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Abstract—With the increasing demands on the power grid,
more Electric Vehicles (EVs) will be used as mobile storage
units to trade energy and avoid power shortages. The integration
of EVs and smart grids has expanded the attack surface and
paved the way for adversaries to perform novel and intelligent
attacks on the system. Therefore, data integrity attacks in modern
smart grids are expected to increase in Vehicle-to-Grid (V2G)
and Vehicle-to-Microgrid (V2M) applications. In this paper, we
propose a novel scheme to model data integrity attacks in V2M
applications. By leveraging unsupervised machine learning, we
implement an intelligent detector to encounter the data integrity
attacks. Although some of the data integrity attacks are able
to deceive the detector, they fail to impact the V2M service
operation. Through simulations, we show that performing the
data integrity attacks against an increasing number of EVs (i.e.
backup energy suppliers) results in reducing the attacks’ impact
by up to 76.5%. In addition, doubling the original contribution
of EVs alleviates the impact of the data integrity attacks by 60%.
On the contrary, doubling the number of microgrids (i.e. demand)
raises the attacks’ impact by at least 75%.

Index Terms—data integrity attacks, vehicle-to-microgrid, ma-
chine learning, smart microgrids

I. INTRODUCTION

The modern power grids are expected to be developed as
cyber-physical systems (CPSs) to distribute power flow and
transmit data for advanced monitoring and control applications,
according to the IEEE Grid vision [1]. In order to enable
high efficiency and reliability, modern power grids are heavily
dependent on communication devices. Power grids that are
improved using bidirectional flow of data and electricity are
expected to form smart grids. Emerged features such as demand
response, self-recovery and V2G are enabled by smart grids.
Energy generated from the Distributed Generators (DGs), such
as solar panels and wind turbines, can be shared among other
entities connected to the grid, forming Community Resilience
Microgrids (CRMs) [2]. The purpose of CRMs is to enhance
the availability and sustainability of the delivered power, es-
pecially when the main grid is unavailable due to natural
disasters and severe weather conditions. Hence, in order to
sustain the CRM’s goals amid power outages, the concept
of energy trading, which we refer to as Vehicle-to-Microgrid
(V2MG, a.k.a V2M), builds on utilizing the EV batteries as
mobile energy units.

Recent research aims at maximizing the V2G efficiency of
the delivered power while reducing the cost using various
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approaches. For instance, recently the study in [3] has proposed
a V2G cost-objective optimization model that aims at finding
the closest EVs to a microgrid considering the communication
aspects. Similarly, the authors in [4] present a Mixed Integer
Linear Programming (MILP) optimization model to minimize
the operational cost of the microgrids and the charging cost of
the EVs. In addition to optimization models, machine learning
techniques such as Reinforcement Learning (RL) was used
in power management for grid-tied microgrid problems where
V2G service is considered as an alternative power source [5].
Another study models the interactions between the EVs and
microgrids where the suppliers (i.e. EVs) specify the plug-in
length, arrival times and the amount to supply/sell [6].

Although the cyber-security threats of those V2M interac-
tions have not been studied, some of the existing research
efforts investigated the cyber-attacks against the delivery and
transmission of data in vehicular networks. For instance, the
authors in [7] use an active control concept to detect a special
type of data integrity attack, namely False Data Injection (FDI)
attacks in a vehicle platoon. A data trust framework is proposed
to verify the trustworthiness of the data in the moment [8].
However, the impacts of data integrity attacks against V2M
applications have not been systematically investigated.

To the best of our knowledge, for the first time, this paper an-
alyzes the impact of data integrity attacks on smart microgrids.
It is assumed that the adversary launches the data integrity
attacks on the EVs side, targeting the contribution value as a
key parameter. The main contributions are as follows:

o Define a threat model based on the proposed framework

in [3] in a V2M setting.

o Provide an in-depth analysis to the risk associated with
the modeled attacks on the energy trading processes.

o Understand the effectiveness of intelligent detectors by
implementing the proposed attack in the presence of an
unsupervised machine learning-based anomaly detector.

The rest of the paper is organized as follows. Section II explains
the V2M framework and defines the threat model. Section III
models the data integrity attack on the V2M application,
and defines the implemented machine learning technique for
attacks detection. Section IV demonstrates performance criteria
and numerical results regarding with the proposed approach.
Section V concludes the paper and provides future directions.

