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Abstract—Federated Learning (FL) builds on a mobile network
of participating nodes that train local models and contribute
to the learning model parameters at a central server without
being obliged to share their raw data. The server aggregates the
uploaded model parameters to generate a global model. Common
practice for the uploaded local models is an evenly weighted
aggregation, assuming that each node of the network contributes
to advancing the global model equally. Due to the heterogeneous
nature of the devices and collected data, it is inevitable to have
variations between the contributions of the users to the global
model. Therefore, users (i.e., devices) with higher contributions
should be weighted higher during aggregation. With this in
mind, this paper proposes a reputation-enabled aggregation
methodology that scales the aggregation weights of users by
their reputation scores. Reputation score of a user is computed
according to the performance metrics of their trained local
models during each training round, therefore it can be a metric
to evaluate the direct contributions of their trained local model.
Numerical comparison of the proposed aggregation methodology
to a baseline that utilizes standard averaging as well as a second
baseline that is scoped to a reputation-based client selection shows
an improvement of 17.175% over the standard baseline for not
independent and identically distributed (non-IID) scenarios for
an FL network of 100 participants. Consistent improvements over
the first and second baselines under smaller FL networks with
users ranging from 20 to 100 are also shown.

Index Terms—Distributed Learning, Mobile Networks, Feder-
ated Learning, Deep Neural Networks, Deep Learning, Reputa-
tion systems.

I. INTRODUCTION

The increasing use of smart devices enable the Social Internet
of Things (SIoT) phenomenon where smart devices that are
equipped with sensors can interact with each other on various
tasks by not requiring human intervention [1]. This propels the
use of machine learning (ML)-based methods in the applications
within smart cities such as smart surveillance and traffic control
although applications are not limited to these areas [2].

Mobile devices contain quality data that can be beneficial
for many ML models. To enable distributed learning while
preserving the privacy of the users Federated Learning (FL)
has emerged as a viable concept [3]. By utilizing local data
from participant devices, FL is a distributed machine learning
methodology to train individual models and share them with
a central computation unit for aggregation and redistribution
until experiencing an eventual convergence in the performance
indicators of the model [2].

The motivation of FL is to build a distributed ML framework
that prevents mobile devices from transmitting raw data to the
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base stations [4]. By doing so, privacy requirements of the
users can be fulfilled since the data shared with the central
server is limited to the model parameters. Thus, more clients
can participate to achieve a more generalized model. Besides,
due to the bandwidth constraints over wireless links, only
the compressed machine learning models are downloaded and
uploaded by the users, and this allows for real-time decisions
made by the central server [5]. It is worth to note that low
latency is a critical objective for time sensitive applications such
as autonomous vehicles. Last but not least, since the amount of
transferred information is limited, the energy consumption of
the network is significantly reduced with increased transmission
efficiency [6]. FL has shown to be promising in various
applications such as mobile keyboard prediction,visual object
detection and so on [7].

Challenges of FL that are being addressed by the researchers
have been centered around improving the privacy capabilities,
as well as client selection and user incentives. However,
aggregation of a global and distributed learning model still
remains a challenge. The FedAvg algorithm, which basically
stands for an averaging of models, is often used as the standard
aggregation method [8] with the consideration that each local
model in the aggregation pipeline contributes equally [9]. In
this work, we consider that the participating devices form
a mobile network of distributed computing nodes where the
performance and reputation of individuals (i.e., nodes) vary
across the network. With this in mind, we propose a reputation-
enabled weighted aggregation of the local models for distributed
learning, and hypothesize that such aggregation would lead
to faster convergence. Thus, the contribution of a local model
is evaluated by its reputation score, which is formulated
based upon three performance metrics (comparison with the
performance of local model at the current iteration; comparison
with the performance of temporary global model generated
from current iteration; comparison with the performance of
global model from last iteration as initially proposed in our
previous work [10] for client selection). Particular contribution
of this paper is an aggregation algorithm for FL in a mobile
environment to ensure a high accuracy level. Simulation results
show that the proposed aggregation methodology improves the
accuracy of FedAvg by up to 17.175% for non-IID datasets.
Meanwhile, the proposed scheme can converge faster at about
40 communication rounds whereas the baseline model can
convergence at about 100 communication rounds.

