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under the introduced CA. 

4. Numerical results and discussion 

This section contains the simulation results under mentioned cyber- 
attacks, which will be discussed comprehensively. All of the simulations 
are carried out using MATLAB 2020a and Python 3.8 with the processor 
Intel(R) Core(TM) i7–10750H CPU @ 2.60 GHz 2.59 GHz and 16GB of 
RAM. 

Tables 4, 5, 6 and 7 show the simulation results of GEFCom 2012 
dataset under data integrity attack targeting blackouts with eight 
different methods, six of which are derived from Luo et al., (2018a), 
2018b. It is worth noting that for MAPE% in forecasting, the rule of 
thumb that is lower than 10 means the method is appropriate for elec
trical load forecasting. If not, the model is not accurate enough. The 
aggregate zone of 2007s data is chosen as test data, and data from 2004 

to 2006 are selected as training data. 
From Tables 4 to 7, it is clear that although GPR method simply 

outperformed MLR, SVR, and ANN, in cases that lesser historical data 
are under attack, IRLS_bis, IRLS_log, and l1 are more accurate methods. 
Similar to GPR, RFR is not as accurate as of the three mentioned methods 
in lower k%, even though RFRs MAPE% never reached 10 in this 
simulation, and its numbers were near the accurate methods. 

In k% more than 20, RFR was predominantly the best method. Some 
exceptions in p% = 10 and 20 occurred in which GPR and l1 were 
leading, mostly due to the overfitting prevention methods used in RFR 
and the non-linear procedure of this method. GPR, on the other hand, 
was not the leading method, although GPR outperformed IRLS methods. 
In colossal data integrity attacks targeting blackouts, RFR leads by a 
significant difference, making it the most suitable method, while in more 
humble attacks, it’s MAPE% never reached 7 percent, which means that 
the method is accurate enough. Some fluctuation in errors of different p 
% in RFR is observable, which is basically because of random training 
data selection of this method that tries to choose the best training 
dataset. 

Table 8 illustrates MAPE% of mentioned methods in load forecasting 
under data integrity attack targeting economic loss. 

It is observable that l1 is the leading method in most scenarios while 
GPR, compared to MLR, SVR, ANN, and IRLS_log, managed to limit its 
error between an acceptable range. In the case of RFR, its error never 
reached 8 percent, which shows an incredible accuracy of this model 
under economic loss attack, while l1 is still the best method in these 
types of cyber-attacks. IRLS_bis is one of the leading methods, except p 
= 0.5 when the MAPE error passes 10. 

Table 6 
MAPE (%) and RMSE (105) of load forecasting under data integrity attack targeting blackouts with k = 30%.   

pk 10 20 30 40 50 60 70 80 90 

IRLS_bis  6.32/1.45 7.91/1.74 9.84/2.07 11.81/2.39 13.79/2.71 15.67/3.02 17.15/3.25 18.20/3.39 18.68/2.10 
IRLS_log  6.28/1.44 7.67/1.69 9.21/1.96 10.69/2.20 12.16/2.44 13.55/2.67 14.67/2.86 15.87/3.05 17.03/3.25 
l1   5.98/1.38 6.14/1.43 6.14/1.43 6.15/1.43 6.16/1.43 6.16/1.43 6.16/1.43 6.16/1.43 6.16/1.43 
MLR 30 6.35/1.45 8.35/1.83 10.71/2.24 13.35/2.70 16.08/3.18 19.04/3.68 21.70/4.14 24.53/4.63 27.37/5.13 
ANN  6.60/1.51 8.69/1.91 11.30/2.54 13.69/2.87 16.36/3.36 19.34/3.93 22.11/4.43 24.85/5.02 28.38/5.67 
SVR  6.43/1.36 8.29/1.82 10.70/2.24 13.33/2.70 16.08/3.16 19.04/3.67 21.70/4.14 24.54/4.62 27.38/5.12 
RFR  6.36/1.45 6.97/1.57 5.96/1.37 5.75/1.32 5.80/1.33 5.69/1.31 5.79/1.33 5.93/1.36 5.68/1.31 
GPR  5.87/1.35 7.11/1.60 8.22/1.79 9.14/1.98 9.85/2.07 10.05/2.16 10.75/2.24 10.80/2.36 11.06/2.45  

