loss term Lz on D,, using (23)
2: Calculate KKT conditions-related loss term £ g

on Dy, and D,,/; using (22)

3: Minimize £(6) in (24) to get the optimal parameter 6
Outputs: Trained model g4(£)

TABLE II: Algorithm for training the ICNN.

VI. GENERALIZATION

In this section we consider the generalization performance
of our proposed method. By generalization, we mean the
algorithm should perform well on test samples that were not
seen during the training process. We adopt the standard method
of analysis here: we assume that the neural network can be
trained to zero error on the training samples, then we study
the errors for testing samples [48]-[50]. We use the following
definition as a shorthand:

Definition 1. We say a neural network is well-trained if it
achieves zero loss on the training data.

Understanding the generalization properties is important
because zero training error does not imply small test error.
Consider the example given in Fig. 3. Suppose we are fitting
a piece-wise linear function but only given two points that lie
on a line and the training loss is the regression loss. There
are infinitely many functions that pass through these points,
implying that they have zero training error. Obviously, many of
them can have large testing errors for other points on the line.
This example also shows that it is not sufficient to just impose
convexity or provide gradient information on their own. There
are also infinitely many convex functions passing through the
labeled points, and there are infinitely many functions with
the right gradients at the given points. To constrain the class
of functions to be learned, both convexity and the gradient
information are needed.

Since J* is piece-wise linear, we study generalization for
two settings. The first is we assume that there are multiple
training data within a region where J* is linear, and we are
interested in the testing performance of a new input from
the same region. This setting is about whether the model is

== = Ground Truth
No Training Error

Fig. 3: Given two points on a line, there are infinitely many
piecewise linear functions passing through them. Therefore,
small training error (passing through the points) does not
necessary imply small generalization error (recovering the
line).

constrained enough to not overfit during training. We provide
a positive (and simple) answer in Theorem 6.4.

The second setting is to assume that the test data lies in
a region that was unseen during the training process. This
question is normally not asked since there is no expectation
that learning would be useful for these type of unseen data.
However, since there are large number of possible LP regions
for DCOPF, it is likely that not all regions would be included in
the training data. Therefore, learning algorithms must provide
some guarantees on unseen regions. This is especially impor-
tant as operating conditions change and the historical data are
no longer reflective of future scenarios. In Theorem 6.5, we
provide a positive answer showing that the gradients of the
unseen region are still bounded.

A. Generalization for A Linear Region

In this part, we study the case where all training samples
have the same value for p. That is, they come from the
same LP region. Let us denote the set of training samples
as Dy, and convhull Dy,.,, is the convex hull of set Dy,.,,.
The following theorem states the performance of the neural
network for a new input £"V that is not in Dy,.,.

Theorem 6.4. Given N input loads Dy, = {€',... £}
and assume Vg,5(€") = p for all i = 1,...,N. Assume the
ICNN model gg(€) is well-trained on Dy,.,. Then for all points
2" € convhull Dy, Viege (£7) = p.

This theorem is useful for LP problems because the gradient
of J is piecewise constant over convex polytopic regions. If
we are given some points from a region, then a well-trained
neural network guarantees that the function is learned correctly
for all points within their convex hull. This result implies the
correctness of the overall algorithms since they only rely on
the gradient (dual variable) information.

Technically, the above theorem says that if the gradients
of a convex function are equal at a set of points, then the
function is linear on the convex hull of these points. This is
not a surprising result, but it does show that by constraining the
structure of the neural network and using gradient information,
we can generalize to uncountable number of points (compact
regions) by learning from a finite number of training points.
The proof of the theorem is given in Appendix B.
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B. Generalization with KKT Loss

If training samples may not represent all possible regions,
we can construct the KKT conditions augmented loss in (22)
on a set of unlabeled data points, for which we only have
access to the input load values but not the optimal cost and the
optimal LMPs. Since we do not ask for labels, we can sample
as many data points as we want. This allows us to train with
a very large set. We call this set of unlabeled data points the
helper set. To construct the KKT loss on the helper set, we
calculate the violations of KKT conditions through equations
(21), where the Lagrange multipliers are determined from the
learned p by following steps (5) and (6) in the training process.