The rest of the paper is structured as follows. Section II
presents the related work whereas Section III presents the
methodology. Experimental settings and numerical results are
presented in Section IV along with further discussions. Finally,
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the paper is concluded in Section V alongside future directions
and our short term agenda in this field.

II. RELATED WORK

Heterogeneous nature of the mobile devices in a distributed
learning environment require optimization strategies subject
to the computing power, bandwidth constraints and quality of
sensed data [11] [12]. To ensure that the ML models can be
trained within a predetermined delay bound, the authors in [13]
propose the FedCS scheme that builds on the server’s awareness
of the resource availability at the participating devices so to
choose the clients (i.e, devices) accordingly. It should be noted
that it may not be always possible to obtain the needed training
time for complex models. The authors in [14] introduce a
Hybrid-FL scheme which aims to select the participants with
IID (independent and identically distributed) datasets. On one
hand, enforcing IID datasets can improve the performance
of the trained FL model, however, this may lead to privacy
concerns as some data must be shared to ensure that all recruited
participants have IID datasets. The authors in [15] leverage
Deep Reinforcement Learning (DRL) to filter the clients that are
out of the server’ coverage. A possible extension to that study
could be testing the boundaries of the participant pool, i.e.,
how big should participant pool be in order for the DRL-based
model selection to work efficiently. A q-Fair FL algorithm is
proposed in [16] to calculate each participant’s test accuracy
variance so to integrate them into the FedAvg algorithm as
aggregation weights aim at fairness.

The authors in [17] improve aggregation by adopting a
difference-of-convex (DC) functions algorithm. In [18], the
authors employ an asynchronous FL strategy to ensure the
uploaded parameters by the local mobile devices can proceed
to the aggregation procedure immediately. It might be possible
that a non-IID dataset incurs high latency for convergence. The
study in [19] tackles the frequency of aggregated updates so
to scale them in accordance with the restrictions of wireless
resources with a fundamental assumption that a guaranteed
convergence is possible for every model.

A model selection aggregation method is proposed in [20],
local computation ability as well as the image quality are used
to identify the good quality local deep neural network (DNN)
models. To optimize the number of workers scheduled at each
epoch, an online energy-limited dynamic worker arrangement
policy is developed in [21]. In [22], an analog gradient
aggregation method is proposed aiming at fast convergence in
the FL network. The study in [23] introduces a communication-
efficient secure aggregation to decrease the energy consumption
of communication. The study in [24] proposes an asynchronous
learning strategy in which the deep layers update at a slower
frequency and the shallow layers update at a faster frequency.

III. METHODOLOGY

The goal of the proposed methodology is to improve fairness
in the aggregation process to attain higher accuracy as well as
to achieve a faster convergence speed in an FL network setting,
which builds on a network of smart mobile devices.

Fig. 1. Local model training

A. Local model training process

As shown in Fig. 1, the base station initially assigns training
tasks to each participating local device and the requirements of
the training data (e.g., data type, size and resources). The local
clients (i.e., participants of the FL network) who meet the data
requirement as well who are as willing to join the training
task are recruited for training. The initial global model, hyper
parameters and details of training process are given to the
recruits. Each recruit uses their local mobile device and dataset
to train a local model. Instead of transmitting its local data to
the server, each participant respectively updates the weights of
their local model. The goal of each client is to minimize the
value of the loss function which means they need to find the
optimal local weights. In a series of iterations and epochs, the
local weights are continually transmitted by the participants.
The base station sends parameters of the aggregated global
model back to the local data owners. The steps of updating
local weights and transmitting the updated global model keep
repeating until an acceptable training and test accuracy is
achieved. It is worth to note that SGD optimizer is utilized
in this work, and negative log-likelihood is chosen as the loss
function.

B. Client Selection

We adopt the client selection algorithm from our previous
work in [10], and describe below briefly.

Before local parameters are aggregated into the global model,
only the participants who pass the client selection process
are chosen to update their local weights. Reputation score of
user i (Repi) is calculated during this process to evaluate the
performance of the local models or whether a particular local
model should be selected to participate in the updating process
by using Eq. 1. In the equation Ai stands for the accuracy of
the local model of user i whereas Agtemp and Agold denote the
accuracy of the temporary global model and the global model
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Fig. 2. Reputation calculation process

of the last communication round, respectively.

