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Volunteer computing uses Internet-connected devices (laptops, PCs, smart devices,etc.), in which their owners
volunteer them as storage and computing power resources, has become an essential mechanism for resource
management in numerous applications. The growth of the volume and variety of data traffic in the Internet
leads to concerns on the robustness of cyberphysical systems especially for critical infrastructures. Therefore,
the implementation of an efficient Intrusion Detection System for gathering such sensory data has gained
vital importance. In this paper, we present a comparative study of Artificial Intelligence (AI)-driven intrusion
detection systems for wirelessly connected sensors that track crucial applications. Specifically, we present
an in-depth analysis of the use of machine learning, deep learning and reinforcement learning solutions to
recognize intrusive behavior in the collected traffic. We evaluate the proposed mechanisms by using KDD’99 as
real attack data-set in our simulations. Results present the performance metrics for three different IDSs namely
the Adaptively Supervised and Clustered Hybrid IDS (ASCH-IDS), Restricted Boltzmann Machine-based
Clustered IDS (RBC-IDS) and Q-learning based IDS (QL-IDS) to detect malicious behaviors. We also present
the performance of different reinforcement learning techniques such as State-Action-Reward-State-Action
Learning (SARSA) and the Temporal Difference learning (TD). Through simulations, we show that QL-IDS
performs with 100% detection rate while SARSA-IDS and TD-IDS perform at the order of 99.5%.
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1 INTRODUCTION

Smart cities exploit the flexibility, self-deployment and low-cost benefits of wireless sensors to
monitor their critical infrastructures [1]. Monitoring critical infrastructures involves various types of
sensors under different circumstances [2][3]. Efficiency and reliability of critical infrastructures such
as medical infrastructure can be met by using reliable and secure data aggregation and transmission
[4] [5]. Sensors and the communication lines between them are vulnerable to numerous intruders
that may interrupt and manipulate with the communication and transmitted data [6][7]. IDS is an
essential component for network security to detect different types of intrusions. At the very high

Authors’ addresses: Safa Otoum, Safa.Otoum@zu.ac.ae, College of Technological Innovation, Zayed University, UAE, Abu
Dhabi, UAE; Burak Kantarci and Hussein Mouftah, Burak.Kantarci;Mouftah@uottawa.ca, University of Ottawa, 800 King
Edward Ave, Ottawa, ON, KIN6N5.



https://doi.org/

2 Safa Otoum and Burak Kantarci and Hussein Mouftah

level, the validity of any IDS is determined by its ability of raising an alarm with the detection of any
malicious node that exhibits intrusive behavior [8]. IDSs are categorized in two sets: Anomaly-based
IDS and Signature-based IDS. The former aims to detect abnormal traffic patterns that deviate from
the normal behavior. To this end, it creates profiles of the features to seize the needed patterns. The
variance between the extracted patterns and noticed activities may lead to an alarm. Thus, ideally
Anomaly-based IDSs are able to detect unknown attacks. However, It is worth noting that most IDS
systems still suffer from False Positive (FP) decisions, i.e., a non-malicious activity’s being marked as
an intrusive event [6]. Apart from the anomaly-based IDS, signature IDSs uses the rule complement
mechanism to detect malicious behavior by comparing system activities with specific rules. An
intrusive event is detected when the noticed activities match a known malicious pattern. The risk
of solely adopting a signature-based IDS is that its possible low precision in the likelihood of an
unknown attack [6][8]. In our previous work, we proposed several artificial intelligence (Al)-based
IDS methods for WSNs monitoring critical infrastructures [8][7]. All of these approaches have the
following aim in common: signature detection and anomaly detection which can be combined in an
IDS by following an adaptive supervision procedure. In this paper, we provide a comparative study
of intrusion detection in critical infrastructures which compares the usage of machine learning
(random forest and E-DBSCAN), deep learning (restricted Boltzmann machine) and reinforcement
learning approaches (Q-learning). We also develop our work presented in [6][8][7] by introducing
Q-learning, SARSA-learning and TD-learning based reinforcement procedures to our previously
proposed IDS. The main contributions of this work are mentioned as follows.

(1) This work directly target the volunteer computing by applying the previously proposed IDSs
to the distributed data and evaluating the IDS performance.

(2) It presents an intrusion detection mechanism, in which reinforcement learning using Q-
learning, SARSA learning and TD learning methods are introduced to estimate the IDS
performance.

(3) For the first time, we present a comprehensive and comparative study of IDS evaluation using
machine, deep and reinforcement learning methods.

2 MOTIVATIONS

WSNss are major technology in critical infrastructures, especially in monitoring and control pro-
cesses, due to their self-deployment, flexibility and low-cost benefits. Monitoring critical infrastruc-
tures involve numerous sensors under various phenomena. In most of critical infrastructures, WSNs
are deployed in an open nature environment, thus, nodes could be vulnerable to different attacks
which can manipulate the aggregated sensory data. The communication lines are also vulnerable to
numerous intruders that may interrupt and manipulate with the communication and transmitted
data. WSNs need to provide an acceptable level of security to achieve attacks free environments,
reliable and secure data aggregation and transmission [4]. Intrusion Detection System (IDS) is an
essential component for network security especially for the sensor networks to detect different
types of intrusions. At the very high level, the validity of any IDS is determined by its ability to
raise an alarm with the detection of any malicious node that exhibits intrusive behavior [8].

