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Abstract—With the increasing demands on the power grid,
more Electric Vehicles (EVs) will be used as mobile storage
units to trade energy and avoid power shortages. The integration
of EVs and smart grids has expanded the attack surface and
paved the way for adversaries to perform novel and intelligent
attacks on the system. Therefore, data integrity attacks in modern
smart grids are expected to increase in Vehicle-to-Grid (V2G)
and Vehicle-to-Microgrid (V2M) applications. In this paper, we
propose a novel scheme to model data integrity attacks in V2M
applications. By leveraging unsupervised machine learning, we
implement an intelligent detector to encounter the data integrity
attacks. Although some of the data integrity attacks are able
to deceive the detector, they fail to impact the V2M service
operation. Through simulations, we show that performing the
data integrity attacks against an increasing number of EVs (i.e.
backup energy suppliers) results in reducing the attacks’ impact
by up to 76.5%. In addition, doubling the original contribution
of EVs alleviates the impact of the data integrity attacks by 60%.
On the contrary, doubling the number of microgrids (i.e. demand)
raises the attacks’ impact by at least 75%.

Index Terms—data integrity attacks, vehicle-to-microgrid, ma-
chine learning, smart microgrids

I. INTRODUCTION

The modern power grids are expected to be developed as

cyber-physical systems (CPSs) to distribute power flow and

transmit data for advanced monitoring and control applications,

according to the IEEE Grid vision [1]. In order to enable

high efficiency and reliability, modern power grids are heavily

dependent on communication devices. Power grids that are

improved using bidirectional flow of data and electricity are

expected to form smart grids. Emerged features such as demand

response, self-recovery and V2G are enabled by smart grids.

Energy generated from the Distributed Generators (DGs), such

as solar panels and wind turbines, can be shared among other

entities connected to the grid, forming Community Resilience

Microgrids (CRMs) [2]. The purpose of CRMs is to enhance

the availability and sustainability of the delivered power, es-

pecially when the main grid is unavailable due to natural

disasters and severe weather conditions. Hence, in order to

sustain the CRM’s goals amid power outages, the concept

of energy trading, which we refer to as Vehicle-to-Microgrid

(V2MG, a.k.a V2M), builds on utilizing the EV batteries as

mobile energy units.

Recent research aims at maximizing the V2G efficiency of

the delivered power while reducing the cost using various
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approaches. For instance, recently the study in [3] has proposed

a V2G cost-objective optimization model that aims at finding

the closest EVs to a microgrid considering the communication

aspects. Similarly, the authors in [4] present a Mixed Integer

Linear Programming (MILP) optimization model to minimize

the operational cost of the microgrids and the charging cost of

the EVs. In addition to optimization models, machine learning

techniques such as Reinforcement Learning (RL) was used

in power management for grid-tied microgrid problems where

V2G service is considered as an alternative power source [5].

Another study models the interactions between the EVs and

microgrids where the suppliers (i.e. EVs) specify the plug-in

length, arrival times and the amount to supply/sell [6].
Although the cyber-security threats of those V2M interac-

tions have not been studied, some of the existing research

efforts investigated the cyber-attacks against the delivery and

transmission of data in vehicular networks. For instance, the

authors in [7] use an active control concept to detect a special

type of data integrity attack, namely False Data Injection (FDI)

attacks in a vehicle platoon. A data trust framework is proposed

to verify the trustworthiness of the data in the moment [8].

However, the impacts of data integrity attacks against V2M

applications have not been systematically investigated.
To the best of our knowledge, for the first time, this paper an-

alyzes the impact of data integrity attacks on smart microgrids.

It is assumed that the adversary launches the data integrity

attacks on the EVs side, targeting the contribution value as a

key parameter. The main contributions are as follows:

• Define a threat model based on the proposed framework

in [3] in a V2M setting.

• Provide an in-depth analysis to the risk associated with

the modeled attacks on the energy trading processes.

• Understand the effectiveness of intelligent detectors by

implementing the proposed attack in the presence of an

unsupervised machine learning-based anomaly detector.

The rest of the paper is organized as follows. Section II explains

the V2M framework and defines the threat model. Section III

models the data integrity attack on the V2M application,

and defines the implemented machine learning technique for

attacks detection. Section IV demonstrates performance criteria

and numerical results regarding with the proposed approach.

Section V concludes the paper and provides future directions.

