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Risk-Averse Coordinated Operation of a
Multi-Energy Microgrid Considering
Voltage/Var Control and Thermal Flow:
An Adaptive Stochastic Approach

Zhengmao Li, Member, IEEE, 1ei Wu

Abstract—With an increasing penetration level of inter-
mittent renewable energy sources and heterogeneous energy
demands, the secure and economic operation of multi-energy
microgrids (MEMGs) becomes more and more critical. Under
this circumstance, this paper proposes an adaptive (two-layer)
stochastic approach to obtain optimal MEMG operation decisions
by taking advantage of distinct energy properties. First, rather
than merely focusing on the active power economic dispatch,
voltage/var control (VVC) scheme is involved to co-optimize
the active and reactive power flow while guaranteeing voltage
security; Second, a battery degradation model and a compre-
hensive thermal network model with thermal energy flow and
transmission delay are presented to derive practical and effi-
cient operations; Third, a conditional value-at-risk (CVaR)-based
risk evaluation method is included to avoid over-optimistic solu-
tions. The original nonlinear operation problem is reformulated
as a mixed-integer linear programming (MILP) model to achieve
high solution quality with acceptable computation performance.
Finally, case studies are conducted to indicate that our proposed
approach can effectively coordinate the dispatch of active/reactive
power as well as thermal flow, thus ensuring system security with
minimal operating costs and risks.

Index Terms—Multi-energy microgrid, battery degradation,
risk-averse adaptive stochastic, thermal network, voltage/var
control.

NOMENCLATURE
Abbreviations
BS Battery storage
CB Capacitor bank
CCHP Combined cooling, heat, and power
CVaR Conditional value-at-risk
DOD Depth of discharge
MEMG Multi-energy microgrid
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MILP Mixed-integer linear programming
OLTC On-load tap change

PIA Polygonal inner approximation
PtC Power-to-thermal conversion
PV Photovoltaic cell

RES Renewable energy sources

RO Robust optimization

SOC Second-order cone

SP Stochastic programming

TS Thermal storage

VVvC Voltage/var control

WT Wind turbine.

Sets and Indices

Br(i, j) Branch/pipeline between nodes/buses i and j
n/i Index of thermal nodes/power buses

Ni/Ng The total number of power buses/branches
Ngn Set of thermal source nodes

Nt The total number of all dispatch periods

p/b Index of thermal pipelines/power branches

pair(p,n)  Indicating pipeline p is connected with node n

P's‘,r‘( 9 Set of pipelines starting at node n in sup-
ply/return network at time £

P:,r‘(_) Set of pipelines ending at node n in sup-
ply/return network at time f.

Parameters

i The capital cost of the ith BS

Cw Water heat capacity

DOD"™ax  Maximal DOD of the ith BS

Ey e/ Egyts Min/max energy of the BS/ TS on bus i

Ejps  Rated capacity of the ith BS

Hyp" /Hpp™ Min/max releasing power of the TS on bus i
H;-" /H7e™ Min/max absorbing power of the TS on bus i

T
H?E Thermal demand at time ¢
Jf;‘r The thermal loss coefficient of supply/return
) pipeline p at time ¢
Li‘;? BS lifetime in terms of the number of life
cycles
N?;’;;‘N}’;‘;x Min/max tap change ratio

,min

s /Pgp” Min/max discharging power of the BS on bus i
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Pgé"i"/PiE’m Min/max active power flow of branch b
wc Maximum power input of the PtC unit on bus i
Pyc" [Pge" Min/max charging power of the BS on bus i

,min

wr /Pyt Min/max power output of the CCHP plant on
) ] bus i
Py /Qk.  Active/reactive power load on bus i at time ¢
Q%‘E'm /O™ Min/max reactive power flow of branch b
Owr /Qpy™ Maximum reactive power of the WT/PV on
. busi
Ocp /Q¢g Min/max reactive power of the CB on bus i
ur /Our . Min/max reactive power of the CCHP plant
on bus i

' Resistance/reactance of branch b
Ryt Maximum ramp rate of the CCHP plant on
bus i
S?,F Apparent power of branch b
Sur Apparent power of the CCHP plant on bus i
Swr/Spy Apparent power of the WT/PV on bus i
Ty (/) Max temperature at the start/end of a sup-
_ ply/return pipeline
T, 1)/ Min temperature at the start/end of a sup-
ply/return pipeline
T Ambient temperature at time ¢
VEB/’ Viap Unit adjustment level of the CB on bus i /
o OLTC
Vus /Vaus Min/max nodal voltage magnitude on bus i
Vs Voltage of the substation
At Unit dispatch interval
NBC/MBD BS charging/discharging efficiency
nTC/NID TS absorbing/releasing efficiency
Ap Thermal transfer coefficient
Enc BS degradation cost per charging/discharging

event
g%‘;c,xg%‘f Unit maintenance cost of a PtC unit/TS
gwr,fgpvfggfq Unit maintenance cost of a WT/PV/BS

Enc/épL Unit gas price/power loss cost
‘g‘ﬁf JEM. Unit CCHP start-up cost on bus i /mainte-
nance cost
P, Weight for risk/system confidential level
TR/Ts Power purchasing/selling price
RS /TTS Decay rate of a BS/TS.
Variables
Cr Total MEMG operation cost
Cix/Cor Power exchanging/startup cost at time ¢

Chu/Chy/ Chyp, Fuel/maintenance/power loss cost at time ¢

CVaR,(Cr) System CVaR level
s’};‘( /() T_herr.nal energy at start/end of supply/return
] } pipeline p at time ¢
Hp-/Hyr  Thermal output of the PtC unit/CCHP plant
] . on bus i at time ¢
il i TS absorbing/releasing power on bus i at
time ¢
s;f, Mass flow rate of the supply/return pipeline
p at time ¢
Nep/Ngp Position level of a CB/OLTC at time ¢
Pouy/Psg;  Purchasing/selling power at time ¢
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Pg?:‘b,z‘Qﬁg‘b Active/reactive power through the lateral
branch of branch b at time ¢
Pﬁg;‘Qj‘ag Active/reactive power flow of branch b at
) ) time ¢
B BS charging/discharging power on bus i at
] . time ¢
P;:;T,fQ;‘;T Active/reactive power output of the CCHP
) plant on bus i at time ¢
P’};;C . Power input of the PtC unit on bus i at time ¢
Pl Active power output of the WT/PV on bus
] i at time ¢
Q:}’B Active power output from the CB on bus i
] ) at time ¢
O, Reactive power from the WT/PV on bus i
at time ¢
s ,,; Temperature of node n of supply/return
network at time ¢
Tf,,‘i,(_) Actual temperature at the end of the
pipeline p at time ¢
Tf,,‘;(_)* Equivalent temperature at the end of the

pipeline p at time ¢

Tf,,i w/ Tf’}:‘(_)Temperature at start/end of the pipeline p at

ime ¢

8 On/off status of the CCHP plant on bus i at
time ¢

Vi Bus voltage on bus i at time ¢

1VaR Value at risk.

