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Abstract—This paper studies the multi-stage real-time stochas-
tic operation of grid-tied multi-energy microgrids (MEMGs) via
the hybrid model predictive control (MPC) and approximate
dynamic programming (ADP) approach. In the MEMG, practi-
cal power and thermal network constraints, heterogeneous energy
storage devices, and distributed generations are involved. Given
the relatively large thermal inertia and slow thermal energy
fluctuation, only uncertainties of renewable energy sources and
active/reactive power loads are considered. Then, historical data
are adopted as training scenarios for the MPC-ADP method to
acquire empirical knowledge for dealing with all the diverse
uncertainties. Further, piecewise linear functions are used to
approximate value functions with respect to the operation status
of energy storage assets, which enables sequentially solving the
Bellman’s equation forward through time to minimize MEMG
operation cost. Finally, numerical case studies are conducted to
illustrate the effectiveness and superiority of the proposed MPC-
ADP approach. Simulation results indicate that with sufficient
information embedded, the MPC-ADP approach could obtain
good-enough real-time operation solutions with the successively
updated forecast. Further, it outperforms alternative real-time
operation benchmarks in terms of optimality and convergence
for various application scenarios.

Index Terms—Hybrid model predictive control-approximate
dynamic programming, multi-energy microgrid, stochastic oper-
ation, heterogeneous energy storage.
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p/b Index of thermal pipes/electricity branches
pair(p,n) Indicating pipe p is connected with node/bus n
P;'),r,( 4+ Set of thermal pipes starting at node n in the
supply/return network

Set of thermal pipes ending at node n in the
supply/return network

t Index of real-time operation intervals

P o)

Parameters
Cw

W Water heat capacity
I, min I, Max
Egsrs/Egs/ts

Min/max energy of the battery stor-
age (BS)/ thermal storage (TS) on bus i
Max absorbing/releasing thermal energy of
the TS on bus i

H’;-L’ Thermal demand for pipe p at interval ¢
Ny Number of electricity buses

Hie™ [Hip ™

Nt ] Number of real-time operation intervals
Py /Pgp""  Max charging/discharging power of the BS
) on bus i
Eo Maximum power input of the power-to-
o thermal conversion (PtC) unit on bus i
wr /Py Min/max power output of the combined
cooling, heat and power (CCHP) plant on
) ) bus i
Boios Active/reactive power demand of bus i at
) . interval ¢
A Active power output of the wind tur-
bine (WT)/ photovoltaic (PV) cell on bus i
at interval ¢
b/ Xp Resistance/reactance of branch b

T;}i’f( b /T;’;‘f‘( H Min/max ten.lperature at the start of a sup-
_ ply/ return pipe

Tf};’f(_) ;T;’;‘:"‘(_) Min/max terr.lperature at the end of a sup-
ply/ return pipe

an'}‘g" / Vgg’g" Min/max nodal voltage magnitude of bus i
V Voltage of the substation bus

At Unit dispatch interval

NME Power efficiency of a CCHP

npic/ MMT Power-to-thermal conversion efficiency of

a PtC/ CCHP
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nBc/MBD Charging/discharging efficiency of a BS

nrc/MTD Absorbing/releasing efficiency of a TS

eM /eM/eM Unit maintenance cost of a PtC/TS/CCHP

EM-/EM, /M. Unit maintenance cost of a WT/PV/BS

&ng Natural gas fuel price

Rs/TTS The decay rate of BS/TS

T/ Ts Electrical energy purchasing/selling price

Variables

ELL/EY.  Energy stored in BS/TS on bus/node i at
interval ¢

g Optimal objective value obtained by the
proposed MPC-ADP approach (from offline
training or real-time operation layer)

Fry/Fpy  Fuel/maintenance cost at interval

F! Total MEMG operation cost at interval ¢

Fiy Power transaction cost of MEMG at interval ¢

Hf’,:( n T.hermal energy at the start of supply/return
pipe p at interval ¢

Hf’}i‘(_) Thermal energy at the end of supply/return

] _ pipe p at interval ¢
Hp,-/Hy; Thermal output of the PtC/CCHP on bus i at
] _ interval ¢

Hj/Hjp,  Absorbing/releasing thermal energy of the TS
on bus i at interval ¢

m:,if 5 ;: Mass flow rate/temperature of pipe p at

interval ¢
Pyuy/Psgr; Purchasing/selling power at interval ¢

P20t Active/reactive power on a lateral branch of b
at interval ¢

ngf{)}% Active/reactive power flow of branch b at
) _ interval ¢
Pj/P3p  Charging/discharging power of the BS on bus
) i at interval £
P;;;C PtC power consumption on bus i at interval ¢
T Active power output of the CCHP on bus i at
interval ¢
Tz};( b Temperature at the start of supply/return pipe
p at interval ¢
T_f/‘i,(_} Temperature at the end of supply/return pipe
. p at interval ¢
V;;‘E;S Voltage magnitude of bus i at interval ¢

I. INTRODUCTION

ULTI-ENERGY microgrids (MEMGs) are the emerg-
M ing paradigms around the world, whereby the heteroge-
neous energy carriers such as electrical and thermal (e.g., heat
and cooling) energy are generated, transmitted, and consumed
on the distribution network level. MEMGs have proven to be
an effective way in providing cost-effective and reliable multi-
energy supply via enhanced renewable energy source (RES)
utilization as well as multi-energy coordination. Under this
circumstance, one primary focus of the industry and academia
is to explore the practical real-time MEMG operation methods
against diverse uncertainties [1].
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In a MEMG, as consumers typically demand a large amount
of electrical and thermal energy simultaneously [2], exten-
sive research works have been conducted on the optimal
electrical-thermal energy coordination. Reference [3] presents
an optimal coordinated operation model for a MEMG with
RESs to minimize electrical and thermal energy supply
cost in both the grid-tied and islanded mode. A multi-
objective electrical-thermal energy coordinated dispatch model
is proposed in [4] for a grid-tied MEMG while considering the
demand response schemes. Reference [5] presents a detailed
MEMG model to minimize the multi-energy supplying cost,
subject to specified physical operation constraints. Although
the effective multi-energy coordination is achieved in [3]-[5],
the heterogeneous uncertainties are not effectively tackled,
posing great threats to the reliable and economic MEMG
operation.

To tackle various uncertainties gradually revealed in the
MEMG operation, the robust optimization (RO) and stochastic
programming (SP) methods [6] have been applied. A RO-
based approach is proposed in [7] to minimize the MEMG
operation cost in multiple timescales. In [8], to derive the
day-ahead economic MEMG operation decisions while attenu-
ating adverse effects from all various uncertainties, a RO-based
dispatch method is discussed. A two-stage RO method is uti-
lized in [9] to optimally coordinate multiple MEMG assets,
including distributed generators, energy storage devices, and
demand response assets. The RO methods in [7]-[9] contribute
to immunizing the MEMG operation against all various uncer-
tainties, however, their results can be too conservative as the
occurrence possibility of the worst case is extremely low,
hindering its economic efficiency in practice [6].