II. SYSTEM MODEL FOR V2M SERVICES

The threat model builds on the optimization model presented

in [3] so it is worth revisiting the implemented optimization

model before proceeding with the the threat model.
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Fig. 1: Message flows in our framework

A. Optimization Model Revisited

The power management framework uses real time infor-

mation of the microgrid power demand to find the optimal

set of EVs to participate in the process, considering reliable

communication between the cellular base-station and EVs.

The optimization model in [3] is framed as follows: a set of

smart microgrids M , that are predicted to suffer from power

outage, send highly-time sensitive service requests to the cell’s

base-station [9]. To ensure reliability, the base-station uses

the Transmission Control Protocol (TCP) to acknowledge the

reception of the requests [10]. The requests contain information

of the anticipated energy demand Dm(kWh) and the microgrid

locations. The base-station broadcasts the request to N EVs

within the coverage range. Each EV responds to the request

with three pieces of information: (i) selling price Pn($/kWh),

(ii) contribution percentage αn of the EV’s battery En, and (iii)

current location. Then, the base-station computes the distances

between the microgrids Kim(km) and chooses an optimal set

of EVs to serve the microgrids’ requests. Lastly, the base-

station sends the trajectories to the EVs, starting with the first

microgrid Tm to be serviced. The message flow for the V2M

service is depicted in Fig. 1.

The V2M model builds on a MILP formulation to find the

optimal set of EVs to supply the affected microgrids with the

required power until the main grid is restored. The objective of

the optimization problem is to minimize the operational cost

especially at the peak hours. Details of this model are presented

in [3]; hence the optimization model is explained briefly here.

The objective function in (1) can be solved by the set of

constraints where (2) and (3) presents the key subset of these

constraints. Table I lists the notation used in the MILP model.

TABLE I: Optimization model’s notations

Notations Definition

N Number of participating EVs in the power supply
request

M Number of microgrids
Pn Electrical energy price offered by EV n ($/kWh)
z Average energy consumption per km (kWh/km)
H EV’s charging power (kW)
C Waiting cost per hour ($/h)
v Constant value defines the cost of the service request

made by the microgrid ($/request)
Kim Distance between microgrid i and microgrid m (km)
Tm Distance from the initial location of EV n to first

microgrid m (km)
En Initial battery level of EV n (kWh)
αn Percentage value determines the contribution value of

the EV n
Sn
m Amount of energy that EV n provides to microgrid

m (kW)
Anr

im Binary variable defines the multiplication of Onr
m by

Onr+1
m

Onr
m binary variable is one if microgrid m is served by EV

n in order r

Minimize
M∑

m=1

costm (1)

subject to

costm−(
N∑

n=1

Sn
m+

M∑

i=1

N∑

n=1

M∑

r=1

z·Kim·Anr
im+

N∑

n=1

On1
m ·Tm·z)

· Pn − (
N∑

n=1

Sn
m/H) · C −

N∑

n=1

M∑

r=1

Onr
m · v = 0, ∀m ∈M

(2)

The constraint in (3) guarantees that the total transferred

energy from EV n and the total consumed energy while

traveling does not exceed the contribution factor α of the initial

energy level of the EV’s battery En.

M∑

m=1

Sm
n +

M∑

i=1

M∑

m=1

M∑

r=1

z ·Kim ·Anr
im +

M∑

m=1

On1
m · Tm · z

≤ En · αn, ∀n ∈ N (3)

It is worth mentioning that the communication constraint was

excluded from the MILP model to reduce the complexity of the

model, as the model has 10 constraints. It is also worth noting

that the sole purpose of the aforementioned optimization model

is to match sellers (i.e. EVs) with buyers (i.e. smart microgrids)

for a V2M application. Detailed version of the optimization

model can be found in [3].

B. Threat Model in V2M Services

To understand the threats and possible attacks on V2M

application, one should comprehend the involved entities that
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Fig. 2: High-level abstraction of the threat model for V2M

form the threat model. Fig. 2 presents a high level abstraction

of the threat model entities including adversaries and vulnera-

bilities. We conceptually follow the threat model in [11] that

is presented for IoT security in smart grids.

1) The adversary represents the first entity of the threat

model. The threat level of an adversary is defined by three main

elements, namely the required access, the adversary’s resources

and their motivation.

(i) Required access: defines the type of entry point to the

network. In order for the adversary to mount an attack, a

physical or cyber access to the network is required. Physical-

access can be direct through a malicious agent (i.e. an insider)

who has privileges in the network, or indirect by an outsider

who seeks to gain privileges. It is more likely for attacks

to be launched by outsiders who escalate their privileges in

the network rather than malicious users, especially in a V2M

service, as we will discuss in the performance evaluation

section. On the other hand, cyber-access allows the adversary

to connect remotely to the network via insecure communication

channels. For instance, the adversary can exploit network-based

vulnerabilities to gain a full control over the participated EVs

during the V2M operation.

