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Abstract: Microgrids are empowered by the advances in renewable energy generation, which enable
the microgrids to generate the required energy for supplying their loads and trade the surplus energy
to other microgrids or the macrogrid. Microgrids need to optimize the scheduling of their demands
and energy levels while trading their surplus with others to minimize the overall cost. This can be
affected by various factors such as variations in demand, energy generation, and competition among
microgrids due to their dynamic nature. Thus, reaching optimal scheduling is challenging due to
the uncertainty caused by the generation/consumption of renewable energy and the complexity
of interconnected microgrids and their interplay. Previous works mainly rely on modeling-based
approaches and the availability of precise information on microgrid dynamics. This paper addresses
the energy trading problem among microgrids by minimizing the cost while uncertainty exists
in microgrid generation and demand. To this end, a Bayesian coalitional reinforcement learning-
based model is introduced to minimize the energy trading cost among microgrids by forming stable
coalitions. The results show that the proposed model can minimize the cost up to 23% with respect
to the coalitional game theory model.

Keywords: machine learning; Bayesian reinforcement learning; microgrid; smart grid

1. Introduction

The overall demand for energy consumption has drastically increased over recent
years, and it is also expected to reach up to 1000 Exajoule by the end of 2050 [1]. Gov-
ernments are trying to enhance their energy generation capabilities by considering green
and smart models to satisfy the massive energy demand. Therefore, energy generation
and consumption models require a fundamental transformation in order to employ these
capabilities in traditional power systems. By using smart grids and the advances in in-
formation and communications technologies (ICTs), a strong foundation is generated for
transforming unidirectional power and information flow into a distributed bidirectional
power and information system known as a transactive energy framework [2,3]. Transactive
energy can be categorized into (i) transactive network management for organizing the
energy supply chain, (ii) transactive control for controlling and managing the energy gener-
ation/consumption rate and (iii) peer-to-peer (p2p) energy market for allowing customers
to trading energy among themselves [4].

One of the promising characteristics of microgrids is the possibility of p2p energy
trading with each other or the utility grid. Energy trading can be carried out by transferring
surplus energy from a microgrid to a close-by microgrid, which has been a well-known
research topic in field of the smart grid since the 2010s [5]. Generally, we can describe the
energy trading problem as a group of interconnected microgrids exchanging their surplus
energy to serve the loads in other microgrids. The microgrids are also connected to the
macrogrid, and energy trading can be conducted between microgrids and the macrogrid or
among themselves. Some microgrids may have surplus energy at different time intervals
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and prefer to sell their energy, while others suffer from a lack of supply and wish to buy it.
This system can be modeled as a game theory problem and tackled with game-theoretical
or learning approaches [6-8].

Although energy trading has been explored to some degree, energy trading under
uncertainty has been less explored. This paper investigates the energy trading problem
among microgrids where each microgrid has different levels of energy surplus or demand
in each epoch. Additionally, the dynamic nature of the energy levels causes uncertainty in
our system. We employ a Bayesian reinforcement-based coalition formation scheme for
energy trading among microgrids to deal with this uncertainty. This algorithm was first
introduced in [9], and an application of this model was also developed for device-to-device
communications in wireless networks [10]. In this work, we develop the Bayesian rein-
forcement learning model, which enhances the conventional Bayesian coalition formation
by learning from past observations and experiences. We then employ this approach in the
energy trading problem among microgrids under uncertainty. We compared the proposed
method with two Bayesian reinforcement learning-based models [10], Q-learning [11],
Bayesian coalition formation [11], and conventional coalition formation game theory [6].
The results show up to 23% improvements in cost minimization compared to the coalitional
game theory-based method.

The rest of this work is organized as follows. Recent works are summarized in
Section 2. In Section 3, the system model is demonstrated. In Section 4, the Bayesian
coalition formation game (BCG) scheme is illustrated. In Section 5, the Bayesian coalitional
reinforcement learning (BCRL) based scheme is proposed. In Section 6, the numerical
results are evaluated, and finally, the conclusions are presented at the end.

2. Related Work

Game-theoretic methods have been widely employed for energy trading in microgrids.
In [12], a game-theoretic approach is proposed for distributed energy trading between
microgrids. In this study, a set of interconnected microgrids aim to exchange energy with
each other and also with the macrogrid. In [13], a priority-based energy trading game is
proposed in which buyers are prioritized according to the past contributions of the buyers
and their current demands. In [14], a Stackelberg game is designed with a central power
station as the single leader and multiple followers who want to sell their extra energy
to this central station. In [15], the authors develop a model based on the repeated game,
which lets microgrids choose a strategy with a probability for trading energy in the market
in a way that their average revenue is maximized.

Coalitional game theory is a subset of game theory in which players cooperate to
maximize a shared payoff and then distribute the received payoff among the players.
In several studies, the energy trading problem among microgrids has been modeled as a
coalitional game theory problem. In this approach, microgrids can cooperate by forming
coalitions for a specific period in which some microgrids with surplus energy supply the
others that require energy. Table 1 summarizes the research attempts that investigate the
energy trading problem using coalitional game theory.