Table 7 
MAPE (%) and RMSE (105) of load forecasting under data integrity attack targeting blackouts with k = 40%.   

pk 10 20 30 40 50 60 70 80 90 

IRLS_bis  6.97/1.57 9.77/2.07 13.08/2.64 16.62/3.24 20.37/3.87 23.88/4.48 27.53/5.11 31.18/5.75 34.83/6.38 
IRLS_log  6.94/1.57 9.63/2.05 12.77/2.58 16.13/3.15 19.71/3.76 23.02/4.33 26.49/4.93 29.97/5.53 33.44/6.14 
l1   6.64/1.52 7.40/1.69 7.63/1.76 7.82/1.83 8.05/1.94 8.152/0.01 8.30/2.11 8.45/2.28 8.59/2.36 
MLR 40 6.97/1.57 9.90/2.10 13.36/2.69 17.04/3.32 20.93/3.98 24.59/4.61 28.38/5.27 32.17/5.93 35.97/6.59 
ANN  7.17/1.62 10.07/2.17 13.55/2.81 17.07/3.47 20.87/4.18 24.78/4.91 28.31/5.65 32.47/6.38 36.77/7.12 
SVR  6.95/1.57 9.89/2.10 13.35/2.69 17.03/3.31 20.92/3.97 24.59/4.61 28.39/5.26 31.60/5.81 34.54/6.33 
RFR  6.59/1.51 7.15/1.62 6.07/1.40 5.82/1.33 5.69/1.31 5.76/1.32 5.89/1.34 5.58/1.27 5.70/1.32 
GPR  6.25/1.43 7.47/1.71 8.61/1.88 9.43/2.10 10.10/2.12 10.58/2.18 10.83/2.25 11.10/2.45 10.99/2.43  

Table 8 
MAPE% of forecasting under data integrity attack targeting economic loss.  

P% IRLS_bis IRLS_log l1  MLR ANN SVR RFR GPR 

1/32 5.13 5.11 5.14 5.08 5.57 5.09 5.73 5.28 
1/16 5.07 5.05 5.09 5.04 5.62 5.04 6.00 5.46 
1/8 5.22 5.20 5.12 5.28 5.88 5.29 6.34 6.04 
1/4 6.36 6.15 5.17 6.90 7.82 6.91 7.21 7.70 
1/2 10.24 9.17 5.17 12.72 13.56 12.86 7.57 9.89 
1 5.25 14.71 5.17 26.63 27.00 26.71 6.21 11.24 
2 5.25 23.34 5.17 55.46 56.15 55.58 5.87 12.14 
4 5.26 31.41 5.18 112.50 111.61 112.76 6.02 12.58 
8 5.26 34.61 5.18 226.33 229.39 226.44 5.99 12.83  

Table 9 
MAPE% of forecasting under civil attack.  

k%  RFR GPR MLR SVR l1   

10 
Zone 4 5.51 11.88 18.29 24.15 16.02 
Zone 9 25.88 32.20 205.69 145.08 155.05  

20 
Zone 4 5.55 12.99 20.07 24.33 16.05 
Zone 9 26.44 32.81 296.85 146.51 155.20  

30 
Zone 4 5.61 13.67 25.68 25.16 16.05 
Zone 9 25.12 32.74 339.81 147.87 157.33  

40 
Zone 4 5.74 13.86 33.29 26.38 16.06 
Zone 9 28.84 32.85 390.19 149.02 157.33  
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RFR is still a reliable method in case of data integrity attack as the 
MAPE% never reached 8 in all the proposed scenarios, and in most 
scenarios, the RFR was the leading method in case of accuracy. GPR 
performed inaccurate in some attack cases with high severity. Both of 
the proposed methods outperformed other methods in case of load 
forecasting in special zones making RFR the best method in case of 
forecasting under cyber-attacks and for special zones. 