To mitigate solution conservativeness, the SP method can
be applied by incorporating a set of scenarios sampled from
historical data. In [10], diverse uncertainties from electric-
ity transaction prices, electricity loads, and RES outputs
are depicted by scenario trees and managed by a two-
stage SP scheme to minimize the expected MEMG operation
cost. The studies in [11] and [12] introduce an SP opera-
tion method for MEMGs with diverse uncertainties, aiming
to coordinate the multiple energy in different timescales and
reduce the holistic energy supply costs. Reference [13] pro-
poses a two-timescale coordinated SP operation approach for
the RES-integrated MEMG, immunizing against the diverse
uncertainties with minimum operation cost. The SP meth-
ods employed in [10]-[13] can alleviate the adverse effects
of diverse uncertainties on MEMG operations but they require
the specific probability distributions of individual uncertain-
ties which could be hard to obtain. Furthermore, the fact that
only a limited number of scenarios is preserved after the sce-
nario reduction in [10]-[13] could result in a coarse coverage
of the uncertainty space. On the other hand, a large number
of scenarios is required to ensure the solution quality, which
however could be too computationally demanding [6].

The coordinated electrical and thermal energy operation
researches in [3]-[13] assume that the thermal energy is con-
sumed locally, deviating from the practical condition that
thermal loads are geographically distributed. Indeed, the prac-
tical thermal flow constraints need to be enforced, while
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considering that the thermal inertia could provide additional
dispatch flexibilities [14]. In this light, reference [15] pro-
poses a two-layer (i.e., day-ahead and real-time) risk-averse
SP approach for the optimal coordination of multi-energy car-
ries in the MEMG against diverse uncertainties. The practical
thermal flow modeling is incorporated to enhance the over-
all dispatch flexibility. However, the SP method could be
overly time-consuming. In [16], a two-stage RO-based dis-
patch model for a MEMG is presented to make optimal
operation plans against power load uncertainties. The thermal
dynamic characteristics of the district thermal network are uti-
lized to provide operational flexibility and improve economic
performance. To handle multiple uncertainties, reference [17]
proposes a two-stage RO economic dispatch model with a
robust thermal comfort management strategy and the practi-
cal thermal flow constraints. Though computationally effec-
tive, the solutions derived from [16] and [17] could be too
conservative as [7]-[9].

From the above literature review, it can be seen that
references [7]-[13] and [15]-[17] adopt a two-step frame-
work, including a RO or SP-based day-ahead model and a
real-time model, to approach the real-time MEMG operation
with uncertainties. That is, the RO and SP-based two-stage
day-ahead models are used to first obtain operation plans for
the entire day, and the real-time model determines flexible
adjustments over the day-ahead solution for each time slot in
the real-time scale. As a matter of fact, the real-time MEMG
operation is a multi-stage optimization problem, in which
uncertainties are gradually revealed over time and the sequence
of real-time operation decisions is made adaptively at each
time slot throughout the day [18]. That is, non-anticipativity
constraints are necessary for the real-time MEMG operation to
ensure that the decisions taken at interval ¢ depend only on the
information revealed up to interval £, but not on the data that
will be realized in the future. In this sense, the two-stage RO
and SP methods fail to satisfy the requirements of the real-time
non-anticipative operation, which will severely under-estimate
the effect of uncertainties and lead to suboptimal or even
infeasible operations.

As for the current research work on handling the non-
anticipativity of uncertainty factors, reference [18] proposes
two mixed-integer linear programming (MILP) methods,
namely explicit and implicit decision methods, for solv-
ing the scheduling problem of thermal units and energy
storage assets in a transmission network while ensuring solu-
tion robustness and non-anticipativity. However, the empirical
knowledge from historical data is not fully utilized in those
methods, and their computational performance is sensitive to
the problem dimension. In [19], a stochastic dual dynamic
programming approach while considering multi-stage uncer-
tainties is developed to get the optimal operation decisions of
power systems, and the non-anticipative requirements are sat-
isfied through the multi-dimensional Benders cuts. However,
the approach in [19] uses a sample approximation, which may
produce certain errors; in addition, only a fixed set of sam-
ples is generated and used for all iterations, while the new
information or samples are hard to be involved [20]. Finally,
same as [18], reference [19] focuses on the electricity dispatch

and does not address the additional flexibility from the multi-
energy coordination. Reference [21] proposes a two-stage
multi-period distributionally robust energy management model
for a MEMG. Although the non-anticipativity of uncertainties
is considered in the dispatch process, the non-anticipativity
constraints are formulated in the form of uncertainty budgets,
which fail to make full use of historical data to get practical
operation solutions.

Indeed, the approximate dynamic programming (ADP)
method, a modeling and algorithmic framework to solve the
multi-stage SP problem with non-anticipativity constraints
as a Markov decision process (MDP) in a real-time man-
ner [22], [23], becomes promising to overcome all the short-
comings of existing studies. Specifically, following the basic
concepts of the dynamic programming (DP) method, the
Bellman’s equation is applied to decompose all temporal
dependencies so that a multi-stage SP problem can be divided
into several small sub-problems and solved iteratively [6]. In
addition, it does not require the probability distribution or
uncertainty sets. Instead, it engages active learning through the
successive interpretations of an increasing volume of historical
data (i.e., data-driven) [24].

The ADP method has drawn broad research interest recently
and demonstrates the effectiveness to solve SP problems
in many areas such as energy storage operation [6], [24],
energy policy and investment planning [18], [25], electricity
market [23], etc. However, all these studies confine into the
power system operation with one electrical energy storage
asset and simple approximations, which may not be naturally
applicable to the MEMG operation with multiple storage assets
of different energy carriers. Further, the static ADP approach
applied above cannot fully utilize all the real-time information
that is constantly updated and successively revealed, which
otherwise could further enhance solution quality and con-
vergence performance. In this regard, the model predictive
control (MPC), designed for online system operation [26] with
constantly updated information, can be incorporated to make
more practical decisions forward through time. It is especially
suitable for handling energy storage assets and thermal energy
systems whose operations are tightly time-coupled due to the
state-of-charge evolution equations and large inertia. However,
the MPC method alone, such as the research work [12]-[13],
cannot guarantee globally optimal solutions [6].

To fill in the existing research gaps identified above, this
paper discusses a data-driven MPC-ADP-based stochastic real-
time operation method for the practical electricity and thermal
network-based MEMG with multiple electrical and thermal
energy storage assets. The proposed method makes full use
of the available data to achieve uncertainty mitigation, multi-
energy coordination, and cost-saving for the real-time MEMG
operation.

The main contributions are summarized as follows.

1) The optimal coordinated MEMG operation with the com-
prehensive and practical power and thermal energy flows is
formulated as a real-time multi-stage SP model.

2) A data-driven MPC-ADP-based approach for the MEMG
operation is presented. It embeds the empirical knowledge
obtained from the historical data for offline training so that
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Fig. 1. An illustrative example of an MEMG.

the needs on the probability distribution of uncertainties by the
traditional SP can be naturally waived. Furthermore, it fully
utilizes constantly updated forecasts to derive good-enough
real-time operation decisions and speeds up the convergence
process.

3) The piecewise linear function (PLF) approximation
approach for the MEMG with multiple energy storage assets
is put forward, by converting the traditional convex solution
space into multiple sets of PLFs. The simulation results illus-
trate its efficacy for the MEMG with multiple energy storage
assets of different energy carriers.

The rest of this paper is organized as follows: The practi-
cal MEMG model is given in Section II; Section III presents
the multi-stage real-time coordinated operation model of
MEMGs; Section IV describes the data-driven MPC-ADP
based approach; Case studies are conducted in Section V; The
paper is concluded in Section V.

