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The cyber challenges faced by cybercriminals are growing dramatically as the power system strives to become
more intelligent and more stable. Load forecasting is a well-known problem in the energy management field, but
the state-of-the-art lacks contributions that consider data integrity aspects. Despite the existing effective methods
on load forecasting, power system requires robust schemes that are also successful in performing accurate load
forecasting under cyber-attacks. A novel cyber-attack named Civil Attack (CA) is employed and faced by the two
non-linear regression methods. In recent years, numerous regression techniques such as methods called Multiple
Linear Regression (MLR), Artificial Neural Network (ANN), Support Vector Regressor (SVR) and etc., were
employed to perform electricity load forecasting under false data injection (FDI) attacks. While all of the tech-
niques listed are inaccurate in zones with high load covariance, mostly industrial zones, we propose two non-
linear methods called Gaussian Process Regression (GPR) with optimized kernel functions and Random Forest
Regression (RFR) to address the problem, while the data integrity attack is used for comparing our methods with

other proposed methods.

1. Introduction

Load forecasting is crucial in the operation of the power grid. While
the modern power system is going toward being smarter, numerous
challenges remain, and addressing cyber threats is of the highest pri-
ority. Forecasting loads for smart grids is a crucial task that facilitates
economic dispatch, and optimal power flow for different grid zones, and
inaccuracy in the loads may lead to economic loss or even blackouts.
Uncertainty in load patterns is a non-negligible phenomenon in fore-
casting, which is often experienced with unsupervised learning methods
as in Charwand, Gitizadeh, Siano, Chicco and Moshavash (2020). Since
the load forecasting problem under different cyber-attacks has not
adequately been discussed, we employ a well-known database from
Global Energy Forecasting Competition (GEFCom) in 2012 (Hong, Pin-
son & Fan, 2014) [dataset] which contains both electrical loads and
zonal temperatures. Along with different load patterns in years, the
“outlier detection” problem is studied not only for the electrical net-
works (Y. Chen et al., 2018) but also in the gas networks (Akouemo &
Povinelli, 2016) and communication networks (Branch, Giannella,
Szymanski, Wolff & Kargupta, 2013). Cyber-attack defense frameworks
are implemented even more in the transmission or distribution network

by using the components of the power system which may significantly
impact load forecasting (Cui & Wang, 2021). This paper presents a
stochastic Gaussian solution to the issue of cyber-attacks in the power
industry, which was first proposed by Andrew in Andrew (2004), and a
random forest approach (Ho, 1998).

Time series and supervised learning regression methods are two well-
known algorithms that are commonly used for forecasting. Machine
learning and deep learning methods are widely implemented in the
power industry, with numerous applications ranging from detecting
illegal consumers (Ghasemi & Gitizadeh, 2018) and energy management
programs (Bahrami, Chen & Wong, 2020) to eliminating
cyber-sabotages in the transient mode of the power system (Aflaki,
Gitizadeh, Razavi-Far, Palade & Ghasemi, 2021). As mentioned, Deep
learning techniques are also applicable for detecting the
cyber-sabotages, such as False Data Injection (FDI), Denial of Service
(DoS) attacks, and Load Altering Attack (LAA) (Al-Abassi, Karimipour,
Dehghantanha & Parizi, 2020; C. Chen, Cui, Fang, Ren & Chen, 2020;
Fang, Xu, Xu & Zhao, 2019). Regression methods, all of which are
subcategories of the machine and deep learning, both linear and
non-linear, are also used as approaches to the cyber-attack issue (Y. H.
Chen & Chen, 2019), along with forecasting the electricity consumption
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of households (Kim, 2020). In the renewable energy portion of the
power industry, numerous cases are studied such as energy policies for
electric vehicles (Lei & Mohammadi, 2021) and renewable energy
forecasting (Nam, Hwangbo & Yoo, 2020). The Civil Attack (CA) is
rather a novel topic in the power industry, but in computer science,
some cases of cyber-attacks on GPS, which is the fundamental feature of
CA, are studied (Zheng & Sun, 2020) and as a real-time situation (BBC
News, 2017) investigates an attack on GPS in England. Additionally, a
blockchain framework is employed in Ghiasi et al. (2021) as the tech-
nology is able to facilitate data security in different sectors of power
system and Internet of Things (IOT). In specific, blockchain innovation
offers numerous alluring highlights for IoT frameworks, such as decen-
tralization, reliability, trackability, and permanence.

