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Abstract—Peer-to-peer energy trading is a promising
approach to better integrate renewable energy resources,
reduce customer costs and increase the reliability of the
smart grid by employing microgrids and allowing them
to share their surplus energy with each other using 5G-
enabled communications. However, the varying nature of
the generation and the demand of each microgrid impose a
dynamicity and uncertainty on the system. In this paper, we
address the problem of minimizing cost in the coalitional
microgrid communities considering the dynamic nature of
the system. We propose a deep reinforcement learning
approach that helps to minimize the total cost through
forming efficient coalitions. The results show 16% to 30%
improvement in terms of cost minimization compared to
an existing Q-learning-based scheme and a conventional
coalitional game theory (CG)-based approach from the
literature, respectively.

Index Terms—Energy trading, machine learning, micro-
grid, smart grid

I. INTRODUCTION

The power grid has evolved drastically over the last
two decades thanks to advances in information and com-
munications technology (ICT) technologies. Although
the main elements of the smart grid have reached ma-
turity, careful integration of these elements in the new
dynamic heterogeneous environment has remained as an
open issue. Artificial Intelligence (AI) or specifically
machine learning techniques are promising candidates
to address the current challenges across the smart grid
and microgrid infrastructure [1]. In recent years, machine
learning gained huge attraction due to its great capability
to enable many applications in various areas such as
computer vision, robotics, 5G and so on. Smart grid, and
specifically management of microgrids, poses challenges
that are among the research domains that are targeted
to be addressed with the design and employment of
machine learning techniques.

In the literature, several prior attempts have employed
machine learning to resolve microgrid related control
problems. In [2], dynamic demand response and dis-
tributed generation management methods are proposed
for residential microgrid communities. In [3] and [4],
multi-agent correlated Q-learning approaches are intro-
duced consequently to address the decentralized energy
management problem. In [5], the problem of resource

allocation in the wireless network for microgrid com-
munities is investigated using a reinforcement learning-
based algorithm.

One opportunity that comes from employing multiple
microgrids in a distribution area is that they can trade
energy among themselves, and hence contribute to a
transactive energy system that is enabled by 5G network.
Energy trading among close-by microgrids allows taking
advantage of surplus generation in one microgrid to
supply a nearby microgrid that is experiencing energy
shortage. However, energy trading among microgrids
always imposes costs in different aspects. The cost can
be the result of the power loss in the line and the
transformer interconnection; or it can be the result of the
situation where there is no direct link between the buyer
and seller and transferring energy occurs through inter-
mediate microgrids, incurring extra costs. Apparently,
as the distance between microgrids increases the cost
increases. To this end, microgrids will trade energy with
close-by neighbors, and as a result, proposing a method
to efficiently pair nearby microgrids to involve in a
peer-to-peer energy transaction is crucial. The underlying
communication system is equally important however this
paper deals with the control of multiple microgrids and
assumes a reliable 5G network to enable message ex-
change between entities. Energy trading can be modeled
as a game theory problem. Specifically, coalitional game
theory is one of the methods that can address energy
trading problems as in [6].

Although, in the literature, energy trading problem in
a microgrid is tackled with the coalitional game and
reinforcement approaches individually. There are fewer
research attempts to employ both at the same time. In
this paper, we propose a deep reinforcement learning
approach to form coalitions to effectively address un-
certainty in generation and demand in energy trading
problems among microgrids. We call this scheme as
Deep Q-Learning Based Coalition Formation (DQN-CF).
In DQN-CEF, as the agents interact through the iterations
of reinforcement learning, they update their estimations,
finally reaching coalitions that minimize cost. Our results
show 16% and 30% improvement in cost minimization
when DQN-CF is compared with an existing Q-learning-
based scheme and a conventional coalitional game theory
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(CG)-based approach, respectively.

The rest of this paper is organized as follows. In Sec-
tion II, the related work is summarized. In Section 111, the
system model is described. In Section IV, we introduce
our deep reinforcement learning-based coalitional game
scheme. Numerical results are provided in Section V and
finally, the conclusion is presented in Section VI.