The rest of the paper is organized as follows. Section 3 layouts this study’s related works. Section
4 introduces the IDS topology settings. Section 5 describes the methods used to test the previously
proposed IDS. Experimental and results analysis are presented in section 6. Finally, we present the
conclusion in Section 7.
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3 RELATED WORKS

Integration of machine learning with IDS have been proposed by many researchers. Some of them
tackled the unknown attacks [9] while others tackled the known ones [10]. Lately, deep learning
based techniques had been used in IDSs and proved their effectiveness in detection intrusive
behaviors [11][12].

3.1 Machine Learning-based IDS

The goal of any IDS is to identify two different behavior patterns: normal behavior and malicious
behavior [13]. Popular machine learning algorithms that aim to cluster behavior patterns around
a centroid are K-nearest neighbour and K-means [14]. As a supervised approach, Support Vector
Machines (SVM) have also been be considered [15], which partitions the data plane into smaller
hyperplanes and also automates feature selection.

Adaptive machine learning-based techniques for IDS have been tested in many studies to improve
the accuracy of classification such as the work presented in [16] where the researchers presented a
validation procedure by presenting the automated and adaptive testing prototype. the work in [17]
proposed an Adaptive Model Generation (AMG) as a model generator which would work adaptively
in real time to perform IDSs. AMG enables evaluation of data in real time, and automates the data
collection, as well as the generation and deployment of detection models.

To the best of our knowledge, an adaptive-IDS solution for critical infrastructures that deal with
both known and unknown intruders remains an open issue. In ASCH-IDS, we present a dynamic
adjustment technique for the proportion of the aggregated sensory data that forwarded to the
anomaly and misuse detection subsystems.

3.2 Deep Learning-based IDS

Deep learning methods have been applied to IDS and achieved highly accurate results [18][19][20].
In [21] the authors tested the abilities of a Deep Belief Network (DBN) in the detection of intrusive
patterns. The authors in [18] combined DBN and SVMs, and introduced a hybrid IDS methodology
where DBN served as a feature selector and SVM as the classifier. The hybrid approach resulted in
~92% accuracy rate. Authors in [22] presented a partial supervised learning approach where the

classifier was trained with normal traffic only so any knowledge about malicious behaviors could
evolve dynamically. The authors applied Discriminative Restricted Boltzmann Machine (DRBM) to
anomaly detection as an energy-based classifier.

High dimensionality is a grand challenge in big data applications; hence the authors in [23]
applied an autoencoder in the first stage of an IDS in order to reduce dimensionality and extract
the features for a DBN to classify anomalous and normal behavior patterns.

Deep learning has been introduced to the distributed computing such as the works presented in
[24] and [25]. In [24], the authors proposed a cyber-attack detection deep learning-based mechanism
in fog-to-things computing. The work in [25] proved the flexibility of cloud-based infrastructures
along with the enhancements in the large-scale machine learning area for moving the highest
computationally and storage tasks to the cloud to benefit of the edge computing capabilities.

3.3 Reinforcement learning based IDS

Reinforcement learning (RL) considered as an extension to machine learning, and involves agents
that take actions to maximize the notion of rewards. Previously, reinforcement learning process was
applied into IDSs by several studies. In [26], the researchers proposed a distributed reinforcement
learning approach in which each agent (i.e. sensor) analyzes state observations and communicates
them to a central agent. Agents that are higher in the hierarchy are equipped with the knowledge for
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analyzing the collected data, and they broadcast an overall abnormal state to the network operator
[26]. The authors in [27] presented reinforcement learning - based technique for host-based IDS
through a series of system calls by presenting a Markovian reward process (MRP) to replicate the
behavior of system call series where the intrusion detection issue is transfigured to predict the
MRP value functions. The work presented in [28] proposed an approach to detect intrusion with
online clustering by using Pursuit Reinforcement Competitive Learning (PRCL). The researchers
in [29] presented an approach of an adaptive neural networks to intrusion detection that detect
new attacks autonomously with the use of reinforcement learning method. The work presented in
[30] exploits the use of data flow information, Reinforcement Learning and tile coding to detect
flooding-based Distributed Denial of Service (DDoS) attacks.

To this end, a comprehensive comparison/evaluation of IDS for critical monitoring infrastructures
that works for both known and unknown attacks using Q-based, State-Action-Reward-State-Action
Learning (SARSA) and the Temporal Difference learning (TD) reinforcement learning remains an
open issue.

4 SYSTEM MODEL

We adopt the IDS model that was proposed for WSN-based critical infrastructure monitoring in
our previous work [6] to the volunteer computing architecture.

