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A hybrid coarse-grained model for structure,
solvation and assembly of lipid-like peptides†

Akash Banerjee, Chien Yu Lu and Meenakshi Dutt *

Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold

enormous potential for powering future solid state devices and solar cells. The functionality and

integration of these proteins into such devices has been successfully enabled by lipid-like peptides. Yet,

a fundamental understanding of the organization of these peptides with respect to the photosynthetic

proteins and themselves remains unknown and is critical for guiding the design of such light-activated

devices. This study investigates the relative organization of one such peptide sequence V6K2 (V: valine

and K: lysine) within assemblies. Given the expansive spatiotemporal scales associated with this study, a

hybrid coarse-grained (CG) model which captures the structure, conformation and aggregation of the

peptide is adopted. The CG model uses a combination of iterative Boltzmann inversion and force

matching to provide insight into the relative organization of V6K2 in assemblies. The CG model

reproduces the structure of a V6K2 peptide sequence along with its all atom (AA) solvation structure. The

relative organization of multiple peptides in an assembly, as captured by CG simulations, is in agreement

with corresponding results from AA simulations. Also, a backmapping procedure reintroduces the AA

details of the peptides within the aggregates captured by the CG model to demonstrate the relative

organization of the peptides. Furthermore, a large number of peptides self-assemble into an elongated

micelle in the CG simulation, which is consistent with experimental findings. The coarse-graining

procedure is tested for transferability to longer peptide sequences, and hence can be extended to other

amphiphilic peptide sequences.

Introduction

The creation of novel solar cells which functionally integrate
photosynthetic proteins into a synthetic matrix can harness
solar energy to power a diverse array of nanoelectronics and

solid-state devices.1 Such cells will require the integration of
fully functional reconstituted photosynthetic proteins from
either plants, algae or bacteria. Reconstituting proteins such
that they preserve all their functionality is nontrivial and
has been achieved with lipid-like peptides.1–6 Furthermore,
small-sized assemblies of the lipid-like peptides and stabilized
photosynthetic protein complexes can aggregate into three
dimensional networks which can be used to power macroscale
devices using solar energy. A rational design of such networks
requires a fundamental understanding of how the peptides
organize relative to the protein complexes and themselves. This
study examines the relative organization of one such lipid-like
peptide sequence, namely V6K2 (V: valine, K: lysine) in an
aggregate encompassing this sequence.

Lipid-like peptides encompass 1–2 charged amino acids
(head group) and 6–8 hydrophobic amino acids (tail group).
The electrostatic interactions along with the hydrophobic effect
drive the assembly of these peptides into regular structures,
e.g., nanotubes, fibers or vesicles.7 Experimental studies have
explored tuning the electrostatic and hydrophobic effects by
synthesizing lipid-like peptide sequences of different head and tail
lengths.8,9 These modifications yield different nanostructures, each
having unique material properties.8–10 However, experimental
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approaches are constrained in their ability to resolve physical
phenomena across diverse spatiotemporal scales, and are unable
to resolve the relative organization of the peptides. A suitable
computational approach which captures the large spatiotemporal
scales associated with self-assembly and the chemical structure of
the molecules can overcome this challenge.

All atom (AA) models provide a detailed representation of the
chemical structure of peptides11,12 and explicitly account for all
intra- and intermolecular degrees of freedom (DOFs). Earlier
computational studies have used AA models to investigate the
aggregation of peptides. These studies are limited to either the
early stages of aggregation,13–15 or the examination of the stability
of pre-assembled aggregates.16,17 AA models are computationally
very expensive when examining assembly of numerous, randomly
dispersed peptides in an aqueous environment.

The formation of nanostructures occurring over large
spatiotemporal scales requires models which simultaneously
capture the effective chemistry of the peptides while having
significantly fewer DOFs than the AA models. Coarse-graining
approaches reduce selected DOFs in an AA model while
preserving the effective chemistry of the molecule.18 Groups
of atoms in the AA model are mapped onto superatoms or
pseudo atoms, also known as coarse-grained (CG) beads. An
appropriate mapping scheme preserves the general structural
description of the AA representation of the peptide in the CG
model. The coarse-graining process reduces the number of
coordinates and hence the DOFs that define the peptide,
thereby significantly reducing the computational cost of using
the CG model. In this study, the Molecular Dynamics (MD)
technique is used to simulate the CG model. Similar to the CG
MD approach, the Dissipative Particle Dynamics (DPD)19–22

method is also suitable for investigating phenomena which
span multiple spatiotemporal scales as it allows for a large time
step and very soft potentials. However, unlike CG MD, DPD is
unable to capture the structure of individual molecules in
solution and in assemblies due to the soft potentials. The
DPD potential allows for very large overlaps between the
particles which introduces enormous challenges when back-
mapping the DPD representation into the AA representation.
Whereas CG MD has stiffer potentials, a smaller time step and no
overlap between the MD beads. These features of CG MD allow it
to capture the structure of the molecules and makes it easier to
backmap the CG representation into the AA representation.
Hence, CG MD is more suitable for this specific study which
requires a CG potential which can capture the chemical structure
of the molecules while simultaneously resolving their assembly.

The scientific questions determine the coarse-graining
methodology. A top-down approach18 is used to study peptide
systems where thermodynamic properties are of particular
interest, e.g., peptide assembly. On the other hand, a bottom-up
approach23 is used to study structural details and local inter-
actions. Both coarse-graining approaches neglect certain DOFs,
and focus on investigating specific properties of interest.