II. RELATED WORK

Energy trading problems are investigated in the litera-
ture using optimization, game theory and most recently
machine learning. In [7], the authors proposed a learning
automata-based method to tackle the energy trading
problem in a dynamic microgrids community. In [8] and
[9], energy trading problem has been investigated using
hotbooting Q-learning approach and deep Q-network
based approaches respectively.

Besides, these more recent machine learning based
solutions, coalitional game theory, in which players
cooperate to maximize a shared payoff, has been em-
ployed in several studies. It is usually considered that
microgrids can form coalitions for a specific time interval
where some microgrids have surplus energy and are
willing to supply energy to the others that need to
export energy. In [6], an energy trading problem in the
microgrid community is investigated to minimize the
power loss that occurs due to the transferring energy over
power lines. Furthermore, in [10], the authors examine
the problem of coordinated operation of cooperative
microgrids in a distributed fashion. In [11], a nucleolus-
based solution is proposed to fairly distribute the payoff
among microgrids for transactive energy management
in microgrid communities locally. In [12], the authors
proposed a coalitional-based energy trading wherein
each coalition, an auction-based matching is employed
to calculate the utility of the coalition, and then coalition
formation technique is used to partition the microgrids
into coalitions. In [13] a two-stage algorithm is proposed
for the energy trading problem of microgrids. At the first
stage, a coalition formation algorithm is used, and then
in the second stage, a matching game is employed to
manage the energy exchange inside each coalition. In
our prior work [14], we employed a Bayesian coalitional
game-theory based scheme to address the uncertainty
imposed by the penetration of EVs in the microgrid
community. In [15] to tackle the problem of coalition
formation in microgrid communities under uncertainty,
we introduced a Bayesian reinforcement-based technique
that lets microgrid agents to form coalitions by learning
from their past experiences. Considering the dynamic
nature of generation and demand and to tackle the
resulting uncertainty, in this paper, for the first time, we
introduce the Deep reinforcement learning-based coali-
tion formation solution for peer-to-peer energy trading
problem with the aim to minimize the cost of energy
trading.
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III. SYSTEM MODEL

In this paper, we consider a system of M intercon-
nected microgrids (MGs), and all the MGs are connected
to the main macrogrid. The MGs can participate in an
energy transaction with other nearby MGs. The energy
trading opportunity gives the MGs the chance to export
their surplus energy generation or to import energy
when they have unsatisfied loads. In each epoch of our
considered system, some of MGs are sellers (exporters)
of energy and others are buyers (importers) of energy.
This work aims to efficiently group buyers and sellers
in a way that minimizes the cost of energy transactions
compared to buying or selling energy to the macrogrid.
In a group, or coalition, of MGs, there can be more than
one seller and more than one buyer. This scenario can
be modeled as a game-theoretical problem. In the rest of
this section, we define the system.

A. Cost Function

We represent the generated energy and the demand
of m-th MG by g¢,, and d,, respectively. Therefore,
the equivalent surplus/shortage can be defined as ¢, =
gm — dm. ¢ shows the amount of energy that m-th MG
is required to import from or export to the grid which
makes MGs involve in an energy trading transaction.
This value is changing in each iteration and imposes
uncertainty to the system. Energy trading transaction
among MGs occurs with some cost. In this section, we
first formulate these costs and then define them as an
objective function that needs to be minimized. To this
end, we introduce two set of costs during each energy
transactions: operational costs and virtual costs. The
operational cost denotes the cost associated with power
loss during the energy transaction which includes the
power loss in the line, transformer loss from different
voltage levels (high, medium or low) and maintenance
costs. We can formulate the power loss during energy
transaction between m-th and n-th MG as follows:

E’ITLTL2
Uz,

Rins dmn, and E,,, represent the resistance of line
per km, the distance in km, and the required trading
power in energy transaction between m-th and n-th
MGs. Additionally, U,, shows the voltage of the line
and p denotes the fraction of transformer power loss at
connections with macrogrid. p = 0 is in the intercon-
nections of MGs . Since always some part of the traded
energy will be lost in the line, E,,, should be equal to
demanded energy plus the amount of power loss in the
line as follows:

Emn =qn + PL(Emn)

(@)