In the case of cyber-attacks on forecasting, Zhang proposes a ques-
tion in Zhang, Chu, Sankar and Kosut (2018) that investigates the
probability of FDI attack on load history used for forecasting algorithms.
The basis of data integrity in forecasting is that some of the load history
data is going to increase or decrease using malware implemented on the
Supervisory Control and Data Acquisition (SCADA) system, which
potentially results in economic losses and protracted blackouts. Mal-
wares, such as “Trojans”, are able to penetrate to the SCADA servers and
access the historical data, in our case, training data, and the hackers are
able to perform data integrity attacks on the data by using these mal-
wares. Using linear regression shows great quality and accuracy in
eliminating the data integrity attacks. Another option for adversaries
attacking Phasor measurement units (PMUs) to inject false data into the
database leads to inaccurate power system state estimation (Liu, Ning &
Reiter, 2011). Therefore, a robust and accurate load forecasting method
being able to predict huge electrical loads under malicious cyber-attacks
is required to decrease the cost. In recent years, some linear regression
methods were implemented to face the cyber-sabotages in forecasting
electricity consumption, such as Multiple Linear Regression (MLR),
Artificial Neural Network (ANN), Support Vector Regression (SVR), and
fuzzy interaction regression (FIR). Being the first article to discuss the
data integrity problem in load predicting (Luo, Hong & Fang, 2018a),
writers tried to benchmark the robustness of the mentioned methods.
The first related article, however, was that of (Xie & Hong, 2016) in
which a probabilistic load forecasting method was first discussed. These
methods, however, failed to stay accurate in case of data integrity at-
tacks on historical forecasting data. In Luo, Hong and Fang (2018b), the
authors propose three robust regression models for load forecasting,
iteratively re-weighted least squares with ‘bisquare’ weight function
(IRLS-bis) and the other one with ‘logistic’ function (IRLS-log) while the
last one is based on [1 norm called (I1) which shows great accuracy in
forecasting while historical loads are under cyber-attacks. All of the
seven mentioned methods failed to forecast loads with high covariance
in industrial zones leading us to a question: Is it possible to forecast in-
dustrial zones more accurately both in standard operation and under novel
cyber-attacks?

To answer this question, we should keep in mind that industrial loads
data mostly have more noisy patterns than household loads data.
Therefore, a probabilistic model with the capability of detecting noises is
more suitable for the proposed issue, and a non-linear regression model
based on boosted tree regressor is able to diagnose the fluctuation of the
electricity load. As proposed in Richardson, Osborne and Howey (2017),
Lithium-ion batteries’ state of charge is an uncertain issue that depends
on many features and even previous data similar to load forecasting,
which depends on load history, temperature, etc. and it is tackled by the
Gaussian Process Regression (GPR) method. We tried to use GPR in the
load forecasting model to decrease the relative errors in special zones,
and for data integrity attacks. As it is studied in Khammas (2020), we
employed the Random Forest Regression (RFR) to tackle the
cyber-attack issue. In addition to (Luo et al., 2018a, 2018b), the novel
civil attack is proposed in this article and tackled by two regression
models GPR and RFR. It is worth noting that kernel functions are vitally
important parts of the GPR, and in this article, we optimized them with
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Table 1
Comparison between different studies.

Data integrity Civil Machine and Deep learning-
attack attack based approach
This article v v v
(Luo et al., v x v
2018a)
(Luo et al., v x v
2018b)

M e

GPR:
Training hyper-parameters
with respect to Kemel
optimization by Adam

Target Loads

Fig. 1. How GPR works for load forecasting.

aggregated 24hour data from GEFCom 2012. Table 1 presents a com-
parison of related articles and highlights the contribution of this article.

The contribution of this article is three-fold: 1) it introduces the
forecasting field to an innovative development challenge: forecasting
under cyber-attacks. 2) it introduces a novel cyber-attack named Civil
Attack, 3) it compares and contrasts the robustness of eight different
models under data integrity attack at different levels along with the
novel CA in the industrial zones.

The rest of the paper is arranged as follows. In Section 2, we propose
a new GPR method for regression with optimized kernels and RFR
method, along with a brief explanation of the proposed civil attack.
Section 3 will discuss the database and benchmarking of GEFCom 2012
with temperature settings and zonal loads with cyber-attacks settings.
The numeric results are presented in Section 4 and discussion, and this
paper is concluded in Section 5.

2. Regression and cyber-attack models

This section investigates how the GPR method works and introduces
the novel cyber-attack model called civil attack. It is worth noting that
we are using temperature as a feature that facilitates GPR to predict the
electricity consumption of different zones and make this study more
practical. No data preprocessing methods are employed in this article.

2.1. Gaussian process regressor

Gaussian Processes (GP) are supervised learning methods that can be
used to solve problems like regression and probabilistic classification
(1.7. Gaussian Processes — Scikit-Learn 0.24.1 Documentation, n.d.).
While the GPR method employs GP for regression purposes, the mean
value can be set whether zero or the mean of a given dataset. As for
covariance of the method, numerous kernel functions are available,
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Prior (kernel: 1**2 * RBF(length_scale=1))

-3 T T S
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Posterior (kernel: 0.594**2 * RBF(length_scale=0.279))
3 Log-Likelihood: -0.067
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Fig. 2. Prior and posterior resulting of GP with RBF as kernel function, Mean, standard deviation, and 10 samples are shown for both prior and posterior. (1.7.

Gaussian Processes — Scikit-Learn 0.24.1 Documentation, n.d.).

ranging from white kernel to a constant. Like other regression methods,
GPR accepts an input vector called x and passes a continuous output
such asy = f(x). If we assume that samples in our input vector are part
of a stochastic process, then f(x) function is able to calculate the output if
and only if the x contains some finite numbers.