II. SYSTEM MODEL FOR V2M SERVICES
The threat model builds on the optimization model presented
in [3] so it is worth revisiting the implemented optimization
model before proceeding with the the threat model.
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A. Optimization Model Revisited

The power management framework uses real time infor-
mation of the microgrid power demand to find the optimal
set of EVs to participate in the process, considering reliable
communication between the cellular base-station and EVs.
The optimization model in [3] is framed as follows: a set of
smart microgrids M, that are predicted to suffer from power
outage, send highly-time sensitive service requests to the cell’s
base-station [9]. To ensure reliability, the base-station uses
the Transmission Control Protocol (TCP) to acknowledge the
reception of the requests [10]. The requests contain information
of the anticipated energy demand D,,,(kWh) and the microgrid
locations. The base-station broadcasts the request to N EVs
within the coverage range. Each EV responds to the request
with three pieces of information: (i) selling price P, ($/kWh),
(i) contribution percentage «,, of the EV’s battery F),, and (iii)
current location. Then, the base-station computes the distances
between the microgrids K,,(km) and chooses an optimal set
of EVs to serve the microgrids’ requests. Lastly, the base-
station sends the trajectories to the EVs, starting with the first
microgrid T, to be serviced. The message flow for the V2M
service is depicted in Fig. 1.

The V2M model builds on a MILP formulation to find the
optimal set of EVs to supply the affected microgrids with the
required power until the main grid is restored. The objective of
the optimization problem is to minimize the operational cost
especially at the peak hours. Details of this model are presented
in [3]; hence the optimization model is explained briefly here.
The objective function in (1) can be solved by the set of
constraints where (2) and (3) presents the key subset of these

constraints. Table I lists the notation used in the MILP model.

TABLE I: Optimization model’s notations

Notations Definition
N Number of participating EVs in the power supply
request

M Number of microgrids

P, Electrical energy price offered by EV n ($/kWh)

z Average energy consumption per km (kWh/km)

H EV’s charging power (kW)

C Waiting cost per hour ($/h)

v Constant value defines the cost of the service request
made by the microgrid ($/request)

Kim Distance between microgrid 4 and microgrid m (km)

T Distance from the initial location of EV n to first
microgrid m (km)

En Initial battery level of EV n (kWh)

n Percentage value determines the contribution value of
the EV n

S, Amount of energy that EV n provides to microgrid
m (kW)

ARr Bmary variable defines the multiplication of O]} by
O'fl'l’

onr binary variable is one if microgrid m is served by EV

n in order r
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The constraint in (3) guarantees that the total transferred
energy from EV n and the total consumed energy while
traveling does not exceed the contribution factor « of the initial
energy level of the EV’s battery E),.
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It is worth mentioning that the communication constraint was
excluded from the MILP model to reduce the complexity of the
model, as the model has 10 constraints. It is also worth noting
that the sole purpose of the aforementioned optimization model
is to match sellers (i.e. EVs) with buyers (i.e. smart microgrids)
for a V2M application. Detailed version of the optimization
model can be found in [3].

B. Threat Model in V2M Services

To understand the threats and possible attacks on V2M
application, one should comprehend the involved entities that
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Fig. 2: High-level abstraction of the threat model for V2M

form the threat model. Fig. 2 presents a high level abstraction
of the threat model entities including adversaries and vulnera-
bilities. We conceptually follow the threat model in [11] that
is presented for IoT security in smart grids.

1) The adversary represents the first entity of the threat
model. The threat level of an adversary is defined by three main
elements, namely the required access, the adversary’s resources
and their motivation.

(1) Required access: defines the type of entry point to the
network. In order for the adversary to mount an attack, a
physical or cyber access to the network is required. Physical-
access can be direct through a malicious agent (i.e. an insider)
who has privileges in the network, or indirect by an outsider
who seeks to gain privileges. It is more likely for attacks
to be launched by outsiders who escalate their privileges in
the network rather than malicious users, especially in a V2M
service, as we will discuss in the performance evaluation
section. On the other hand, cyber-access allows the adversary
to connect remotely to the network via insecure communication
channels. For instance, the adversary can exploit network-based
vulnerabilities to gain a full control over the participated EVs
during the V2M operation.

