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Abstract—Peer-to-peer energy trading is a promising
approach to better integrate renewable energy resources,
reduce customer costs and increase the reliability of the
smart grid by employing microgrids and allowing them
to share their surplus energy with each other using 5G-
enabled communications. However, the varying nature of
the generation and the demand of each microgrid impose a
dynamicity and uncertainty on the system. In this paper, we
address the problem of minimizing cost in the coalitional
microgrid communities considering the dynamic nature of
the system. We propose a deep reinforcement learning
approach that helps to minimize the total cost through
forming efficient coalitions. The results show 16% to 30%
improvement in terms of cost minimization compared to
an existing Q-learning-based scheme and a conventional
coalitional game theory (CG)-based approach from the
literature, respectively.

Index Terms—Energy trading, machine learning, micro-
grid, smart grid

I. INTRODUCTION

The power grid has evolved drastically over the last

two decades thanks to advances in information and com-

munications technology (ICT) technologies. Although

the main elements of the smart grid have reached ma-

turity, careful integration of these elements in the new

dynamic heterogeneous environment has remained as an

open issue. Artificial Intelligence (AI) or specifically

machine learning techniques are promising candidates

to address the current challenges across the smart grid

and microgrid infrastructure [1]. In recent years, machine

learning gained huge attraction due to its great capability

to enable many applications in various areas such as

computer vision, robotics, 5G and so on. Smart grid, and

specifically management of microgrids, poses challenges

that are among the research domains that are targeted

to be addressed with the design and employment of

machine learning techniques.

In the literature, several prior attempts have employed

machine learning to resolve microgrid related control

problems. In [2], dynamic demand response and dis-

tributed generation management methods are proposed

for residential microgrid communities. In [3] and [4],

multi-agent correlated Q-learning approaches are intro-

duced consequently to address the decentralized energy

management problem. In [5], the problem of resource

allocation in the wireless network for microgrid com-

munities is investigated using a reinforcement learning-

based algorithm.

One opportunity that comes from employing multiple

microgrids in a distribution area is that they can trade

energy among themselves, and hence contribute to a

transactive energy system that is enabled by 5G network.

Energy trading among close-by microgrids allows taking

advantage of surplus generation in one microgrid to

supply a nearby microgrid that is experiencing energy

shortage. However, energy trading among microgrids

always imposes costs in different aspects. The cost can

be the result of the power loss in the line and the

transformer interconnection; or it can be the result of the

situation where there is no direct link between the buyer

and seller and transferring energy occurs through inter-

mediate microgrids, incurring extra costs. Apparently,

as the distance between microgrids increases the cost

increases. To this end, microgrids will trade energy with

close-by neighbors, and as a result, proposing a method

to efficiently pair nearby microgrids to involve in a

peer-to-peer energy transaction is crucial. The underlying

communication system is equally important however this

paper deals with the control of multiple microgrids and

assumes a reliable 5G network to enable message ex-

change between entities. Energy trading can be modeled

as a game theory problem. Specifically, coalitional game

theory is one of the methods that can address energy

trading problems as in [6].

Although, in the literature, energy trading problem in

a microgrid is tackled with the coalitional game and

reinforcement approaches individually. There are fewer

research attempts to employ both at the same time. In

this paper, we propose a deep reinforcement learning

approach to form coalitions to effectively address un-

certainty in generation and demand in energy trading

problems among microgrids. We call this scheme as

Deep Q-Learning Based Coalition Formation (DQN-CF).

In DQN-CF, as the agents interact through the iterations

of reinforcement learning, they update their estimations,

finally reaching coalitions that minimize cost. Our results

show 16% and 30% improvement in cost minimization

when DQN-CF is compared with an existing Q-learning-

based scheme and a conventional coalitional game theory
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(CG)-based approach, respectively.
The rest of this paper is organized as follows. In Sec-

tion II, the related work is summarized. In Section III, the

system model is described. In Section IV, we introduce

our deep reinforcement learning-based coalitional game

scheme. Numerical results are provided in Section V and

finally, the conclusion is presented in Section VI.