I. INTRODUCTION

ENTERED in the radial power distribution network, the
C current MEMGs, though are usually in small scales, can
integrate heterogeneous energy carriers such as the power and
thermal (e.g., heat and/or cooling) energy to enhance the holis-
tic energy utilization efficiency [1]. Meanwhile, the growing
penetration of fluctuating RES would introduce high uncer-
tainties that greatly complicate the MEMG operations. In this
light, new approaches to leverage the distinct energy properties
and tackle the diverse uncertainties have attracted significant
research both in academia and industry to achieve secure and
efficient MEMG operations.

In the literature, to mitigate the adverse effects from various
uncertainties, RO and SP methods are typically utilized [2].
In [3], a RES-based MEMG is studied to reduce the total
system operation cost and immune against all uncertainties
via the RO method. The study in [4] proposes an optimal
robust dispatch model for a community MEMG, which aims to
reduce the total operation cost under various uncertainties from
electric vehicles and electricity prices. Reference [5] presents
an optimal robust operation model to manage MEMGs with
electrical and heat energy demands. It aims to reduce the
total cost of MEMGs while mitigating the adverse effects
from uncertainties under their worst-case realizations. The
study in [3]-[5] focuses on the uncertainty immunization for
day-ahead operations, but both neglect the actual intra-day
operations when uncertainties are gradually realized through-
out the day. In this regard, an adaptive or two-layer framework
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shall be applied to coordinate both the day-ahead and intra-
day operation by leveraging the simulated uncertainties and
their actual realizations. Reference [6] presents a two-stage
RO model to coordinate all units in an islanded MEMG for
minimizing the operation cost and immunizing against diverse
system uncertainties. Aiming at minimizing the multi-energy
supplying cost, Reference [7] uses a multi-stage RO method
to tackle various uncertainties of a MEMG in both grid-tied
and islanded modes. The study in [8] discusses an improved
adaptive RO-based bidding strategy for a MEMG to maximize
its operation benefit or minimize its costs with character-
ized system uncertainties. Though the day-ahead and intra-day
operations are coordinated in [6]-[8], RO decisions against
worst cases could be overly conservative as the occurrence
probability of the worst-case scenario would be extremely low
in practice [2].

In comparison, the SP method, which calculates the
expected system operation cost over a set of uncertainty sce-
narios and hence avoids too conservative decisions, can be
utilized. In [9], to handle uncertainties from RESs, power
transaction prices, and energy demands, the scheduling
problem for a MEMG with multiple assets is evaluated via the
SP approach. However, only the day-ahead operation is con-
sidered. The study in [10] adopts an SP method to obtain the
optimal scheduling of a residential MEMG while consider-
ing RES uncertainties. Reference [11] proposes a multiple-
timescale coordinated stochastic approach for a MEMG with
CCHP plants and wind farms in a deregulated day-ahead heat
market and a real-time balancing electricity market. In [12],
the temporal coordination of multiple energy in a MEMG
via the two-stage SP method is investigated. It minimizes
system operation costs and alleviates the adverse effects of
various uncertainty sources. However, SP solutions could
be overly optimistic because the low-probability high-impact
uncertainty scenarios are usually excluded via the scenario
reduction methods for alleviating computational burden [11].
To this end, proper risk measurements shall be integrated into
the SP method to limit the covariance of solutions among
different scenarios and avoid over-optimistic decisions [13].

Moreover, all the research works above merely focus on
the active power scheduling, however, the active and reactive
power in MEMGs is in practice closely intertwined because
of high resistance-to-reactance ratios of distribution lines [14].
In this sense, those separate research may not be effective
enough for the coordinated power management in practice.
The reactive power is mainly dispatched via the VVC, which
is an important technique for stabilizing voltage, minimizing
power losses, and improving operational efficiency [15], espe-
cially when the system is exposed to deeper penetration of
RESs. The VVC scheme can be implemented in a decentral-
ized form with the local information [16]. Although fast and
simple, there is a lack of coordination for the entire system.
Alternatively, centralized forms could coordinate the hetero-
geneous VVC devices based on the system-wide information
to satisfy voltage requirements. The study in [17] presents an
optimal multi-objective VVC method for distribution systems
while considering the number of tap movements of transform-
ers and active power curtailment of RESs. Reference [18]
proposes a VVC method for the optimal dispatch of BS
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in a distribution system. It coordinates the different assets
via a model predictive control-based SP approach. In [19],
a three-step method of the global search, user preference,
and local search is used to solve the VVC problem with
uncertainties. In [20], optimal energy management for a multi-
energy virtual power plant is studied to minimize the operation
cost and alleviate the adverse effects from various uncer-
tainty sources via the risk-constrained single-layer SP method.
However, studies in [14]-[20] mainly focus on the reactive
power coordination, while neglecting the multi-layer schedul-
ing of reactive power devices such as OLTCs, CBs, and
electronic converters. That is, no VVC is considered. Thus,
they cannot derive effective operation strategies for MEMGs
with a highly intertwined relationship between active and
reactive power.

In addition, though centered in the power grid, the thermal
energy management in the MEMGs can be equally important.
As compared to electric energy, thermal energy presents the
following distinct characters [12].

(i) The thermal transmission delay is nontrivial: Compared
with the instantaneous electricity transmission, it takes time to
deliver hot/cold water (as the main heat transmission media)
from sources to loads through thermal pipelines.

(ii) The intrinsic thermal insulation abilities of the buildings
and water pipelines can facilitate the supply-demand balance
of the thermal energy [20].

Thus, the thermal network should be thoroughly
modelled for more comprehensive and realistic system
operations, by leveraging different energy properties for
uncertainty immunization and cost reduction purposes.
However, detailed thermal network models are usually
neglected [3], [7]-9], [11], [20] or simplified [21] in the
related multi-energy research.

Moreover, given the nonlinear nature of operation models
for MEMGs, intelligent algorithms [13], [17]-[18] and nonlin-
ear solvers [11], [14], [19] are commonly used. Nonetheless,
intelligent algorithms can be computationally expensive and
highly dependent on the initial conditions with convergence
concerns, while nonlinear solvers cannot always guarantee
global optimality. In addition, the battery degradation model,
which is a significant factor for the practical BS operation and
protection, is not effectively involved in most of the related
research.

Given the above insights, to fill in the research gap, this
paper studies a risk-averse adaptive (two-layer) SP method
for the coordinated operation of MEMGs. The main research
contents and contributions of this paper can be listed as below.