Let assume that we possess a training data set called D of n obser-
vations D = {(x;, ;) |i= 1, 2, ..., n}, for further explanation see
(Seeger, 2004), while in this article, the input vector is the hourly load of
GEFCom 2012 with an eleven days lookback and keep it in mind that
another feature which can be used is the zonal temperature. Fig. 1 il-
lustrates a typical GPR algorithm used for load forecasting. GPR is a
supervised learning method that requires optimizing two
hyper-parameters: the variance (o) and the step length (1). In each
iteration, this task will be carried out by prioritizing, choosing optimal
kernels, and refining hyper-parameters based on the training set
(Seeger, 2004). As mentioned, optimized kernel functions are vital for
minimizing the prediction error. In this article, optimizing the kernel
functions is conducted by Tensorflow Adam kernel optimizer (Tf.Keras.
Optimizers.Optimizer | TensorFlow Core v2.4.1, n.d.), which is able to
adjust kernels in such a way that the method can use multiple starting
points in kernel functions which will affect the hyper-parameters (Z.
Chen & Wang, 2018).

It is worth noting that three well-known kernel functions are
implemented as the initial kernels in our models, ‘Dot-product’; ‘Radial-
basis function’ and ‘Matern’, all of which are formulated as below (1.7.
Gaussian Processes — Scikit-Learn 0.24.1 Documentation, n.d.).

e Dot-product: a non-stationary function with prior of N(0,0?).

k(th]’) = O'é + X,'.Xj (1)

As electricity load models fluctuate highly over time, the Dot-
product function can easily fit the predicted data with peaks.
e Radial-basis function (RBF): a stationary function parameterized by a
length-scaled parameter called 1.

2
k(x,-,xj) = exp (M> 2

21

Where d is the Euclidian distance. The prior and posterior of a GPR
with different kernels are shown in Fig. 2. For both the prior and
posterior, mean, standard deviation, and ten samples are illustrated,
explaining why this function is selected as the initial kernel function.

e Matern: stationary function

1 (@d(x,-,x/-))vl(v <@d(x[,xj)> 3)

k() = T2\ 1 I

Selected as one of the optimized kernel functions, Matern is a
generalized form of RBF in which K, is a modified Bessel function, I
is the gamma function, and v is the parameter that controls the
smoothness.

From Fig. 2, it is clear that the RBF kernel was not properly fitted to

the actual data, black line, before optimization, but after optimization,
the length and Log-Likelihood were set in such a way that the RBF would
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fit with noisier data plotted in the mentioned figure. Hence, RBF is
employed as one of the initial kernels to improve the GPR prediction
accuracy for our electricity load data. It is worth noting that the
hyperparameters optimization is conducted by the Tensorflow optimi-
zation tool (Tf.Keras.Optimizers.Optimizer | TensorFlow Core v2.4.1, n.

d.).

2.2. Random forest regressor

In this section, we present a well-known non-linear regression
technique called random forest. The random forest and random tree
regressor’s fundamental random subspace method were first proposed
in Ho, (1998). Also called feature bagging, the assembly learning
method tries to reduce the difference between the estimated values in an
ensemble by choosing random features for training instead of all of
them. The random forest method was first analyzed by Breiman (Brei-
man, 2001). Assume a training data set X = xi, X2, ..., X, with the
responses Y = Y1, Y2, ..., ¥n in which n is the number of samples,
bagging will create a random sample with replacement to boost the
accuracy in B repeat. Therefore, a sample of training data X;, Yy, b =1,
2, ..., B, is created, and the RFR can be fitted by using them, and after
that, other non-tested samples x will be fitted. A massive advantage of
RFR is that in the scale of the whole forest, the variance will be
decreased without increasing the bias, meaning that the model is not
sensitive to noise. The training process of non-tested data is as follows by
assuming f as forest regressor.

F= 5 YR @

And the standard deviation can be formulated as below:

o= [ ZR) = D) -

2.3. Civil-Attack model on load forecasting

In 2017, hackers penetrated the GPSs of electric vehicles in London
and changed the receiver IP of several cars so that the navigation signals
led different cars in the direction asked by another car. In the power
system, it is also possible to change the IP address of measurement units,
zone stations, PV solar farms, and the list can be continued. Assume that
adversaries are able to penetrate the database of load forecasting and we
are forecasting hourly loads concerning the last 24-hours, so we have
input data such as X; = {x}, x?, ..., x?*} and i is the number of the
respective zones while x[® is the output of our forecasting program.
What Civil-Attack does is that it changes the past 24 h values of two or
several different zones as it is formulated below:

Xi,azzat‘ked = {x]l7x,25 7x,24} = ‘Xj while i ié] (6)

The load forecasting program misuses the inputs of zone j instead of i for
forecasting the next hour total electricity consumption of zone i. by
using (6) it is clear that

F(X, anacked) = Hioaea = 1:(X) )
In which f; is linear or non-linear (depends on load forecasting program)
equations that use past 24 h to predict the next hour load. Since the

forecasted load is clearly based on inaccurate historical data, our pre-
diction is incorrect.