II. RELATED WORK

Energy trading problems are investigated in the litera-

ture using optimization, game theory and most recently

machine learning. In [7], the authors proposed a learning

automata-based method to tackle the energy trading

problem in a dynamic microgrids community. In [8] and

[9], energy trading problem has been investigated using

hotbooting Q-learning approach and deep Q-network

based approaches respectively.
Besides, these more recent machine learning based

solutions, coalitional game theory, in which players

cooperate to maximize a shared payoff, has been em-

ployed in several studies. It is usually considered that

microgrids can form coalitions for a specific time interval

where some microgrids have surplus energy and are

willing to supply energy to the others that need to

export energy. In [6], an energy trading problem in the

microgrid community is investigated to minimize the

power loss that occurs due to the transferring energy over

power lines. Furthermore, in [10], the authors examine

the problem of coordinated operation of cooperative

microgrids in a distributed fashion. In [11], a nucleolus-

based solution is proposed to fairly distribute the payoff

among microgrids for transactive energy management

in microgrid communities locally. In [12], the authors

proposed a coalitional-based energy trading wherein

each coalition, an auction-based matching is employed

to calculate the utility of the coalition, and then coalition

formation technique is used to partition the microgrids

into coalitions. In [13] a two-stage algorithm is proposed

for the energy trading problem of microgrids. At the first

stage, a coalition formation algorithm is used, and then

in the second stage, a matching game is employed to

manage the energy exchange inside each coalition. In

our prior work [14], we employed a Bayesian coalitional

game-theory based scheme to address the uncertainty

imposed by the penetration of EVs in the microgrid

community. In [15] to tackle the problem of coalition

formation in microgrid communities under uncertainty,

we introduced a Bayesian reinforcement-based technique

that lets microgrid agents to form coalitions by learning

from their past experiences. Considering the dynamic

nature of generation and demand and to tackle the

resulting uncertainty, in this paper, for the first time, we

introduce the Deep reinforcement learning-based coali-

tion formation solution for peer-to-peer energy trading

problem with the aim to minimize the cost of energy

trading.

III. SYSTEM MODEL

In this paper, we consider a system of M intercon-

nected microgrids (MGs), and all the MGs are connected

to the main macrogrid. The MGs can participate in an

energy transaction with other nearby MGs. The energy

trading opportunity gives the MGs the chance to export

their surplus energy generation or to import energy

when they have unsatisfied loads. In each epoch of our

considered system, some of MGs are sellers (exporters)

of energy and others are buyers (importers) of energy.

This work aims to efficiently group buyers and sellers

in a way that minimizes the cost of energy transactions

compared to buying or selling energy to the macrogrid.

In a group, or coalition, of MGs, there can be more than

one seller and more than one buyer. This scenario can

be modeled as a game-theoretical problem. In the rest of

this section, we define the system.

A. Cost Function

We represent the generated energy and the demand

of m-th MG by gm and dm respectively. Therefore,

the equivalent surplus/shortage can be defined as qm =
gm−dm. qm shows the amount of energy that m-th MG

is required to import from or export to the grid which

makes MGs involve in an energy trading transaction.

This value is changing in each iteration and imposes

uncertainty to the system. Energy trading transaction

among MGs occurs with some cost. In this section, we

first formulate these costs and then define them as an

objective function that needs to be minimized. To this

end, we introduce two set of costs during each energy

transactions: operational costs and virtual costs. The

operational cost denotes the cost associated with power

loss during the energy transaction which includes the

power loss in the line, transformer loss from different

voltage levels (high, medium or low) and maintenance

costs. We can formulate the power loss during energy

transaction between m-th and n-th MG as follows:

PL(Emn) = Rmndmn
Emn

2

U2
m

+ ρEmn, (1)

Rmn, dmn, and Emn represent the resistance of line

per km, the distance in km, and the required trading

power in energy transaction between m-th and n-th

MGs. Additionally, Um shows the voltage of the line

and ρ denotes the fraction of transformer power loss at

connections with macrogrid. ρ = 0 is in the intercon-

nections of MGs . Since always some part of the traded

energy will be lost in the line, Emn should be equal to

demanded energy plus the amount of power loss in the

line as follows:

(2)Emn = qn + PL(Emn)