In Table 9, forecasting errors under civil attack are illustrated. It is 
worth mentioning that the 2007 daily data of two special zones, 4 and 9, 
are predicted, while some of their historical data are swapped with each 
other, which is the basis of civil-attack. Both of the proposed methods 
are employed in 4 scenarios. It is worth noting that the best forecasting 
method under cyber-attacks, l1, along with MLR and SVR, both of which 
scored the best MAPE in aggregated zones, are the other methods 
derived from Luo et al., (2018a), 2018b for comparison in the CA sce
narios. The numbers may vary as we simulated the mentioned methods 
in Python and not in MATLAB. 

It is clear that RFR predominantly exceeded GPR, l1, MLR, and SVR in 
each scenario and zone. As we mentioned in Table 1, forecasting errors 
of zones 9 and 4 are significantly high by every mentioned method, 
while RFR and GPR managed to lower the MAPE% of special zones 
under CA. The RFR method limited the error of each attacking scenario 
in zone 4 to under six percent, which is a considerable breakthrough, 
while numbers in GPR are not promising at all. It is clear that the other 
three methods are not suitable at all for forecasting the electricity con
sumption of industrial zones under CA. All of the five mentioned 
methods failed to predict loads in zone 9 accurately. Both zones 9 and 4 
are industrial loads in two different areas, and the electricity con
sumption of the mentioned zones fluctuated significantly over training 
years. Hence, the MAPE of forecasted loads in the special zones under 
civil attack is relatively higher than the other zones. We utilized the 
special zones for this attack due to their vast load difference, as is 
illustrated in Fig. 4, in order to change the magnitude of training data 
remarkably to test the robustness and accuracy of our proposed methods 
under civil attacks with higher intensity. 

5. Conclusion 

Load forecasting brings new challenges to cybersecurity. We 
consider two types of data integrity attack along with a novel cyber- 
attack named Civil Attack, and two non-linear regression methods are 
proposed. The data integrity attacks inject inaccurate data to the his
torical loads used for predicting hourly load, and civil attack swaps 
historical loads of different zones. Overall, for forecasting under the 
normal situation, GPR ranked first in accuracy and registered the lowest 
MAPE% in the aggregated zone with only 5.21 percent error. Two spe
cial zones, in which previous methods from other articles failed to 
predict accurately, forecasted quite accurately by proposed methods. 
Zone 4 is forecasted by GPR with only 5.26 percent of MAPE, while the 
RFR model predicted the loads with 5.56 percent error. In zone 9, GPR 
and RFR managed to forecast the loads with 27.97 and 26.18 percent 
MAPE error, respectively. RFR method surpassed other methods in vast 
and complicated cyber-attacks. Our methods, in some scenarios, failed 
to predict correctly under the novel civil attack, which was mainly due 
to hard to predict nature of the two mentioned zones. As these two zones 
are industrial zones, the historical loads in these special zones fluctuated 
significantly over time, making their loads hard to forecast accurately. 
Cyber-attacks utilized in this paper target historical loads from data
bases and change them by increasing, decreasing and swapping them 
with other zonal loads. 

As the first of its kind in the power industry, the civil attack is able to 
target load history. Using deep learning methods for forecasting, such as 
Long Short-Term Memory, may facilitate hourly load prediction under 
different cyber-sabotages CA included. It is worth noting that the elec
tricity market depends heavily on the forecasted loads, so the influence 
of these cyber-attacks on the electricity market can be named one of the 

future agendas of this article and its effect on energy management 
programs. Using blockchain-based methods for data security, along with 
detecting cyber-attacks in online streaming energy data are the future 
contributions to this literature. 
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