The IDS consists of N clusters with C sensors in each cluster. Aggregating the sensory data is
the responsibility of the Cluster Head (CH) which collects the data from sensors and directs it to
the IDS which is installed in a central node namely the server. The aggregated data then undergoes
the intrusion detection method. The IDS consists of : 1) Weighted cluster head selection in Section
4.1, 2) Data aggregation in Section 4.2, 3) The detection methods in Section 5. The notations used
all-through the manuscript are enlisted in Table 1.

4.1 Weighted Cluster Head (CH) selection

A Cluster-Head (CH) election method has been adopted for data collection and processing reasons.
CH election method is fulfilled by using the election technique that calculates the weight of each
sensor node and compares it to the weights of the other nodes [31]. Each node has a weight G,
that is a function of its (RSSIy;,) which refers to its received signal strength, mobility, and degree.
Following the weight computation, the node broadcasts its weight along with its unique identifier
(ID). It then proceeds to compare it with the weights of the neighbour nodes such as the sensor
node that achieves the lowest weight is elected as the CH [31] [8] [6].

The weight depends on the following four elements: mobility and degree difference which refers
to the node degree excluding CH capacity, cumulative time and RSSIg,,. The election procedure
goes through steps as shown in Algorithm 1 Where D, refers to the degree of node n, I represents
the CH Capacity (i.e. number of nodes), on refers to the degree difference for n, SRSrengsn (1)

represents the sum of n’s received signal strength, M, represents the mobility factor for node n,
T, refers to the cumulative time for node n, and G, represents the combined weight for node n.
In Algorithm 1, n refers to any node, gz, gm, gsum and gq refer to the weight factors of 7, M,,
RSSIsum and on, accordingly.

4.2 Data aggregation procedure

Each CH gathers data from its corresponding sensors and sends them to the sink. The method
presented in [32] has been adopted in our previous and ongoing research as the aggregation
procedure. The method depends on assessing the trust score of the aggregator by tracking the
sensors’ trust scores with the estimated trust between sensors and the aggregator [32]. Equation
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(1) computes the trust score of a CH [32] where Tcy denotes the CH trust value, T, is node n trust
value, and T, is the CH and node n trust estimation.

(CnZ(Ty+1) - T2
n (T +1)

Tey =

Algorithm 1: Weighted Cluster Head (CH) selection pseudo-code

1: procedure WEIGHTED CH SELECTION
2: Input: Dy, , T, |[1/SRSstrengtn(n)|, My, iy
3. Output: G,
4: for each node n do
on=|D, —T|
|1/SRStrengen(n)| mormalized value of SRSgtrength
Gn = gdan + WM +gmMn +gﬁnhn
EndFor
Return G,
Select the node with a minimum G,, as CH
10: Remove CH from the nodes list
11: Repeat all steps for the remaining nodes
12: End
13: end procedure

b A

5 INTRUSION DETECTION METHODS

5.1 Adaptive Machine learning based the Adaptively Supervised and Clustered
Hybrid Intrusion Detection System (ASCH-IDS)

In our previously proposed ASCH-IDS [7] and CHH-IDS [6], the collected sensed data experiences
two machine learning based subsystems working in parallel for intrusion detection: Anomaly
Detection Subsystem (ADSs) and Misuse Detection Subsystem (MDSs). This translates into a

hybrid system as shown in Algorithm 2 for detecting intrusive sensors. ADSs follows the E-
DBSCAN algorithm which refers to the Enhanced-Density Based Spatial Clustering of Applications
with Noise while MDSs follows the random forest technique. DBSCAN returns to a density based
clustering method where clusters are considered as dense areas of objects where the data space is
distributed into areas of objects with low densities [34] while the E-DBSCAN algorithm retains
the track of the variation of local density in the cluster and computes any core objects’ density
variance with considering its e-neighbourhood [35]. On the other hand, when random forest used
as a classification mechanism in which each tree checks each input for the frequent classes and
delivers a vote if it happened [36], it operates in two stages: the training and the classification
stages [37]. In [6], the collected data is partitioned into IDS subsystems (IDSs) in a round-robin
fashion following a time-slotted method as shown in Fig. 1.

Fig. 2 represents the previously proposed CHH-IDS[6] where CHH-IDS runs on a WSN which
contains N clusters where the CH handles the aggregation procedure of the data forwarded by the
Sensors.

When random forest is used for misuse detection, each tree is developed as described below [37]:

o If the training set size denoted by Y, a randomly extracted data-points y from the original
data-set turn into the training data-set for the developing tree.
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Table 1. Notations used in the manuscript

Notation Description

14 Visible element

H Hidden element

0 Outputs

X Number of visible nodes

Y Number of hidden nodes

Ay Visible bias

by Hidden bias

w The weights between visible and hidden layers

Wy Combined weights of visible V, and hidden H,, units

® RBM parameters (W ,ax,by)

E(V,H|O©) The energy function of the RBM

P(V,H) The probability of (V, H) formation

XY e E(V.H) The normalization factor (all possible configurations including the visible
and hidden elements)

P(V) The probability allocated to any visible element V, The network sets prob-
ability score to each case in hidden and visible elements[19][33]