In the following, we define the virtual costs. Virtual

costs associate with the hidden cost such as costs of

involving a set of intermediate MGs to transfer energy
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from seller MG to buyer MG when the two MGs are not

directly connected. This is a practical assumption since

having a direct link between all MGs is not feasible in

real scenarios. To this end, we assume that only close-by

MGs are directly connected. In addition, any unpredicted

costs such as the possibility of energy shortage which can

result in a blackout when MGs are in islanding mode can

be estimated as part of the virtual costs. We assume that

virtual costs grow as the distance between MG increases

and we formulate it as:

(3)SV = wdmnEmn

w is a weighting factor that can be formulated as

follows:

(4)w = {
ws m,n �= 0 and dmn ≤ dtr
wl m,n �= 0 and dmn > dtr.
w0 m = 0 or n = 0

Here, w = ws denotes energy trading happens in a

closer distance than threshold distance (dtr), and w = wl

means the two MGs (m,n) have more than dtr distance

in between [16]. This way, we assume that there is no

direct link between further than a threshold MGs and as

the result, the virtual cost of such energy trading will

be higher. Consequently, we can define the total costs as

follows:

(5)Smn = wdmnEmn + δPL(Emn)

The objective of this work is to minimize the total

costs as follows:

(6)

min
M∑

m=0

M∑
n=0

Smn

s.t :
M∑

m=1
qm +

M∑
m=0

M∑
n=0

P (Emn) =
M∑
n=0

E0n −
M∑

m=0
Em0

Considering the above-mentioned objective function and

criteria, we can conclude that MGs prefer to trade energy

with their close neighbors rather than further ones or

with macrogrid. Having energy trading in short distances

can help reduce costs associated with distance and also

there will be zero transformer loss in any energy trading

between MGs. Therefore, forming a group of MGs that

can trade energy among themselves can be a promising

method to reduce cost. In this paper, we use the coalition

formation methodology to divide MGs into such groups.

In the following section, we introduce the coalition

formation.

B. Coalition formation

We define coalitions as a group of members with a

coalition leader lC . We assume that we have C coalitions

and consequently C leaders. The leader is responsible

to approve new members for the coalitions. Also, all

communications with members happen through leaders.

We represent each coalition with a pair (C, vC). All the

members of coalition C cooperate to maximize the total

profit of the coalition known as the coalition value vC .

We define the coalition value as the negative form of

the cost. In this manner, we ensure the minimization of

cost as the members of coalitions, which are MGs in

our problem, attempt to maximize their coalition values.

The coalition value of each coalition consists of the cost

of energy trading among the coalition members plus

the cost of the energy transaction with the macrogrid.

Therefore, the coalition value can be defined as:

(7)vC = −
|C|∑

m=0

|C|∑

n=0

Smn,

Here, the number of coalition members of coalition

C is denoted by |C|. We use the index 0 to consider

energy transaction (import or export) with macrogrid.

After forming the coalition, coalition leader schedules

energy trading in a manner that minimizes the total

cost of energy trading among coalition members. Hence,

the coalition payoff can be defined as the maximum

achievable coalition value as follows:

(8)vmax
C = max {−

|C|∑

i=0

|C|∑

j=0

Smn}.

IV. DEEP Q-LEARNING BASED COALITION

FORMATION (DQN-CF)

In this section, we introduce our DQN-CF scheme,

where each coalition leader uses DQN to decide whether

to accept an MG to the coalition or not based on min-

imizing the total cost of the coalition. In the following

first we introduce the conventional Q-learning method

and then we extend it to present the proposed DQN-CF

algorithm. We will later use the Q-learning method as a

benchmark to evaluate the DQN-CF.

A. Q-Learning based Coalition Formation (QN-CF)

Q-learning is one of the popular reinforcement meth-

ods that has been widely used in literature. The tuples

of Q-learning can be defined as agents l, state s, action

a and reward function r. In the proposed scheme, we

define each element as follows:

1) Agents: In this scheme, we consider the leaders to

be the agents of the system. Since we have more than

one agent that performs actions, we have a multi-agent

scenario.