I1. PRACTICAL MULTI-ENERGY MICROGRID MODEL

The typical structure of a grid-tied MEMG with energy stor-
age assets and distributed generators is shown in Fig. 1. As
for the distributed generators, wind turbines (WTs) and pho-
tovoltaic cells (PVs) are non-dispatchable generators with the
high intermittency and fluctuation [12]; The combined cool-
ing, heat, and power (CCHP) plants and power-to-thermal
conversion (PtC) units as dispatchable assets deal with the
electrical and thermal energy simultaneously and thus tighten
their interactions. Specifically, the CCHP plants consume the
natural gas fuel to generate electrical and thermal energy
simultaneously [9], while the PtC units convert electricity into
heat/cooling energy [3]. Heterogeneous energy storage assets,
including battery storage (BS) and thermal storage (TS), can
shift the electricity/thermal loads and enhance the MEMG
operational flexibility [12]. The MEMG is also connected to
the main grid for electrical energy exchange as appropriate.

A practical MEMG is built upon an integrated electricity-
thermal distribution network. The electricity network models
have been extensively studied in the literature, while practical
thermal network models are rarely considered [9], [11]. The
general structure of the thermal network is demonstrated in
Fig. 2.

As shown in Fig. 2, a thermal network usually contains one
source node and multiple intermediate/load nodes connected
via supply and return pipelines. The generation-side network is
called the primary network, and the consumption-side network
is the secondary network [14]. The thermal energy is delivered
via water through supply pipelines in the primary network;
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Fig. 2. A general structure of the thermal network.

after entering the thermal exchanger in the secondary network,
thermal energy is transmitted to all load nodes and water tem-
perature dramatically changes [16], [17]. At last, the water
flows back through return pipelines to finish the thermal cir-
culation. Compared to the primary network, the pipelines in
the secondary network are usually not modelled in detail [15]
because they are short with only a few adjustable valves.
« Nodal thermal flow balance: The thermal flow follows the
Kirchhoff law for the inflow-outflow energy balance (1).

Y, mp= ) m 5

PePs, PePy, 4

« Nodal temperature mixing: According to the first law of
thermodynamics, the nodal temperature depends on water
mass and temperature as in (2). Besides, the temperature
of a node is equal to its corresponding starting node of
the same pipe (3).

N3 N N ; N
X Ty my =Ty | 2 m,| @
PePy, PPy, 4
; v p
T:,,: = 7f/r,(+)=Pa”(P’ n) 3

s Thermal energy calculation: The thermal energy of each
pipe can be quantified via (4).
N
Hijr. /)
s Thermal transmission delay: Different from the electric
energy, the thermal energy transmission shows a non-
negligible time delay [14], [15]. That is, due to the
relatively slow flowing speed of water in the pipeline, the
water temperature at the start and end of a pipe may not
be the same. To quantify this transmission delay, detailed
formulations are given in the Appendix-A.
« Internal temperature range: The inflow and outflow water
temperatures of a pipe are bounded as in (5).
T = T S Timonn . O
s Thermal energy balance: Thermal energy supply and
demand shall be balanced at each time. The total ther-
mal energy demand is calculated as the energy difference
between the start of supply pipes and the end of return
pipes (6).

Hy = Cy - [m2t -1,

t
sfr(+) — r

X %
= Cw - m, - Tijr /) @

mt 1 | peNsn (6
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ITI. MULTI-STAGE REAL-TIME COORDINATED
OPERATION OF MEMGs

In this paper, the real-time MEMG operation is formulated
as a multi-stage (i.e., Nt stages) SP problem (7)-(37), in which
the sequence of real-time coordinated operation decisions is
made at each interval ¢ for £ = 1, ..., Ny with the gradually
revealed uncertainties up to interval f. The multi-stage real-
time MEMG operation is a non-anticipative process, i.e., the
real-time operation decision at each interval f only depends on
the information available up to interval £, but not on the future
observations.

The multi-stage real-time operation model is described as
in (7), which minimizes the expected supply cost throughout
the day subjecting to all the prevailing operation constraints
and diverse uncertainties. Note that in (7):

« E[*]denotes the expectation operator;

« Uncertainty parameters at interval ¢ W' include RES
outputs and active/reactive power demands, i.e., W' =
{Pyr, P3y, Py, Q1 ). Given that thermal energy fluctu-
ation is relatively slower than electrical energy due to
large thermal inertia [12], we focus on uncertainties of
RESs and active/reactive power demands;

« y' includes all real-time decision variables at interval
t, which only depends on information of uncertain-
ties up to interval t, ie, y' = y' (W) where
wibil — (w! . Wty

« The feasible region of y’ is denoted as set W', which is
described by prevailing MEMG operation constraints.

The MEMG operation cost at interval ¢ F* (y',W’) is cal-
culated as in (8), including the fuel cost (9), maintenance
cost (10), and electrical energy transaction cost with the main
grid (11).

Set W! (y!,W?’) describes prevailing operation constraints
of the MEMG operation at interval #, which can be formu-
lated as in (12)-(37). The practical thermal flow constraints
are described as in (12). Constraint (13) presents the thermal
energy balance. Constraints (14) and (15) describe the cou-
pling relationship between electrical and thermal energy for
CCHP plants and PtC units [14].

The Linear Dist-flow model (16)-(19) is used to formu-
late the electricity distribution network [11], where the active
and reactive power balance equations are described in (16)
and (17), and nodal voltage is calculated in (18) and lim-
ited via (19). The voltage security is guaranteed via the safe
voltage range in (19) [14], [15], [27]. Constraint (20) denotes
the active power output limits of the CCHP plant, and (21)
is the active power input limits of the PtC unit [15], [20].
Constraint (22) shows the relationship of the power flow
and the power transactions. Constraints (23)-(24) limit the
power transaction between the MEMG and the main grid,
and (25) is the exclusive electrical energy purchasing and
selling constraint [9]. Constraints (26)-(31) are the operation
limits of BS, where (26)-(27) are the safe range of its charging

and discharging power; (28) denotes its energy balance; (29)
is the safe operation range of energy stored in the BS [8]; (30)
indicates that the BS cannot charge and discharge at the same
time [6], [14]; and (31) restricts the same initial and terminal
energy levels for achieving consistent dispatch flexibility in
the daily operation cycle. Similarly, operation constraints of
the TS are presented in (32)-(37), where (32)-(33) are the
absorbing and releasing power limits; (34) is the energy bal-
ance in the TS; (35) describes the energy limits; (36) restricts
that the absorbing and releasing cannot happen at the same
time; and (37) ensures the same dispatch flexibility of the
TS [15], [27].