(ii) Required resources: represent the needed capabilities of
the adversary to launch a successful attack. The adversary’s
resources are defined by the adversary’s expertise of the system,
the required equipment and time. If the attacker is an expert
and aware of the system interactions, it is called a white-box
attack. On the contrary, if the attacker is a novice and lacks
the necessary knowledge to initiate an attack on the system,
it is called black-box attack. In addition, the adversary might
need different types of equipment to attack V2M network. For
instance, to access an insecure communication channel, the
attacker needs to be within the communication range of the
traveling EVs, thus, using a vehicle is necessary to launch
an attack [12]. However, other attacks might need simpler
equipment such as a desktop computer. Another vital resource
for the adversary in a V2M application is the amount of time
required to perform the attack. The V2M application poses
dynamic changes of the network, hence, a dynamic attack

surface. Therefore, the adversary has to perform the attack
within a limited time window.

(iii) Motivation: can be viewed as another definition of
the attacker’s utility (i.e. the possible gains of performing a
successful attack considering the associated efforts and risks to
the attacker). Energy and data theft, financial gain, and service
disruption are typical examples that drive the adversary [11].

2) The second entity in Fig. 2 is the vulnerabilities in V2M
services. There are two parties that form the attack surface in
a V2M service, that is, vehicles and smart microgrids. Both
parties share network-based and embedded vulnerabilities.

(i) Network vulnerabilities: wireless communication and key
management expose the network to various types of vulnera-
bilities. It is worth noting that Autonomous Vehicles (AVs)
can be considered as EVs if they use battery units. Thus,
network-based vulnerabilities of AVs hold for EVs as well.
One of the most commonly used wireless technology for in-
vehicle network is Bluetooth. Its ability to hop fast, resist
noisy environments and support multi-channel through using
Frequency Hopping Spread Spectrum (FHSS) technology made
it a favourable technology for Controller Area Network (CAN)
communication [13]. However, Bluetooth technology suffers
from various vulnerabilities as reported in [12].

(i) Embedded system vulnerabilities are another way for
adversaries to break into the EVs. Firmware and operating
system vulnerabilities are two main issues for the software-
layer of embedded systems. For instance, firmware vulnera-
bilities allow the attacker to gain full access to the system
which can provide the attacker with the control to read and
change messages [14] [15]. Moreover, the attacker can pur-
sue and achieve privilege escalation by exploiting operating
system vulnerabilities. Hence, the attacker performs the attack
seamlessly. Other software vulnerabilities such as in Engine
Control Unit (ECU) are possible in [16] whereas embedded
hardware in EVs present other exploitable vulnerabilities. The
lack of proper hardware implementations and cryptographic
algorithms ease the path for adversaries to launch attacks on
EVs. Side-channel attacks such as power analysis attacks allow
the attacker to extract the encryption keys [17].

III. MODELLING OF DATA INTEGRITY ATTACK AGAINST
V2M APPLICATION

We apply the discussed threat model to analyze the impact
of the possible security flaws on the V2M operation (i.e. opti-
mization model). We assume an outsider adversary with cyber-
access to the system is exploiting in-vehicle communication
network using cryptographic key vulnerabilities. The adversary
is assumed to be able to alter the messages exchanged between
the EVs and the base-station. Hence, we implement a data
integrity attack assuming a white-box attack with an expert
adversary of the underlying interactions within a V2M service.
However, the base-station / edge node is equipped with an
intelligent system to detect data integrity attack attempts.
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A. Data Integrity Attack

This aim of study is primarily to quantify the impact of
cyber-security on energy trading process between EVs and
smart microgrids under the presence of an anomaly detector.
After analyzing the risks of different parameters involved in
the process, we have empirically chosen the contribution value
() to be the best target for an adversary to manipulate.
The contribution value is responsible for the amount of traded
energy during a V2M service. The adversary’s motivation is
to weaken the resiliency of smart microgrids community by
reducing the amount of provided energy to microgrids (a.k.a
buyers). The adversary aims to change the contribution value
of the EVs, as it is more susceptible to cyber-attacks. The
false contribution values are received at the base-station and
used as inputs to the optimization model. However, different
false contribution values affect the V2M service differently. For
instance, some of the data integrity attacks have zero impact
on the service. Thus, we had to assess not only the success of
the data integrity attacks but also whether the attacks impacted
the service. We define the Impactful Attacks (IA) in formula 4
as the attacks that can bypass DBSCAN and affect the V2M
service.