P(H) The probability allocated to any hidden element H

P(V|H) The probability of V independently with H

P(H|V) The probability of H independently with V'

P(Intrusive) The binary output for intrusive detection

Normal The binary output for normal detection

rec Number of records

Var Number of variables

T, Number of trees

TP True Positive

TN True Negative

FP False Positive

FN False Negative

S, State at time ¢

A; Action at time ¢t

R, Reward at time ¢

V7(S) Value estimation of R that at initial state S

(S, A) Probability of A in S

Pgs+(A) Transitional probability from state S to S* at A

R(S,S%,A) Reward returned from transition from state S to S* at A

r Discount factor weight from future rewards to current rewards

V7(ST) Value estimation of R at state S* at the initial iteration I

V7 (S) Value estimation of R at state S at the updated iteration I + 1

Tcl CH trust value

T, Node n trust value

TPy CH and node n trust estimation

a The weight of the recently calculated TP/FP and its value during the (A7)

e If the input variables denoted by X, a randomly extracted data-points x from X can be utilized

to split the node. x considered as a constant while the forest develop where each tree is
developed to the most size.
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Fig. 1. Aggregated sensed data distribution mechanism between the IDSs1 and IDSs2.

On the other hand, E-DBSCAN used as clustering algorithm which has been utilized to extract
the e which represents the distance threshold, € is a critical factor in E-DBSCAN algorithm [38].
DBSCAN can realize the adjacent clusters which belong to the same density as well as clusters of
random shapes [39]. DBSCAN consists of two factors, the € and the MinPts which considered as
input parameters. It follows the rules descried below:

o N.(x) =y € X|d(x,y)| < € is the € — neighbourhood of point x.

e Neighbourhoods of core object has a size > MinPts.

e A point j is density accessible from i as a core object.

e i and j considered as density-based connected when i and j are density accessible from a
core object.

On the other hand, the ASCH-IDS [6] retains the track of ADSs and MDSs deviations in the
Receiver Operating Characteristics (ROC) and changes the segment of data directed to them
adaptively .

Equations. (2)-(3) represent the (TP) to (FP) for the two subsystems at 7; which are represented
by p1(7:) and pa(7) [7].

Algorithm 2: Detection of intrusive sensors

procedure INTRUSIVE SENSORS DETECTION
Cluster Head (CH) selection: Weighted CH selection
Data aggregation: Trust-based aggregation of sensed data
Data distribution: Aggregated data distribution between the two sub-systems
if (Intrusive behavior detected) then
ALARM

8: END
8: else

if (End of sensing data) then

END
10: else

Go to Data distribution
12: end procedure

A Y
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@ Alerts
Abnormal T

Fig. 2. CHH-IDS system model. The collected sensed data is distributed between the ADSs and MDSs.

() = i ®
TPy (7;
() = s ®
Equations (4)-(5) represent the TP to FP ratios at time (A7) where At=7;41 — 7; [7].
m(en) = ted @
TP
pon) = s ®

When the ROC behavior during At is extracted, the ROC behavior of each subsystem can be
obtained as the sum of the ROC behavior at 7 and the behavior at A7 as represented in Egs. (6) and
(7) [7]. where « represents the weight of the recently calculated TP/FP and its value during the
(A7) where 141 = 7; + AT.
H1(Ti) = apn (i) + (1 - a)pi (A7) (6)
Ho(Tis1) = apz(7i) + (1 — @) p2 (A7) (7)
Eq.(8) represents an indicator I(z;) which tracks the ROC behavior of MDSs and ADSs at any
time 7; .
I(r) = B ®
Ha(7i)
The extracted indicator [ is used in the decision of directing the collected data such as if I(z;) >
I(7;-1), ASCH-IDS decides that ADSs is performing better than MDSs. so, any increasing of data
proportion on ADSs is enhancing the overall performance of the system. variously, if I(z;) < I(7;—1),

t e intrusion s stem d ines that MDSs i 1s erformin befttelr than Al uch as, any increase in
ata [f)roiplo tio ShIS %xg)éﬂeﬂ) g rovem e overa er orman¢ %¥ the system.
ereve Ti+1 7i), increases the data proport1 n on [ an

ecreases on
I such as: Da(r,-+1) = Dy(7;) + AD and Dy, (7i4+1) = Dy (7;) — AD as formulated in (9)-(10) where
AD denotes the data adjustment for each subsystem. Algorithm 3 presents an overview of the
previous steps. Where 7;,7;41 and At refer to any time, 7; + At and the time difference between
(i41 — 71) respectively. a refers to the ROC characteristics weight in the evaluation of y; (z;) and
12(7;), Dg(1;) and Dy, (7;) refer to the segments of data forwarded to the anomaly (ADSs) and the
misuse (MDSs) at ;.
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Dy(7i41) = Dg(7i) £ AD )

Dy (7i41) = Dp(1i) £ AD (10)

As the proposed system consists of two subsystems, its com;l)lexity is a function of the two
algorithms comdplexmes. Since the random Forest is a special model of décision trees, its complexity
can be extracted from decision tree, such as the complexity C(Random forest) for building a decision

tree with r records and v variables is O(v + rec * log(v)) , while for multi trees as in our random
forest, the complexity is O(Tr * Var = rec * log(Var)) where T, is the number of trees, Var is the

number of variables. For E-DBSCAN as the second subsystem, the complexity is directed by the
query requests’ number. Since each point is operates with’only one query, the run-time complexity
is O(n) <%n * log(n)). In our E-DBSCAN, the 1nitialization step is executed 1 time, the comparison

step is executed (m+ 1) times, and the incremental step is executed (m) times. Thus, the complexity
will be as O(2 + (2m)) = O(m). To this end, the overall complexity of the system can be calculated
by O((T, = Var = rec * log(Var)) + (2 + (2m)).