2) Actions: In each time step, one MG has the chance

to propose to join a new coalition randomly. The corre-

sponding leader decides to accept or reject the joining

proposal.Therefore, action space of leader l is a binary

variable al.
3) States: We define the state of the agent l in the

system as sl = {q̂1, q̂2, .., ˆqM , Pindex}. The q̂m is the

quantized total surplus energy or shortfall of energy of

the m-th MG. The q̂m is zero for non member MGs
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except for the proposer and Pindex represents the index

of the proposer.

4. Reward: The aim of the reward design is to mini-

mize the total cost. The reward function is considered to

be in the negative form of the coalition cost as follows:

(9)

rl = vmax
C

= max {−
|C|∑

i=0

|C|∑

j=0

Smn}.

Q-learning chooses actions that maximize the ex-

pected current and future rewards to reach a sub-optimal

policy. We update Q-value in Q-learning considering the

Bellman’s equation as below:

Qπ(s, a) = Qπ(s, a) + α(r(s, a) + γVπ(s
′)−Qπ(s, a))

(10)

where α and γ denote the learning rate, and discount

factor that shows the significance of future rewards

respectively. The ε-greedy method is used to guarantee

the action exploration as in [17].

B. DQN-CF

Q-table is used regular Q-learning to keep the record

of cumulative reward corresponding to each action and

state pair a and s and then the agent decides to choose

the next action according to the Q-values. Although this

works work well for small Q-tables with limited action-

state space, when the action-state space is large, the

memory will be larger and consequently, time complex-

ity increases dramatically. To this end, deep Q-learning

has been proposed to address these problems which

are employed in many studies where a neural network

is used to estimate the Q-values [18]. Considering the

Q-value in (9), as the system converges, the Q-value

Q(s, a) is equal to r(s, a) + γVπ(s
′). Therefore, the

neural network chooses r(s, a)+γVπ(s
′) as the training

target and consequently Q(s, a) is the predicted result.

Considering the training target, we can define the loss

function as:

(11)L(w) = E(r(s, a) + γV (s′, w)−Q(s, a, w))

where w, s and s′ are the weight of the neural network,

the current state and the next state, respectively. In

Q-learning, the Q-values vary dynamically, and conse-

quently, the target values will change, which may result

in an unstable output. Also, the training data should be

discontinuous, while the state and action transitions are

consecutive in Q-learning. To address these issues and

improve the DQN, experience replay and target network

have been proposed as two DQN improvement solutions

[19].

In this work, the LSTM which is a subset of recurrent

neural network (RNN) is used to estimate the Q-values

[20]. LSTM is capable of capturing the long-term de-

pendencies comparing to the conventional RNN network,

and at the same time addresses the problem of vanishing

gradient. Considering the block diagram of the LSTM

network in Fig, 1, xt and ht − 1 are the input value at

time t and the output value at time t − 1 respectively.

ct−1 represents cell state at time t−1. the current output

is shown by ht and ct denotes the current cell state.

Fig. 1. Block diagram of the LSTM network.

The proposed algorithm is summarized in Algorithm

1. In every epoch of the system, one MG is selected

at random to be the proposer. The proposer can choose

randomly to stay in the current coalition or to join a new

coalition. The coalition leader as the agent of the DQN

will take action to accept or reject the joining proposal

according to the estimated value function. Consecutive

merges and splits happen until the system reaches a

stable coalition formation in each estate.

Algorithm 1 Coalition formation with DQN for energy

trading among MGs

1: Initialization: Initialize parameters α and γ.

2: At time t = 0:
3: for MG m = 1 to M do

randomly select coalition C, set the power level

qi.
4: Broadcast C to all MGs

5: end for
6: Main loop:
7: for Each time slot t = 1 to T do
8: for leader l = 1 to L do
9: update current coalition reward rl(t)

10: update the DQN estimatation using (10)

11: end for
12: DQN Coalition formation with probability of

1/M the proposer MGi is selected from the set M

and randomly choose coalition C;

13: For the leader of coalition C:
14: take an action al according to DQN estimation

15: Sends a to the proposer m

16: If al = Y es then for all m ∈ Ck/{i} set m ∈ Ck

and update the rl.
17: end for

C. Baseline Algorithms
Baseline I - QN-CF: We introduced the Q-learning

approach in section IV.A and we use this method to

compare the proposed DQN based method with a well-

known reinforcement learning based technique.
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Baseline II - Conventional Coalitional Game The-
ory: The coalitional game theory based method is used

as a benchmark as in [6].