(ii) Required resources: represent the needed capabilities of

the adversary to launch a successful attack. The adversary’s

resources are defined by the adversary’s expertise of the system,

the required equipment and time. If the attacker is an expert

and aware of the system interactions, it is called a white-box

attack. On the contrary, if the attacker is a novice and lacks

the necessary knowledge to initiate an attack on the system,

it is called black-box attack. In addition, the adversary might

need different types of equipment to attack V2M network. For

instance, to access an insecure communication channel, the

attacker needs to be within the communication range of the

traveling EVs, thus, using a vehicle is necessary to launch

an attack [12]. However, other attacks might need simpler

equipment such as a desktop computer. Another vital resource

for the adversary in a V2M application is the amount of time

required to perform the attack. The V2M application poses

dynamic changes of the network, hence, a dynamic attack

surface. Therefore, the adversary has to perform the attack

within a limited time window.

(iii) Motivation: can be viewed as another definition of

the attacker’s utility (i.e. the possible gains of performing a

successful attack considering the associated efforts and risks to

the attacker). Energy and data theft, financial gain, and service

disruption are typical examples that drive the adversary [11].

2) The second entity in Fig. 2 is the vulnerabilities in V2M

services. There are two parties that form the attack surface in

a V2M service, that is, vehicles and smart microgrids. Both

parties share network-based and embedded vulnerabilities.

(i) Network vulnerabilities: wireless communication and key

management expose the network to various types of vulnera-

bilities. It is worth noting that Autonomous Vehicles (AVs)

can be considered as EVs if they use battery units. Thus,

network-based vulnerabilities of AVs hold for EVs as well.

One of the most commonly used wireless technology for in-

vehicle network is Bluetooth. Its ability to hop fast, resist

noisy environments and support multi-channel through using

Frequency Hopping Spread Spectrum (FHSS) technology made

it a favourable technology for Controller Area Network (CAN)

communication [13]. However, Bluetooth technology suffers

from various vulnerabilities as reported in [12].

(ii) Embedded system vulnerabilities are another way for

adversaries to break into the EVs. Firmware and operating

system vulnerabilities are two main issues for the software-

layer of embedded systems. For instance, firmware vulnera-

bilities allow the attacker to gain full access to the system

which can provide the attacker with the control to read and

change messages [14] [15]. Moreover, the attacker can pur-

sue and achieve privilege escalation by exploiting operating

system vulnerabilities. Hence, the attacker performs the attack

seamlessly. Other software vulnerabilities such as in Engine

Control Unit (ECU) are possible in [16] whereas embedded

hardware in EVs present other exploitable vulnerabilities. The

lack of proper hardware implementations and cryptographic

algorithms ease the path for adversaries to launch attacks on

EVs. Side-channel attacks such as power analysis attacks allow

the attacker to extract the encryption keys [17].

III. MODELLING OF DATA INTEGRITY ATTACK AGAINST

V2M APPLICATION

We apply the discussed threat model to analyze the impact

of the possible security flaws on the V2M operation (i.e. opti-

mization model). We assume an outsider adversary with cyber-

access to the system is exploiting in-vehicle communication

network using cryptographic key vulnerabilities. The adversary

is assumed to be able to alter the messages exchanged between

the EVs and the base-station. Hence, we implement a data

integrity attack assuming a white-box attack with an expert

adversary of the underlying interactions within a V2M service.

However, the base-station / edge node is equipped with an

intelligent system to detect data integrity attack attempts.
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A. Data Integrity Attack

This aim of study is primarily to quantify the impact of

cyber-security on energy trading process between EVs and

smart microgrids under the presence of an anomaly detector.

After analyzing the risks of different parameters involved in

the process, we have empirically chosen the contribution value

(αn) to be the best target for an adversary to manipulate.

The contribution value is responsible for the amount of traded

energy during a V2M service. The adversary’s motivation is

to weaken the resiliency of smart microgrids community by

reducing the amount of provided energy to microgrids (a.k.a

buyers). The adversary aims to change the contribution value

of the EVs, as it is more susceptible to cyber-attacks. The

false contribution values are received at the base-station and

used as inputs to the optimization model. However, different

false contribution values affect the V2M service differently. For

instance, some of the data integrity attacks have zero impact

on the service. Thus, we had to assess not only the success of

the data integrity attacks but also whether the attacks impacted

the service. We define the Impactful Attacks (IA) in formula 4

as the attacks that can bypass DBSCAN and affect the V2M

service.