2.4. Data integrity attack model on load forecasting

As one of the most common cyber-attacks, data integrity attacks are
able to inject false data to a dataset. In the power system, data banks are
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not immune from hackers who are able to access the servers making
them able to change the historical data used for load forecasting. Similar
to the previous subsection, assume that we have input data such as X; =

{x}, x?, ..., x?*}, while i is the number of the respective zones in our
dataset, and x[* is the forecasted value. Data integrity attack changes
the values of X;. Assume the attack vector of data integrity attack as A =

{a', @ a&°, ..., @}, in which k is the probability of attack which is
between 1 and 24 meaning that the attack vector can influence the input
data ranging from only one of them to all of the inputs as formulated
below.

{xf—'—a’"}forjzm

(W) forj#m ®

Xi, anackea = Xi + A = {

in which j ranges from 1 to 24, and m ranges from 1 to k. The difference
between civil-attack and data integrity attack is as follows: in a civil-
attack, attackers are able to simply use the existing data in the servers
and just swap them with each other. On the other hand, in a data
integrity attack, attackers inject false data to the datasets which requires
more time and effort.

3. Benchmarking and cyber-attacks settings

This section introduces the benchmarking framework and cyber-
attack settings.

3.1. Benchmarking framework

The GEFCom 2012 dataset has 21 zones. The first 20 zones are all
from USA stations, and the last zone is the sum of the other twenty zones.
For temperature, we used the method proposed by Hong, Wang and
White, (2015). The database contains electricity load and small-scaled
data for 4.5 years in the USA from 2004 to 2008. Along with elec-
tricity consumption, temperature for each zone are used as features for
the proposed load forecasting algorithms to draw a fair comparison
between our methods and those of (Luo et al., 2018a, 2018b). We used
the first three years as training data while 2007 marked as test data. In
most load forecasting programs, Mean Absolute Percentage Error
(MAPE) and Root Mean Squared Error (RMSE) are the evaluation met-
rics for forecasting accuracy.

Ytestt — Ypredictt

100 &
MAPE% = — 9
vy ®

=1

Viest.t

1 ¢ 2
RMSE = n Z |yte.\'t.l - ypmiict.r} (10)
t=1

In which n is the number of predicted samples, y,. is the actual load,
and Ypregice is the predicted load forecasted by the given method. It is
worth noting that smaller MAPE and RMSE means more accuracy of the
forecasting method. In comparing tables, the lowest MAPE in each
scenario or zone is bolded, and those MAPEs that are more than 10,
which means not too accurate in case of predicting, are shaded in gray.
The GPR and RFR methods are simulated using Python 3.8 and scikit-
learn library (Pedregosa et al., 2011). The other six methods data are
derived from Luo et al., (2018a), 2018b. Here, the NN method setting is
illustrated as follows. It is worth mentioning that the Sklearn pre-
processing method called StandardScaler (Pedregosa et al., 2011) is used
to scale the load and temperature data before entering the proposed
models.

The ANN model consists of a three-layer feedforward back-
propagation neural network with 45 input neurons (Hour, Month,
Weekday, Temperature, and Trend) and one output neuron (namely
Load). The number of neurons in the hidden layer is set to 22 in the
numerical experiments in the mentioned paper, and the transfer func-
tions for the hidden and output layers are set to ‘logsig” and ‘purelin,’



A. Aflaki et al.

Table 2

Modules used in the implementation.
Model Module
IRLS_bis robustfit with defaulted “wfun” input (MATLAB)
IRLS log  robustfit with “wfun” input “logistic” (MATLAB)

L linprog (MATLAB)

MLR robustfit with “wfun” input “ols” (MATLAB)

ANN Neural Network Toolbox (MATLAB)

SVR quadprog (MATLAB)

RFR SKlearn random forest with “n_estimators = 200” and “min_samples_split
= 2" (PYTHON)

GPR SKlearn Gaussian Process with mentioned initial kernel functions and

“alpha = 0.1” (PYTHON)

respectively. The ANN model’s training and learning functions (for
measuring weights) are set to ‘trainlm’ and ’learngdm,’ respectively.
The ANN model’s stopping criterion is either 1000 maximum epochs or
the MATLAB module 'newff’s default stopping criterion. Table 2 shows
the modules that were used to implement the models.