(i) The comprehensive coordination model for the MEMG
under heterogeneous uncertainties is proposed while con-
sidering the VVC scheme, and realistic thermal network
constraints and battery degradation at the same time. Hence,
the active/reactive power and thermal energy are co-scheduled
on the system-wide scale for a more realistic, secure, and
economic operation. To the best of our knowledge, no such
comprehensive research work has been done for the emerging
MEMG:s in the literature.

(ii) A two-layer (adaptive) risk-averse SP approach for the
optimal coordination of VVC assets, distributed generators,
and storage devices is presented to addresses diverse
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Fig. 1. The typical structure of a MEMG.

uncertainties and avoids over-optimistic or too-pessimistic
decisions. The two-layer (adaptive) method can effectively
address the interplay of MEMG operations in both the
day-ahead and intra-day timeframes. Furthermore, though
the risk-averse SP approach is used in areas such as the
large power gird or virtual power plant operation [20], [22],
frequency regulation market [23], and wireless communication
network [24], its performance in coordinating the economic
active power dispatch, VVC scheme, and practical ther-
mal scheduling on a MEMG system-wide scale is not fully
investigated yet in the literature.

(iii) For better computational performance, the original
nonlinear and/or nonconvex formulations are convexified/ lin-
earized via the appropriate methods to derive a MILP model.
It can be effectively solved by industry-proven MILP solvers
with favorable computation time and solution quality.

The rest of the paper is organized as follows. The MEMG
model is discussed in Section II. Sections III and IV present
the proposed risk-averse coordinated operation model and
solution approach. Numerical case studies are conducted in
Section V, and the conclusions are drawn in Section VI.

II. MULTI-ENERGY MICROGRID MODELLING
A. Multi-Energy Microgrid Structure

The typical structure of a grid-tied MEMG is shown
in Fig. 1. In the MEMG, thermal loads are supplied by
CCHP plants, PtC units. As for the electrical demands,
besides the powerful support from the main grid, active
power loads are also supplied by the CCHP plants, WTs,
and PVs [5]. The OLTCs, CBs, and electronic converters
of all distributed generators are responsible for the reac-
tive power support [11]. Heterogeneous energy storage assets
including BS and TS could contribute to the load shifting
and dispatch flexibility enhancement via the charging (absorb-
ing)/discharging(releasing) processes [12].

B. Multi-Energy Conversion Modelling

An energy conversion block also called an energy hub [25],
is utilized to describe multi-energy coordination. The general
model of the energy conversion block is shown in (1). The
gas energy input Pg is consumed by CCHP plants to produce
power and thermal energy simultaneously, with the efficiencies
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Fig. 2. A general structure of the thermal network.

nme and nyr. The power Pg from the main grid, RES, and
CCHP plants can also be converted into thermal energy via the
PtC units with efficiency npsc.

Per | _ | nme 1 | Pe )
Hry, nMT  NPC Pg
St NI v g 8
QOutputs EnergyConversionBlock  Inputs

C. Realistic Thermal Network Modelling

A typical thermal network structure can be shown in
Fig. 2. It usually contains one source node and multiple
immediate/load nodes connected via supply pipelines (i.e., pri-
mary network) and return pipelines (i.e., secondary network).
The thermal energy is delivered via water through supply
pipelines, after entering the thermal exchanger in the sec-
ondary network, the thermal energy is transmitted to load
nodes and water temperature dramatically changes. Finally,
the water flows back through return pipelines to complete the
thermal circulation [21]. Compared with the primary network,
pipelines in the secondary network are short and thus not
modelled in detail.

s Nodal flow balance: Thermal flow follows the Kirchhoff
law, i.e., the amount of water entering in one node is equal

to the corresponding outflows as in (2).

> om= > m, peBrin,n+1) )

pePy, ) pePy, H)

s Nodal temperature mixing: According to the first law of
thermodynamics, the nodal temperature depends on the
water mass and temperature of all connected pipelines [19]
as in (3). Besides, the temperature of a given node is equal
to that of the start node of the same pipeline as in (4).

N g s .t
2 (Tf/r.(—) ' sfr) =Ty | X m ©)
pEP;r,(_} pEP:ﬁ,,G}
; . .
3/: = Tf;,.‘(H,Pa“'(Ps P‘l) (4)

s Thermal energy calculation: The exact thermal energy in
each pipeline can be calculated via (5).

.
Hffh(—)!(-l—)

s Thermal transmission delay: Given the pipeline length
and mass flow rate, the thermal transmission is dynamic,
i.e., with transmission delays [19]. The vertical section in
Fig. 3 of a supply pipeline can be used to explain this
dynamic effect.

q X
=Cw-m - T, ) ©)
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The vertical section of a supply pipeline.

In Fig. 3, with the length L, and area A, for the cross-
section of the pth pipeline, the water volume is pwApL, (pw
is water density). The orange and gray volumes denote water
flowing in and out. For example, m}" - At denotes the water
mass flowing into the pth pipeline at time t. The block on the
right end of the pipeline is water mass that has flowed out by
the end of time 7. That is, after time y;? “, water starts to flow
out; while after f;‘f ”, the entire water mass completely flows
out. Given the above flow rate and pipeline information, y;? “,
and &7 " are calculated as in (6) and (8), where , is a decision
variable.

p,f — i r 6

i = min tn ©
t tp

5l 2 :;,,:;_;,,, my? - At > py - A, - L, @)

p.t — i T 8

&t I,Ilan = (8)

s.t., Zr

tp=t—tn

(m - AF) > pw - Ap - Ly + 2 - AL (9)

Accordingly, W', and VP*' represent the total water mass
flowing into the pipeline during periods [t — y ' f] and [t —
P 1], which can be respectively calculated as in (8) and (9).

i t
Pt _ &
st = Zf,,:;_,,,, (’"f A‘) (10)
' 3/
VPJ — Z"P:t—fn-l-l (mg Bz A[), frfa 1 (11)
z
snf, In - rm + l

To this end, the equivalent temperature at the terminal of
a pipeline, i.e., the outflow water temperature, can be estimated
as the average temperature of water in the grey volume of
Fig. 3:

3/
Jt p.t A=k
(ms - At + ow -4y - L, = VER) - TE

s/r(+)
sfr sfr
H; _ f_?’p,: -1 dp sfp_'f::p,r of
Tiren=| + E,F,_ £ ('nf,lr - At- Tf,‘r(+] / (”’?;r : Af)
sfr
|t I—Vp.1
+(Wf/r —pw-4p 'L.v) Tyl
(12)

o Thermal transmission losses: To consider the actual energy
losses due to thermal exchange with pipeline shells
[neglected in (12)], the outflow temperature can be revised
based on Shukhov’s Temperature Loss Law as in (13).