By training with the helper set, unseen regions become
“seen” in the sense that the outputs from the trained model
must satisfy KKT conditions. As long as the model is well-
trained, the analysis of generalization is the same as Section
VI-A. Therefore, the generalization performance of training
with helper set can also be guaranteed by Theorem 6.4.

C. Generalization for Unseen Regions

Here we consider the case where a region is not represented
at all by the training data, including both labeled and helper
sets. Then if a test sample comes from this region, would our
method output anything useful? Methods like classification and
dictionary learning cannot make useful predictions since there
is no basis to make inferences about unseen regions. The next
theorem shows that our approach is still partially successful
because the gradient of a test data point is bounded by the
gradient of the training points:

Theorem 6.5. Given N input loads Dy, = {€,... £V},
assume the ICNN model gg () is well-trained on Dy,,. Assume
that N > n—+1 and Dy,,, does not lie in a lower dimensional
subspace in R™. Then for all points €' € convhull Dy,
Vege(€") is contained in a bounded convex polytope.

The exact characterization of the polytope is given in
the proof in Appendix C and depends on the values of
{£Y,... €N} and Vge(£7"). The significance of the theorem
lies in that training data are able to constrain the gradient for
all points that lies in its convex hull. Intuitively speaking, as
long as some surrounding points are included in training, the
gradient cannot be “very wrong” even for points coming from
LP regions that were not seen during training.

Consider the curve in Fig 1. Suppose we learned the two
end pieces correctly but there was no training data for the
middle piece, as shown in Fig. 4. Then by Theorem 6.5, the
slope of the middle piece is constrained to be between the
slope of the two end pieces. Furthermore, even if the neural
network is trained in such a way that there are more than one
piece of the middle region, the slopes of all of the pieces are
still bounded between the two end pieces. Since Algorithm 1
only relies on getting g to be in the correct range, the active
constraints would be identified correctly for all of these cases.

Theorem 6.5 formalizes the picture in Fig. 4 to higher
dimensions, but the geometric intuition remains the same. This
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(1)

Fig. 4: Example when the middle region has no data. But as
long as the other two regions are well trained (black lines), the
slopes in the middle region are bounded (blue and red dashed
lines) by Theorem 6.5. Then the active constraint detection
(Algorithm 1) would still be correct.

theorem also formalizes the empirical observation in [30],
where the error of neural network-based OPF is reduced if
training points are on the boundary of the feasible region.

VII. EXPERIMENTAL RESULTS

In this section, we demonstrate experimental results of
using Algorithm 2 for training the ICNN and Algorithm 1
for solving DCOPF. We use the IEEE 14-bus system as
the benchmark. We first examine the quality of solutions
in terms of feasibility and optimality, then we examine the
generalization performances. In Section VII-B, we show the
simulation results of our model in the IEEE 118-bus system.

A. 14-bus System

To generate the training set, we first sample £ from the
uniform distribution. We use two different variations from
nominal load values: 30% and 50%. The total size of data
samples is 50000 for each setting. Then, for each value of £,
we solve the primal and dual problems using CVXPY [51]
powered by CVXOPT [52]. The optimal cost and the dual
solutions are recorded. We hold 20% of all data samples as
the test set and use the remaining for training. The ICNN we
train has 4 hidden layers.

In order to better evaluate the performance of the model
trained using our algorithm, we also provide experimental
results of the end-to-end learning model, which is by far the
most popular in the field of using deep learning for solving
DCOPF [12]-[15]. We constructed the end-to-end model with
an architecture similar to [13], although other architectures do
not change the conclusions. To be specific, for the end-to-end
model, we train a 4-layers fully-connected ReLU network by
minimizing the regression loss, and use the trained model to
directly predict the optimal solution to (1).