Table 3 compares different methods used in the two mentioned ar-
ticles with our proposed methods. From Table 3, it is clear that in GPR is
the most accurate method in the aggregate zone. What is unique about
the mentioned method is that in special zones, which are zones with
high electricity load covariance, GPR managed to lower the MAPE%
significantly due to the non-linear and noise-fitting behavior. In the case
of RFR, most predictions are accurate, and MAPE is within an acceptable
range and, similar to GPR, it performs greatly in special zones, in which
all of the other methods from the other articles failed to forecast accu-
rately.v It is worth noting that zones 4 and 9 are industrial zones and
load data in these zones have higher covariance than residential zones.
I, MLR, and GPR were the leading methods in case of accuracy, and the
proposed method ranked first in the accuracy of most zones. As it is
observable, non-special zones MAPEs are not far apart in different
methods. This low difference is mainly due to the small-scaled data and
loads covariance, which set a limit for prediction accuracy. However, in
the industrial zines, the proposed methods boosted the accuracy of load
forecasting significantly fulfilling the main goal of the article. Fig. 3
shows the daily predicted load and expected load in 2007.

3.2. Data integrity attack and civil attack settings

For data integrity attacks, we propose two types of attacks, one of
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which is targeting system blackouts, while the other is targeting eco-
nomic loss. It is worth noting that both of the cyber-attacks target his-
torical (training) data; hence test data are not attacked / compromised.

By randomly selecting some historical data and decreasing them, the
load forecasting program miss predicts the, as an example, 24 h load
lower than the actual one, and by allocating the wrong amount of pro-
duction to different power utilities, there will be a significant chance of
blackout. Let assume that the hacker is able to randomly attack k% of
data ranging from 10 to 40 and decreasing them by p% varying from 10
to 90, we have 36 scenarios for the first type of data integrity attacks. It
is worth noting that k is the scattering index and p is the severity of
attack and scatter attacks with high severity increase the MAPE and
RMSE significantly.

It is worth noting that as the speed of MATLAB modules are different
from Python ones, we only calculated the speed of our proposed
methods. While some random data increase, the predicted load is going
to be more than expected, so more production will be planned, which
will lead the system to economic loss. Another different scenario can be
described for this type of data integrity attack, and while k is set to be
30%, p% is going to increase from 1/32 to 8 percent by doubling it. It is
worth noting that the aggregate zone of the year 2007 is employed as
test data set, and all seven methods are examined under various
scenarios.

—— Expected
—— Predicted
80000 A
70000 A
o
©
(=} [
= 60000 - ( |
i
|
50000 A
\
ol \
40000 - .
0 50 100 150 200 250 300 350

day of 2007

Fig. 3. Daily load curve of 2007 using GPR method with 5.21 percent of MAPE.

Table 3
Hourly load benchmarking of GEFCom 2012, MAPE% in the year 2007.

Zone IRLS_bis IRLS_log L MLR ANN SVR GPR RFR

Aggregated zone 21 5.30 5.27 5.33 5.22 5.69 5.23 5.21 5.70

Regular zone 1 7.08 7.03 7.08 7.01 8.88 7.02 7.55 8.38
2 5.56 5.56 5.52 5.62 5.99 5.61 6.02 6.54
3 5.56 5.56 5.52 5.62 6.19 5.61 6.02 6.57
5 9.69 9.67 9.64 9.88 10.80 9.93 8.45 9.04
6 5.56 5.54 5.53 5.55 6.34 5.55 6.05 6.58
7 5.56 5.56 5.52 5.62 6.15 5.61 6.02 6.57
8 7.59 7.56 7.59 7.50 8.57 7.47 6.28 7.01
10 6.70 6.73 6.79 6.70 7.39 6.75 8.28 8.31
11 7.97 7.94 8.20 7.70 9.46 7.75 7.70 8.46
12 6.95 6.91 6.99 6.78 8.45 6.88 8.32 8.46
13 7.48 7.46 7.44 7.39 9.46 7.40 5.94 6.38
14 9.41 9.39 9.40 9.38 11.08 9.48 9.33 10.94
15 7.38 7.39 7.40 7.44 9.36 7.47 6.87 7.53
16 8.13 8.11 8.11 8.12 9.74 8.24 9.75 10.27
17 5.31 5.29 5.30 5.26 6.41 5.27 7.18 7.65
18 6.77 6.74 6.73 6.72 7.79 6.77 7.97 8.62
19 7.88 7.88 7.87 7.90 10.28 7.96 8.12 9.00
20 5.73 5.71 5.68 5.74 6.67 5.75 5.38 5.88
Avg 7.017 7.002 7.017 6.996 8.278 7.029 7.290 7.944

Special Zone 4 15.83 15.90 15.89 16.08 17.72 16.06 5.26 5.56
9 164.05 152.10 153.48 139.16 128.2 140.04 27.97 26.18