5.2 Deep learning based Restricted Boltzmann Machine-based Clustered IDS
(RBC-IDS)

Restricted Boltzmann machine (RBM) is a neural, energetic network containing two types of
layers: (V) and (H) which refer to the visible and the hidden layers respectively, where the learning
procedure is steered by an unsupervised fashion [19]. The RBM permits connections between
neurons of the same layer, which makes it restricted, and the procedure is presented in the pseudo-
code in Algorithm 4.

Table 1 contains the RBM parameters used in Algorithm 4.

The network sets probability score to each case in hidden and visible elements[19][33].

Fig. 3 represents the used RBM setting in RBC-IDS. The RBC-IDS consists of an input layer
contains X visible nodes, three hidden layers and output layer with two outputs O; and O, for
Intrusive and Normal outputs respectively. Wi; represents the weight between the first visible
layer and the first hidden layer while W, refers to the weight of the first and the second hidden
layers and Wa; is the weight between the second and the third hidden layers.

In the RBC-IDS, each CH is responsible for aggregating the sensed data from the sensors in the
same cluster and forwards them to the server by adopting the procedure in [32].

5.3 Reinforcement learning

In machine learning, the studied environment is defined as Markov Decision Process (MDP) which
as many reinforcement learning algorithms such as Q-learning, employ dynamic programming
procedures. MDP come up with optimum policy to achieve the maximum rewards over time [40].
The fundamentals of reinforcement learning concept are as follows:

e The agent interacts with the environment and takes actions A; in each state S; and observes
the feedback from the environment.

e The environment supplies a reward R; for the actions performed in form of R* or R~ which
refer to positive or negative rewards respectively.

o The agent observes the environment for any changes and optimize the received rewards by
updating the policies.

o Different reinforcement learning techniques are called in order to maximize the expected
value of the total reward, starting from the current state.
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Q-Learning. Q Learning builds on the concept of value iteration where the agent aims to

estimate the value function to update all states s and actions A every iteration in order to know

Algorithm 3: Adaptive IDS: (ASCH-IDS)

1:

o % 3 @ o » @

—

23:

24:
25:
26:
27:
28:

30:
31:
32:
33:
34:

36:
37:
38:

procedure ROC TrRACKING > Tracking the deviations in (ROC) of the anomaly and the misuse
detection subsystems
Input: TPl(T()) 5 FP](T()) ,TPZ(T()) s FPZ(T())
Output: yi(7;), p2(7:)
> 11 (7;): Ratio of TP to FP at 7; for the anomaly detection subsystem
> 1y (7;) : Ratio of TP to FP at 7; for the misuse detection subsystem

: Initiate: (7o) «INIT, po (7o) «INIT, t;¢—15 , I(79) 1 > 11 (79)=TP;(79)/FP1(10)
> 12 (70)=TP3(19) /FP2(10)
: for Allnetwork do
if HALT then
END
else

Check for NextAggregation
if NextAggregation then

T T, + AT

TPy (7;)-TPi(;—A
,U](Ti) <—ap1(1'i - AT) + (1 - 0{)%

P, (7;)—TP, (1;—A
2(73) —apiy (i = A7) + (1 - @) Fp =L ieey
else

Go to HALT
if Ir;) > I(; — Ar) then

Dy(1;) «Dgy(7; — ATt) + AD
D, (1) <Dy, (t; — At) — AD
Go to Initiate

if I(7;) <I(t; — At) then
Dy (1;) «Dg4(1; — At) — AD
Dy, (1;) <Dy, (7; — AT) + AD

Go to Initiate else
Go to Initiate

END
end procedure

ACM Trans. Technol., Vol. , No. , Article . Publication date: 2020.
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which action A leads to higher reward R. In the Q table, the rows represent the states while the
columns represent the actions. In a state (say state S), the agent takes an action (i.e. action A),
observes the reward (R) for this action, as well as the next state (S’), and re-estimates the Q value.

Equation (11) represents the estimated Q value [41] where S;, A; and R, stand for the state, action
and reward at time ¢, respectively. In addition, @ and y represent the learning rate and a constant
regarding the relative value of rewards, respectively. Indeed, the following conditions hold for both
parameters: 0 < ¢ < land 0 <y < 1.