Both the end-to-end model and our model using Algo-
rithm 2 are implemented on the Tensorflow platform and are
trained until the training loss converges. The end-to-end model
can be implemented using existing modules in Tensorflow,
however, calculating KKT-related loss is specific for solving
DCOPF and cannot be implemented using existing modules
in Tensorflow. So we need to do some customization. In our
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Input variations 30% 50%
Solutions Optimality  Feasibility Infeasibility || Optimality Feasibility Infeasibility
End-to-End 18.34 21.98 78.02 17.76 46.30 53.70
Our model 94.93 94.93 5.07 93.08 93.08 6.92

TABLE III: Quality of solutions. We compare the solutions quality of our model to the end-to-end model. The ratios of
optimal, feasible and infeasible solutions are listed and the numbers represent percentages. Results under two different input
variations are given, i.e., 30% and 50% deviations from the nomial load value. More than 90% of the solutions obtained from

our algorithm are optimal, while less than half of the solutions from the end-to-end model are feasible.

experiments, the customized modules take longer time to train
than existing functions or modules in Tensorflow. Therefore,
the training time of our model for each epoch is longer than
the end-to-end model.

1) Overall performance: To evaluate the quality of solu-
tions obtained by different learning models, we divide solu-
tions into three categories: optimal, feasible, and infeasible
solutions. In our model, we feed £ into the neural network and
find the active constraints set. Then we solve a system of linear
equations using a standard solver to obtain final solutions. The
end-to-end model can directly outputs the solution to x. The
ratios of optimal, feasible and infeasible solutions obained by
different learning models are listed in Table III. As shown in
Table III, the optimality ratio of the solutions obtained from
our model is higher than 90% under both input variations. In
comparison, almost 50% of the solutions obtained from the
end-to-end model are infeasible. In terms of computational
time, both methods are much faster than iterative solvers in
online DCOPF solving.

To examine the solution feasibility in the end-to-end model,
we use the output x and the nodal power balance (1d) to
obtain f. The value of feasibility ratio depends on how large
the error tolerance is. In this paper, 0.3% mismatch is allowed
when we calculate feasibility ratios. In Table IV, we also list
the ratios of solutions that do not satisfy the nodal power
balance, the limits on generators’ outputs, and the limits on
line flows, respectively. From Table IV, we can see that more
than 98% of the solutions obtained from our model satisfy
both generators limits and line flows limits. By contrast, only
24% of the solutions from the end-to-end model satisfy the
line flow limits.

2) Generalization on Unseen Regions: To evaluate the
generalization ability of our model, we create an illustrative
example in the 14-bus system. Particularly, we examine the
generalization performance on new data points that comes
from region without any training samples. To generate the
training set for this case, we only change the load values at two
buses, but keep the remaining load values fixed. In this way,
the space of input loads can be regarded as a two-dimensional
plane. When varying the load values at the two buses, we can
have four different combinations of active constraints, which
correspond to four different values of p*. Therefore, we divide
the input load space as four regions, denoted as Ry, Ri, Ro
and R3. The division of the input space is shown in Fig. 5. We
take training samples from Ry, o, and R3, and take testing
samples from R;. Let us denote the training set as Dy,.,,, and

W
»

Load value at bus 6
-3
o

2.0

20 25 30 35 40 45 50 55 6.0
Load value at bus 2

Fig. 5: Division of the input space. The axes are load values at the
two buses. In this example, based on different combinations of active
constraints, the input load space can be divided into four regions. We
take samples from R, as the testing set and samples from surrounding
regions Ry, R2 and R3 as the training set.

the testing set as Dyg;.

We use two different training approaches for our model.
In the first training approach, we only use D, for training
and minimize both the regression loss and the KKT-related
loss on Dy,.,. For the second training approach, we construct
an additional training set, called helper set Dj,c;,,, which only
contains the input load, i.e., {£(),£2) ... £(N)} and do not
have any ground-truth values. To generate the helper set, we
can sample £ from uniform distributions ¢ ~ Uniform(2, 6)
and ¢s ~ Uniform(2, 6). Therefore, Dy, contains the testing
region R;. Aside from minimizing (24) on Dy,.,, we also
minimize the KKT-augmented loss (22) on Dp.yp. ° End-to-
end model only use labeled samples and is trained on Dy,.,.

We list the ratios of optimal, feasible and infeasible so-
lutions obtained from different learning models in Table V.
As we can see, when we use Dy, as an additional training
set, we can obtain an optimality ratio as high as 96%. Even
without Dy, more than half of the solutions obtained from
our model can achieve optimal values. As a comparison, the
end-to-end model fails to make feasible predictions on test
samples that come from never seen regions in the training
process. The reason that our proposed algorithm outperforms
the end-to-end model can be attributed to the KKT-related loss.
By minimizing the KKT-related loss term, the trained model is
able to learn the underlying KKT conditions in all four regions
and make better predictions of pu* on D;gy.