Repi = w1(Ai−
∑
j

Aj/n)+w2(Ai−Agtemp
)+w3(Ai−Agold)

(1)
As shown in Fig. 2, at the beginning of the client selection

process, each participant has an initial reputation score. The
reputation score consists of three metrics:

• (1) Comparison with average test accuracy of local models
in the current round such that the local models that
outperform the average will obtain positive scores whereas
those perform worse will get negative scores.

• (2) Comparison with the temporary global model which is
generated from further trained local models in this specific
communication round. A negative contribution denotes the
temporary global model’s outperforming the local model.
The purpose of this metric is to eliminate poor models
before aggregating into global models as well as choosing
the best performance models in each iteration.

• (3) Comparison with the global model of the last commu-
nication round. This metric will often result in a positive
contribution due to the high possibility of further trained
local model’s better performance in comparison to the
global model of last communication round.

Reputation score is used to prevent poor performing local
models from participating in the aggregation process, in order
to be accepted for aggregation, the reputation score has to
be above a predetermined threshold, a record is also kept
for the number of times the local model’s reputation score
is below the threshold. It is worth to note that the threshold
for the reputation score is selected empirically. Each local
model’s record is set to an initial value, and the value increases
every time when the reputation score is below the threshold.
The local model is eliminated after it is declined for a certain
number of times. By eliminating the poorly performing models,
we can consistently filter out the participants that yield poor
contribution while improving the model’s performance as well
as possibly decreasing the total running time as shown in the
previous work [10].

C. Global model aggregation

As shown in Fig. 3, the server leverages the reputation
scores that meet the selection requirement to calculate a normal
distribution that would then be used to assign aggregation
weights. The normal distribution is calculated after each

specific communication round to enable our proposed weighted
aggregation methodology. The rationale for calculating a
normal distribution is that its adding the least amount of prior
knowledge to the model. Therefore, a normal distribution is
built from the reputation scores of users that are accepted for
aggregation. There are 5 regions that are present in a normal
distribution they are defined as illustrated in Fig. 4.

Aggregation weights are assigned to a user depending on
where their reputation score is present on the normal distribu-
tion. In the standard FedAvg calculation for N = {1, 2, ..., n}
users, the weight for each user during the aggregation would
be equally split, thus if we denote aggregation weight of each
user as α, then α = 1/n which means each user has the same
aggregation weight. During a specific aggregation round, if all
users fall into the central region of µ±σ then our method would
be equivalent to the FedAvg algorithm; hence the proposed
method aims to address the scenarios where there exist users
that have reputation scores outside of the µ± σ quadrant (i.e.,
R3) of the distribution curve.

The aggregation weight for each user within a specific region
is denoted as ωi. If the reputation score of user i falls into R3,
we denote the aggregation weight for that specific user as ωµ±σ .
We scale the average aggregation weight assigned to each user
by the coverage percentage of the distribution quadrant that
their reputation score resides in. Thus, since the µ± σ region
covers 0.682 of the distribution, we set ωµ±σ=0.682α as the
aggregation weight. We multiply the original averaged weight
of each user α by the region coverage to assign new weights.

The R2 and R4 quadrants (i.e., µ± 2σ) cover 27.2% of the
distribution. Thus, the user would obtain 27.2% of the averaged
aggregation weight, α. This value is then added/subtracted to
the value obtained from R3 region aggregation weight depend-
ing on whether the reputation score resides in [ωµ−2σ, ωµ−σ] or
[ωµ+σ, ωµ+2σ]. As a result users with reputation in R2 will be
assigned lower aggregation weights when compared to those in
R3 as shown in Eq. 2 whereas the users in R4 will be assigned
higher aggregation weights compared to those under R3. As
seen in the same equation, the same weight assignment runs
for the R1 and R5 regions given that these regions cover 4.2%
of all reputation values.

ωi =



ωµ−3σ = ωµ−2σ − 0.042α, Repi ∈ {R1}.
ωµ−2σ = ωµ±σ − 0.272α, Repi ∈ {R2}.
ωµ±σ = 0.682α, Repi ∈ {R3}.
ωµ+2σ = ωµ±σ + 0.272α, Repi ∈ {R4}.
ωµ+3σ = ωµ+2σ + 0.042α, Repi ∈ {R5}.