F‘[y:, W‘) _ chu[y’, W‘) +FE)ML":* W‘) _i_F«EX(y:, W‘) (8)

Foy (v, W) = (E EnG -P;:;T;"nug) - At )

ieNy
6 - P+ 8% - (Poc + P+
Fou(', W) = | &ty - Py, + 8% - (i + Hip)+ |- A1

e EMc - Poc+&wr - Pyr

(10)
F‘EX(yI,Wt):(rg-PEUY—tS-P_‘S ) - At (11)
Constraints (1) — (6), (Al) — (AS) (12)
HY = Hyr + Hye — Hic + Hyp, - pair(p, i) (13)
Hifr = nur - Pygr (14)
He = npc - Py (15)
P! =[ Phe=Pic” - Fat Pur ] (16)

o Ppy + Pyp — Pyc + Pyr — Pp,

e = Qe — Gt — Ot (17
Vs = Vius— (7 - Pie+" - k) Vs (18)
Vits < Vius < Vaos. (19)
PERE o o (20
T D (21)
Py — Phrs = Pl (22)
0 < Pygy, < Psgyy (23)
0 < Pyyy < PRy (24)
Ppyy - Psgry =0 (25)
P T (26)
0 < Ppp, < Pp™ @7
Ejs = (1 — gs) - Egg™' + (Pigij -nBC — P’ﬁj[)/ngn) At (28)
i e e (29)
Pjc - Pip =0 (30)
Eps = Ept! (1)
0 < Hyg < Hyg™ (32)
0 < Hyy, < Hip™ (33)

FMADP _ .o gl (yl, W') +E
J,leq_,l

min
J’EE‘I’Z(J’I|W

2{.,2 2 2 N N
2)F (y W )+E|:---+E|:yNTE\pNTIgNI;_I,WNT)F [ W T)]] @)
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Efs=(—r)-Eg” + (H!I'(IZ “n7C — H%BMTD) -Ar (34)

s I e (35)
i By =0 39
By =T (37)

The proposed multi-stage stochastic real-time MEMG oper-
ation model includes several nonlinear terms, such as the
nonlinear functions in (2), (4), (6), and (A5) as well as bilinear
terms in (25) and (30). The convexification and linearization
approaches are adopted to convert them into linear forms, as
detailed in the Appendix-B and C.

IV. HYBRID MPC-ADP-BASED
SOLUTION METHODOLOGY

A. The MDP Reformulation

The  multi-stage  stochastic  real-time  operation
model (7)-(37) can be reformulated as an MDP problem and
solved by the traditional DP method. Specifically, DP decom-
poses the original high-dimensional problem into multiple
sequential sub-problems that can be solved iteratively [23].
An MDP framework typically includes three categories of
state, decision, and exogenous variables [23], [24], which are
linked via the transition functions [22].

« State variables S is a set of variables that are used
to describe the mathematical “state” of a dynamical
system. This state provides sufficient information about
the system to determine its future behavior in the absence
of any external force affecting the system [19], [22]. In
this sense, the energy levels of heterogeneous energy stor-
age assets at the beginning of interval ¢, i.e., the energy
level at the end of interval ¢-1 as shown in (38), are used
as the state variables [20].

{E!—]r E! ]r} (38)

« Decision variables x’ describes the system actions when

all the system states at interval ¢ are observed [22]. They
are given as follows:

P‘ PhL H“P’ P

o = BD 7TC’ IBUY’“SELL;I (39)
Pitr P;:c’ AC’QIRE’ sus> Hyr» Hp,c

« Exogenous variables W' denote the forecasts of all the
uncertainty sources at interval f. As this study focuses on
uncertainties from the power system [15], the exogenous
variables are denoted as follows:

- ,l. - ,J. - ,b a~ ,b
= (P P P22 03]
« Transition functions map the current state to the next

state according to the decision and exogenous variables,
as below:

(40)

SH=S 41X+ W (41)

IEEE TRANSACTIONS ON SMART GRID, VOL. 13, NO. 1, JANUARY 2022

! 1

X

Incertainty information

Sf_ — Make Decision x — S;

Fig. 3. The relationship between St x, .S", x , and Wi,

Given the above MDP elements, the multi-stage stochastic
real-time operation model can be reformulated as in (42).

Following Bellman’s optimality principle, the tail problem
of (42) starting at S' of interval f can be described as in (43).
V!(S") denotes the value function in state S, i.e., the optimal
cost starting from state S’, which includes the function value
of the current state plus the cost-to-go function value. The
cost-to-go function means the operation cost of the MEMG
from the immediate future dispatch period (f + 1) to the last
period Ny [23], [24]. y is the discount factor that leverages
the importance of the immediate reward and future rewards in
the MDP. This value, by setting between 0 and 1, helps avoid
an infinite reward in continuous tasks [28].

= min
oy

Vi(s') C'(s',) +y - E[ v+ (s1)1s'] 43)

Current cost Cost—to—gofunction

B. The Proposed Hybrid MPC-ADP Method

The classical DP method solves Bellman’s equations (43)
backward through time to recursively obtain value func-
tions corresponding to all individual possible states and then
derives optimal solutions by solving Bellman’s equations for-
ward through time with obtained value functions. However,
the extremely large state and action spaces would make it
super hard to calculate the expected future cost in (43). This
is the so-called “curse of dimensionality” issue in the tra-
ditional DP method, which makes the DP ineffective for
problem-solving [6]. Hence, the ADP approach is developed
as in [22], [23], which replaces the expectation in (43) by the
value function V% (S%) approximated around the post-decision
state St, where St = S' + X', to quantify the impact of cur-
rent decisions on future costs [22]. The post-decision state St
x is the state of MEMG soon after the decisions at interval ¢
are made, but before any uncertainty information at (f 4 1) is
released (i.e., W+1). The relationship between ', x, W, and
87 is illustrated in Fig. 3.

The near-optimal solutions to (43) can be obtained by
solving (44) given information of the current state.

v (557) = By frmin[ (s 0) + - visist ]|

However, ADP methods do not fully utilize the near-future
forecasting information which is constantly updated in real
time. The MPC method hence can be incorporated to leverage

X

min - C'(s'4") + By [“,E»“Cz (%) + Bgo [ i e [’INﬂP G XNT)]]]

(42)
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Fi sty The true curve
Fig. 4. The construction of the value function via PLFs.

such near-future forecasts, process more information, and
achieve faster convergence [26]. As a result, the hybrid MPC-
ADP method by taking advantage of both ADP and MPC is
adopted in this study, which replaces (44) by (45) with an
H-step look-ahead time horizon.

t+H
3} C (ST, x")+
=t
y - Ve (SIS
45)

Vil (S5) = Ege_gos

Next, we discuss how to solve (34).

« Successive Projective Approximation Routine (SPAR):
Calculating optimal solutions to (45) requires evaluat-
ing ViHH (*). As stated before, it is computationally
intractable via the traditional DP method when the state
and action spaces are in extremely high dimensions [6].
In this regard, a set of PLFs can be used to approximate
ViHH(sHHH) around St with the favorable computa-
tion burden [24] (see Fig. 4). Actually, other function
forms besides the PLF can also be employed to approx-
imate Vi (St+H); However, as the PLF only intro-
duces LP problems that can be effectively solved by
the industry-proven solvers like Gurobi and Cplex [15],
it is used in most of the research works for the
approximation [22], [24].

The mathematical formulations of PLFs are presented as
in (46), where r and Ng are index and the total number of
PLF blocks (i.e., the whole energy level is divided into Ng
levels); vf;" is the slope of the PLF block r for energy storage
of bus i at interval f; yf;i captures the energy quantity allocated
to block r for energy storage of bus i at interval 7.