IA =
Number of undetected attacks of non-zero impact

Total number of attacks
(4)

B. Anomaly Detection

We use DBSCAN to detect the data integrity attack on the

V2M application. However, some of the attacks can bypass

DBSCAN and impact the V2M services. DBSCAN algorithm

is controlled by two parameters, ε and min − points where

ε is responsible for the neighborhood search radius, and the

min − points parameter controls the minimum number of

points to establish a cluster. The parameters were empirically

chosen to make it harder on the adversary to bypass the

detector. DBSCAN algorithm works as follows: 1) An initial

point is selected and marked as visited. 2) The points within

the search radius of epsilon are counted and added to a set. 3)

The initial point is considered as a new cluster if the number of

points exceeds the predefined min-point value. This process is

continued for all points in the neighbourhood. 4) If the number

of points is less than the min-point, the point is defined as noise.

5) These steps are repeated until all points are clustered.

DBSCAN has a time complexity of O(n2) but this can be

reduced to O(nlogn) with parameter optimization [18]. Unlike

K-means, DBSCAN does not require pre-specification of the

number of clusters which makes it a good fit for anomaly

detection problems.

IV. PERFORMANCE EVALUATION

A. Simulation Settings

To assess the associated risks of the proposed data integrity

attack on the contribution value of the optimization model,

Optimization and Simscape Electrical toolboxes are used. All

simulations are performed using Intel Core i5-7500 CPU with

16GB of RAM running on a Windows 10 system. The opti-

mization toolbox solves the cost-based MILP model, whereas

the Simscape Electrical Toolbox simulates the microgrids and

EVs to provide synthetic power data [19]. Table II presents the

used simulation parameters.

TABLE II: Simulation parameters

Notations Value

Number of EVs {6, 12}
Number of microgrids (M ) {4, 8}
Selling price (Pn) 0.201 $/kWh
Average energy consumption per km (z) 0.18 kWh/km
EV charger’s power (H) 20 kW
Waiting time price (C) 10 $/h
Service request price (v) 1 $/request
Distance between microgrids (Kim) [0.2-3] km
Distance from EV n initial location to first micro-
grid m (Tm)

[0.2-3] km

Microgrid’s demand (Dm) [5-30] kWh
EV’s initial battery level (En) [10-40] kWh
EV’s original contribution percentage (αn) {20,40,90}%
Reduction percentages of the original contribution {30,50,70,90}%
ε 1.5
min− points 5
Number of exploitable EVs for N=6 under 33%,
66% and 100%

2, 4 and 6, re-
spectively

Number of exploitable EVs for N=12 under 33%,
66% and 100%

4, 8 and 12, re-
spectively

We present two sets of microgrids M={4, 8}, where a

microgrid’s demand (Dm) is picked randomly between [5-

30] kWh based on the synthetic power data. Similarly, we

consider two scenarios for the number of EVs in the V2M

service operation N={6, 12}, with different battery levels (En)

between [10-40] kWh. The adversary targets the contribution

value of the EVs. However, the number of exploitable EVs can

vary for diverse reasons. Therefore, another objective of this

study is to anticipate the number of EVs to be attacked, that

would have the heaviest impact on the microgrids’ resiliency.

Thus, we present three different percentage of EVs that could

be exploitable: 33%, 66% and 100%. That is, for N=6, we

study the impact of having 2, 4 and 6 exploitable EVs; and for

N=12, the number of exploitable EVs is set to 4, 8 and 12. The

adversary aims at changing the EVs’ contribution values with

100% reduction. However, DBSCAN will prevent that from

occurring. After DBSCAN’s fine-tuning, we select the ε and

min− points parameters as 1.5 and 5, respectively.