(2)

Each weight factor, that is calculated for a user (ωi) is
normalized with respect to the total of these calculated weights.
The normalized weight assigned to a user is denoted by ω∗

i ,
where ω∗

i = ωi

S where S =
∑n
i=1 ωi. In the aggregation

process, n users are selected each time. Each user has their
model parameters that need to be aggregated as well as their
assigned aggregation weight. Final aggregation is the weighted
sum of all contributions by each user as formulated in (3):
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Fig. 3. Minimalist illustration of global model aggregation

Fig. 4. Five regions with respect to the reputation scores under the assumption
that the scores follow a normal distribution.

Paggr =
n∑
i=1

Piω
∗
i (3)

In the equation above, Paggr stands for the aggregated model
parameters whereas the local model parameter of user i (out
of the n users) is denoted by Pi. It is worth to note that
in each communication round, the normal distribution of
reputations is modeled upon the accumulation of user reputation
scores continuously as communication rounds elapse. Thus, the
instantaneous reputation of a user in a communication round is
rolled onto the reputation of that user calculated in the previous
communication round.

IV. EXPERIMENTAL RESULTS

Two image-based datasets are utilized to evaluate the
proposed methodology. Details of each dataset are as follows:

• MNIST [25]: Handwritten digital data-set includes 60,000
image samples in total, and 10,000 samples are for the
test validation. A grey value describes a pixel, 28 x 28
pixels constitute each image of the MNIST data-set.

• Fashion-MNIST [26]: Fashion-MNIST is a substituted
image data-set for the MNIST, which contains 70,000
disparate positive image samples in ten categories.

Our proposed methodology is evaluated with two machine
learning models combined with the two datasets, details of the
two model families are below:

• Multi layer-perceptron (MLP): each unit leverages ReLu
activation and has 1-hidden layer with 64 units in total.

• Convolutional Neural Network (CNN): includes a fully
connected layer of 320 units, two convolutional layers in
which the first layer has ten channels and its second layer
has twenty channels.

Due to collecting data from heterogeneous devices, the
performance of the FL framework can be impacted. Two ways
of distributing MNIST data-set is considered to address the
problem as described below:

• Independent and Identically Distributed (IID): The shuffled
data-set is evenly partitioned 100 times with each partition
containing 600 image samples.

• non-IID: The data-set is divided into 1200 groups with
50 image samples in each group by the digital label of
each sample. The image samples are assigned to each
participant randomly and varying between 1 and 30.

A. Performance under varying number of users

Fig. 5 illustrates the performance of our proposed method un-
der varying number of participating users. Our proposed method
includes reputation-based client selection and reputation-scaled
aggregation, while Baseline 2 is from the previous work in [10]
that employs reputation-based client selection, and Baseline 1
builds upon the widely known FedAVG approach. We show
that the addition of the reputation-scaled aggregation method
consistently improves the results obtained under Baseline 2.
All of the clients that are selected for aggregation have positive
contributions to the global model, which translate into their
reputation scores. The reputation score is generated through
the local model performance metrics, therefore it is possible
to use it as a measure of the local model contribution. The
performance increase is backed by the additional influence of
better performing local models during the aggregation. If there
are not any local models that significantly outperform the rest,
the aggregation methodology is expected to coincide with the
FedAvg algorithm. However, in the case of a heterogeneous
environment, the proposed method in this paper ensures that
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Fig. 5. Average test accuracy comparison under varying number of users. MLP is used as the ML model.

users in this mobile FL network environment who contribute
with local models that have higher computational capabilities
and richer data are given higher reputation scores and weighted
more during the aggregation.