3We know from Section V-B that to calculate the KKT-augmented loss on
Dheip does not require ground-truth labels.
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Input variations 30% 50%
Infeasibility Nodal balance Generators limits Lines limits || Nodal balance = Generators limits Lines limits
End-to-End 16.88 0 76.79 47.45 6.33 6.46
Our model 5.07 0 1.18 6.92 0 0.79

TABLE 1V: Infeasibility of solutions. We compare our model to the end-to-end model. The ratios of solutions that do not
satisfy the nodal power balance, generators’ limits and the line limits are listed. 0.3% mismatch is allowed. We give results
under two different input variations, i.e., 30% and 50%. In both settings, more than 98% of the solutions obtained from our
model satisfy both generators limits and line flows limits, and more than 90% of our solutions satisfy the nodal power balance.

Optimality  Feasibility

End-to-end 5.52 8.6
Our model, with Dy, 97.24 97.24
Our model, without Dy, 62.25 72.31

TABLE V: Generalization performance on test samples com-
ing from never seen regions. With the helper set, our method
is optimal 97% of the time (62% without). The end-to-end
model fails to make reasonable predictions.

B. 118-bus System

In this part, we evaluate our model in the IEEE 118-
bus system, where 54 generators and 183 edges are located,
and compare with the classification approach. To generate
the training set, we sample load values £ from a Gaussian
distribution with mean of 1.0 and standard deviation of 0.03.
Then, for each value of £, we solve the primal and dual
problems using CVXPY powered by CVXOPT. We solve
60000 samples and split 20% of all data samples for testing
and 80% for training. For our model, we train a 5-layer ICNN
to learn the mapping from load values to cost function values.
For the classification method, a 5-layer fully-connected neural
network is constructed to predict the set of active constraints.
We use one-hot encoding of different active sets as labels, and
use cross-entropy as the loss function. The simulation results
show that our model achieves an accuracy of 88.96% in terms
of finding optimal solutions. In comparison, the accuracy for
the classification task is 39.61%.

VIII. CONCLUSIONS

This paper proposes a new framework to use neural net-
works for solving DCOPF. By leveraging rich linear program-
ming theories, we prove our framework guarantees generaliza-
tion. First, using the convexity of optimal cost in DCOPF, we
constrain the neural network to have an input convex struc-
ture. Second, using the KKT optimality conditions, we add
violations of KKT conditions to the training loss. In this way,
we are able to exploit large amounts of unlabeled data points
for training and improve the generalization performance. Our
method is evaluated on the IEEE 14-bus and 118-bus. The
experimental results demonstrate that our method significantly
outperforms existing end-to-end and classification approaches.
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APPENDIX
A. Fundamental Flows

In the DC power flow model, the power flow on the
lines are determined by the angle differences. Let 6; be the
angle of bus i. Let f;; = b;;(0; — 6;) be the flow along
the line connecting ¢ and j. If a network has cycles, let
buses 1,,...,n. be the buses in a cycle, counted in either
clockwise or counterclockwise direction. The weighted sum
f12/b12 + faz/bas + -+ + fn.1/bn.1 = 0 and therefore, the
flows lie in a subspace.

Repeating the above calculation for every cycle in a network
gives that the flows lie in a subspace of dimension n — 1 for
a connected network with n buses. A basis of this subspace
is called a set of fundamental flows. There are multiple bases
to choose the fundamental flows from. A popular way is to
choose a spanning tree and consider the flows on the branches
as fundamental, and everything else can be derived from them.