A 553 .t N
Ty = Ta+ 5 - (Tf;’f,(—)* o Tr;)
t T
Ap- At V=W
P R Pt g St TS 13
u= Ap - pw - Cw Vage 11 pt—voi 2

P.f
my, - At
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Fig. 4. Typical DOD vs. cycle life curve of battery storage.

« Internal temperature range: In a pipeline, the inflow and
outflow water temperature are bounded as in (14).

i % 4
Tar = Tireyrn = T

e Thermal energy balance: The thermal energy genera-
tion and consumption shall be balanced all the time.
The thermal demands are satisfied by dispatching thermal
network generation sources, mass flow rates, and pipeline
temperature [21], [26]. As thermal energy is carried by
hot/cold water (the main heat transmission media) from
sources to loads through thermal pipelines, the total ther-
mal energy need is equal to the energy difference between
the start of supply pipelines and the end of return pipelines,
as described in (15) [19].

(14)

t , t : .t
HEY =Cige- (m_f’ . If,r‘(ﬂ —mPt. Zsﬂr‘{_)),p € Ngn
(15)

D. Battery Degradation Modelling

Degradation is one of the most important factors for the
practical BS operation. In the literature, many BS degradation
models have been conducted as the BS aging mechanism is
a rather complex process [27]. References [28] and [29] model
the nonlinear BS degradation cost with respect to its DOD and
lifetime. In [30], the ambient temperature and DOD are used
to calculate the BS degradation cost. References [31] and [32]
utilize the BS cycle life and maximal DOD to formulate the
degradation cost into equal payment for individual charging
and discharging events.

To evaluate the overall BS performance, a key criterion is
the life cycle, which is denoted as the number of charging/
discharging cycles that the BS can perform before its capac-
ity falls below 80% of its rated capacity [31]. The BS cycle
life generally has a logarithmic relationship with the DOD,
and the number of life cycles goes up exponentially as the
DOD reduces [33]. A typical curve of BS life cycles Li‘;g under
different DODs is shown in Fig. 4.

Based on [31]-[33], the BS degradation cost per charging
or discharging event can be denoted as (16):

Battery replacement cost

o= 16
$pc Total energy throughput during lifecycle Lo
Given the above definition, the mathematical formulation for

the BS degradation cost per charging or discharging event is
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presented in (17). The factor of 2 in the denominator accounts
for the degradation cost both due to the charging and dis-
charging events. Give specific parameters for BSs from the
manufacturer, the unit degradation cost per charging or dis-
charging event can be calculated via curve fitting methods.
The details can be referred to [33].

-
CE?S ) JETBS

. . "R

2 Lio(DODim=x) . E5X

B (17)

As for the TSs, it is usually in the form of thermal tanks
whose degradation could be negligible. Thus, no degradation
cost for TSs is involved in this study.

II1. RISK-AVERSE STOCHASTIC COORDINATED
OPERATION OF MULTI-ENERGY MICROGRIDS

A. The Risk-Averse Stochastic Coordination Model of MEMG

The proposed risk-averse stochastic multi-energy coordi-
nation model of MEMGs is described in Egs. (18)-(52). It
minimizes the expected weighted sum of operation cost and
risks (18) over the uncertainties, subject to prevailing opera-
tion constraints. The system operation cost (19) includes fuel
cost (20), maintenance cost (21), the start-up cost of CCHP
plants (22), power losses cost (23), power transaction cost with
the main grid (24), and the BS degradation cost (25). The risk
in terms of the CVaR is formulated as in Eq. (26). It consti-
tutes a threshold to recognize (1-o,)*100 percent of the worst
scenarios of a stochastic environment [13].

Thermal flow constraints are described in Eq. (27). Eq. (28)
is the thermal energy balance; Eq. (29) describes the rela-
tionship between power and thermal energy for CCHP plants
and PtC units. The Dist-Flow model in Egs. (30)-(40) is
used to calculate the power flow. In the Dist-Flow model,
power losses of branches are temporarily neglected for the
sake of computational simplicity [14]. After the branch flows
are determined, power losses can be re-calculated as in Eq.
(23). The accuracy and effectiveness of Dist-Flow models
have been extensively justified in the literature [33]. Egs. (30)
and (31) describe the active and reactive power balance con-
dition; Eq. (32) calculates system nodal voltages; Eq. (33)
restricts the power flow and voltage limits; Eq. (34) states
the line capacity limits; Eq. (35) indicates that the reference
bus voltage can be changed by OLTCs with respect to tap
position limits; Eq. (37) describes reactive power provision
abilities of CBs; Eqgs.(38)-(40) are the capacity and reactive
power limits of CCHP plants, WTs, and PVs; Eq. (41) presents
the active power output/input limits of CCHP plants and PtC
units. Eq. (42) is the ramping limits of CCHP plants. Eq. (43)
describes the power exchange limits of MEMG with the main
grid. Eqgs.(45)-(48) are the operation limits of BSs, where
Eq. (45) describes the safe ranges of charging and discharg-
ing power/energy; Eq. (46) represents exclusive charging and
discharging; Eq. (47) denotes energy balance of BSs; Eq. (48)
restricts the same initial and terminal energy for achieving the
consistent dispatch flexibility in each daily operation cycle [8].
Similar to BSs, the operation constraints of TSs are formulated
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in Egs. (49)(52).
g ok OF o, FPSCH, (FICF]) (18
operation cos t risk
teNT
Ciy =Y £nG - Pitr/mme (20)
ieNy
Com = Z M Py + 68 - Pl + M- P+ £M, - Py
- Sl & (P;J:T +PBD) +&- (H“ +H}B)
(21)
Cir = Y max0, Uiy — Up? '} - 4 22)
ieNy
Cop=%p- Y. 7 [( ) +(0ke) ];vg,b € Br(i,i+1)
beNp
(23)
Cex =) (8- Ppyy — 75 - Psgrr) - At (24)
teNT
Coc =Y tbe - (Phc + Pib) (25)
ieNy
CVaR, (E[CF]) = nvar + E[max(Cr — gvar, 01/(1 — )  (26)
Equations (2) — (15) (27)
HY = Hif + HYy . — Hot + Hy,  pair(p, i) (28)
[Hitr. Hp,c] = [Pl P'M] - Tow ] 29)
pLobHl _ pti o p
Bl =|| S0 W i 30
Ac |:PP'.’+PE?D P§c+P;Jﬂ_PI}’>:C:| S
= iz — Qe — Qi + @y Qr + Oy + Qyr 31)
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. Pb,min mln Vl ,min
pib_ohb Yt AC BUS 13
[ AC Q!RE BUS][ [Pié‘mx Q%max V;;g';x ( )
2 2
(Pi2)" + (i) = (k) (34)
Vius = Vs+Np - Vip (35)
Tap < Niwp < Ny (36)
i = O =Ny - Vi S O™ (37)
(i m) +(Qir) = (Si)? (38)