In the following, we define the virtual costs. Virtual
costs associate with the hidden cost such as costs of
involving a set of intermediate MGs to transfer energy
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from seller MG to buyer MG when the two MGs are not
directly connected. This is a practical assumption since
having a direct link between all MGs is not feasible in
real scenarios. To this end, we assume that only close-by
MGs are directly connected. In addition, any unpredicted
costs such as the possibility of energy shortage which can
result in a blackout when MGs are in islanding mode can
be estimated as part of the virtual costs. We assume that
virtual costs grow as the distance between MG increases
and we formulate it as:

3

w is a weighting factor that can be formulated as
follows:

SV = wdmnEmn

ws  m,n #£ 0 and dpy < diy
w={ w m,n # 0 and dp,, > dy. )
wo m=0o0orn=20

Here, w = w; denotes energy trading happens in a
closer distance than threshold distance (d;,), and w = w;
means the two MGs (m,n) have more than d;, distance
in between [16]. This way, we assume that there is no
direct link between further than a threshold MGs and as
the result, the virtual cost of such energy trading will
be higher. Consequently, we can define the total costs as
follows:

The objective of this work is to minimize the total
costs as follows:

M M
min 3 > Smn
m=0n=0 (6)
M M M M M
st 3 gm+ > 2 P(Emn) = 32 Eon— > Emo
m=1 m=0n=0 n=0 m=0

Considering the above-mentioned objective function and
criteria, we can conclude that MGs prefer to trade energy
with their close neighbors rather than further ones or
with macrogrid. Having energy trading in short distances
can help reduce costs associated with distance and also
there will be zero transformer loss in any energy trading
between MGs. Therefore, forming a group of MGs that
can trade energy among themselves can be a promising
method to reduce cost. In this paper, we use the coalition
formation methodology to divide MGs into such groups.
In the following section, we introduce the coalition
formation.

B. Coadlition formation

We define coalitions as a group of members with a
coalition leader [~. We assume that we have C coalitions
and consequently C' leaders. The leader is responsible
to approve new members for the coalitions. Also, all
communications with members happen through leaders.
We represent each coalition with a pair (C,v¢). All the
members of coalition C' cooperate to maximize the total
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profit of the coalition known as the coalition value vc.
We define the coalition value as the negative form of
the cost. In this manner, we ensure the minimization of
cost as the members of coalitions, which are MGs in
our problem, attempt to maximize their coalition values.
The coalition value of each coalition consists of the cost
of energy trading among the coalition members plus
the cost of the energy transaction with the macrogrid.
Therefore, the coalition value can be defined as:

ICl |C]

v = — Z Zsmna

m=0n=0

@)

Here, the number of coalition members of coalition
C' is denoted by |C|. We use the index O to consider
energy transaction (import or export) with macrogrid.
After forming the coalition, coalition leader schedules
energy trading in a manner that minimizes the total
cost of energy trading among coalition members. Hence,
the coalition payoff can be defined as the maximum
achievable coalition value as follows:

Il 1C]

v = max {— ZZS’”"}

i=0 j=0

®)

IV. DEEP Q-LEARNING BASED COALITION
ForMATION (DQN-CF)

In this section, we introduce our DQN-CF scheme,
where each coalition leader uses DQN to decide whether
to accept an MG to the coalition or not based on min-
imizing the total cost of the coalition. In the following
first we introduce the conventional Q-learning method
and then we extend it to present the proposed DQN-CF
algorithm. We will later use the Q-learning method as a
benchmark to evaluate the DQN-CF.

A. Q-Learning based Coalition Formation (ON-CF)

Q-learning is one of the popular reinforcement meth-
ods that has been widely used in literature. The tuples
of Q-learning can be defined as agents [, state s, action
a and reward function r. In the proposed scheme, we
define each element as follows:

1) Agents: In this scheme, we consider the leaders to
be the agents of the system. Since we have more than
one agent that performs actions, we have a multi-agent
scenario.

2) Actions: In each time step, one MG has the chance
to propose to join a new coalition randomly. The corre-
sponding leader decides to accept or reject the joining
proposal.Therefore, action space of leader [ is a binary
variable a'.

3) States: We define the state of the agent [ in the
system as s' = {q1,q2, .., ¢is, Pindex - The ¢}, is the
quantized total surplus energy or shortfall of energy of
the m-th MG. The g, is zero for non member MGs
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except for the proposer and P;, 4., represents the index
of the proposer.