V. RESULTS

In this work, MATLAB is used as simulation soft-

ware. A region of 25kms by 25kms is considered in

which MGs are assumed to be distributed randomly.

The number of MGs varies between 6 and 18. and the

number of coalition leaders varies between 3 to 7. A 24-

hour interval is assumed for the simulation and load and

generation patterns are generated randomly considering

the Gaussian random variable. The same pattern with

slight variations is repeated for each day periodically

to simulate a longer time horizon [6]. We compare the

proposed DQN-CF technique with Q-learning and CG-

based methods. The results are achieved for 10 runs with

1500 iterations and the average results are reported. The

simulation values are summarized in Table I. We use

Adam optimizer in our DQN-CF method.

TABLE I
SUMMARY OF SIMULATION PARAMETERS

parameters value
Line Resistance (Rij) 0.2
Medium Voltage (U0) 50 kv
Low voltage (Ui) 22 kv
Transformer loss fraction (ρ) 0.02
Threshold distance (Dtr) 5 km
Virtual cost parameter (ws) 0.02
Virtual cost parameter (wl) 0.04
Virtual cost parameter (w0) 0.08
Scaling parameter (δ) 0.95
Learning rate of Q-learning (α) 0.5
Discount factor of Q-learning (γ) 0.8
Size of hidden layers 2
Number of hidden units 25
Training batch size 160
Size of replay memory 60
Training Interval 60

In Fig. 2, we present the average cost per user

versus the number of MGs ranging from 6 to 18. As

expected, by increasing the number of MGs, the cost

will be reduced since MGs have more chance to make

local coalitions in a dense network, resulting in less

power transmission with a macrogrid. Moreover, DQN-

CF demonstrates better results in terms of cost compared

to the other algorithms. The proposed algorithm shows

4% to 16% improvement compared to CG and the sub-

optimal QL-CF respectively.

In Fig. 3, to evaluate the effect of increasing power

levels, we demonstrate the average cost per user versus

the number of quantized power levels. As it is shown,

when the power levels increase, the average cost de-

creases, as expected. As we increase the number of

power levels, the quantization error will be reduced,

and as a result, the performance of all the approaches
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Fig. 2. Average cost versus number of MGs.
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Fig. 3. Average cost versus number of power levels.

improves while the proposed scheme performing signif-

icantly better than the others.

In Fig. 4, we present the average power loss per user

versus the number of MGs. As the number of MGs

increases, the power loss decreases. Moreover, since

DQN-CF is designed to overcome the uncertainty, it

demonstrates better results in terms of power loss com-

pared to benchmark approaches up to 24% improvement

with respect to conventional CG.
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Fig. 4. Average power loss versus number of MGs.
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In Fig 5, the average amount of energy transferred to

the macrogrid versus the number of MGs is presented.

As seen from the figure, DQN-CF causes less export to

the macrogrid compared to the benchmark techniques.

Additionally, as the number of MGs increases, there is

more chance that nearby MGs join the same coalition

since transferring energy with nearby MGs can result in

less power loss and virtual costs, which also reduces the

power exported to the macrogrid.

w0
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Fig. 5. Average energy transfer with Macrogrid versus number of
MGs.

In Fig 6, the average cost per MG is plotted versus

the number of iterations. Since we considered the cost

as the reward, less value shows better performance. As

it is expected, DQN-CF converges faster with better

performance comparing to QL-CF.
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Fig. 6. Average cost per MG is plotted versus the number of iterations.

VI. CONCLUSION

Peer-to-peer energy trading and MG communities will

play a vital role in future energy systems. In this study,

we investigated the coalitional energy trading problem

with the aim of cost minimization in a system with un-

certainties. We proposed a deep reinforcement learning

approach to overcome the uncertainties that arise from

the power level of MGs which results in less energy

transfer from macrogrid or distant MGs. We compared

the proposed approach with Q-learning and CG schemes,

and a significant reduction of (almost 16% and 30%) cost

has been achieved.
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