[ (P "+ ()" (P30) + (284 = (S0 (5he)"] 39

o4.00] < ol i 0] < [0 0. 0] 0
(Pifi Utz 0] < [Pitr. Phic| < [Pl Uiir. P @D)
+(Pifr — Piet") < Rl 42)
Pyuy — Pigr = Pic 43)
Pyyy - Psgrg, =0 N (44)
i P E:;;][ - [ﬁzgﬂ“’ ‘;Sﬁ“if;glj] @)
Pjc-Pip=0 (46)

Egs = (1 — tas) - Egg" + (Pic - mac — Pp/nan) - At (47)
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Egs = Ep§"™"' (48)
i,min yyi,min yi,min
R B Al @
== TC: 2D Ty
Hy =0 (50)
EféZ(l—rTs}-Ef;gl’i+(H%E-nrc—H%Mm)-Af (51)
Eqg = Epg™ (52)

Note that in the above risk-averse MEMG coordination
model, considering the thermal inertia (i.e., the thermal
energy fluctuation rate is much lower than power), we
mainly focus on uncertainties from active and reactive power
loads (Py and Q) as well as active power outputs of
WTs and PVs (Pj;; and Pj,) due to uncertain weather
conditions and forecast inaccuracy [12]. As uncertainty
sources would have infinite realizations or scenarios [11],
for the concise model presentation, uncertainty scenario
indices are not shown in (18)-(52) and will be detailed in
Section IV.

The risk in this study refers to the “risk of the high-
cost in the unfavorable scenarios™ [35]. Without considering
the risk, ie., risk-neutral, although the expected operation
cost over the system uncertainties is low (too optimistic),
there can be a high-level variance in costs of individual
scenarios. If uncertainty realizations in the intra-day opera-
tion are close to those scenarios with high costs, the actual
intra-day operation cost would be much higher than the
day-ahead expected value. Therefore, the system decision-
makers would be willing to take the risk into account,
that is, choosing a solution with a slightly higher expected
operation cost but a much lower variance for all stochas-
tic scenarios [33]. As CVaR is a coherent risk measure
whose effectiveness has been well justified in areas like
financial and risk management, natural gas system expan-
sion planning, and network optimization, it is applied in
this study.

It is noteworthy that the objective function (23) together
with constraints (30)-(42) forms a traditional VVC problem,
while the objective function (19) with constraints (20)-(25),
(27)-(33), (41)-(52) build a traditional risk-neutral unit com-
mitment problem. As a consequence, by integrating the
risk (26), our proposed model presents the system opera-
tion which coordinates the unit commitment and VVC in
a risk-averse manner.

B. Model Convexification and Linearization

The risk-averse stochastic coordination model in
(18)-(52) is non-linear and non-convex. Directly solv-
ing these nonlinear and non-convex constraints (3),
(). (12), (15), (22), (26), (34), (38), (39), (46) and
(50) could result in an excessively high computa-
tion burden and low solution quality. Therefore, to
improve the solution quality with favorable solu-
tion time, convexification and linearization approaches
are adopted to convert the original problem into
a MILP one.
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Fig. 5. Piecewise linear approximation of a convex quadratic function.

« Linearizing thermal flow in constraints (3), (5), (12), and
(15): Although both the mass flow rate and temperature
can vary to meet the thermal demands, the constant mass
flow-variable temperature (CF-VT) strategy is widely used
in practice [25]. In the CF-VT strategy, it assumes that the
mass flow rates remain constant and only the temperature is
adjusted to meet thermal demands. Under this assumption,
all the nonlinear thermal flow constraints (3), (5), (12), and
(15) are linear.

o Convexifying max functions (22) and (26): The following
Proposition 1 can be used to convexify the max functions.
Proposition 1: Each of the max functions in (22) and (26)

can be equivalently represented as two linear inequalities.
Proof of Proposition 1: Take (22) for example. As the objec-

tive function (18) is monotonically increasing with C_;T, to
achieve the minimum objective value, C{; would always seek
the smaller of the two terms within the max function. That
is, C¢; is always their supremum. Thus, Eq. (22) can be
convexified as (53). This completes the proof.

Cor = 0: Cr > Y (Ui — Uit - it

ieNy

(33)

« Linearizing the polynomial function (23): As Cp; is convex
and monotonically increases with the P42 and Q%” in (23),
the upper linearization method can be used to linearize these
convex quadratic terms.

Taking y = ax?> with a>0 (the same form as (23)) in
Fig. 5 for further illustration, it can be linearized as the summa-
tion of all the linear blocks in positive and negative segments
as in (54).

¥y= Z S - ( i) _Ik_)
kENK
stx=Y (xf; +r‘i), (54)
keNg

e Sy, —mpat By g

The lemma behind the upper linearization method is, given
the convex objective function, Eq. (54) enforces that no value
is assigned to later blocks until former ones are fully filled up.
o Linearizing SOC constraints (34) and (38): The PIA method

can be used. Taking (34) for instance, the feasible region of

this SOC constraint is a circle with radius S;;i in Fig. 6.
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The computation burden can be further reduced by exclud-
ing the infeasible region with the given power factor of
distribution lines. With this, two polygons above and below
the infeasible region can be used to approximate the orig-
inal whole feasible one. Then the feasible regions can be
described by the multiple linear inequality constraints corre-
sponding to all the edges. For instance, (48) describes the
inequality corresponding to edge A-B in Fig. 6(a).

g (70— r) - Pit- (o5 - )
SPgb-Qf;b—Qféb-Pﬁb

o Linearizing polynomial constraint (39): Eq. (56) can be used
to guarantee a fully secure operation plan against all the
potential uncertainties, where wwr/wpy are factors reflecting
the maximum deviation of the RES’s active power outputs
from its forecast P’WijpV

i 05] = | o)~ (o).
iy (om -2 | 0

o Relaxing bilinear terms: Proposition 2 is adopted to relax

the bilinear terms in (44), (46) and (50).

Proposition 2: The bilinear terms can be directly relaxed
without compromising solution optimality.

Proof of Proposition 2: Take (46) for instance. As the objec-
tive (18) is monotonically increasing with P;C and P’BD, if
both were non- zero with PfBC > P;.D, there must exist another
combination of Py and Py, where P’BC EBE) = P;}: Pg}_)
with EBD = 0, which produces the same net BS power input
with a cheaper solution. Thus, all the bilinear constraints can
be relaxed directly given the convexity nature. This completes
the proof.