4. Reward: The aim of the reward design is to mini-
mize the total cost. The reward function is considered to
be in the negative form of the coalition cost as follows:

T‘l — vgzax
ICl 1C| 9)
= max{fZZSmn}.
i=0 j=0

Q-learning chooses actions that maximize the ex-
pected current and future rewards to reach a sub-optimal
policy. We update Q-value in Q-learning considering the
Bellman’s equation as below:

Qr(s,a) = Qr(s,a) + a(r(s,a) + YVa(s') — Qx(s,a))
(10)

where « and v denote the learning rate, and discount
factor that shows the significance of future rewards
respectively. The e-greedy method is used to guarantee
the action exploration as in [17].

B. DON-CF

Q-table is used regular Q-learning to keep the record
of cumulative reward corresponding to each action and
state pair a and s and then the agent decides to choose
the next action according to the Q-values. Although this
works work well for small Q-tables with limited action-
state space, when the action-state space is large, the
memory will be larger and consequently, time complex-
ity increases dramatically. To this end, deep Q-learning
has been proposed to address these problems which
are employed in many studies where a neural network
is used to estimate the Q-values [18]. Considering the
Q-value in (9), as the system converges, the Q-value
Q(s,a) is equal to r(s,a) + yVz(s'). Therefore, the
neural network chooses 7 (s, a) +~V;(s’) as the training
target and consequently Q(s,a) is the predicted result.
Considering the training target, we can define the loss
function as:

L(w) = E(r(s,a) + YV (s',w) — Q(s,a,w)) (11)

where w, s and s’ are the weight of the neural network,
the current state and the next state, respectively. In
Q-learning, the Q-values vary dynamically, and conse-
quently, the target values will change, which may result
in an unstable output. Also, the training data should be
discontinuous, while the state and action transitions are
consecutive in Q-learning. To address these issues and
improve the DQN, experience replay and target network
have been proposed as two DQN improvement solutions
[19].

In this work, the LSTM which is a subset of recurrent
neural network (RNN) is used to estimate the Q-values

17:
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[20]. LSTM is capable of capturing the long-term de-
pendencies comparing to the conventional RNN network,
and at the same time addresses the problem of vanishing
gradient. Considering the block diagram of the LSTM
network in Fig, 1, x; and h; — 1 are the input value at
time ¢ and the output value at time ¢ — 1 respectively.
c¢—1 represents cell state at time ¢{— 1. the current output
is shown by h; and ¢; denotes the current cell state.

e pany 3
z I
€
(o] [d]
he_q he
T
q

X
Fig. 1. Block diagram of the LSTM network.

The proposed algorithm is summarized in Algorithm
1. In every epoch of the system, one MG is selected
at random to be the proposer. The proposer can choose
randomly to stay in the current coalition or to join a new
coalition. The coalition leader as the agent of the DQN
will take action to accept or reject the joining proposal
according to the estimated value function. Consecutive
merges and splits happen until the system reaches a
stable coalition formation in each estate.

Algorithm 1 Coalition formation with DQN for energy
trading among MGs
1: Initialization: Initialize parameters o and 7.
2: At time ¢t = 0:
3: for MG m =1 to M do
randomly select coalition C, set the power level

qi-
Broadcast C to all MGs
: end for
: Main loop:
: for Each time slot t = 1 to 7" do
for leader [ = 1 to L do
update current coalition reward 7;(t)
update the DQN estimatation using (10)
end for
DQN Coalition formation with probability of
1/M the proposer M G; is selected from the set M
and randomly choose coalition C;

13 For the leader of coalition C:
14: take an action a; according to DQN estimation
15: Sends a to the proposer m

16: If a; = Yes then for all m € Ci/{i} set m € Cy
and update the r;.
end for

C. Baseline Algorithms

Baseline I - QN-CF: We introduced the Q-learning
approach in section IV.A and we use this method to
compare the proposed DQN based method with a well-
known reinforcement learning based technique.
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Baseline II - Conventional Coalitional Game The-
ory: The coalitional game theory based method is used
as a benchmark as in [6].