B. Proof of Theorem 6.4

Proof. Since £"V is in the convex hull of Dy, there are
positive coefficients s, ..., ay such that

eneW:Oé1£1+-'-+OzNEN,

and a1 + ..., a, = 1. By convexity,
go(£"") < arge(£') + -+ +ange(€Y).  (25)
By the assumption that gg(£) is well-trained, we have
Vege(€) = p, fori=1,--- N. (26)

Using first-order conditions of convex functions, we have
go(£%) > go(£) + p(€™% — £%) for all i. Multiplying the
i’th equation by «; and summing gives

9o(€"") > arge(£) + -+ - + ange(LY). (27)
Combining (25) and (27) gives
go(£"™) = a1ge(€}) + - - + ange (£Y). (28)

This implies the function is linear in the convex hull of Dy,
and all the points have the same gradient. ]

C. Proof of Theorem 6.5

Suppose gg R™ — R is a convex function. Given
£, ..., €N in the domain of g and let u' = Voge(£'). Let
£ be a point in the convex hull of £',...,¢" and denote
Vege(€") = . By the convexity of gg, we have

(Vego(£') — Vege(£")T (€ — £1) < 0,Vi.  (29)
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The inequalities in (29) constrain the values that V,ge(£"")
can take. We show that these inequalities actually describe a
bounded polytope in R™ through a proof by contradiction.

Suppose the region defined by the inequalities in (29) is not
bounded. Then Vggg(£"") can be scaled arbitrarily and all of
the inequalities in (29) would still hold. Then we can take the
norm of Vege(€™") to be large enough such that it would
dominate the V,gg(£') terms. Then (29) becomes

Vege (€))7 (£ — £%) > 0, Vi. (30)

Since €™ is in the convex hull of €', ..., €Y we can write it

as 0V = 101 + .- + anf” and o; > 0 and sums up to 1.
Substituting this into (30) and rearranging the terms, we have

N
ENVKQB (Enew)Tei > Z Oéz‘vzge (El1ew>T£i-
i=1

By the assumption that N > n + 1 and £,...,£€" are not
in a lower dimensional subspace of R", Vge (€)1 €% will
be nonzero for at least two ¢’s. But it is not possible to have
a convex combination of scalars (the Vege (€))7 £%°s) larger
than every scalar in the set when at least two are nonzero (this
follows from Farkas’ lemma). This contradicts the assumption
that the polytope created by (29) is unbounded.

D. Quadratic Costs

The DCOPF problem with quadratic cost is:

J(£) = mitp %xf +cx; (31a)
=
s.t. (1b), (I¢) and (1d), (31b)

where ¢; and ¢; are the cost coefficients. As with the linear
cost case, we assume that the multipliers (@) with respect to
the power balance equations have been learned. If g;’s are not
zero, the dual of (31) is

max ul e — ATF-NTF— 0"k (32a)
[N ZN %
st. Qx+c—p—-v+v=0 (32b)
—ATp K" A+K"'x=0 (32¢)
v>0,v>0A>0X>0, (32d)

where Q is a diagonal matrix with the value of ¢; on the
i’th diagonal. There are two differences between the linear
and quadratic costs. The first is that the constraint associated
with the generations, (32b), also include the primal variables
x. The second is that a quadratic program may not have the
same number of binding constraints as the variables.

We use the following simple lemma to determine whether a
generator constraint is binding by following simple economic
principles. Specifically, given the optimal LMP p*, x; is
associated with the following active/inactive constraints:

{fi, if ,U: — C; — 2(]74@1 >0
=40 if uf —c¢; <0 (33)
(0, z;), otherwise
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- Once p is known, the dual problem associated with A and
A is identical to the linear cost case and the binding line
constraints can be recovered through the same process.

Once we identify all of the binding constraints, we can
encode it into a matrix of the form My = a, where y is
the concatenation of x and f. Here the number of constraints
(rows of M) can be less than the number of variables and we
still need to solve the following optimization problem:

1 A
min 5yTQy +ely (34a)
s.t. My = a, (34b)
where Q is a diagonal matrix with (q15---+,Gn,0,...0) on its

diagonal and ¢ = (¢1,...,¢p,0,...,0). Fortunately (34) can
be solved as a linear system. Following standard quadratic
programming results, let 7* be the optimal Lagrangian mul-
tiplier of (34b), then the optimal solution of (34) is given by
the following linear system

Q MT][y*] [-¢

M 0 T |al’
Once the active constraints are identified, a linear system of
equations can again be solved to find the optimal solutions.

(35)
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