0" (St Ap) — (1 - a)Q*(S1, A+

a(R; + ymaxQ* (S}, A})) (11)

Equation (12) formulates the estimated function V7 (S) which represents the estimation of the
future reward R that will be received in the initial state S [42]. In the equation 7 (S, A) denotes the
likelihood of action A in state S, Pgs+(A) stands for the state transition probability between states S
and S* with action A. R(S, S*, A) is the reward issued after transitioning from state S to S* at action
A, r is the discount factor weight from future rewards to current rewards[42]. The value iteration
used method is shown in Eq.(13) below. Where V7 (S) refers to the value estimation of R that at
initial state S, 7(S, A) is the probability of A in S, Pss+(A) refers to the transitional probability from
state S to S* at A, R(S, S*, A) is the reward returned from transition from state S to S* at A, r is the
discount factor weight from future rewards to current rewards, v (8%) is the value estimation of R
at state S* at the initial iteration I, and V" (S) is the value estimation of R at state S at the updated

I+1
iteration I + 1.

Algorithm 4: Restricted Boltzmann Machine (RBM) Procedure

procedure RBC-IDS
Input: Wy, , ax, by
Output: P(Intrusive), P(Normal)
Initiate: W, , ay, by, X, Y.
fory=1,23,...,Y (All hidden layers) do
for x =1,2,3,..,X (All visible layers) do
Compute E(V, H|®) = - Y3, axVy = Z1_y byHy — X3, S0 VeH, Wy
Compute P(V,H) = 5 e BV

<y e ECV.H)

Ll

3y e E(V.H)
Sx Ly e B
Sy e EVHD
Yx Ly e EV-H)

8: Compute P(V) = Yy P(V,H) =

10: Compute P(H) = Y x P(V,H) =
11:

12: Compute P(V|H) = L/zl P(V,|H) Compute P(H|V) = ngl P(H,|V)
13:

14: Compute P(Intrusive) = P(O = 0|V)

15: Compute P(Normal) = P(O = 1|V)

16: End for

17: End for

18:

19:

20: end procedure
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Input Layer

H;, H;, Third Hidden Layer
| ><,
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Fig. 3. RBM used in RBC-IDS which contains one visible layer and 3 hidden layers and one output layer. Wiy
refers to the weight between the visible layer and the first hidden layer,Wj, refers to the weight between the
first and second hidden layers and Wa3 refers to the weight between the second and third hidden layers. O;
and Oy are the Intrusive and Normal outputs.

VE(S) = > 2(S,4) ) Pss+(AR(S, S, A) + rV7(s*) (12)
A S*

(13)

It is worth noting that the reason behind adopting Q-learning as one of our reinforcement
learning methods is the model-free nature of Q-learning. Furthermore, by applying Q-learning, it
is also possible to address stochastic rewards in a non-adaptive manner. In addition, Q-learning has
the ability to learn without necessarily following the current policy [43].

VT (S) = maxa ) Post (AR(S, S, A) + rV['(S7)
5+

5.3.2 State-Action-Reward-State-Action Learning (SARSA). SARSA is an MDP-based reinforcement
learning algorithm which is considered as a Modified Connectionist Q-Learning (MCQ-L) algorithm.
SARSA updates the Q-values depending on current state S, the current action A for S, the returned
reward R of action A, the new state S, and the next action A for the new state, which can be
represented in the quintuple (S, As, Ry, St41, Ars1)-

SARSA in an on-policy learning algorithm where the agent interrelates with environment and
updates the policy considering the taken actions. In SARSA, the Q-value function represents the
received reward in the next time step for taking action A in state S, and the reward received from
the next state and action [44]. The previous Q-value function (Eq.(11)) can be updated as in Eq.(14).

The equations Eq.(11) and Eq.(14) look almost the same except that in Q-learning the action with
highest estimation of all possible next actions will be considered while the actual next action is
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considered in SARSA. Looking for the maximum reward in Q-learning can make it more costly
compared to SARSA technique [14].

Q(St, Ar) «— O(St, Ap) + (R, + YQ+(St+1sAt+1) - Q(St, Ay)) (14)

5.3.3  Temporal Difference learning (TD) . is a model-free reinforcement learning technique which
can learn by estimating the expected value function by considering approximating distribution
from the current value. The TD technique estimates the state value function under a policy 7 as
shown in Eq.(15) and Eq.(16) bellow.

VT (St) = Ex{ ) y'R:} (15)
t=0
V(1) = Ex{Ro+ YV (S1)} (16)

Where V7 (S;) refers to the state value function with state S;, R refers to the reward and y is the
discount rate under the policy . In Eq.(16), Ry + yV”(S1) represents the unbiased estimate for
V7(S;). TD is a technique used to learn how to estimate a value that depends on future values,
which make it useful to learn both the V- function and the Q- function. Whereas, Q-learning is a
specific technique to learn only the Q-function.

Reinforcement learning-based Intrusion Detection System (QL-IDS) for WSNs is illustrated in
Fig. 4. The IDS consists of hierarchically connected clusters with the aggregator and one central
agent its the Agent in the representation of Reinforcement learning Box which tries to model the
state of the monitored network. Following a series of iterations, the central agent knows the action
A that need to be executed in response to each state S in order to obtain a positive reward R*.