(35)

IV. PROPOSED ADAPTIVELY STOCHASTIC
SOLUTION APPROACH

By leveraging the risk-averse coordinated model discussed
in Section III, this section then presents the adaptive (two-
layer) operation framework to address the interplay of the
MEMG operations in both day-ahead and intra-day timeframes
against diverse system uncertainties.

A. Adaptive (Two-Layer) Operation Framework

To effectively handle various uncertainties and make full use
of distinct energy properties, the MEMG operation is designed
in a two-layer structure as shown in Fig. 7.

The first layer is called the day-ahead operation that cov-
ers a relatively long operating timescale. Given the inputs on
the day-ahead predictions of all system uncertainty sources
as well as operation parameters, the optimal scheduling of
assets that are in the first layer will then be obtained. Those
decisions in this study include charging/discharging decisions
of energy storage, tap positions of OLTCs, on/off status of
CCHPs, position levels of CBs, and thermal flows.
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ey @y Power factor for transmission line, CCHP
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Fig. 6. Tllustration of the polygonal inner approximation method.

The second layer is the intra-day operation that covers
a short operating timescale, such as one hour or several
minutes. The inputs are the intra-day realizations of various
uncertainties and operation decisions derived in the first layer.
The decisions for this layer are the active and reactive power
dispatch of CCHP plants, PtC units, converter-interfaced gen-
erators, and power flow (including the power exchange with
the main grid). These decisions would be updated successively
and implemented to complement the first layer operation.

The two layers are classified based on the units’ response
speeds, functions individual units play, and distinct energy
properties. Given the larger inertia (quasi-dynamics) of the
thermal energy, it acts dynamically like a virtual thermal stor-
age, and the thermal flow is scheduled in the first layer to
allow thermal load shifting; BS schedule is also determined in
the first layer, as they mainly play the role of the peak-shaving
and flexibility enhancement over the long time horizon, and the
frequent charging/ discharging could compromise its lifespan
and incur high degradation cost (see Eq. (25)); Position tuning
of OLTCs and CBs are also determined in the first layer, as
this process is slow and cannot be achieved in real-time [14].

To this end, the compact form of the operation framework is
presented in (57)-(60). Eq. (57) is the equivalent form of (18)-
(26). x represents the first-layer variables that are related to
the day-ahead operation, i.e.,Eps, Ppc., Pgp, E1s, Hrc, Hrp,
Ts/r.(+)/(=)» Ntap, Ncp, and Uyr; y denotes the remaining
continuous decision variables in the second-layer operation,
i.e., Pyr, Hur, Ppic, Hpic, Qumr, Pac, Ore, Our, Owr, Opv,
Veus, Ppuy. and Psgpy; do corresponds to forecast values of
all uncertainties. ¢’x includes the costs and risks associated
with the first-layer decisions; bry-erdg refers to the operation
cost associated with second-layer variables. y is the feasible
region of the day-ahead operation, described by (27), (35)-
(37), and (45)-(52); Constraint (59) summarizes all the other
constraints with respect to second-stage variables; Constraint
(60) covers (28) and (30)-(31) to enforce the energy balance.

min ¢
Xy

- X —|—bT—y—eT-d0
— —

first layer sec ond layer
+ pe-CVaRq| ¢ -x +bT.y—eT-do | (57)

firstlayer sec ond layer
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Fig. 7. The two-layer coordinated structure for the MEMG.

sk, Xex (58)
A-x+B.y>f (59)
E-x+F.y=do (60)

B. Adaptive SP Approach

The adaptive (two-layer) SP method is applied in
this study to solve the proposed MEMG coordination
model.

o Scenario-based two-stage day-ahead optimization: With
probability distributions of all uncertainties, the Latin
hypercube sampling (LHS) is applied to generate multiple
uncertainty scenarios. Compared with the traditional Monte
Carlo method, it spreads the sample points more evenly
across all possible values by partitioning each input dis-
tribution into intervals of equal probability. Furthermore,
to reduce the computational burden with numerous scenar-
ios, the simultaneous backward reduction (SBR) approach
is applied to select a limited but representative set of ones.
The detailed scenario generation and reduction procedures
can be referred to from [37].

Given the reduced scenario set, the day-ahead SP problem
is formulated as a two-stage problem in (61)-(64), where s
and Ng are index and number of scenarios; A is the proba-
bility of scenario s; d, is the sth uncertainty realization (in
terms of scenarios), including the generation from WTs and
PVs as well as active and reactive power loads. In (61), the
expectation is calculated over all simulated second-stage sce-
narios. Constraints (63)-(64) denote that the second stage is
optimized under x and constrained by Y(x,d;). Hence, the
adaptive SP method aims to find a solution that minimizes the
first-stage cost and risk plus expected second-stage cost over
all the simulated scenarios.

o S
min ¢ -X + ZseNs A - L(x, dy)

sec or;istage

e ©b

i
+pe-CVaRy | €1 -x +3° | A Lix, dy)

v

sec ondstage
st,Xe)

(62)

where:

min
vs€Y(x,ds)
Y(x,d;) = {y|A -X+B-y,>fE-x+F- ys:ds](64)

L(x, d) = L (63)

o Intra-day optimization: With decisions x* obtained from the
day-ahead optimization and the uncertainty realization dp,
the intra-day operation is a single-stage deterministic model
(65)-(66).

L(x*) := min b .y—e'-do (65)

st, B-y>f—A.x* .F.-y=do—E-x* (66)

V. CASE STUDY
A. Testing System

A grid-tied MEMG as shown in Fig. 8 is used to verify the
effectiveness of the proposed method, which includes an IEEE
33-bus radial distribution system and three 8-node thermal
networks.

A winter case with the information from a typical winter
day is tested. The substation voltage is set as 1.0 p.u., and
the voltage limit is set as 1+0.05 p.u. The substation trans-
former has a 5% tap range with 20 tap positions [14]; Six
CBs are installed on buses 2, 3, 6, 11, 21, and 23, with the
capacity of 300 kVar each; The RESs and BS are installed on
buses 4, 6,11, 13, 19, 23, and 31. CCHP plants, PtC units,
and TSs are installed on buses 4, 11, and 28, and are respec-
tively connected to thermal source nodes 1, 9, and 17. The
ramp rates of CCHP plants are 30 kW/min. For the BS, its
unit degradation cost per charging and discharging process is
set as 0.03/kWh [31], [33]. Other system parameters can be
referred to from [12].

The parameters for thermal networks are listed in Tab. 1. The
temperature limits of all the supply and return pipelines are
set as [80,100] °C and [50, 70] °C, respectively.