In [6], for the first time, the energy trading problem in the microgrid community
is investigated using coalitional game theory to minimize the power loss. The idea of
coordinated operation of cooperative microgrids is studied in [16]. Although [6], only
focuses on energy loss, the authors expanded the objective functions to maximize micro-
grids’” expected profits and usage while minimizing power loss and consumers’ discomfort.
In [17], the authors proposed a nucleolus-based approach to fairly distribute the payoff
among microgrids for transactive energy management in microgrid communities locally.
In [18], the authors proposed coalitional-based energy trading where, in each coalition,
an auction-based matching is employed to calculate the utility of the coalition, and then
the coalition formation technique is used to partition the microgrids into coalitions. In [19],
the authors designed the energy trading scheme in two stages. First, microgrids form
coalitions, and then a matching game is used to schedule energy exchange in each coalition.
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Machine learning algorithms have proven useful in a wide range of applications such
as computer vision, sentiment analysis, self-organized systems, and robotics. However, it is
not straightforward to use the same algorithms in Al-enabled smart grids. Existing machine
learning techniques need to be tailored to meet the smart grid and microgrids’ needs. In [20],
the authors propose two learning automata-based methods for optimal power management
in smart grids. In [21], the authors propose a dynamic demand response and distributed
generation management method for a residential microgrid community. In [22], a fully
distributed learning approach is proposed for optimal reactive power dispatch. In this
method, a multi-agent Q-learning algorithm is employed that minimizes the active power
loss and satisfies the bus voltage range and reactive power generation constraints. In [23],
the temporal difference reinforcement learning approach is used to achieve the optimal
control policy for residential energy storage. The problem of dynamic pricing in smart
grids with reinforcement learning methods is addressed in [24]. The authors propose
reinforcement-based dynamic pricing and energy consumption scheduling to help energy
providers and consumers learn their best strategies.

Energy trading is also among the problems that can be tackled with machine learning
approaches, specifically using reinforcement learning models such as Q-learning, Bayesian
reinforcement learning, and deep reinforcement learning. In [8], a hot-booting Q-learning-
based approach is implemented to achieve the Nash equilibrium of the dynamic repeated
energy trading game. In [25], the authors improve [8] by designing a deep Q-network-
based approach. In our prior work, [11] we proposed a Bayesian coalitional algorithm
that helps agents make a system of beliefs about the types of other agents. In contrast,
in [26], agents can learn from their experience by using a Bayesian reinforcement learning
technique; however, the proposed model suffers from the lack of a belief system. In this
study, we propose a comprehensive Bayesian reinforcement learning framework for the
problem of coalition formation in microgrid communities, which helps agents make a
system of beliefs about the types of other agents and learn from their past experiences
simultaneously.

Table 1. A sumary of energy trading studies.

Paper Objective Elements Uncertainty Methods
[6] Power Loss Macrogrid, microgrids X CG
[16]  Energy Management Macrogrid, microgrids X CG
[17]  Energy Management Macrogrid, microgrids X CG
[18] Cost Macrogrid, microgrids X CG
[19] Cost Macrogrid, microgrids X CG
[11] Power Loss Macrogrid, microgrids, EVs v BCG
[26] Power Loss Macrogrid, microgrids v CG, BRL

3. System Model

In this work, we consider a network of M interconnected microgrids while each
microgrid is also connected to the main utility grid known as the macrogrid as shown
in Figure 1. The amount of generated energy by microgrid m € M and its demand
are presented by g, and d,, respectively. Therefore, we can find the total surplus or
shortage energy of each microgrid as q,, = gm — dm, which represents the energy that each
microgrid is required to export to or import from the network. As a result, microgrids
initiate an energy trading process among each other and with the macrogrid to satisfy their
export/import requirements. Due to the dynamicity of the system, each microgrid can be
either a seller or buyer of energy during each epoch.
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Figure 1. Block diagram of a system of microgrids. The figure illustrates that due to the dynamicity of the system, different

coalitions can be formed during each epoch.

The process of energy trading, either among microgrids or with the macrogrid, im-
poses a variety of costs. In the proposed system, we assume that each energy transaction is
associated with two sets of costs. The first set corresponds to the costs resulting from the
power loss in the line, transformer loss from high to medium or low voltages, maintenance
cost, etc. We call this set of costs as operational costs. Additionally, there are other hidden
costs associated with energy trading among microgrids—for example, a case where two
far away microgrids want to trade energy among themselves. This energy trading is not
always feasible through the direct power line since it is not possible to have direct lines
between all microgrids in practice. Therefore, we assume that direct lines are only deployed
between close-by microgrids. When there are no direct links, microgrids have to make their
energy transactions through a series of intermediate microgrid links or transfer their energy
through the macrogrid (the seller microgrid sends its surplus energy to the macrogrid,
and the buyer microgrid receives the transferred energy from the macrogrid). One of the
interesting capabilities of microgrids is trading energy only among themselves without
relying on a central macrogrid while in islanding mode. Islanding will be at risk by any
reliance on energy trading with the macrogrid, resulting in unexpected costs. We address
all of these third parties involved in energy trading with the unpredicted costs (virtual
costs) as the second set of costs. Therefore, the total cost of power transaction E,;; from
m-th microgrid to n-th microgrid is given by:

Smn - wdmnEmn + (SPL(Emn) (1)

where d,,,, represents the length of power lines that need to be used for transferring energy
between the m-th and n-th microgrids and § shows the scaling factor. E,; is the power that
is being traded plus the loss that happens during trading. PL(E,;,) denotes the power loss
in trading energy between m-th and n-th microgrids and scale. w represents a weighting
coefficient associated with the virtual cost and can be calculated as:

ws m,n #0and dyy, < dgy
w={w mn#£0and dy, > dy. . (2)
wo m=0o0rn=20

The virtual cost is a function of distance and energy that is weighted by the parameter
w. This parameter is fixed to a lower value ws for energy trading among microgrids which
are closer than threshold d;,, and a higher value w; for the rest [27]. We assume that distant
microgrids that are further than the threshold have no direct link in between. Consequently,
the virtual cost increases compared to close-by microgrids. wy is the weight factor for
energy transactions with the macrogrid.
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Power loss is defined as below, in which R;;; represents the resistance of line per km
in energy trading between microgrids m and n [6].