V;+H ( .S';H" ) Z yr

ieN, | S reN, R

asd SH—H (46)

Note that as the original value function V:+7(s+H) is con-
vex, to ensure the same convexity of the constructed value
function by PLFs, slopes of PLFs shall be monotone increas-
ing as in Fig. 4. With the convexity property, no value can
be assigned to later blocks until former ones are fully filled
up [24].

Accordingly, (45) is converted into a linear programming
problem as in (47)-(49), where m denotes the index of ADP
iterations; S' _and S'. denote the minimal and maximal
energy levels of the energy storage on bus i. In (47), the hybrid
MPC-ADP method recursively minimizes the MEMG opera-
tion cost (i.e., the summation of the H-step look-ahead cost
and the cost-to-go value); As the energy storage capacity is
evenly divided into N blocks in PLFs, y"' is non-negative and
no larger than the average value yfo in (48); The post-decision
state or the final energy level in the storage at time f can be

Algorithm 1 Data-Driven Offline Training of the Hybrid
MPC-ADP Method

Step 1: Set the number of iterations Ny, the number of PLF blocks Np, the
initial energy level S‘ in the storage, and all initial slopes yhi 0 (monotone

increasing forr=1, ..., Nt —H + 1 and equal to 0 for f = N-,r H).
Form=1,..., Npy:
Fort—=1,...; Nr —H.
Fori=1,..., Np:

Step 2: Observe uncertainty realizations for [f, t + H]
from historical data.
Step 3: Obtain the decisions x‘ ..... xi;l" H and the
post-decision state SH'H by solvmg (47)-(49);
Step 4: Update s]opes ifl<t=Nr—H
Step 4a: Observe the gradients at StHH and
SHH 1yl e, vl (SHH) and L SHH +y1),
via (50).
Step 4b: Get the intermediate slopes z’,,f for .S‘J'r""_,f
and STHH + 34, as in (51).
Step 4c: To update slopes of PLFs while retaining
the convexity, perform the prOJectmn operation to
get the final slopes: vm i l'IC(vf 1) as in (53).
End for (i);
End for (f);
End for (m);
Step 5: Output all the resulted PLFs.

calculated by accumulating quantities of all blocks as in (49).

t+H
|:Z C*(S*.x)+vy
Wi+H

min
et g r—t
D DS -2 NN Ll )
ieNj, reNg
5.60 < ¥7' < (Shpax — Sin)/NrR =Y, (48)

i (49)

Zy;,i_v:r:

reNg

The problem in (47)-(49) can be solved by an exploitation
algorithm named SPAR [25]. The SPAR method can provably
learn the optimal decisions to be taken at parts of the state
space, which can be reached by an optimal policy. By learn-
ing the slopes of PLFs at important parts of state spaces and
constructing V. (*) that are convex with all the state points
as in Fig. 4, the exact (but unknown) value function VI (*)
and its approximation V! (*) will match only in the vicinity
of the optimum. Given the convexity property of the origi-
nal problem, after the intensive training by visiting different
states infinitely often, the corresponding approximation slopes
can converge to the slopes of the optimal value functions [24].
In addition, as the SPAR algorithm learns an optimal decision
for all states that can be reached by an optimal policy, deci-
sions obtained can be regarded as the optimal solution. The
detailed theoretical proof for the convergence and optimality
can be referred to Section V of [24].

With the SPAR method, the MPC-ADP approach can be
trained offline with the historical data as the inputs (i.e., data-
driven) to derive slopes vf,i r , as outlined in Algorithm 1 [24].

To update the slopes of PLFs, in the mth iteration, a sam-
ple observation of the marginal value v‘nf(*) in the storage is
calculated as in (50).

LHi(ses) = o v (sl [ oset®

~m

(30)

Authonzed licensed use limited to: Stevens Institute of Technology. Downloaded on March 02,2022 at 21:00:56 UTC from IEEE Xplore. Restrictions apply.



220

Then, in Step 4b, a set of ancillary slopes z’,;f is produced
by combining the current approximation and sample slopes
via the step size or learning factor o, as (51).

Z() = (1—ap) Vi )+ - ¥ (D)

a! is constrained by (52) with B being a finite positive
constant and no less than 1 [24].

el = 00, [l =B =00 (52)

The intermediate slopes zi;;' from (51) are used to update the
slopes of PLFs while retaining the convexity of PLFs. That is,
the projection operation (53) in Step 4c is applied to force
violated slopes equal to the newly updated ones, maintaining
the slopes of the curves to be monotone increasing. In (53), S},
describes the energy level corresponding to the r-th breakpoint
of the PLF block for the energy storage at bus i.

n' ( Sr+H )
WSﬁTHLWlﬁzﬁwﬁH
e(¥n) = { 2t +1)
(5] = SEH +35)8 (Vi (57) < (S5 + 7))
v:" 1(S%)  otherwise

(33)

Equation (53) implicates the following rules to retain the
convexity (monotone increasing) of the PLF curves:

a) If the energy level Sf_ corresponding to the r-th breakpoint
of the PLF block is no larger than SH‘H but the corresponding
slope from the last iteration v" ( _yy is no less than z;; EE(SEE,
the slopes of blocks with energy level no larger than S‘+H are
updated to be 25,/ (StHH);

b) If Si is no less than STHH —|—yp but v (m ) is no larger
than z% *(S‘+H + y’p) the slopes of blocks with energy level no
less than S‘JrH +, are updated to be 25 (StHE +y4);

c) For all other cases, slopes of the PLF blocks remain the
same with the vf_’m -

o McClain’s Step-Size Rule: In (53), the costant (af, =

29,0 < ap < 1) and harmonic (0 < ap<1,af, =
alf )/m step sizes are commonly used in the
literature [22], [24]. However, the constant step size would
make the learning process oscillating after several train-
ing iterations while the harmonic step size declines too
fast to converge. Thus, McClain’s step size in (54) which
combines advantages of both approaches can be applied,
where « is a tunable parameter in the range of [0, ap].

ifm=1

fm>2 O9

& = [“0
" | epot/(1 4oy —a)
As a matter of fact, McClain’s step size behaves like the har-
monic rule for early iterations, and as the step size approaches
a, it starts mimicking the constant step size rule. All the non-
zero step sizes can capture changes that may occur in the later
iterations.

C. Real-Time MEMG Operation

After converged slopes are obtained in Algorithm 1 after
the intensive offline training, the MPC-ADP method has been
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Algorithm 2 Real-Time MEMG Operation via the Trained
Slopes From MPC-ADP

Step 1: Input the real-time information of all uncertainty
sources at interval f;
Step 2: Calculate x‘ and §%
trained slopes;

End for (1);

' by solving (47)-(49) with the

embedded with empirical knowledge. Then, the pre-trained
PLFs are used to calculate the near-optimal real-time MEMG
operation solutions as Algorithm 2 [22].

From Algorithms 1 and 2, it can be seen that effective offline
training is the pre-requisite for an excellent real-time oper-
ation, while real-time operation is the direct application of
the offline training results. In this sense, they are effectively
coordinated with each other.

D. Performance Evaluation

To evaluate the convergence performance and solution qual-
ity of our proposed MPC-ADP method, it would be ideal to
use the original multi-stage real-time SP model (7) as the
comparison base. However, solving (7) would be overly com-
putationally demanding, given the excessively high problem
dimension. Alternatively, the anticipative SP operation model
in (55) is used as the base, which assumes that for each sce-
nario s, the information for the entire day is known prior
to t = 1. The anticipative method (55) is computationally
friendly with complete information prior to the operation [22].
However, with regard to the Jensen’s inequality [29], the
resulted solution ) Ff‘SP is a lower bound estimation to the
original multi-stage non-anticipative real-time problem (7).