The dispatch horizon of the day-ahead operation is 24 hours
with 1-hour granularity, and the intra-day operations are made
every hour with the actual uncertainty realizations. Stochastic
variations of RESs and power loads are set as 25% and 10%
of their forecasts [6], [13], as shown in Fig. 9. Forecasts on
active power generations of RESs and multi-energy demands
can be derived via prediction techniques [36] using historical
data. All these techniques show that the shorter the forecast
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Fig. 8. Schematic diagram of the MEMG test system.
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Fig. 9. Forecasts and variations of RES generation and power demands.

lead time, the more accurate the results. In terms of risk
management, the confidential level is set as 0.9 and p. is 0.1.

All the case studies are conducted on an Intel Xeon E5-
1630 3.70GHz PC with 16G RAM and solved by Cplex
on the General Algebraic Modeling System (GAMS) ver-
sion 25.1.1 [38]. The relative MILP gap (67) is set as 0.01%
for the sake of convergence speed and solution accuracy.

|best known solution — best bound solution|
|best bound solution|

(67)

Relativegap =

(11

/////

~C21 Thermal network 3
7 19 -

TABLE I
PARAMETERS OF THE THERMAL NETWORK [19]

Pipeline (start node, end node) Length(m) Type Mass flow rate/(kg/h)
(1,2); (9, 10); (17, 18) 1050.00 DN80 23017.08
(2, 3); (10, 11); (18, 19) 525.00 DN78 20905.19
(3,4); (11, 12); (19, 20) 525.00 DNG60 12457.36
(2, 5); (10, 13); (18, 21) 525.00 DN32 2111.89
(3, 6); (11, 14); (19, 22) 225.00 DN50 844783
4, 7); (12, 15); (20, 23) 525.00  DN54 10345.87
(4, B); (12, 16); (20, 24) 225.00 DN32 2111.49

*DN is a technical term in thermal engineering that means “nominal diameter”.

=
13

() [1.4]

13
(©)17,11]

Fig. 10.  Unit commitment of CCHPs: the first number denotes the node
index in the thermal network, the second one is the node index in the power
network.

B. Day-Ahead Operation Results

Based on the day-ahead predictions in Fig. 9, 2,000 sce-
narios are initially generated by the LHS method, and then
reduced to 10 representative ones via the SBR method to
conduct the scenario-based day-ahead optimization.

The simulation results on the unit commitment of CCHP
plants, the thermal balance condition of all three thermal
networks, and the temperature of thermal flows are demon-
strated in Figs. 10-12, respectively.

From Figs. 10-12, it can be concluded that:

(i) The power and thermal energy dispatch are coordinated
tightly. When electricity transaction prices are low, the thermal
energy is mostly converted from electricity by PtC units, i.e.,
periods 1-9 and 22-24 in Fig. 10. When electricity transaction
prices are high, thermal energy is dominantly generated from
CCHP plants, i.e., periods 12-16 and 20-21 in Figs. 10-11;

(ii) The TS stores thermal energy when the thermal gener-
ation cost is low and then releases it when it becomes high.
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Fig. 11. The thermal energy balance condition for the three thermal networks.

Thus, the TS can effectively reduce thermal supply cost by
coordinating with CCHP plants and PtC units;

(iii) In all the thermal networks, the net thermal genera-
tion is not always equal to the thermal loads. The reason is,
different from the instant power transmission, considering the
thermal transmission delay makes the thermal network basi-
cally a virtual TS. The shaded area between the net generation
and thermal loads in Fig. 11 indicates its storage capability;

(iv) Thermal balance condition and CCHP operation in the
three thermal networks are different, though their network
configura-tions are the same. This is because the thermal and
power flows are tightly interdependent and thus affect one
another.

(v) For thermal temperature, as indicated in (15), the shaded
area in Fig. 12(a) which is the temperature difference between
the start of the 1** supply pipeline and the end of the 1* return
pipeline, represents the total thermal generation of the first
thermal network. Figs. 12(b)—(c) show that for the same sup-
ply pipeline [Fig. 12(b)] and return [Fig. 12(c)] pipeline, the
start, and end temperature are different, indicating the storage
capability (the shaded area) of thermal networks as shown
in Fig. 11.

Tap positions of OLTCs and voltage profiles of the refer-
ence bus are shown in Fig. 13. It can be seen that the tap
positions are negative most of the time, reflecting that the pri-
mary bus voltage is lower than the nominal level. The reason
is, a large amount of RESs could cause system overvoltage,
hence, to avoid the potential overvoltage issue, the voltage of
the reference bus is set slightly lower than 1 p.u.

The day-ahead operation results indicate the effectiveness of
our proposed method. The corresponding operation cost and
CVaR for the MEMG are 2855.39% and 2844.50%. The solution
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Fig. 13. Tap positions for OLTCs and voltage profile of the reference bus.

time is 94.09s. The computational performance shows that our
MILP model is fully compatible with the day-ahead operation.

C. Intra-Day Operation Results

For the intra-day MEMG operation, with hourly realizations
of various uncertainties, the active and reactive power balance
conditions are depicted in Fig. 14.

Form Fig. 14(a), it can be inferred that:

(i) The same as the thermal energy balance performance
in Fig. 10, CCHP plants and PtC units can leverage the dif-
ferences of electricity prices and multi-energy loads among
all dispatch periods to pursue their optimal energy generation
decisions.

(ii) The BSs could collaborate with other assets to shift
power loads for peak-shaving and cost-saving purposes. That
is, BSs charge at periods 4-6 when electricity transaction prices
are low while discharging at high transaction prices periods
13-15. Besides, BSs are not charged or discharged frequently
over the entire dispatch horizon, this is because given (25),
the frequent charging and discharging of the BSs would lead
to high battery degradation cost.

(iii) The MEMG sells electricity at high electricity transac-
tion prices periods 12-16 and 20-21 but purchases electricity
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Fig. 14. Intra-day power dispatch results for the MEMG.

to satisfy its internal multi-energy loads at low electricity
transaction price periods 1-10,18-19, and 22-24.

For the reactive power balance condition in Fig. 14(b), it
shows that all the electronic converters of generators (WTs,
PVs, CCHP plants) and CBs cover most of the reactive power
loads locally, while the main grid provides very limited sup-
port. This is because the main grid contributes to reactive
power balance through the OLTCs as in Fig. 13. From (19),
if a large amount of reactive power flows from the main grid
to the individual buses, higher power losses will be incurred.
Thus, the MEMG prefers to satisfy its active power demands
locally.

The intra-day operation results demonstrate that our
proposed method is effective for coordinating all the gener-
ators, reactive power devices, and energy storage assets for
both optimal active and reactive power management. With the
intra-day MEMG operation, the final 24-hour operation cost
for the MEMG is 2981.54$ with a solution time of 1.83s only.
This solution performance also indicates that our method is
applicable to the intra-day operation.