E 2
PL(Emn) = Rmndmn% +PEmnr (3)

m
where U, and p denote voltage and the fraction of power loss in the transformer at
the interconnection point between the microgrids and the macrogrid (macro station),
respectively. Eup is the trading power required to deliver the total surplus/demand g; of
microgrid 7 to microgrid m and can be obtained as follows:

Enn = qn + PL(Emn) 4)

The main objective of this system is to minimize the total cost. Therefore:

M M
min Y, Y Sun
m=0n=0 (5)
M M M M M
st: ¥ gm+ ¥ ¥ P(Emn) = ¥ Eon— L Emo
m=1 m=0n=0 n=0 m=0

Energy trading among nearby microgrids decreases the total cost with respect to
trade energy among distant microgrids and macrogrid. Therefore, forming groups of
close-by microgrids (also known as coalition formation) to trade energy in their groups is a
promising approach that reduces the overall cost. In addition, there is no transformer loss
in the operating range of energy trading among microgrids (low or medium voltage) [28].
We can formulate a coalition with a pair (C,vc). C expresses the coalition in which
coalition members cooperate to gain a higher coalitional value v¢ [29]. In this paper, we
consider the total cost of energy trading among coalition members plus the cost of trading
extra energy with the macrogrid as the coalition value. The objective is to minimize the cost.

Therefore, the coalition value as the negative form of cost can be formulated as follows:

ICl [C]

vc = — Z Z Smn, (6)

m=0n=0

where |C| shows the number of members of coalition C. Index 0 expresses any transactions
with the main grid. When the coalition is formed, energy transfer among the coalition
members needs to be scheduled to minimize the total cost in the coalition. Therefore,
the coalition payoff in our considered system is defined as the maximum achievable
coalition value vy,4,(C) which is given by:

€| [C]

o™ =max{—)_ Y Sun}- )

i=0j=0

4. Bayesian Coalition Formation Game

In this section, we propose a Bayesian coalition formation game (BCFG) that tackles
the uncertainty in the power level of the microgrids.

4.1. Game Formulation

The Bayesian coalition formation game can be characterized by a set of agents (M),
a set of agent types (T™ € T ), a set of agent beliefs (B™), a set of coalition actions (A¥),
a set of outcomes known as states (S), and the reward functions (u™).

To employ BCFG in our problem, we can describe BCFG as a cost minimization model
in a microgrid community where a set of M rational microgrid agents is involved in the
coalition formation game. A coalition Cy represents a set of microgrids that allows them to
trade energy among themselves. The m-th microgrid’s type T" stands for the microgrid’s
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power level. Each microgrid is only aware of its type (T™) but not the types of other
microgrids. The m-th microgrid’s beliefs about the types of other players are denoted by
B™(T~"™) that consists of a joint distribution over T~"* which is the probability assigned to
other agents about their types. We assume that any coalition of microgrids has a restricted
set of coalition actions Ak, A collective coalition action a®* is an action that is approved by
all coalition members of C; about a new member to join their coalition. The coalition action
is only observable for the coalition members and hidden from agents in other coalitions.

We consider the coalition tag of each microgrid as its state in each iteration of the
game. Therefore, agents’ state vectors can be defined as § = (s, ...,sM). Any state vector s
corresponds to a joint reward R% (g, T ) which is calculated as:

RE(5, T%) = o™ =} (5, T%) 8)

meCy

We use the proportional fair division method to distribute the coalition reward among
coalition members, allocating each member a share of the coalition reward proportionate
to their cost. Therefore, 7" (s, T°) is defined as [29]:

(5, TH) = Cn (v?k”x - v({n})> +o({m}). ©)

neCy

where (; is equal to % and demonstrates the relative contribution of each microgrid.
jeC

v({j}) and v{¥™ show a single member coalition.

4.2. Stability Notation

Like all cooperative games, in the coalitional game theory, players with a common
interest or members of a specific coalition maximize their joint reward, known as the
coalition value. We compute the value of coalition C; with the members of type T  as
follows:

V(CHTS) = max ¥ Pr{s|Cy,al, TG }r™ (s, T%) = max T Q(C, a%|T%) (10

a“ke A% ses a“ke A% ses

where Pr{s|Cy, %, T} represents the probability of transitioning to state s in coalition
Cx with members of type T when taking action a®. Q(Cy, a“|T) shows the long-term
action value. It can be seen that V(Ci|T%) is a function of the actual “type” of coalition
members while the “type” of a microgrid is not known by the other microgrids inside the
coalition. Therefore, to estimate the coalition value Cy, coalition members need to rely on
their beliefs about the “type” of other players. We call this estimation the expected value of
coalition Cy and coalition member m can compute its expected coalition value according to
its beliefs B as follows:

V(Cr, B") = max ¥ B"(T%) ¥ Q(Cp,a™|T%) = max ¥ Q(Cy,a%,B") (17
TC% T se$ s€S aCke A% ses

where Q(Cy, «%, B™) demonstrates the expected value of coalition Cy when action a%* is
taken while the system’s belief is equal to B™. Since all the microgrids have their specific
systems of beliefs, it is common for microgrids to end up with different estimations of
Q(Cx, a%, B™) and consequently V(Cy, B™). Therefore, none of the microgrids can reach
the accurate estimations about the coalitional reward R and their share of reward .
To this end, players need a system to estimate their achievable rewards for cooperating
in coalitional activity. We define demand D™ as the share of the coalitional value that
microgrid m believes in receiving in the coalition. Having the coalition structure Cy with the
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demand vector D% = (Dl, D?,.. DM ), microgrid m’s belief about the expected reward of
microgrid j by taking action a“ can be estimated by:

D/Q(Cy, a%, B™)
Y., D

i€Cy

(12)

QU (G, B%) =

microgrid m expects a long-term reward by taking action a* and it expects the demand
vector as D% which is defined by Q™ (Cy, %k, D).

Considering the above-mentioned definitions, the concept of a strong Bayesian core
(SBC) can be defined as follows [9].

Definition 1. We assume that a tuple of a specific coalitional structure and a specific demand
vector (Cy, D) are in the SBC of a Bayesian coalition formation game if:

o No player believes there exists a better tuple than (Cy, D).
o All of the coalition members accept it according to their beliefs about the expected rewards of
other players.

This definition can be formulated as follows:
Qm(ck’/ack//fjckl) > Qm(ck/ [xck/ fjck) (13)

and
Q" (Cp, %, DY) > Q" (Cy, a, D) (14)

where m € M. Equation (13) demonstrates the preference of microgrid m for itself and (14)
shows the preference of microgrid j believed by microgrid m.

4.3. Coalition Formation

In this section, we define the Bayesian coalition formation process that we present in
this paper. We assume that negotiations among the microgrids to merge and split from
coalitions happen over an infinite number of iterations. At every iteration, there is a pairing
the of coalitional structure and demand vector named the coalitional agreement (CS, D),
which all players agree on. All the microgrids have the chance to modify this coalition
agreement concerning their utility (a rational player changes the agreement to improve
its utility). We call the microgrid m who attempt to change the coalitional agreement a
proposer since it proposes to change the agreement in either one of the following ways:

e A proposer can stay in its current coalition Cy and propose a new demand D" from
the coalition.

* A proposer can decide to split from its current coalition and propose merging to other
coalition Cy» with new demand D™.

The microgrids have the following finite set of actions (or negotiations options): (1) if
a microgrid is a proposer the action is to make proposal 7k, = (C, {Di}ieckoDm) which
means joining (or staying in) coalition C; with the new demand D™. (2) If a microgrid is a
responder to a proposal, it has the following action options: (i) either accept (k' = 1) or (ii)
reject (k' = 1), in response to the presented proposal. We can summarize the proposition
procedure as follows. At the beginning of every iteration, a proposer m is chosen randomly
from all the microgrids with an equal probability of 1/ M. Then, the proposer presents the
proposal 7%, to join or stay in the coalition C; with demand D™. After that, members of
the coalition Cy independently accept or reject the offered proposal without having any
information regarding the action of other members. All the individual responder actions
need to be unified in a single coalitional action to respond to the proposal. To this end, we
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introduce function f, which maps all the responding actions into the coalitional action aCk.

We define this coalitional action as follows:

f(”f)r lf IT K]r(n =1
oGk = { L iEG\{m} : (15)
f(Cy, D), otherwise

This means that coalition members accept a proposal if all coalition members approve
it; otherwise, the proposal will be rejected, and the existing coalitional agreement will be
in effect.

We assume that all the players are rational, which means that the proposer submits a
proposal that maximizes its expected reward. Meanwhile, because the other players are
rational as well, they only accept a proposal that does not degrade their expected reward.
Therefore, a rational proposal is to offer the maximum possible demand Dy}, that does
not degrade the expected reward of other players according to the beliefs of the proposer

about other players. This particular proposal is achievable for the proposed microgrid if:

DIQ(Cr U {m},a%, B™)
Y D

ieC U{m}

> Q' Vi€ G (16)

where a® = f (') and Q;” is the expected reward of microgrid n believed by microgrid
m. If proposer microgrid m finds 71} to be feasible, it expects all the responders to accept
the proposal according to its system of beliefs about others. It should be noted that this
feasibility is just an expectation, and the proposer is not sure that the proposal will be
accepted or rejected since it does not know what is best for the responder. Considering (16),

the proposer can estimate DJ.., as follows:

DIQ(CyU {m},a%,B") = Q" ¥, D!
ergax(ck) = min ieCU{m}

j€Ck Q/’.”