B. Numerical Results
In this section we analyze the impact of the data integrity

attack on the contribution value (αn) with different number of

exploitable EVs. The optimization model has three outputs,

outstanding demand (kWh), total cost ($) and average vehicle’s

revenue ($). The outstanding demand defines the amount of the

microgrid’s energy that could not be supplied by the EVs. The

total cost represents the microgrid’s cost of exchange for the

EVs’ energy; and each EV makes a revenue by participating

in the request defined by the vehicle’s average revenue. For

the purpose of this paper, we limit our focus to analyzing

the impact of data integrity attacks on the outstanding demand.
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(a)

(b)

(c)

Fig. 3: Impact of the data integrity attack on the outstanding

demand for M=4. (a) original contribution = 20%, (b) original

contribution = 40%, (c) original contribution = 90%

1) Analyzing data integrity attacks under four microgrids:
The outstanding demand of the 4-microgrid energy request is

depicted in Fig. 3a. The EVs are willing to contribute to the

request with 20% of their batteries. However, the adversary

aims at reducing the original contribution with different per-

centages as shown on the x-axis. It is important to note that

0% reduction means that the original contribution value has

not been changed. In other words, the 0% reduction denotes

a ”no-attack” case on the V2M operation. We present the no-

attack case to show the benign scenario of the model. The

dotted-lines represent scenario-1, with six EVs, with different

number of exploitable EVs. The solid-lines represent scenario-

2, with twelve EVs. The black lines denote the detected attacks

by DBSCAN. Under the no-attack case (i.e., 0% reduction),

the outstanding demand of scenario-1 is greater than scenario-

2. That is because there are more EVs in scenario-2 that can

contribute to the request when compared to the number of EVs

in scenario-1. Beyond the no-attack point, the effect of the data

integrity attacks on the contribution value starts to emerge.

The number of exploitable EVs has different impacts of the

outstanding demand. For instance, under the same scenario,

the number of attacked EVs is directly proportional to the

outstanding demand. The 33% attacked EVs has the least

impact on the outstanding demand, whereas the 100% attacked

EVs has the highest impact. However, when we compare the

two scenarios against each other, one interesting observation

from Fig. 3a is that the data integrity attacks on 33% of

scenario-1 is more impactful than 100% attacked EVs of

scenario-2, for a contribution reduction of 30%. That means

attacking two EVs in scenario-1 is more critical and risky to

the V2M operation than attacking twelve EVs in scenario-2.

This occurs because under the no-attack case, the outstanding

demand of scenario-1 is higher than scenario-2. Thus, the six

EVs of scenario-1 cannot cover all of the microgrid demands

when compared to the twelve EVs scenario, which would

have surplus energy even after covering all the demands.

Consequently, even with a 30% reduction in the contribution

of the twelve EVs in scenario-2, the EVs can still meet the

microgrid demands sufficiently. Furthermore, the 30% contri-

bution reduction attack translates into more EV requests to

compensate the energy loss caused by the attack. This results

in an excessive communication request which will overload the

communication infrastructure, especially if those requests are

clustered as highly-time sensitive [10]. Moreover, in scenario-

2 under 33% attacked EVs, the data integrity attacks have

an absolute zero impact on the outstanding demand until a

reduction value of 50%. The adversary’s utility is negative

since the attack has no gains to the adversary. Starting at a

reduction of 50% and onward, DBSCAN detects the adversarial

attempts on attacking 66% and 100% of the EVs for both cases.

That exhibits a promising performance of the applied anomaly

detector. However, DBSCAN fails to detect the 33% attacked

EVs, for both scenarios, for all reduction percentages. The

adversary succeeds to impact the outstanding demand, hence

the microgrids’ resiliency, by reducing the original contribution

value by 70% with attacking 33% EVs of scenario-1.

In Fig. 3b, the EVs’ contribution percentage doubles (i.e.

40%) with same number of microgrids M=4. Outstanding

demand of the no-attack scenario has dropped when compared

to the 20% contribution case. The adversary is successfully

able to reduce the original contribution by 30% without being

detected for scenario-2. Similarly, for scenario-1, all the data

integrity attacks deceived DBSCAN detector except for the

100% exploitable EVs case. At 50% reduction, for scenario-1,

the data integrity attack on the 33% exploitable EVs remains

undetected, whereas for the other two cases (66% and 100%

exploitable EVs), DBSCAN detects the attacks. Beyond the

50% reduction, all the data integrity attacks on the scenario-1

are detected. On the other hand, the data integrity attacks under

scenario-2 remain undetected for the 33% and 66% cases until

90% reduction. However, even though the attacks successfully

deceived DBSCAN, the attacks have almost zero impact on
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(a)

(b)

(c)

Fig. 4: Impact of the data integrity attack on the outstanding

demand for M=8. (a) original contribution = 20%, (b) original

contribution = 40%, (c) original contribution = 90%

the outstanding demand. Hence, not all successful attacks can

impact the V2M operation. Furthermore, that can be seen,

as the original contribution increases to 90% as depicted in

Fig. 3c. It is worth noting that none of the undetected attacks

have any impact on the outstanding demand. In addition,

the 100% exploitable EVs case for scenario-1 and scenario-

2 are detected successfully. Hence, the performed attacks on

an original contribution of 90% have no impact on the V2M

operation for both scenarios. That is because the EVs for both

scenarios have enough energy to meet the microgrid demands

even under different contribution reduction attacks. However,

as mentioned earlier, the attacks on the contribution values will

result in heavier communication load. Lastly, increasing the

original contribution from 20% to 40% results in doubling the

detected data integrity attacks of scenario-1.