D. Comparison With Other Approaches

To further demonstrate the effectiveness of our proposed
method, three MEMG operation benchmarks are compared:

e MI: No thermal network model is involved in this
method [11], [12]. That is, this method assumes that there
is no practical thermal network and thermal sources, and
loads are single-bus connected;

e M2: No centralized VVC scheme is considered in this
method [5]-[6], [11]-[12]. That is, there is no coordina-
tion between the active and reactive power dispatch, all the
reactive power are satisfied only by the utility grid;

e M3: This is the risk-natural SP method [7]-[11]. This
method does not consider risks in the MEMG operation,
Ley pga=10;

Results of the three benchmarks are presented in Table II.
For a clear comparison, the results of our method are also
listed. All the simulation results demonstrate that:

(i) For M1, the cost and risk of the day-ahead layer, as
well as the cost of the intra-day layer are all higher than our
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TABLE II
SIMULATION RESULTS OF ALL METHODS IN WINTER

Item M1 M2 M3 Our Method
First Cost 2907.118  2971.738  2851.74%  2855.398%
layer C_VaR_ 2895.78% 2965.18% - 2844.50%
Solution time]  59.89s 60.13s 60.83s 94.09s
Second Cost 3033.545  3099.908  2989.24%  2981.54%
layer  [Solution time{  1.84s 1.79s 1.82s 1.83s

method. This is because M1 neglects thermal flows and cannot
fully utilize the large thermal inertia rising from the thermal
network, which otherwise could provide additional system dis-
patch flexibility. The comparison verifies the potential benefits
of considering the thermal network in practical applications.

(ii) When the VVC scheme is not considered in M2, all the
system reactive power needs are satisfied by the main grid.
However, transmitting a large amount of active power from
the main grid (the first bus) to all other buses will incur high
power losses. Thus, the cost and risk of M2 are higher than
our method in both day-ahead and intraday layers. This shows
the necessity of coordinating active and reactive power.

(iii) When the risk is neglected in M3 (i.e., risk-neutral),
the day-ahead operation cost is lower than our proposed
method. However, its intra-day operation cost is higher. The
reason is that neglecting the risk in the day-ahead operation
could induce overly optimistic decisions, that is, there can be
a low day-ahead operation cost but high variance among all
stochastic scenarios. Thus, when uncertainty realizations in the
intra-day operation are close to those scenarios with high costs,
M3 would lead to high intra-day operation costs. The cost
comparison indicates the effectiveness of considering risks in
the system coordination.

E. Sensitivity Analysis for Different Typical Days

To further demonstrate the effectiveness of our system-wide
coordination model for the MEMGs under different applica-
tion occasions, case studies for typical days of summer and
transition seasons (spring and fall) are conducted.

For both the summer and transition seasons, locations of
all the distributed units and system parameters (including
operation limits for generators, networks, power transaction
prices between MEMGs and main grid, substation voltage, unit
adjustment level for CBs, substation tap range, heterogeneous
energy storage) remain the same as the winter case. However,
for the summer case, space cooling demands are needed with
TS referring to the cooling one specifically; For transition
seasons, the hot water demands are required instead [39].

The forecasts of the RES outputs and multi-energy demands
for both the summer and transition seasons are given in
Fig. 15. Still, without loss of generality, any other real-world
data inputs can be applied without affecting the effectiveness
of the proposed method.

After the simulation, the day-ahead and intra-day operation
results from all the methods, including the operation cost, risk,
and computation time, are given in Tables III and IV. From
Tables III and IV, it can be seen that the same with the
winter case in Table II, our proposed method is effective and
efficient for reducing the MEMG operation cost and immu-
nizing against diverse system uncertainties with a satisfactory
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Fig. 15. The forecasts of the RES outputs and multi-energy demands for
both the summer and transition seasons.

TABLE III
SIMULATION RESULTS OF ALL METHODS IN SUMMER

tem M1 M2 M3 QOur Method
First Cost 2541.86% 2613.20% 2501.93% 2511.18%
Layer CVaR 2521.15% 2597.30% - 2495.96%
Solution timg  74.97s 81.354s 72.30s 120.54s
Second Cost 2634.27% 2708.12% 2615.25%8 2604.01%
Layer [Solution time 1.85s 1.81s 1.82s 1.865
TABLE IV

SIMULATION RESULTS OF ALL METHODS IN TRANSITION SEASONS

Item M1 M2 M3 Our Method
z Cost 2150.678 2247228 2118.19% 2129.95%
S;Setr CVaR 2179.07% 2280.14% - 2156.60%
olution timgl  70.89s 80.99s 60.83s 101.36s
Second |  Cost 2264.075  2362.845  2256.0845 2241818
Layer [Solution timg 1.81s 1.82s 1.81s 1.80s

computational performance for coordinating the active power,
reactive power, and practical thermal flow in a risk-averse
manner.

To this end, all simulation results indicate the effective-
ness of our proposed method. For the real-world applications,
on the one hand, unit commitment status and system coor-
dination decision results obtained from our proposed method
could be sent to the MEMG energy management system as
references for their actual physical operation. On the other
hand, the operation decisions can be used as setpoints for
the optimal system control, which can be implemented in the
hardware platform [40]. It is also noteworthy that there can
be other emerging algorithms like machine learning and artifi-
cial intelligence-based algorithms, to solve the raw nonlinear
problems with potentially good performance, which will be
explored in our future work.

VI. CONCLUSION

In this paper, an adaptive risk-averse SP approach for
MEMGs is presented while considering the various system
uncertainties, VVC scheme, realistic thermal flow, and battery
degradation. The proposed approach can effectively coordinate
the active, reactive power, and thermal energy to reduce the

IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 5, SEPTEMBER 2021

overall operation cost and risk. Numerical case studies are
conducted to illustrate that:

(i) The proposed method can effectively and efficiently coor-
dinate active power, reactive power, and thermal energy in the
day-ahead and intra-day operations.

(ii) Considering realistic thermal flow model could leverage
the distinct roles of different energy, especially the thermal
inertia, in saving costs and reducing risks;

(iii) Involving the VVC scheme can be highly effective to
coordinate the active and reactive power dispatch;

(iv) The risk management is important for decision-
makers to immunize the system operation against diverse
uncertainties;

For future work, the reinforcement learning-based real-time
system control with hardware implementation for the MEMGs
can be conducted to evaluate how the system reacts to real-
time control signals [40]. In addition, advanced algorithms
can be developed to solve the original nonlinear/nonconvex
models efficiently while the state-of-art forecasting techniques
which contribute to obtaining more accurate predictions on
uncertainty sources can be applied for the MEMG operation.
Finally, the optimal energy management, energy trading, and
profit allocation problems among multiple MEMGs are also
potential future research directions [41].
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