Speed (sec) x x x x x x x 0.725 0.041
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(a) zone 21, k = 30%, p = 50%
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(b) zone 21, k = 30%, p = 100%
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Fig. 4. The daily load pattern of zones 4, 9, and 21 under different cyber-attacks.
Table 4
MAPE (%) / RMSE (10°) of load forecasting under data integrity attack targeting blackouts with k = 10%.
pk 10 20 30 40 50 60 70 80 920
IRLS_bis 5.50/1.26 5.39/1.23 5.30/1.21 5.29/1.21 5.29/1.21 5.29/1.21 5.29/1.21 5.29/1.21 5.29/1.21
IRLS log 5.48/1.26 5.54/1.27 5.55/1.27 5.55/1.27 5.55/1.27 5.55/1.27 5.55/1.27 5.55/1.27 5.55/1.27
L 5.46/1.26 5.47/1.26 5.47/1.26 5.47/1.26 5.47/1.26 5.48/1.26 5.48/1.26 5.48/1.26 5.48/1.26
MLR 10 5.50/1.26 5.90/1.35 6.42/1.46 7.05/1.59 7.74/1.72 8.51/1.87 9.32/2.02 10.16/2.17 11.03/2.33
ANN 5.88/1.34 6.34/1.44 6.89/1.56 7.63/1.71 8.52/1.90 9.25/2.06 10.14/2.25 11.04/2.44 12.24/2.70
SVR 5.51/1.26 5.92/1.36 6.42/1.46 7.04/1.59 7.73/1.72 8.49/1.86 9.29/2.00 10.12/2.16 10.99/2.31
RFR 5.98/1.38 5.99/1.38 5.76/1.34 5.82/1.33 5.83/1.33 5.87/1.34 5.67/1.31 5.87/1.44 5.84/1.43
GPR 5.43/1.26 5.95/1.37 6.59/1.51 7.28/1.68 8.25/1.80 8.69/1.88 9.37/2.00 9.67/2.04 9.91/2.10

In the case of Civil Attack, we chose two special zones, 4 and 9, as the
test zones with daily load forecasting and lookback of 11 days. The
historical data that are the inputs of the load forecasting program is from
the year 2004 are switched for the two mentioned years with respect to
k, which is the percentage of data that will be switched. The k ranges
from 10 to 40 percent, and the year 2007 is our test data, and both GPR
and RFR methods are examined in these scenarios.

Fig.

Fig. 4 illustrates data of the first month of 2006 under data integrity
attacks targeting blackouts and economic loss and mentioned data under
civil attack for both mentioned zones.

4(a) plots the daily load pattern of the first month of 2006

training data under data integrity attack targeting blackouts, while
Fig. 4(b) shows the mentioned data under data integrity attack targeting
economic loss. The other two subplots illustrate the two industrial zones

Table 5
MAPE (%) and RMSE (10°) of load forecasting under data integrity attack targeting blackouts with k = 20%.
pk 10 20 30 40 50 60 70 80 90

IRLS_bis 5.84/1.34 6.03/1.35 5.42/1.23 5.28/1.21 5.27/1.21 5.27/1.21 5.27/1.21 5.27/1.21 5.27/1.21
IRLS_log 5.81/1.33 6.22/1.41 6.32/1.43 6.35/1.44 6.35/1.44 6.35/1.44 6.35/1.44 6.35/1.44 6.35/1.44
L 5.66/1.31 5.71/1.33 5.71/1.33 5.72/1.33 5.72/1.33 5.72/1.33 5.72/1.33 5.72/1.33 5.72/1.33
MLR 20 5.88/1.35 6.96/1.58 8.38/1.83 10.05/2.13 11.80/2.44 13.63/2.75 15.39/3.06 17.27/3.39 19.17/3.72
ANN 6.17/1.41 7.34/1.65 8.83/1.95 10.37/2.24 12.28/2.64 14.10/2.99 15.99/3.34 18.01/3.78 19.73/4.10
SVR 5.89/1.35 7.01/1.58 8.38/1.83 10.00/2.12 11.73/2.42 13.52/2.73 15.38/3.05 17.26/3.37 19.16/3.70
RFR 6.21/1.42 6.35/1.44 5.84/1.35 5.63/1.29 5.71/1.30 5.73/1.30 5.78/1.31 5.81/1.33 5.89/1.35
GPR 5.66/1.31 6.53/1.50 7.59/1.71 8.48/1.85 9.28/2.00 9.82/2.06 10.20/2.16 10.57/2.19 10.84/2.26
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Table 6
MAPE (%) and RMSE (10°) of load forecasting under data integrity attack targeting blackouts with k = 30%.
pk 10 20 30 40 50 60 70 80 90

IRLS_bis 6.32/1.45 7.91/1.74 9.84/2.07 11.81/2.39 13.79/2.71 15.67/3.02 17.15/3.25 18.20/3.39 18.68/2.10
IRLS log 6.28/1.44 7.67/1.69 9.21/1.96 10.69/2.20 12.16/2.44 13.55/2.67 14.67/2.86 15.87/3.05 17.03/3.25
L 5.98/1.38 6.14/1.43 6.14/1.43 6.15/1.43 6.16/1.43 6.16/1.43 6.16/1.43 6.16/1.43 6.16/1.43
MLR 30 6.35/1.45 8.35/1.83 10.71/2.24 13.35/2.70 16.08/3.18 19.04/3.68 21.70/4.14 24.53/4.63 27.37/5.13
ANN 6.60/1.51 8.69/1.91 11.30/2.54 13.69/2.87 16.36/3.36 19.34/3.93 22.11/4.43 24.85/5.02 28.38/5.67
SVR 6.43/1.36 8.29/1.82 10.70/2.24 13.33/2.70 16.08/3.16 19.04/3.67 21.70/4.14 24.54/4.62 27.38/5.12
RFR 6.36/1.45 6.97/1.57 5.96/1.37 5.75/1.32 5.80/1.33 5.69/1.31 5.79/1.33 5.93/1.36 5.68/1.31
GPR 5.87/1.35 7.11/1.60 8.22/1.79 9.14/1.98 9.85/2.07 10.05/2.16 10.75/2.24 10.80/2.36 11.06/2.45