Number of undetected attacks of non-zero impact

“4)

1A =
Total number of attacks

B. Anomaly Detection

We use DBSCAN to detect the data integrity attack on the
V2M application. However, some of the attacks can bypass
DBSCAN and impact the V2M services. DBSCAN algorithm
is controlled by two parameters, ¢ and min — points where
e is responsible for the neighborhood search radius, and the
min — points parameter controls the minimum number of
points to establish a cluster. The parameters were empirically
chosen to make it harder on the adversary to bypass the
detector. DBSCAN algorithm works as follows: 1) An initial
point is selected and marked as visited. 2) The points within
the search radius of epsilon are counted and added to a set. 3)
The initial point is considered as a new cluster if the number of
points exceeds the predefined min-point value. This process is
continued for all points in the neighbourhood. 4) If the number
of points is less than the min-point, the point is defined as noise.
5) These steps are repeated until all points are clustered.

DBSCAN has a time complexity of O(n?) but this can be
reduced to O(nlogn) with parameter optimization [18]. Unlike
K-means, DBSCAN does not require pre-specification of the
number of clusters which makes it a good fit for anomaly
detection problems.

IV. PERFORMANCE EVALUATION
A. Simulation Settings

To assess the associated risks of the proposed data integrity
attack on the contribution value of the optimization model,
Optimization and Simscape Electrical toolboxes are used. All
simulations are performed using Intel Core 15-7500 CPU with

16GB of RAM running on a Windows 10 system. The opti-
mization toolbox solves the cost-based MILP model, whereas
the Simscape Electrical Toolbox simulates the microgrids and
EVs to provide synthetic power data [19]. Table II presents the
used simulation parameters.

TABLE II: Simulation parameters

Notations Value

Number of EVs {6,12}
Number of microgrids (M) {4,8}

Selling price (FPp) 0.201 $/kWh
Average energy consumption per km (z) 0.18 kWh/km
EV charger’s power (H) 20 kW

Waiting time price (C) 10 $/h

Service request price (v) 1 $/request
Distance between microgrids (K;,) [0.2-3] km
Distance from EV n initial location to first micro-  [0.2-3] km
grid m (Th,)

Microgrid’s demand (D) [5-30] kWh
EV’s initial battery level (E,) [10-40] kWh
EV’s original contribution percentage (cvy,) {20,40,90} %
Reduction percentages of the original contribution  {30,50,70,90}%
€ 1.5

min — points 5

Number of exploitable EVs for N=6 under 33%, 2, 4 and 6, re-
66% and 100% spectively
Number of exploitable EVs for N=12 under 33%, 4, 8 and 12, re-
66% and 100% spectively

We present two sets of microgrids M={4,8}, where a
microgrid’s demand (D,,) is picked randomly between [5-
30] kWh based on the synthetic power data. Similarly, we
consider two scenarios for the number of EVs in the V2M
service operation N={6, 12}, with different battery levels (E,,)
between [10-40] kWh. The adversary targets the contribution
value of the EVs. However, the number of exploitable EVs can
vary for diverse reasons. Therefore, another objective of this
study is to anticipate the number of EVs to be attacked, that
would have the heaviest impact on the microgrids’ resiliency.
Thus, we present three different percentage of EVs that could
be exploitable: 33%, 66% and 100%. That is, for N=6, we
study the impact of having 2, 4 and 6 exploitable EVs; and for
N=12, the number of exploitable EVs is set to 4, 8 and 12. The
adversary aims at changing the EVs’ contribution values with
100% reduction. However, DBSCAN will prevent that from
occurring. After DBSCAN’s fine-tuning, we select the e and
min — points parameters as 1.5 and 5, respectively.

B. Numerical Results

In this section we analyze the impact of the data integrity
attack on the contribution value («,,) with different number of
exploitable EVs. The optimization model has three outputs,
outstanding demand (kWh), total cost ($) and average vehicle’s
revenue ($). The outstanding demand defines the amount of the
microgrid’s energy that could not be supplied by the EVs. The
total cost represents the microgrid’s cost of exchange for the
EVs’ energy; and each EV makes a revenue by participating
in the request defined by the vehicle’s average revenue. For
the purpose of this paper, we limit our focus to analyzing
the impact of data integrity attacks on the outstanding demand.
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Fig. 3: Impact of the data integrity attack on the outstanding
demand for M=4. (a) original contribution = 20%, (b) original
contribution = 40%, (c) original contribution = 90%