(17)

The requested demand by the proposer is restricted to the interval [0, D, (Cy)].
To simplify the search for a proper demand, we define a unit A, making the proposer to
propose a demand as integral multiplies of A. Therefore we can define the possible demand
vector as [0, A, 24, ..., | D2 (Ck)/A]A, DR (Cr)]

5. Bayesian Reinforcement Learning Coalition Formation

Types of players in a coalition dynamically change since microgrids’ generation and
demand vary in time. As a consequence, the coalition values change, which imposes
uncertainty on the system. Combining Bayesian learning (RL) with the Coalition formation
game gives the players the chance to learn about other players and eliminate uncertainties
about them through interactions in the Bayesian Coalition formation process. In this section,
first, we explain the conventional Bayesian reinforcement learning (RL) framework for
a single agent, then we present the cooperative multi-user Bayesian learning framework
suitable for the coalition formation process in microgrids, which is called as Bayesian
Learning-based Coalition formation.

5.1. Conventional Bayesian RL

In the following, we briefly explain single-agent Bayesian reinforcement learning.
We first need to define the Markov decision process (MDP) as an essential part of the
reinforcement learning [30]. An MDP consist of four elements (S, A, Pr,r), where S is a
vector of all possible states s. A is a set of all possible actions. Pr is a vector of all transition
probabilities, and Pr{s’|s,a} shows the chance of transition from state s to state s’ while
taking action a. 7(s, a) expresses the reward that the agent receives by taking action a4 in
the state s. The RL problem can be defined as the problem of finding the optimal mapping
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strategy from actions to states 0 : S — A for the MDP with the known or unknown
transition probabilities. In the Bayesian RL algorithm, first, a prior distribution is assigned
to the initial beliefs of the agent about the values of the unknowns in the system. This belief
will be updated continuously as the agent observes the unknown parameters. Considering
the partially observable nature of MDP in Bayesian reinforcement learning, in this work,
we employ the partially observable MDP (POMDDP) technique in our model [30].

A POMDP consist of the following elements (S,, Ap, Op, Prp,zp,1,), in which S,

denotes the set of states consisting of S, = § x {T*'}, where T:* shows the unknown
transition dynamics, A, = A represents set of actions, and O, = S shows the observation
space similar to the state space in the general MDP. Pr,(s', T'|s, T,a), zy(s’, T',a,0) and
r(s, T, a) represents state the transition probabilities, observation space and reward function,
respectively.

In POMDDP, the strategy is to map from beliefs to actions as o : B — A. We can
calculate the value of a specific policy ¢ as the expected sum of discounted reward over
infinite time in the future given by:

+0c0
V(T(B) = ;)ytr(st,a(Bt)) (18)
=

where 7, s; and By expresses the discount factor, state, and belief at time f. We are interested
in finding the optimal policy ¢*. The optimal policy has the highest value for all the belief
states, i.e., V7*(B) > V7(B) and the corresponding value function of the optimal policy
satisfies the Bellman equation as follows:

V* = maxQ(s, B, a)
acA

= Pr{ols,B,a s,B,a) +yV*(B?
Ianeegoeiop r{o| Hu( )+ V*(BY)] 19)

=max Y. Pr{s'|s,B,a}[u(s,B,a) +V*(B")].
a€A ges,

Q(s, B, a) represents the action value in the case of taking action a in state s. B is the current

belief about unknown parameter and B] = BZ’SI is the updated belief which is a probability
density function (PDF). The PDF can be update using the Bayesian Theorem and observed
transition (s,a,S’) as follows:

By (T) = g Pr{s'ls, B,a} B(T) = $To* B(T) (20)
where 1 is a normalizing constant.

5.2. Bayesian Reinforcement Learning Coalition Formation

In the following, we extend the previously discussed conventional single-agent BRL
to the case of multiple agents in a coalition formation game. Our goal is to find the optimal
coalition formation in the Bayesian coalition formation game that can be modeled as
a POMDP.

Let us assume that the initial belief of the microgrid m is denoted by B" = B™(T®*)
where T shows the types of players in the coalition Cy, similar to the unknown in the
conventional BRL. Each microgrid m in the coalition C; with the coalition action a® can
compute a long-term expected action value according to its beliefs B™ at each time slot ¢
as follows:

Q" (Cr, o, B™) =
L Pr{s"|Cy,a%, B} (u"(1) + V™ (Cy, B (T%))) on
smesm
= L BM(T%)Q(Cpa, BT

TSk eT



Energies 2021, 14, 7481

10 of 20

and

Q' (Cp, ™, B"|T) =

L Pr{s"|Cr,aCt, TEH(u" (£) + yV™ (Cp, B (T))) @

Sl’llesnl
where 1" (t) = u™(s', T°) expresses the reward that microgrid m receives at time t in
the coalition C; with the members of type T® in the current state s'. The probability
of transition from the current state s’ to next state s” by taking coalitional action % by
members of type T is denoted by Pr{s"|Cy, a%, T} = Pr{s™|s’, Cy, a%, T }. B, (T%)
expresses the updated belief after transition to the next state s™ about the types of other
coalition members, T¢,, which can be estimated using the Bayesian theorem as follows
(same as single-agent belief update):

i (T%) = p Pr{s"|Cy, a%, T} B(TY) (23)

Consequently, we can find the optimal value-function V" with a modified Bellman
equation as follows:

VM (Cp, T%) = Y Pr{C,a%, D%|B"} x Q" ;(Cy, 2%, B™) (24)
Ck|m€Ck,DCk

Unlike the original form of the Bellman equation, in our problem, microgrid m cannot
find the optimal V" by maximizing Qj" as the coalitional process does not have full control
of the coalition formation process. Therefore, microgrid m should estimate the probability
Pr{Cy, «%, D|B™} instead tp find a specific coalition agreement (Cy, D) that all coalition
members will accept. Therefore, by considering (21) and (22) and the belief update (23),
each microgrid can learn the long-term value of any agreement (CS, D) to find the optimal
decision with respect to its beliefs about the types of other microgrids.