V. RESULTS

In this work, MATLAB is used as simulation soft-
ware. A region of 25kms by 25kms is considered in
which MGs are assumed to be distributed randomly.
The number of MGs varies between 6 and 18. and the
number of coalition leaders varies between 3 to 7. A 24-
hour interval is assumed for the simulation and load and
generation patterns are generated randomly considering
the Gaussian random variable. The same pattern with
slight variations is repeated for each day periodically
to simulate a longer time horizon [6]. We compare the
proposed DQN-CF technique with Q-learning and CG-
based methods. The results are achieved for 10 runs with
1500 iterations and the average results are reported. The
simulation values are summarized in Table I. We use
Adam optimizer in our DQN-CF method.

TABLE 1
SUMMARY OF SIMULATION PARAMETERS
parameters value
Line Resistance (R;;) 0.2
Medium Voltage (Up) 50 kv
Low voltage (U;) 22 kv
Transformer loss fraction (p) 0.02
Threshold distance (Dy,) 5 km
Virtual cost parameter (ws) 0.02
Virtual cost parameter (w;) 0.04
Virtual cost parameter (w) 0.08
Scaling parameter (&) 0.95
Learning rate of Q-learning (o) 0.5
Discount factor of Q-learning (v) | 0.8
Size of hidden layers 2
Number of hidden units 25
Training batch size 160
Size of replay memory 60
Training Interval 60

In Fig. 2, we present the average cost per user
versus the number of MGs ranging from 6 to 18. As
expected, by increasing the number of MGs, the cost
will be reduced since MGs have more chance to make
local coalitions in a dense network, resulting in less
power transmission with a macrogrid. Moreover, DQN-
CF demonstrates better results in terms of cost compared
to the other algorithms. The proposed algorithm shows
4% to 16% improvement compared to CG and the sub-
optimal QL-CF respectively.

In Fig. 3, to evaluate the effect of increasing power
levels, we demonstrate the average cost per user versus
the number of quantized power levels. As it is shown,
when the power levels increase, the average cost de-
creases, as expected. As we increase the number of
power levels, the quantization error will be reduced,
and as a result, the performance of all the approaches
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Fig. 2. Average cost versus number of MGs.
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Fig. 3. Average cost versus number of power levels.

improves while the proposed scheme performing signif-
icantly better than the others.

In Fig. 4, we present the average power loss per user
versus the number of MGs. As the number of MGs
increases, the power loss decreases. Moreover, since
DQN-CF is designed to overcome the uncertainty, it
demonstrates better results in terms of power loss com-
pared to benchmark approaches up to 24% improvement
with respect to conventional CG.
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Average Powerloss per MGs in MW

6 8 10 12
Number of MGs

Fig. 4. Average power loss versus number of MGs.
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In Fig 5, the average amount of energy transferred to
the macrogrid versus the number of MGs is presented.
As seen from the figure, DQN-CF causes less export to
the macrogrid compared to the benchmark techniques.
Additionally, as the number of MGs increases, there is
more chance that nearby MGs join the same coalition
since transferring energy with nearby MGs can result in
less power loss and virtual costs, which also reduces the
power exported to the macrogrid.

Average power transfered toffrom per MGs in MW

Fig. 5.
MGs.

Average energy transfer with Macrogrid versus number of

In Fig 6, the average cost per MG is plotted versus
the number of iterations. Since we considered the cost
as the reward, less value shows better performance. As
it is expected, DQN-CF converges faster with better
performance comparing to QL-CF.

900

800 |-

Average Cost per MG
8

8

300 -

200
0

1000
Number of iterations

500

Fig. 6. Average cost per MG is plotted versus the number of iterations.

VI. CONCLUSION

Peer-to-peer energy trading and MG communities will
play a vital role in future energy systems. In this study,
we investigated the coalitional energy trading problem
with the aim of cost minimization in a system with un-
certainties. We proposed a deep reinforcement learning
approach to overcome the uncertainties that arise from
the power level of MGs which results in less energy
transfer from macrogrid or distant MGs. We compared

205

the proposed approach with Q-learning and CG schemes,
and a significant reduction of (almost 16% and 30%) cost
has been achieved.
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