1) Analyzing data integrity attacks under four microgrids:
The outstanding demand of the 4-microgrid energy request is
depicted in Fig. 3a. The EVs are willing to contribute to the
request with 20% of their batteries. However, the adversary
aims at reducing the original contribution with different per-
centages as shown on the x-axis. It is important to note that
0% reduction means that the original contribution value has
not been changed. In other words, the 0% reduction denotes
a “no-attack” case on the V2M operation. We present the no-
attack case to show the benign scenario of the model. The
dotted-lines represent scenario-1, with six EVs, with different
number of exploitable EVs. The solid-lines represent scenario-
2, with twelve EVs. The black lines denote the detected attacks
by DBSCAN. Under the no-attack case (i.e., 0% reduction),
the outstanding demand of scenario-1 is greater than scenario-
2. That is because there are more EVs in scenario-2 that can

contribute to the request when compared to the number of EVs
in scenario-1. Beyond the no-attack point, the effect of the data
integrity attacks on the contribution value starts to emerge.

The number of exploitable EVs has different impacts of the
outstanding demand. For instance, under the same scenario,
the number of attacked EVs is directly proportional to the
outstanding demand. The 33% attacked EVs has the least
impact on the outstanding demand, whereas the 100% attacked
EVs has the highest impact. However, when we compare the
two scenarios against each other, one interesting observation
from Fig. 3a is that the data integrity attacks on 33% of
scenario-1 is more impactful than 100% attacked EVs of
scenario-2, for a contribution reduction of 30%. That means
attacking two EVs in scenario-1 is more critical and risky to
the V2M operation than attacking twelve EVs in scenario-2.
This occurs because under the no-attack case, the outstanding
demand of scenario-1 is higher than scenario-2. Thus, the six
EVs of scenario-1 cannot cover all of the microgrid demands
when compared to the twelve EVs scenario, which would
have surplus energy even after covering all the demands.
Consequently, even with a 30% reduction in the contribution
of the twelve EVs in scenario-2, the EVs can still meet the
microgrid demands sufficiently. Furthermore, the 30% contri-
bution reduction attack translates into more EV requests to
compensate the energy loss caused by the attack. This results
in an excessive communication request which will overload the
communication infrastructure, especially if those requests are
clustered as highly-time sensitive [10]. Moreover, in scenario-
2 under 33% attacked EVs, the data integrity attacks have
an absolute zero impact on the outstanding demand until a
reduction value of 50%. The adversary’s utility is negative
since the attack has no gains to the adversary. Starting at a
reduction of 50% and onward, DBSCAN detects the adversarial
attempts on attacking 66% and 100% of the EVs for both cases.
That exhibits a promising performance of the applied anomaly
detector. However, DBSCAN fails to detect the 33% attacked
EVs, for both scenarios, for all reduction percentages. The
adversary succeeds to impact the outstanding demand, hence
the microgrids’ resiliency, by reducing the original contribution
value by 70% with attacking 33% EVs of scenario-1.

In Fig. 3b, the EVs’ contribution percentage doubles (i.e.
40%) with same number of microgrids M=4. Outstanding
demand of the no-attack scenario has dropped when compared
to the 20% contribution case. The adversary is successfully
able to reduce the original contribution by 30% without being
detected for scenario-2. Similarly, for scenario-1, all the data
integrity attacks deceived DBSCAN detector except for the
100% exploitable EVs case. At 50% reduction, for scenario-1,
the data integrity attack on the 33% exploitable EVs remains
undetected, whereas for the other two cases (66% and 100%
exploitable EVs), DBSCAN detects the attacks. Beyond the
50% reduction, all the data integrity attacks on the scenario-1
are detected. On the other hand, the data integrity attacks under
scenario-2 remain undetected for the 33% and 66% cases until
90% reduction. However, even though the attacks successfully
deceived DBSCAN, the attacks have almost zero impact on
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Fig. 4: Impact of the data integrity attack on the outstanding
demand for M=8. (a) original contribution = 20%, (b) original
contribution = 40%, (c) original contribution = 90%

the outstanding demand. Hence, not all successful attacks can
impact the V2M operation. Furthermore, that can be seen,
as the original contribution increases to 90% as depicted in
Fig. 3c. It is worth noting that none of the undetected attacks
have any impact on the outstanding demand. In addition,
the 100% exploitable EVs case for scenario-1 and scenario-
2 are detected successfully. Hence, the performed attacks on
an original contribution of 90% have no impact on the V2M
operation for both scenarios. That is because the EVs for both
scenarios have enough energy to meet the microgrid demands
even under different contribution reduction attacks. However,
as mentioned earlier, the attacks on the contribution values will
result in heavier communication load. Lastly, increasing the
original contribution from 20% to 40% results in doubling the
detected data integrity attacks of scenario-1.