ISE\I’lfSZF"('VIS

With this, for the offline training, the solution gap
the MPC-ADP approach with regard to the anticipative method
after the m-th offline training iteration is formulated as in (56),
which is evaluated via the average system operation costs of m
offline training scenarios for the MPC-ADP method and the
anticipative method. FMADP and FASP are system operation
costs of the MPC-ADP method and the anticipative method
for the s-th offline training scenario.
F57) [m

(Er )= (EL,
(51 F5P) /m

For the real-time operation, the solution gap Ef‘“ADP of the
MPC-ADP approach in the s-th real-time operation application

is denoted as in (57). The finalized average solution gap for
real-time operation can be calculated in the same way as (56).

= (55)

ESMADP of

EfMADP _ (F;HADP _ F,:sp) / FfSP. (57)

V. CASE STUDIES

A grid-tied MEMG, combining an IEEE 15-bus distribution
network and an 8-node thermal network in Tianjin, China, is
used to evaluate the effectiveness of the proposed MPC-ADP
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Power system TABLE 1T
, MEMG OPERATION PARAMETERS [12], [15], [27]
Main grid —{zi !
il ! ! nME neo/nep & &
3 0.29 0.98 0.0055/kWh 0.0035%/kWh
i —————————— o= 5 1 nec nrciTmo 2L e
18 4 3 2 1 i 3 0.95 0.00328/kWh 0.01$/kWh
:\Th:rmnl system " 7 4 6 : 5 | |intermediate node: @ supply  ® cretum HMT ] é’;r grvv
1.26 0.03578%/kWh 0.0035/kWh 0.0025/kWh
Fig. 5. The structure of the test MEMG.
ROO (L
s —O— Purchasing price —-#— Selling price :’: oo :’: A A |
£ 02 &P nep : :
% 0]5 :|=_ 400 n:,- 2041 F F. '-_U
E, " e 5 10 15 20 25 % 10 15 :1.| s
vl 0.05 Dispatch interval Dispatch interval
=
& 0 1 3 s 5 % 1 6% 1% i 8 3 & (a) Power generation from WT (b) Power generation from PV
Dispatch interval 1400 1500
£ o z
Fig. 6. Power transaction price between the MEMG and main grid. E o o
z 8 z
TABLE I ‘,r:: 500
PARAMETERS OF GENERATORS AND STORAGE [9], [11], [12] 0 5 10 15w 25 0 5 10 15 2w 25
Dispatch interval Dispatch interval
Bus WT (KW) PV (kW) BS (kW/kWh) TS(kW/kWh) CCHP (kW) PIC (kW) (c) Active power demands (d) Reactive power demands
3 300 150 - - 1,000 500 - cur . : :
4 250 100 500/1,500  500/1,600 i . Fig. 7. Deterministic forecast and uncertainty scenarios generated via the
6 200 _ ; i _ . historical data in winter.
9 . 200 : & 5 2
For the MPC-ADP method, the look-ahead horizon H is set
TABLE II as 2 hours. As the original problem is bounded and the future

PARAMETERS OF THE THERMAL NETWORK [15]

Start node End node  Length (m) Type” Mass flow rate (kg/h)
1 2 1,050 DNBO 23,017.08
2 3 525 DN78 20,905.19
3 4 525 DN60 12,457.36
2 5 525 DN32 2,111.89
3 6 225 DNS5O 8,447.83
4 7 525 DN54 10,345.87
4 8 225 DN32 2,111.49

*DN is a technical term in thermal/hydraulic engineering and means “nominal diameter™.

approach. As shown in Fig. 5, electrical and thermal networks
are coupled via the CCHP plant and PtC unit on bus 3 of the
electricity network and node 1 of the thermal network. For the
electricity network, V; is set as 1.0 p.u., and voltages limits
of all other buses are sets as [0.95, 1.05] p.u. [9], [27].

The electricity transaction prices are given in Fig. 6.
Parameters for generators and energy storage devices are given
in Table 1. The thermal network parameters are listed in
Table II. The temperature of supply and return pipes is limited
as [353.15, 373.15] K and [323.15, 343.15] K.

The winter case is studied, thus only heat and electricity
demands are to be satisfied. Some of the key MEMG operation
parameters are listed in Table III.

The real-time operation window is 24 hours with 1-hour
granularity. One deterministic forecast (lines with marks) and
multiple scenarios (generated via the historical data) of all
uncertainty sources are presented in Fig. 7 [12]. The data in
Fig. 7 represent the observed historical data of uncertainty
sources in all dispatch intervals, which are used in the training
process of the MPC-ADP method to calculate the finalized
operation cost of the MEMG.

reward is as important as the current one, the discount factor
y is set as 1 [22], [24]. The initial energy levels for the BS
and TS are set as their minimum values. The PLF for each
storage at each time interval has 20 equal blocks. The initial
slope for the first block is set as 0, with the step increment
of 0.1 for successive blocks. @g = 0.9 and @ = 0.2 are used
in (42) as shown at the bottom of the p. 6, to set McClain’s
step size.

The simulations are implemented via Yalmip with
MATLAB and executed on a 64-bit PC with a 3.70 GHz CPU
and 16 GB RAM. The problems in (47)-(49) are solved by
Gurobi.

A. Deterministic Benchmarking

The proposed MPC-ADP algorithm is first benchmarked
on a deterministic version of the MEMG operation problem
to analyze its computational performance and solution
quality [30]. That is, a single deterministic scenario is uti-
lized to iteratively train the PLFs and to calculate the real-time
MEMG operation. With this, the global optimal real-time solu-
tion can be obtained via deterministic linear programming (LP)
for exact comparison.

« Computational Performance: The convergence curve in
terms of solution gaps (43) is shown in Fig. 8. The MPC-
ADP method starts from the gap similar to the MPC
method and converges in less than Ny = 100 itera-
tions via Algorithm 1 (i.e., approaching the true optimal
condition with a 2.81% solution gap in 52 iterations).

The approximated value functions of iterations 1-10 and
31-40 are given in Fig. 9. It clearly shows that the differences
among function values of iterations 1-10 are rather significant,
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Fig. 8. The convergence curve of the MPC-ADP method.
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Fig. 9. Function values of iterations 1-10 and iterations 31-40.
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ot BS

P unit TWT PV
B Energy transaction —e—Power demand — --e-- S80C 12
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Fig. 10. The electrical energy balance condition in the MEMG.
2000 s CCHP plant PtC unit e TS
1500 —#— Heat demand —#— Net generation =--8-80C 102

Staye of Charge

Fig. 11.

The thermal energy balance condition in the MEMG.

but after further training, they gradually converge in iterations
31-40.

In addition, the solution time of the single deterministic LP
model [22] is 2.23s, and the solution time of the MPC-ADP
method is only 0.88s. This is because the proposed approach
approximates the original 24-hour LP model via 24 smaller-
scale single-hour LP models, by taking the advantage of the
ADP method.

o Solution Quality: With the deterministic inputs, the
resulted electrical and thermal energy balance condi-
tions from the hybrid MPC-ADP method are presented in
Figs. 10 and 11. They clearly show that solutions from the
MPC-ADP method can effectively coordinate all sources
to meet the multi-energy demands.
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Fig. 12. The voltage profile of bus 8 for all the dispatch intervals.
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Fig. 13. The voltage profile of all buses at dispatch interval 12.