Table 7

MAPE (%) and RMSE (10°) of load forecasting under data integrity attack targeting blackouts with k = 40%.

pk 10 20 30 40 50 60 70 80 90

IRLS bis 6.97/1.57 9.77/2.07 13.08/2.64 16.62/3.24 20.37/3.87 23.88/4.48 27.53/5.11 31.18/5.75 34.83/6.38
IRLS _log 6.94/1.57 9.63/2.05 12.77/2.58 16.13/3.15 19.71/3.76 23.02/4.33 26.49/4.93 29.97/5.53 33.44/6.14
L 6.64/1.52 7.40/1.69 7.63/1.76 7.82/1.83 8.05/1.94 8.152/0.01 8.30/2.11 8.45/2.28 8.59/2.36
MLR 40 6.97/1.57 9.90/2.10 13.36/2.69 17.04/3.32 20.93/3.98 24.59/4.61 28.38/5.27 32.17/5.93 35.97/6.59
ANN 7.17/1.62 10.07/2.17 13.55/2.81 17.07/3.47 20.87/4.18 24.78/4.91 28.31/5.65 32.47/6.38 36.77/7.12
SVR 6.95/1.57 9.89/2.10 13.35/2.69 17.03/3.31 20.92/3.97 24.59/4.61 28.39/5.26 31.60/5.81 34.54/6.33
RFR 6.59/1.51 7.15/1.62 6.07/1.40 5.82/1.33 5.69/1.31 5.76/1.32 5.89/1.34 5.58/1.27 5.70/1.32
GPR 6.25/1.43 7.47/1.71 8.61/1.88 9.43/2.10 10.10/2.12 10.58/2.18 10.83/2.25 11.10/2.45 10.99/2.43

Table 8

MAPE% of forecasting under data integrity attack targeting economic loss.
P% IRLS_bis IRLS log L MLR ANN SVR RFR GPR
1/32 5.13 5.11 5.14 5.08 5.57 5.09 5.73 5.28
1/16 5.07 5.05 5.09 5.04 5.62 5.04 6.00 5.46
1/8 5.22 5.20 5.12 5.28 5.88 5.29 6.34 6.04
1/4 6.36 6.15 5.17 6.90 7.82 6.91 7.21 7.70
172 10.24 9.17 5.17 12.72 13.56 12.86 7.57 9.89
1 5.25 14.71 5.17 26.63 27.00 26.71 6.21 11.24
2 5.25 23.34 5.17 55.46 56.15 55.58 5.87 12.14
4 5.26 31.41 5.18 112.50 111.61 112.76 6.02 12.58
8 5.26 34.61 5.18 226.33 229.39 226.44 5.99 12.83

under the introduced CA.

4. Numerical results and discussion

This section contains the simulation results under mentioned cyber-
attacks, which will be discussed comprehensively. All of the simulations
are carried out using MATLAB 2020a and Python 3.8 with the processor
Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz 2.59 GHz and 16GB of
RAM.

Tables 4, 5, 6 and 7 show the simulation results of GEFCom 2012
dataset under data integrity attack targeting blackouts with eight
different methods, six of which are derived from Luo et al., (2018a),
2018b. It is worth noting that for MAPE% in forecasting, the rule of
thumb that is lower than 10 means the method is appropriate for elec-
trical load forecasting. If not, the model is not accurate enough. The
aggregate zone of 2007s data is chosen as test data, and data from 2004

Table 9
MAPE% of forecasting under civil attack.
k% RFR GPR MLR SVR L
Zone 4 5.51 11.88 18.29 24.15 16.02
10 Zone 9 25.88 32.20 205.69 145.08 155.05
Zone 4 5.55 12.99 20.07 24.33 16.05
20 Zone 9 26.44 32.81 296.85 146.51 155.20
Zone 4 5.61 13.67 25.68 25.16 16.05
30 Zone 9 25.12 32.74 339.81 147.87 157.33
Zone 4 5.74 13.86 33.29 26.38 16.06
40 Zone 9 28.84 32.85 390.19 149.02 157.33

to 2006 are selected as training data.

From Tables 4 to 7, it is clear that although GPR method simply
outperformed MLR, SVR, and ANN, in cases that lesser historical data
are under attack, IRLS_bis, IRLS _log, and [; are more accurate methods.
Similar to GPR, RFR is not as accurate as of the three mentioned methods
in lower k%, even though RFRs MAPE% never reached 10 in this
simulation, and its numbers were near the accurate methods.