B. Various combinations of ML models and datasets

Table I presents the performance results of our proposed
model in comparison to the two baseline approaches. Test
accuracy is used as the performance metric for comparison,
each value represents an average of ten runs. Two ML models
are used under the FL-based framework: MLP and CNN. For
MLP models, we use MNIST and FMNIST datasets. For the
MNIST IID dataset using MLP, our proposed model leads
to an improvement of 5.92% and 1.62% in comparison to
Baseline 1 and Baseline 2, respectively. Furthermore, the
accuracy is further improved by 9.20% and 2.96% over
Baseline 1 and Baseline 2, respectively under the non-IID MLP
MNIST dataset. Higher improvements are seen in the non-IID
datasets (as also observed in Fig. 5) by utilizing our proposed
method since larger variances among the participants occur
in a non-IID scenario, which is often the case in Federated
Learning. This trend is repeatedly shown in every non-IID
versus IID partitioning scenarios of each dataset. A remarkable
improvement is observed when MLP is used with the F-MNIST
non-IID dataset. An improvement of 15.976% and 11.375% is
achieved over Baseline 1 and Baseline 2, respectively.

For CNN based models, the MNIST dataset is used. Although
the CNN-based model achieved a high accuracy of 96.517%
and 98.25% for Baseline 1 and Baseline 2, respectively, our
proposed methodology is still able to improve it further to
98.68% under the IID scenario. Baseline 1 is only able to
achieve 81.075% accuracy under the non-IID MNIST dataset
using the CNN model. However, our proposed methodology is
able to improve the performance by 17.175% and boost the
accuracy up to 98.25%, which is almost as high as the IID
dataset’s test accuracy.

Overall, our proposed FL approach shows a consistently
improving trend over Baseline 1 and Baseline 2 models across
different datasets and ML models. Larger improvements are
seen under non-IID datasets where the contribution of each
user is varied more due to their distribution of local data.

Fig. 6. Comparison of convergence under MNIST IID with MLP as the ML
model

C. Convergence performance

Fig. 6 depicts the convergence rate for Baseline 2 and
our proposed methodology for FL. Figure 6.a shows that
the convergence of Baseline 2 is at approximately 100
communication rounds whereas the proposed methodology
converges at around 40 communication rounds. This confirms
that by applying the weighted aggregation based on user
contributions/reputations enables higher efficiency in addition
to the improved accuracy metrics, also seen in Table I. The
FedAvg aggregation algorithm inhibits the contributions of the
outperforming local models during aggregation and assigns
the same weight to all users in the aggregation process.
These two points slow down the convergence of the FL
model. Thus, our proposed reputation-enabled aggregation
methodology addresses these points by introducing a relative
measure of contribution from the standpoint of continuously
assessed reputation scores of the users based on local model
performances, as well as a probability distribution-driven
weight determination.

V. CONCLUSIONS AND FUTURE WORK

Federated Learning (FL) recruits users to train ML models on
their own devices with their own local data, and the parameters
of the local models are aggregated into a global model. In
this paper, we have proposed a new global model aggregation
methodology to improve the efficiency and accuracy perfor-
mance of the aggregated models in FL. To do so, the proposed
model assigns different aggregation weights to the participating
users, who are considered to be a part of a mobile network
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TABLE I
TEST ACCURACY IMPROVEMENT UNDER DIFFERENT DATASETS WITH 100 USERS

Test Accuracy MLP IID
MNIST

MLP Non-
IID MNIST

MLP IID
F-MNIST

MLP Non-IID
F-MNIST

CNN IID
MNIST

CNN Non-
IID MNIST

Baseline 1 88.023 76.389 89.44 76.854 96.517 81.075

Baseline 2 92.324 82.627 92.832 81.473 98.25 90.381

Proposed method 93.945 85.59 94.269 92.83 98.68 98.25

of distributed computing nodes, according their reputation
standing within the FL network. The proposed method has
been compared to the standard FedAvg algorithm and the
previously proposed reputation-based client selection algorithm
in terms of convergence and accuracy performance under
various experimental settings. Our experimental results have
shown improvements over these two baseline approaches, and
particularly under the non-IID scenarios, up to more than 17%
and 8% accuracy improvements have been achieved when
compared to these two baseline approaches. Furthermore, the
convergence speed has been reduced by approximately 60%
when compared to the previously proposed reputation-based
client selection scheme in an FL network.

Our ongoing study addresses dynamically optimizing the
reputation threshold for client selection and aggregation based
on the specified applications. Furthermore, a contract theory-
based approach to incentivize users integrated with the proposed
reputation-enabled aggregation is also included in our short
term agenda.
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