It is worth mentioning that the value iteration works by generating consecutive estimates of the
optimal value function. I n which each of these iterations can be accomplished in O(|A||S|?). In
reinforcement learning the required number of iterations can grow exponentially.

I s

Fig. 4. Reinforcement Learning based IDS representation

6 EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Description of the KDD data-set

We simulate 20 devices in a network that communicate through H-DSR protocol which is a Dynamic
Source Routing protocol specialized for the Hierarchical networks [45]. The tested devices are

deployed in four clusters in an area of 100m x 100m. Resulting figures present the mean of 10 tests
(runs) for each scenario with confidence level of 95%. Table 2 presents the simulation inputs.
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Table 2. Testing settings

Simulation Inputs Input Value
Visible elements (inputs) | 41

Hidden layers 3

Number of sensors 20
Operational area 100m x 100m
Number of clusters 4

Simulation time 600s

Attack Types DoS,Probe,U2R,R2L
Communication range 100m

a (The weight of TP/FP) | 0.7

INIT 0.5

Routing protocol H-DSR
Packet size 250 bytes
Trust range [0,1]

The MIT Lincoln laboratory has collected the data-sets for computer network IDS evaluation
under the support of Defense Advanced Research Projects Agency (DARPA) and Air Force Research
Laboratory (AFRL). The Knowledge Discovery in Data mining CUP 1999 (KDDCup99) data-set
is a subset of the DARPA data-set [46]. The KDDCup99 is used to test the IDSs efficiency on the
simulated WSN, with each connection record containing 41 features and which are classified as
normal or attack behaviors. The KDDCup99 contains around 311,029 records as test data-set and
494,020 records as training data-set. The numerous attack types in these data-sets are gathered into
attack groups that assign similar attack types within a single group, resulting in an advancement
of the detection rate [46]. KDDCup99 attacks fall under four major groups, specifically, DoS, Probe,
R2L and, U2R, which refer to Denial of Service, probe, Remote to Local and, User to Root attacks
respectively. Table 3 presents examples of the attacks in the KDDCup99 test data-set and KDDCup99
training data-set.

Table 3. KDD data set description [47]

Attack | Attacks in test set attacks in training set
Dos processtable, mailbomb | neptune, teardrop

R2L named, xsnoop spy, multihop

U2R ps, xterm bufferoverflow, perl
Probe saint, mscan portsweep, ipsweep

6.2 Performance Evaluation

IDSs are evaluated based on the following criteria’s.
(1) True Positive (TP): Are the anomalous cases that were correctly classified as abnormal.
(2) False Positive (FP): Are the normal cases that were incorrectly classified as anomalous.
(3) True Negative (TN): Are the normal cases that were classified correctly.
(4) False Negative (FN): Are the anomalous cases that were incorrectly classified as normal.

6.2.1 Pre-processing Phase. Since the models performance evaluation are tested using KDD’99
dataset, some of the features are represented by string values (i.e protocols names),Numerical
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Fig. 5. The adopted learning phases

encoding process has been adopted for this matter. The TCP, ICMP and UDP protocols names were
encoded as 001, 010 and 011, respectively.

6.2.2 Training and Testing Phase. The used KDD’99 dataset consists of training and testing datasets.
Each data line of the dataset has 41 features, consist of 38 numerical features and three non-
numerical features. In NS3 we start with training the different models (ex. RBC-IDS training started
with training the first layer, gathering the data generated from the trained layer and using these
data as the training dataset for the second layer and so on).

Fig. 5 represents the adopted common phases between all the proposed learning mechanisms
(ex. machine learning, deep learning and reinforcement learning).

6.2.3  Evaluated Metrics. The following metrics have been considered for evaluating the various
IDSs.

Accuracy Rate (AR): AR denotes the ratio of the truly classified incidences that return to True
Positive (TP) and True Negative (TN) incidences. AR is represented in Eq. (17) [48].

AR— __ TPHTN
" TP+TN+FP+FN a”

AR has been presented to trace ASCH-IDS, RBC-IDS, TD-IDS, SARSA-IDS and the QL-IDS ARs
for different scenarios. Fig. 6 shows the AR for the ASCH-IDS, RBC-IDS, TD-IDS, SARSA-IDS and
the QL-IDS. The proposed QL-IDS achieves the highest AR of 100% followed by SARSA-IDS with
AR 0f 99.97% and TD-IDS with 99.94%.

QL-IDS performs with the highest AR for two reasons: First, Q-Learning is based on the exemplars
from the training data-sets and suited for decision making while the system is running. The agent
interacts with the environment and aims to optimize the cumulative reward (R*) by learning the
best actions through feedback. On the other hand, RBC-IDS makes predictions about data and
learns from training data-sets to build a classifying model.

Detection Rate (DR): DR denotes the behavior that is accurately recognized as intrusive. It
signifies the (TP) as displayed in Eq. (18)[48]. DR for ASCH-IDS, RBC-IDS, TD-IDS, SARSA-IDS
and QL-IDS are shown in Fig.(7).