In k% more than 20, RFR was predominantly the best method. Some
exceptions in p% = 10 and 20 occurred in which GPR and [; were
leading, mostly due to the overfitting prevention methods used in RFR
and the non-linear procedure of this method. GPR, on the other hand,
was not the leading method, although GPR outperformed IRLS methods.
In colossal data integrity attacks targeting blackouts, RFR leads by a
significant difference, making it the most suitable method, while in more
humble attacks, it’s MAPE% never reached 7 percent, which means that
the method is accurate enough. Some fluctuation in errors of different p
% in RFR is observable, which is basically because of random training
data selection of this method that tries to choose the best training
dataset.

Table 8 illustrates MAPE% of mentioned methods in load forecasting
under data integrity attack targeting economic loss.

It is observable that [; is the leading method in most scenarios while
GPR, compared to MLR, SVR, ANN, and IRLS_log, managed to limit its
error between an acceptable range. In the case of RFR, its error never
reached 8 percent, which shows an incredible accuracy of this model
under economic loss attack, while [; is still the best method in these
types of cyber-attacks. IRLS bis is one of the leading methods, except p
= 0.5 when the MAPE error passes 10.
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RFR is still a reliable method in case of data integrity attack as the
MAPE% never reached 8 in all the proposed scenarios, and in most
scenarios, the RFR was the leading method in case of accuracy. GPR
performed inaccurate in some attack cases with high severity. Both of
the proposed methods outperformed other methods in case of load
forecasting in special zones making RFR the best method in case of
forecasting under cyber-attacks and for special zones.

In Table 9, forecasting errors under civil attack are illustrated. It is
worth mentioning that the 2007 daily data of two special zones, 4 and 9,
are predicted, while some of their historical data are swapped with each
other, which is the basis of civil-attack. Both of the proposed methods
are employed in 4 scenarios. It is worth noting that the best forecasting
method under cyber-attacks, [;, along with MLR and SVR, both of which
scored the best MAPE in aggregated zones, are the other methods
derived from Luo et al., (2018a), 2018b for comparison in the CA sce-
narios. The numbers may vary as we simulated the mentioned methods
in Python and not in MATLAB.

It is clear that RFR predominantly exceeded GPR, [;, MLR, and SVR in
each scenario and zone. As we mentioned in Table 1, forecasting errors
of zones 9 and 4 are significantly high by every mentioned method,
while RFR and GPR managed to lower the MAPE% of special zones
under CA. The RFR method limited the error of each attacking scenario
in zone 4 to under six percent, which is a considerable breakthrough,
while numbers in GPR are not promising at all. It is clear that the other
three methods are not suitable at all for forecasting the electricity con-
sumption of industrial zones under CA. All of the five mentioned
methods failed to predict loads in zone 9 accurately. Both zones 9 and 4
are industrial loads in two different areas, and the electricity con-
sumption of the mentioned zones fluctuated significantly over training
years. Hence, the MAPE of forecasted loads in the special zones under
civil attack is relatively higher than the other zones. We utilized the
special zones for this attack due to their vast load difference, as is
illustrated in Fig. 4, in order to change the magnitude of training data
remarkably to test the robustness and accuracy of our proposed methods
under civil attacks with higher intensity.

5. Conclusion

Load forecasting brings new challenges to cybersecurity. We
consider two types of data integrity attack along with a novel cyber-
attack named Civil Attack, and two non-linear regression methods are
proposed. The data integrity attacks inject inaccurate data to the his-
torical loads used for predicting hourly load, and civil attack swaps
historical loads of different zones. Overall, for forecasting under the
normal situation, GPR ranked first in accuracy and registered the lowest
MAPE% in the aggregated zone with only 5.21 percent error. Two spe-
cial zones, in which previous methods from other articles failed to
predict accurately, forecasted quite accurately by proposed methods.
Zone 4 is forecasted by GPR with only 5.26 percent of MAPE, while the
RFR model predicted the loads with 5.56 percent error. In zone 9, GPR
and RFR managed to forecast the loads with 27.97 and 26.18 percent
MAPE error, respectively. RFR method surpassed other methods in vast
and complicated cyber-attacks. Our methods, in some scenarios, failed
to predict correctly under the novel civil attack, which was mainly due
to hard to predict nature of the two mentioned zones. As these two zones
are industrial zones, the historical loads in these special zones fluctuated
significantly over time, making their loads hard to forecast accurately.
Cyber-attacks utilized in this paper target historical loads from data-
bases and change them by increasing, decreasing and swapping them
with other zonal loads.

As the first of its kind in the power industry, the civil attack is able to
target load history. Using deep learning methods for forecasting, such as
Long Short-Term Memory, may facilitate hourly load prediction under
different cyber-sabotages CA included. It is worth noting that the elec-
tricity market depends heavily on the forecasted loads, so the influence
of these cyber-attacks on the electricity market can be named one of the
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future agendas of this article and its effect on energy management
programs. Using blockchain-based methods for data security, along with
detecting cyber-attacks in online streaming energy data are the future
contributions to this literature.
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