5.3. Computational Approximations

As has been mentioned in the previous part, it is not straightforward to estimate (24),
since, on the one hand, we need to approximate the transition Pr{s"|C;, a“, T} and the
acceptance Pr{Cy, a%, D% |B™} probabilities. On the other hand, by considering the size of
type and state space, it is not possible to directly compute (21), (22), and (24). Therefore, a
realistic simplification is needed to approximate (24). To this end, we employ the Bayesian
exploration bonus to estimate the transition probability Pr{s"|Cy,a%, T¢%}[31]. In this
method, we deploy counter parameters to determine how many times each transition
occurs at each iteration t. The exploration bonus is used in order to put more weight on the
paths that are not visited enough. Let us define the total number of transitions as:

e (Cr, e, Ty = Y~ ™ (s™, Cy, ak, T) (25)

SWI GSWI

here, " (s™, Cy, aCx, Tck) is a counter that shows how many time transition to s™ is accrued.
Then, we can calculate Pr{s™|Cy, aCk, Tck} as:

Y ‘um (Sm,Ck,ack,Tck)

Pr{s"|Cy, aCk, TGk} = <™ (26)

g (Coot Sk, T)

Therefore, we can estimate the action value in (21) as follows:

Q' (Cya%k, B") =
Y. B™(T%) Y Pr{s"|Cy,a%, T%} x (u"(t) + BEB + yV"(Cy, BlH (T))) (27)

TckETck smesm

where BEB is given by:

¢
BEB = 2
T 1 (Cp, s, TG @)
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¢ is a tuning parameter to adjust the chance of exploring less-visited transitions in transition
probability. ¢ = 0 means we skip the effect of BEB in our calculations. To estimate the
acceptance probability Pr{Cy, a%, D|B"}, we need A%(Cy, D), which defines the times
that agreement (Cy, D) has been proposed, and A" (Cy, D) shows how many times
this agreement has been accepted. Therefore, we can estimate the Pr{Cy, a, DC|B™}
as follows:

A™(Cy, D)

Pr{C,a%, D% |B™} = 0.5+ —
R ey

(29)
It should be noted that 0.5 is the initial value that is set for the acceptance probability.
Additionally, we assume that 0 < ¢ < 1.

The BRLC algorithm as applied to our microgrid coalition formation problem is given
in Algorithm 1. The algorithm is divided into an initialization step and the main loop.
Each microgrid’s initial power level, location, and coalition are assigned randomly in the
initialization step. Then the initial demand of each microgrid is derived concerning their
direct power loss in the case that they only perform energy transactions with the macrogrid.
After all initial steps, the (Cy, Dy, T™) tuple will be transferred to all microgrids.

The main loop consist of two phases: the learning phase (lines 5-7) and the coalition
formation phase. In the learning phase, the action values of all coalitions, the current reward
of each microgrid, transition probabilities, and the action-value function of each microgrid
will be updated. Then, in the coalition formation phase (lines 7-15), we assume that each
time the power level of one random microgrid is changing and that specific microgrid is
given a chance to propose. The proposer microgrid makes a proposal n}; = (Cy, D%) in
which it decides about the coalition to join (or stay in the same coalition) and proposes
a new demand in a way that maximize its own belief about Qi. The proposal will then
be transmitted to the member of the target coalition. Suppose all the members in the
coalition find that their action-value function will be higher considering the new proposal.
In this case, the proposal will be accepted, and the proposer microgrid will join/stay in the
targeted coalition with the new demand. Otherwise, the proposal will be rejected, and the
proposer microgrid stays in its previous coalition with the previous demand. After forming
the new coalition structure, each coalition uses a greedy algorithm, introduced in [11], to
exchange energy among the members of the coalition. If the coalition has a surplus or
shortage of energy, then the coalition will transfer the surplus to or import this shortage
from the macrogrid.

6. Performance Evaluation

In this section, at first, we briefly introduce our benchmark models and then examine
the performance of the proposed model with respect to our benchmarks.

6.1. Benchmarks
6.1.1. Maximum a Posterior Estimation (MAPE)

In this model, the estimation of the action-value function is simplified to the most
probable belief type, believed by agent m based on its current belief vector B™ as follows:

TS = argmax{B"(T/)} ,Vj € Cy (30)
TieT/

The main advantage of MAPE with respect to BCRL is its lower complexity due to
ignoring the expected coalition value microgrids. To this end, in MAPE, microgrids reduce
their action-value function as follows:

O (Coo 8 HTwt) = & Pr{s"|Ci,a%, Ty (u" (1) + BEB) (31)
Sm € Sﬂl

Since this method is a relaxed estimation of the proposed BCRL, we call it BCRLMAPE

in the rest of the paper.
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Algorithm 1: Coalition formation with BCRL for distributed energy trading
among microgrids

1 Initialization:
2 for all microgrid m, i € M do

end

Randomly assigns the power level.