(i) As for electricity/thermal generations and electrical
energy transactions, when electricity prices are low (i.e.,
intervals 1-10 and 22-24 in Fig. 6), the MEMG purchases
electrical energy from the main grid, and thermal energy is
mostly supported by the PtC using electrical energy. With high
electricity prices (i.e., intervals 11-16 and 19-21 in Fig. 6),
the MEMG sells electrical energy to the main grid, and ther-
mal energy is dominantly supported by the CCHP. That is,
the MEMG can leverage the temporal differences of electric-
ity prices and multi-energy loads to optimally coordinate the
multi-energy generation and transaction.

(ii) As for energy storage assets, TS stores thermal energy
when thermal generation cost is low (i.e., intervals 5-6 and
14-15), and releases it at high thermal generation cost intervals
10-11 and 17-18. In this way, TS can effectively reduce the
thermal supply cost by coordinating with the CCHP and PtC.
BS collaborates with all generators to shift power loads for
peak-shaving and cost-saving purposes. That is, BS charges at
intervals 5-6 and 18-19 when electricity prices and load levels
are low in Fig. 6 while discharging at intervals 14-15 and
20-21 with high electricity prices in Fig. 6 and load levels. The
real-time operation decisions of TS and BS illustrate that the
MPC-ADP method can effectively capture dynamic behaviors
via the step-by-step learning process.

(iii) As for thermal inertia, Fig. 11 shows that the ther-
mal generation and loads at individual time intervals may
not be equal. This is because different from instant electrical
energy transmission, thermal inertia makes the whole thermal
network a virtual storage that can coordinate multiple dispatch
intervals. The shaded area between thermal generation and
load curves in Fig. 10 indicates its storage capability.

To show the effectiveness of our proposed method in guar-
anteeing the secure operation, the voltage profile of bus 8 for
all dispatch intervals in the deterministic case after 100 train-
ing iterations is shown in Fig. 12, and the voltage profile of the
whole distribution system at interval 12 is given in Fig. 13. In
Figs. 12 and 13, the two labeled values indicate the maximal
and minimal voltage levels of the voltage profile.

The voltage profile in Fig. 12 shows that although the
voltage values of the same bus at different dispatch intervals
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Fig. 14 Operation cost comparison of MPC-ADP and anticipative SP
methods
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Fig. 15. Convergence curves of the MPC-ADP method in terms of solution
£ap.

vary, it still falls within the safe range, i.e., 0.95-1.05 p.u.
Furthermore, Fig. 13 shows that voltage values of all buses
are also in the safe range. The voltage results in Figs. 12
and 13 indicate that after training, the proposed MPC-ADP
method could still guarantee voltage security of the MEMG
operation.

In summary, the above results illustrate that the proposed
MPC-ADP method can contribute to obtaining good-enough
solutions, reducing the solution time significantly, and guar-
anteeing the secure operation of MEMGs.

B. Stochastic Simulations

The stochastic simulation involves 3,000 scenarios sampled
from the historical data in Fig. 7, with 2,000 scenarios (i.e.,
Ny in Algorithm 1 is 2,000) used for the offline training and
1,000 scenarios for the real-time application.

Fig. 14 shows the average operation costs of the 2,000 sce-
narios from the proposed MPC-ADP offline training and the
anticipative SP method, and the corresponding solution gaps
are shown in Fig. 15. As the anticipative SP method assumes
the full availability of the 24-hour forecast information, the
corresponding operation cost is used as a lower bound to
evaluate the solution quality of the MPC-ADP approach. The
figures show that similar to the deterministic case, the cost
obtained from the MPC-ADP method starts from a high value
close to the MPC method and gradually approaches the SP
solution within the 3% gap (note that as the anticipative SP
method only provides a lower bound to the true optimal solu-
tion of the original multi-stage problem (7), the actual gap of
the MPC-ADP solution to the true optimal solution shall be
smaller than 3%). This is rational because in the first iteration,
given the prespecified positive slopes of PLFs, BS and TS do
not work as they shall. That is, the system operation solution
from the first iteration is myopic, which incurs additional costs
according to (47). After informative training and learning, parts
of the slopes in the PLFs become negative, which drives BS

]
L

—— M2 M3 —0— M4 ---=-M5

I\ -~0=-M1

b3
=

Solution gap(%s)
S o

= wa

1000
ITteration

g

Fig. 16. The convergence curves of all the comparison cases in winter.

and TS to gradually operate towards the optimal operation
conditions. Thus, the solution gaps gradually reduce. However,
because the MPC-ADP method is an approximation approach in
nature, the solution gap may not be able to reach 0 exactly [30].
The results verify the effectiveness of the proposed MPC-ADP
method in obtaining good-enough solutions for the multi-stage
real-time coordinated MEMG operation.

After the slopes of PLFs are sufficiently trained, the real-
time operation for 1,000 scenarios is conducted. The average
solution gap of the real-time operation cost is 2.90%, which
shows the effectiveness of the MPC-ADP method in learning
the optimal system operations. Furthermore, as the MPC-
ADP method embeds the historical knowledge and solves the
operation forward through time, it can obtain good-enough
solutions for the current interval ¢ even without knowing
system information for f + 1 to Ny. On the contrary, the SP
methods heavily rely on the full availability of the 24-hour
forecasted or simulated information. This is another advantage
of the MPC-ADP method.

C. Comparison With Other Real-Time Operation Schemes

The proposed MPC-ADP method is further compared with
other real-time MEMG operation schemes to illustrate its
advantages.

« MI1: Myopic policy, i.e., the real-time operation decision
at hour ¢ is determined by solving a stochastic operation
problem involving information and variables for hour f
only.

« M2: Myopic H-hour look-ahead policy, i.e., operation
decisions for future H hours are determined by solving
a stochastic problem with the information and variables
for every H hours.

o M3: Traditional MPC-based H-hour look-ahead policy.

« M4: Traditional ADP method, i.e., H in (34) is set as 0.

The convergence curves of M1-M4 and the proposed MPC-
ADP method (MS) are reported in Fig. 16. From Fig. 16, the
below can be observed:

(i) The myopic and MPC methods (i.e., M1, M2, and M3)
could only obtain local optimal solutions with high solution
gaps (against the optimal solution from the anticipative SP
method). Indeed, their gaps do not show a convergence trend.
In comparison, final solution gaps of the ADP-based meth-
ods (i.e., M4 and MS5) converge to the optima gradually. It
indicates that the ADP-based methods contribute to learning
from the historical data and converging to the global optimal
solutions.
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TABLE IV
REAL-TIME OPERATION RESULTS OF ALL THE METHODS IN WINTER

#Method Ml M2 M3 M4 M3
Average solution gap 19.70%  1447% 7.40% 7.08% 2.90%
Average computation time] _0.72s 0.42s 0.84s 0765  0.87s
= 813.10 177.57
BA0 d U 1785 1737 Jesses| fer92s
-1 L o £ e
5%
£ 300
S 0
M1 M2 M3 M4 M5  Anticipative
Methods
Fig. 17. The final operation costs of all the methods in the winter case.