2) Analyzing data integrity attacks under eight microgrids:
We also double the number of microgrids (i.e. M= 8) to further
investigate its relation to the outstanding demand. In Fig. 4a
under 20% original contribution and 8 microgrids, the outstand-
ing demand increases by around 40kWh for both scenarios
under the no-attack case (i.e. 0% contribution reduction) when
compared to the 4-microgrids case. That means neither the
six EVs scenario nor the twelve EVs scenario can sufficiently
meet the microgrid demands. Contrary to the 4-microgrids
case, the data integrity attack against the 33% exploitable EVs
of scenario-2 has impacted the outstanding demand under all
different contribution reduction attacks. Hence, it is shown that
increasing the number of microgrids has a linear impact on the
outstanding demand under 20% original contribution.

On one hand, doubling the original contribution to 40% low-
ers impact of the integrity attack on the outstanding demand for
both scenarios as shown in Fig. 4b. On the other hand, doubling
the number of microgrids to 8§ results in an increase in the
outstanding demand. Hence, the positive impact of increasing
the original contribution from 20% to 40% cancels the negative
impact of increasing the number of microgrids from 4 to 8.
Thus, Fig. 4b could represent 4 microgrids with 20% original
contribution (i.e. an exact replica of Fig. 3a). As we further
increase the original contribution to 90%, the data integrity
attacks lead to a lower impact on the outstanding demand as
depicted in Fig. 4c. However, when compared to Fig 3¢ with
M=4 and 90% original contribution, the impact of different
exploitable cases under scenario-1 becomes noticeable.

Since not all the data integrity attacks affect the outstanding
demand of the V2M operation, we evaluate the impact of
the performed attacks on 4 and 8 microgrids as presented
in Fig. 5. It is shown that the impactful attacks percentage
is affected by four factors: (i) the original contribution (ii)
the number of EVs (V) (iii) exploitable EVs percentage (iv)
the number of microgrids (M). As the original contribution
percentage increases, the impactful attacks either decrease or
remain constant. For instance, in 33% exploitable EV's for N=6,
the impactful attacks rate drops from 100% to 50% as the
original contribution increases from 20% to 40%. Similarly, the
impactful attacks rate drops from 100% to 50% as the N grows
from 6 to 12 under the same contribution value of 20% and
33% exploitable EVs. Furthermore, increasing the exploitable
EVs percentage results in a decrease of the impactful attacks
rate when the other factors remain the same.

V. CONCLUSION

In this paper, we studied data integrity attacks as potential
cyber-threats on Vehicle-to-Microgrid (V2M) service operation,
in which the adversary alters the original contribution of the
EVs. We have modeled and performed an in-depth impact
analysis for these threats considering the microgrid demands
that could not be covered by the EVs (i.e. the outstanding
demand), in a V2M operation. Numerical results have shown
that the risk of data integrity attacks on the outstanding
demand as well as the impactful attacks rate can drop by
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Fig. 5: Impactful attacks on the V2M operation for different
exploitable EVs (a) M=4 (b) M=8

increasing the original contribution and the number of EVs;
the risk rises when the number of exploitable EVs and the
number of microgrids increase. For instance, increasing the
original contribution from 20% to 90% resulted in dropping
the outstanding demand by up to 100% and 93% for the 4 and
8 microgrids cases, respectively. Similarly, rising the number of
EVs from 6 to 12 resulted in dropping the outstanding demand
by up to 76.5% and 30% for the 4 and 8 microgrids cases,
respectively.

Investigation of the overhead on the communication in-
frastructure as a result of the data integrity attacks on V2M
operation, and introducing complex data integrity attacks that
take into consideration variables other than the vehicular con-
tribution are in our ongoing research agenda. Furthermore,
from the defensive point of view, we are studying different
strategies to connect as many as EVs from different cell-
tiers (i.e. heterogeneous networks) to reduce the effect of data
integrity attacks.
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