Randomly assign the location

Randomly assign to the coalition Cy

initializes demand D™ using direct power loss to macrogrid
Broadcast (Cy, D™, T™) to all microgrids and set Q"; = 0

Main Loop: time slot t = 1 : iterations all microgrid m, i € M

10 Update coalition action a% — f(Cy, D) according to the agreement (CS, X).
11 Update current reward u™ (t).

12 Update transition probabilities and beliefs.

13 Estimate (27)

14 BR Coalition Formation:

15 Randomly selects a proposer microgrid m with the probability 1/ M.

O 0 NN N U e W

16 Make a proposal 7'[;( = (Ct, D) which maximize microgrid m beliefs about Q:.
17 Send 71} = (Cy, D%) to all microgrid n, j € Cy.
18 for all microgrid j, j € C; do
19 end
20 if Qi(Cy, aCk, D% o DY) > Qi(Cy, a, D) then
21 end
22 set a response Q;( = 1 and send (Q{C, Dy, Tin) to microgrid m
23 else
24 end
25 set a response Q{( =0
26 if ] Q;( =1 then
meCy
27 end
28 Update agreement (Cy, D) — (Cy, D% o DY)
29 set the state s' — C
30 set the type T
31 broadcast T' to all microgrid j, j € Cy

6.1.2. Fully Myopic Estimation (FME)

Similar to BCRLMAPE, the FME model has a lower complexity since in this model,
only the instantaneous action-value function is considered, and the experience history is
discarded. The action-value function is given by:

Qi (Cr,a%,B™) = ¥ B"(T%)
_ TC% e TCk (32)
Y. Pr{s™|Cy,a%, TC}(u"(t) + BEB)
smeSm
The FME model, same as MAPE, is the reduced version of the BCRL; therefore, in this
paper, we call this model BCRLFME.

6.1.3. Q-Learning Based Method

We compare our work with the Q-learning-based algorithm developed in [11]. Q-
learning aims to reach a sub-optimal policy by choosing actions that maximize the expected
current and future rewards. We assume that microgrids are agents and an agent’s action is
to refuse or accept the proposition of another microgrid to join their coalition. The state
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is the vector of coalition memberships, and the reward function is the same as (9). The e-
greedy method is employed to consider action exploration.

6.1.4. Bayesian Coalitional Game Theory (BCG)

We implemented a Bayesian coalitional game theory-based approach for coalition
formation in [11]. In this scheme, each microgrid makes a belief system about the types of
other agents; however, agents do not learn from past experiences.

6.1.5. Coalitional Game Theory (CG)

A game theory-based coalition formation approach has been proposed in [6]. In this
scheme, by employing a random merge and split technique, the system reaches a stable
coalition formation which is not necessarily optimal or sub-optimal.

We refer the readers to [6,11] for more information on BCG and CG benchmarks.

Note that the proposed method, BCRLMAPE, BCRLFEME, and Q-learning benchmarks
use the e-greedy policy to increase the chance of exploration. The e-greedy policy helps
with the trade-off between exploration and exploitation. Agents attempt to improve their
long-term benefits through exploration, while exploitation can be achieved by performing
greedy actions. Algorithm 1 is also used for BCRLMAPE, BCRLFME, and Q-learning
benchmarks.

6.2. Numerical Results and Discussions

In this section, for numerical evaluation, we consider a network of 4 to 10 microgrids
within an area of 20 km by 20 km where microgrids and macrogrid interconnections
are located randomly. We divided the full day into 240 time slots, where the load and
generation patterns are randomly generated, and this procedure was periodically repeated
every day with slight variations as in [6].

We compare the proposed BCRL with BCRLMAPE, BCRLFME, Q-learning, BCG,
and CG benchmarks. The results are averaged over ten runs. The simulation parameters
are presented in Table 2.

Table 2. Summary of simulation parameters

Parameters Value
Line Resistance (Ry) 0.2
Medium Voltage (Uj) 50 kV
Low voltage (U;) 22 kV
Transformer loss fraction (p) 0.02
Threshold distance (Dy;) 5 km
Virtual cost parameter (ws) 0.02
Virtual cost parameter (w;) 0.04
Virtual cost parameter (wy) 0.08
Scaling parameter (J) 0.95

In Figure 2, we present the average cost per user versus the number of microgrids
ranging from 4 to 10. As expected, increasing the number of microgrids will reduce the cost
since microgrids have more chance to make local coalitions in a dense network, resulting
in less power transmission with the macrogrid and by microgrids, resulting in lower costs.
Moreover, since BCRL is designed to overcome the uncertainty, it demonstrates more cost
results than the other algorithms. The proposed algorithm shows 4% to 16% improvement
compared to BCG and the sub-optimal BCRLMAPE, respectively.
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Figure 2. Average cost versus number of microgrids.

In Figure 3, to evaluate the effect of increasing power levels, we demonstrate the
average cost per user versus the power levels. It should be noted that, in this figure, BCG
and CG models cannot be compared with other models, since the power levels are not
considered in these models. As is shown, when the power levels increase, the average
cost decreases as expected. As we increase the power level, the quantization error will
be reduced, and as a result, all the approaches perform better. As we can see in Figure 3,
at different power levels, BCRL reduces the average cost per microgrid to 5% and 15%
compared to the BCRLMAPE and BCG methods, respectively.

450 T T T T T

B BCG
400 - IR BCRLFME | |
[C—IBCRLMAPE
[C_IBCRL

Average Cost per MGs
—_ —_ N N w w
o (o)) o [l o [
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o
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Number of Power Levels

Figure 3. Average cost per microgrid versus the power levels.