(ii) Incorporating more information could lead to solutions
of higher quality. This is supported by the fact that the solution
gaps of M3 are lower than those of M2 and M1. This also
explains that M5 has a much smaller solution gap in the first
iteration and converges faster to the optima than M4. This
demonstrates the benefits of integrating MPC and ADP for
the multi-stage real-time operation.

The average gaps of the real-time operation solutions from
the five methods in 1,000 scenarios, together with their average
computational time, are further compared in Table IV. The
final operation costs of all the methods in the winter case are
compared in Fig. 17.

With the real-time operation results in Table I'V and Fig. 17,
it can be inferred that the proposed MPC-ADP method has
the smallest real-time solution gap and the lowest operation
cost with regard to the anticipative SP method. Furthermore,
the computation time of our method is acceptable for real-
time applications. Thus, all the comparison results indicate the
effectiveness of the hybrid MPC-ADP method in obtaining the
near-optimal solutions with a faster convergence rate.

D. A Summer Case

To further illustrate the effectiveness of our proposed MPC-
ADP approach for the MEMG under various application
occasions, an additional case study for summer is further con-
ducted. For the summer case, system parameters including
capacities of generators and energy storage assets as well as
power transaction prices between the MEMG and main grid,
etc., remain the same as the winter case. On the other hand,
in summer, space cooling demands are needed with the TS
referring to cooling energy storage, and temperature ranges of
supply and return pipes are respectively set as [308.15, 333.15]
K and [338.15, 363.15] K [12].

The deterministic forecast (lines with the mark) and
3,000 scenarios (sampled from historical data) of all uncer-
tainty sources are presented in Fig. 18 [15].

The parameter setting for the MPC-ADP algorithm is
the same as the winter case. Among the 3,000 scenarios,
2,000 scenarios are used for the offline training and the remain-
ing 1,000 are used for the real-time application. Afterward,
the final simulation results of our proposed method MS are
compared with the traditional methods M1-M4 in Fig. 19.
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Fig. 18. Deterministic forecast and uncertainty scenarios generated via the
historical data in summer.
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Fig. 19. The convergence curves of all the comparison cases in summer.

TABLE V
REAL-TIME OPERATION RESULTS OF ALL THE METHODS IN SUMMER

#Method Ml M2 M3 M4 M5

Average solution gap 20.38% 19.29% 923% 6.94% 1.95%
Average computation time] 0.71s 0.40s 0.83s  0.74s  0.86s
@’ 500 682.10 67592
5 / o 618,92 605.94 57 =
S 600 N N Sy = 577.67 566.62
'§ 100
=
o n i i A L i J

M1 M2 M3 M4 M5 Anticipative
Methods

Fig. 20. The convergence curves of all the comparison cases in summer.

After the training, average solution gaps of the real-time
operation from all the five methods in 1,000 scenarios are
compared in Table V. The final operation costs of all methods
in the summer case are shown in Fig. 20.

From the simulation results in Figs. 19-20 and Table V,
it can be seen that our MPC-ADP method remains valid
in the summer case, with good-enough solutions and fast
convergence. To this end, the superiority of our proposed
hybrid MPC-ADP method is comprehensively validated via
various cases.

VI. CONCLUSION

This paper proposes a data-driven MPC-ADP method for
the multi-stage stochastic real-time operation of an MEMG
considering practical thermal flow constraints as well as het-
erogeneous energy storage assets. The historical data are
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Fig. AI. The vertical section of the supply pipe p.

used for the offline training of the MPC-ADP method, which
approximates the original solution space via sets of PLFs for
energy storage assets. The simulation results indicate that by
making full use of the historical data, the MPC-ADP method
could mimic the original multi-stage SP approach and derive
good-enough solutions, while is computational more efficient
than the non-anticipative SP approach. The comparative stud-
ies with other real-time operation benchmarks indicate that the
MPC-ADP method could derive better solutions to guarantee
the secure and economic operations of MEMGs with a much
faster convergence process. Furthermore, the sensitivity anal-
ysis is conducted with regard to various application scenarios
and all the corresponding results justify the advantage of the
hybrid MPC-ADP method.

For future work, the policy-based ADP approach could
be explored to study the real-time optimal operations of
MEMGs while rigorously considering their non-linear and/or
non-convex physical and operational characteristics [6]. In
addition, without the powerful support from the main grid,
the real-time operation of the islanded MEMG via the hybrid
MPC-ADP method can be further investigated.

APPENDIX
A. Inertia-Based Thermal Transmission Delay

To quantify the transmission delay indicated in Section II,
the vertical section of a supply pipe as shown in Fig. Al is
utilized [15].

In Fig. Al, m{ " is the mass flow rate of the supply pipe at
time #; the orange and grey volumes denote the water flow-
ing in and out of a supply pipe; L” is the length of pipe
p: AP denotes the area of the cross-section. With this, the
water volume in this pipe can be calculated as pwAPLP, where
pw is the water density. The grey volume at the right side
means the water mass that has flowed out b?/ the end of time
interval . Specifically, after the interval gf ", the water starts
to flow out; while after w? “, the entire water mass completely
flows out. Regarding this, ' and o’ are calculated as in
(A1) and (A2), where 1 and f, are indices of operation time
intervals, f,, and f, are the objectives to be minimized, Af
is the unit dispatch interval, and Nt is the total number of
dispatch intervals.

t
m: 3w Atz w4 1P

W z
by oo (A1)
ty=t—tm
t
A . L AP . IP it
= min {tn: > mkT - At> pw- AP IP +mbt - At

tp=t—ty

(A2)

Accordingly, RY " and S7' respectively represent the total
water mass flowing into the pipeline during periods [t—¢7 "%l
and [t — «f ’t, t], which can be calculated as in (A3) and (A4).

t

Rf= 37 (mh?-ar) (A3)
tp=t—tm
t W
Sg't = Zt};=1_fn+] (nf: ?. Ar)'s In=1tm+ 1 (A4)
R’:‘ ) tﬂ = Im _|_ 1

Finally, the equivalent temperature T“:’(‘H at the start of the
p-th supply pipe in interval f can be estimated as the average
temperature of water in the grey volume of Fig. A2, as shown
in (A5) [16].

.t
(mi’" s AP R‘;") N

5,(4)
5 P N/ et r
Toen = +pr=r—«:f"+1(m§ ToALTO /(m*Ar)
Wt .
1) 7
(A5)

B. Linearizing the Thermal Flow Model in
Constraints (2), (4), (6), and (A5)

Though mass flow rate and temperature would vary in the
thermal network operation, it remains a practical assumption
that the mass flow rate is constant [15]. Thus, the thermal
flow model with the constant mass flow rate presents a linear
formulation.

C. Relaxing Bilinear Terms in (25) and (30)

The bilinear terms can be relaxed without compromising the
solution optimality.

Proof: Take (25) for instance. As the objective (7) is mono-
tone increasing with Py and Pjp, if both were non-zero with
P’é:c > P:éb, theli'e mus;t exist al;_lother pai%' B‘B}: and Py, with
B‘éc —Ppp = P;;.C— %7 and Py, = 0. This would produce the
same net BS power injection at a cheaper cost. This completes
the proof.
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