2) Analyzing data integrity attacks under eight microgrids:
We also double the number of microgrids (i.e. M= 8) to further

investigate its relation to the outstanding demand. In Fig. 4a

under 20% original contribution and 8 microgrids, the outstand-

ing demand increases by around 40kWh for both scenarios

under the no-attack case (i.e. 0% contribution reduction) when

compared to the 4-microgrids case. That means neither the

six EVs scenario nor the twelve EVs scenario can sufficiently

meet the microgrid demands. Contrary to the 4-microgrids

case, the data integrity attack against the 33% exploitable EVs

of scenario-2 has impacted the outstanding demand under all

different contribution reduction attacks. Hence, it is shown that

increasing the number of microgrids has a linear impact on the

outstanding demand under 20% original contribution.

On one hand, doubling the original contribution to 40% low-

ers impact of the integrity attack on the outstanding demand for

both scenarios as shown in Fig. 4b. On the other hand, doubling

the number of microgrids to 8 results in an increase in the

outstanding demand. Hence, the positive impact of increasing

the original contribution from 20% to 40% cancels the negative

impact of increasing the number of microgrids from 4 to 8.

Thus, Fig. 4b could represent 4 microgrids with 20% original

contribution (i.e. an exact replica of Fig. 3a). As we further

increase the original contribution to 90%, the data integrity

attacks lead to a lower impact on the outstanding demand as

depicted in Fig. 4c. However, when compared to Fig 3c with

M=4 and 90% original contribution, the impact of different

exploitable cases under scenario-1 becomes noticeable.

Since not all the data integrity attacks affect the outstanding

demand of the V2M operation, we evaluate the impact of

the performed attacks on 4 and 8 microgrids as presented

in Fig. 5. It is shown that the impactful attacks percentage

is affected by four factors: (i) the original contribution (ii)

the number of EVs (N ) (iii) exploitable EVs percentage (iv)

the number of microgrids (M ). As the original contribution

percentage increases, the impactful attacks either decrease or

remain constant. For instance, in 33% exploitable EVs for N=6,

the impactful attacks rate drops from 100% to 50% as the

original contribution increases from 20% to 40%. Similarly, the

impactful attacks rate drops from 100% to 50% as the N grows

from 6 to 12 under the same contribution value of 20% and

33% exploitable EVs. Furthermore, increasing the exploitable

EVs percentage results in a decrease of the impactful attacks

rate when the other factors remain the same.

V. CONCLUSION

In this paper, we studied data integrity attacks as potential

cyber-threats on Vehicle-to-Microgrid (V2M) service operation,

in which the adversary alters the original contribution of the

EVs. We have modeled and performed an in-depth impact

analysis for these threats considering the microgrid demands

that could not be covered by the EVs (i.e. the outstanding

demand), in a V2M operation. Numerical results have shown

that the risk of data integrity attacks on the outstanding

demand as well as the impactful attacks rate can drop by
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(a)

(b)

Fig. 5: Impactful attacks on the V2M operation for different

exploitable EVs (a) M=4 (b) M=8

increasing the original contribution and the number of EVs;

the risk rises when the number of exploitable EVs and the

number of microgrids increase. For instance, increasing the

original contribution from 20% to 90% resulted in dropping

the outstanding demand by up to 100% and 93% for the 4 and

8 microgrids cases, respectively. Similarly, rising the number of

EVs from 6 to 12 resulted in dropping the outstanding demand

by up to 76.5% and 30% for the 4 and 8 microgrids cases,

respectively.
Investigation of the overhead on the communication in-

frastructure as a result of the data integrity attacks on V2M

operation, and introducing complex data integrity attacks that

take into consideration variables other than the vehicular con-

tribution are in our ongoing research agenda. Furthermore,

from the defensive point of view, we are studying different

strategies to connect as many as EVs from different cell-

tiers (i.e. heterogeneous networks) to reduce the effect of data

integrity attacks.
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