In Figure 4, we present the average power loss per user versus the number of mi-
crogrids. As the number of microgrids increases, the distance between microgrids will
be reduced, reducing the power loss in the system. Moreover, since BCRL is designed
to overcome the uncertainty, it demonstrates better power loss results than benchmark
approaches, with an up to 50% improvement with respect to conventional CG. While Q-
learning benefits from past experience to make the best decision, BCG relies on the beliefs
about the types of other players. The CG method only performs based on the random
join and split iterations in coalitions to reach a stable coalition formation, which is not
necessarily optimal.
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Figure 4. Average power loss versus number of microgrids.

Figure 5 shows the average power loss per user versus the number of power levels.
As expected, by increasing the number of power levels, the power loss will be reduced
due to the lower quantization error. As can be seen, the BCRL method is less prone to
quantization errors due to its comprehensive estimation model for the expected action
value. The BCRL method gained up to 20% on average compared to the BCG method.
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Figure 5. Average power loss per microgrid versus the number of power levels.

In Figure 6, the average amount of energy transferred to the macrogrid versus the
number of microgrids is presented. As we can see, BCRL requires a lower amount of energy
exportation to or importation from the macrogrid compared to the benchmark techniques.
Additionally, due to the lower power loss between nearby microgrids, the probability of
joining nearby microgrids to the same coalition will increase by increasing the number of
microgrids, which can reduce the power exported to the macrogrid, as well.
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Figure 6. Average energy transfer with macrogrid versus number of microgrids.

Figure 7 shows the impact of increasing the cost of transferring energy with the
macrogrid versus the average energy transferred with macrogrid. Here, the range of
weighting parameter wy varied between 0.02 to 0.22. As we can see, when wy increases,
the average energy transfer with macrogrid decreases, giving a chance to the coalition
of microgrids to operate in islanding mode. We can see that the proposed BCRL model
always performs better in making independent coalitions that rely less on macrogrid.
BCRL decreases the exported power to the macrogrid up to 10% in comparison with the
CG technique.
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Figure 7. The average energy transfer with macrogrid versus virtual cost weighting parameter wy.

Figure 8 shows the convergence of the BCRL technique in terms of the average power
loss per user. As is shown, the proposed model will be converged after 12,000 iterations.
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Figure 8. Convergence of the average cost per user versus the number of iteration for BCRL.
In Figure 9, we demonstrated the average number of iterations that are needed for the

convergence of accumulative average power loss as the number of power levels increases
in the BCRL scheme.

4
10
22 X T T T T T T T

—_ - _

» (2] o]
T T T

L L L

Average Number of iterations
~

5 6 7 8 9 10 11 12
Number of power levels

0.8
4

Figure 9. Number of iterations to convergence versus the power levels.

7. Conclusions

In this paper, we propose a Bayesian coalitional reinforcement learning-based ap-
proach for learning the optimal policy to minimize the cost for distributed energy trading
among microgrids. In this work, each microgrid is modeled as an agent that can compete
and cooperate with other agents. We model this problem as a Markov game, which aims
to maximize the reward for each agent to overcome the uncertainties that are caused by
microgrids based on their generation and demand. With the proposed scheme, microgrids
reach stable coalitions where the energy export to the macrogrid or distant microgrids are
reduced in the system. We introduced an algorithm that helps each agent systematically
propose joining a new coalition and give the coalition members the chance to accept or
reject the proposal according to their expected long-term rewards. To evaluate the perfor-
mance of the proposed model, we compared our results with five benchmark schemes and
showed that our scheme reduced the cost and power loss more than the others, reaching to
23% reduction in cost and a 28% reduction in power loss.
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Abbreviations

The following abbreviations are used in this manuscript:

ICT Information and communications technologies

p2p peer to peer

microgrid  Micro grid

BCFG Bayesian coalition formation game

BCRL Bayesian coalition reinforcement learning

CG Coalitional game theory

EV Electrical Vehicle

Al Artificial intelligence

SBC Strong Bayesian Core

MDP Markov decision process

RL Reinforcement learning

POMDP partially observable MDP

M Number of microgrids

Sm The amount of generated energy by microgrid m € M
dy microgrid m demand

Gm Surplus energy of microgrid m

Smn Total cost of power transaction from m-th microgrid to n-th microgrid
dyn Length of power lines between m-th and n-th microgrids
6 Scaling factor

En The power that is being traded plus the loss that happens during trading
PL(Ewmn)  Power loss in trading energy between m-th and n-th microgrids
w Weighting coefficient

Ws Lower bound for w

dgy Distance threshold

w) Higher bound for w

wy weight factor for energy transactions with the macrogrid
Ry Resistance of line

PL Power loss

Uy, Voltage in transformer

0 Fraction of power loss in transformer

C Coalition

vc Coalitional value

IC| Number of members of coalition C

VUmax(C) Maximum achievable coalition value

T Set of agent types

B" Set of agent beliefs

ACk Set of coalition action

S Set of states

u™ Reward function

B™(T~™)  m-th microgrid’s beliefs about the types of other players
T—m Probability assigned to other agents about their types
ACk Set of coalition actions

v(f) Value of Member j in the coalition

v Coalition C value
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D™ Demand
D Demand vector of coalition Cy,
ot Proposal by prosper m
0% discount factor
St State at time ¢t
By Belief at time ¢
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