TP

DR= ——
TP+ FP

(18)
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Fig. 7 illustrates the DRs for ASCH-IDS, RBC-IDS, TD-IDS, SARSA-IDS and QL-IDS. As shown
in the figure, the proposed QL-IDS achieves the highest DR followed by SARSA-IDS and TD-IDS.
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False Negative Rate (FNR): FNR defined as the ratio of malicious behavior that have been
designated as non-intrusive[6], as shown in 19 [48].

FN
FNR = (19)
TP+FN+FP+TN

FNR of ASCH-IDS, RBC-IDS, SARSA-IDS, TD-IDS compared to QL-IDS is shown in Fig. 8.

In reinforcement learning-based QL-IDS, the overall FNR has been mitigated when compared
to the case under the other reinforcement learning techniques (SARSA-IDS and TD-IDS), deep
learning-based RBC-IDS and the ASCH-IDS reacting to the increase of TP which is the reason
behind the DR and AR enhancement.

This can be interpreted as follows: While QL uses function approximation that represents the
value function to react to all actions and target the positive rewards, RBM is competent at feature
reduction which helps in the elimination of redundant features and reduction of the FN cases.

(ROC) curve: The ROC curve refers to the ratio between Sensitivity and the (1 — Specificity)
which are (TP) and (FP) respectively.

Sensitivity-specificity ratio is represented by the area under the curve where the larger area
reflects the best performance. We plot the ROC curves for ASCH-IDS, QL-IDS, RBC-IDS SARSA-IDS
and TD-IDS in order to assess the system performance as shown in Fig. 9. It is clear that the QL-IDS
performs better with the largest area under the curve followed by SARSA-IDS and TD-IDS. Since
QL-IDS achieves the highest TP, the QL-IDS achieves the best performance in term of ROC.

F; Score : F; score studies the precision-recall of the test in order to calculate its F; score.
The precision is the number of true positive incidences divided by all positive incidences, it is
expressed as TP/ (TP + FP). The recall is formulated as TP/(TP + FN), representing the number of

true positive incidences divided by all actually positive instances as shown in Fig. 10. High system
performance can be achieved by the high recall and high precision. Thus, the near precision-recall to
1, results in the best performance [49]. QL-IDS achieves the highest precision-recall ratio compared
to ASCH-IDS and RBC-IDS as shown in figure 10. Precision and recall primarily depend on TP
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performance. QL-IDS performs with the highest precision — recall since Q-learning is based on the

exemplars from the training data-sets and suited for on-the-fly decision making while the agent
interacts with the environment tested environment and uses the feedback to choose the actions to
optimize the cumulative reward (R*).
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F; denotes the harmonic average of precision and recall, F;-score is formulated as in eq. (20),
and F;-score performance of the IDS solutions for the WSNs under investigation are plotted in Fig.
11 [50] .

Precision * Recall
F] =2 % — (20)

Precision + Recall
The F; score measures test accuracy [50] by studying the precision-recall of the test in order
to calculate its F; score. F; score is a reliable metric to use if the test cases seek balance between
precision and recall. Thus, the better the precision-recall the better the F; score. Figure 11 shows that

QL-IDS introduces improved F; score compared to SARSA-IDS, TD-IDS, ASCH-IDS and RBC-IDS.

7 CONCLUSION

Volunteer computing uses Internet-connected devices make it easy for participants to share their
resources especially for the critical infrastructures. Critical infrastructure security is considered as
one of the vital issues in smart cities. Monitoring the networks components and detecting malicious
behaviors are fundamental functions to ensure security of the monitoring operation. Since Wireless
Networks are deployed in open and uncontrolled environments, transmitting data through them
leads to huge vulnerabilities. Therefore, the robustness of Intrusion Detection Systems (IDSs) in
Wireless networks is a must. In this study, we present a comparative study between machine
learning based IDS systems with deep learning based IDS for critical infrastructure monitoring
WSNs. We specifically investigate our previously proposed machine learning-based Adaptively
Supervised and Clustered Hybrid IDS (ASCH-IDS) with a Restricted Boltzmann Machine-based
and Clustered IDS (RBC-IDS), Q-Learning-based IDS (QL-IDS), SARSA-IDS and TD-IDS, which are
reinforcement learning solutions. Through simulations, we have verified that QL-IDS works with
~ 100% detection rate and ~ 100% accuracy rate in the existence of intrusive behavior in the tested
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WSN. From the performance analysis, we have shown that the adaptive machine learning-based
solution performs in same rates as the deep learning-based solution whereas adopting a machine
learning-based IDS framework leads to approximately half the detection time of the deep learning-
based RBM-IDS framework. We have also shown that the reinforcement learning-based solutions
perform with the best precision-recall, F; score with ~ 1 which represents the best performance

and with the largest area under curve (ROC).

As a future work, we are planning to extend the presented IDS to larger networks that consist of
large number of nodes and clusters. Moreover, we are testing the impact of heterogeneous cluster
sizes on our presented solution’s overall performance.
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