Top-down approaches have been particularly successful in
capturing the assembly of various peptides. Some approaches
employ a scheme24 that neglects the structural details of

individual peptides. This technique drastically reduces the
computational cost of simulating the assembly of a large
number of peptides. An earlier study uses this approach to
study the relationship between local peptide properties and the
mechanism underlying peptide aggregation.25 Nucleation and
growth kinetics in the self-assembly process are also investigated
with similar models.26 Alternatively, an intermediate coarse-
graining scheme27 is applied to preserve some structural details
during the self-assembly process. These models employ a higher
number of beads per residue to preserve chemical specificity. One
such example is the Martini model28 which has been extensively
used for simulating the assembly of peptides. Each CG bead is
classified on the basis of the charge and polarity of the underlying
AA fragment. The pairwise nonbonded potentials between the CG
beads are parameterized to fit the free energy of partitioning
between aqueous and hydrophobic solutions obtained from experi-
ments. This model is successful for yielding self-assembled nano-
structures for various classes of peptides.29–38 The impact of factors
like the initial concentration of peptides,33,39 peptide sequence,33,34

peptide chain length32 and external conditions38 on peptide self-
assembly have been investigated with the Martini model. Elongated
nanostructures are of particular interest to the current study. The
Martini model is tested on amphiphilic peptides that self-assemble
into elongated micelles.40 In addition, the Martini model is used to
study the aggregation of peptide amphiphiles into relatively larger,
elongated nanostructures such as nanofibers.30 Another example of
a top-down approach is the PRIME model41 which is used in
conjunction with discontinuous molecular dynamics. Spontaneous
formation of nanofibers has been resolved with the PRIME
model.42 Some of these models have a predetermined secondary
structure,28 whereas other models reproduce the AA secondary
structure with special potentials.43,44 However, the conformations
of the peptides or their detailed local interactions within an
aggregate cannot be resolved by a top-down approach.

Investigations of the local structure and forces require a
bottom-up approach.23 The approach is targeted towards repro-
ducing specific properties in an AA system. Iterative Boltzmann
Inversion (IBI)45,46 is extensively used to preserve the chemical
structure of peptides within aggregates.47,48 Alternatively, Force
Matching (FM)49 minimizes the difference between the forces
on the CG beads across AA and CG resolutions. FM is used to
construct a generalized force field for any arbitrary peptide
sequence.50 Analogous approaches such as inverse Monte Carlo
and relative entropy minimize the difference between a certain
parameter across the AA and CG resolutions.51,52 In addition, a
reformulation of the relative entropy method preserves structural
details of individual peptides within amorphous aggregates.53 All
these methods approximate the many-body potential of mean
force (PMF) with effective pairwise CG potentials. Also, the AA
distributions functions (for specific DOFs) are reproduced in the
CG simulations. Although some correlations between DOFs can-
not be reproduced,54 there is significant agreement in the struc-
tural features corresponding to the underlying AA models. It is
noted that there are more sophisticated approaches that better
approximate the many-body PMF with local-density potentials55,56

or 3-body potentials.57,58
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Systems with multiple peptides in aqueous solution involve
complex interactions which cannot be resolved by a single
coarse-graining approach. This difficulty can be addressed by
coarse-graining approaches59 which combine multiple techniques
to resolve different features or interactions in the system.
For example, in an earlier study on peptide aggregation,47 the
bonded and nonbonded interaction potentials are extracted from
AA trajectories. The bonded potentials and the peptide–water
nonbonded potentials are resolved by applying IBI. The remaining
nonbonded potentials are resolved by sampling the free energy of
the underlying AA fragments. The resulting CG model efficiently
reproduces the conformational flexibility of individual peptides,
and the interactions between multiple peptides. Alternate
methods such as the Adaptive Resolution Scheme (AdResS)
enables AA and CG resolutions of a system in spatially localized
regions of a simulation box.60 The AA and CG regions are
interfaced by a region with hybrid resolution. The AA, CG and
hybrid resolutions are part of a single simulation, and the scheme
allows exchange of the different resolutions of a molecule
across the boundary of a region.61,62 This approach is powerful
and effective for scientific problems requiring a specific
resolution in fixed spatial regions of the corresponding systems.
Hence, a suitable hybrid CG technique is required which can
simultaneously resolve on-demand the individual structure,
conformation and aggregation behavior of peptides, independent
of their spatial location within the simulation box.

This study examines the relative organization of the V6K2

peptide sequence in assemblies. This requires a bottom-up CG
model which preserves the individual structure and conformation
of the peptide while capturing its assembly. Here, AA trajectories
are sampled to build CG tabulated potentials. A structure-based
coarse-graining technique, i.e., IBI is employed to derive the
bonded potentials. This ensures that the individual structure of
the peptides in the CG model is preserved. Additionally, IBI is
used to derive the peptide–water nonbonded potentials. This
ensures that the structure of the interface between the peptide
molecules and water in the CG model is preserved. IBI works
perfectly for bonded and peptide–water nonbonded potentials as
a well-defined structural property of the AA reference system is
available. This is achieved by sampling a single AA peptide in
water (dilute solution). In the case of peptide–peptide nonbonded
potentials, IBI generates potentials that are not transferable to
other peptide concentrations. The potential is generated by
sampling multiple AA peptides in water (concentrated solution).
IBI generates multi-well peptide–peptide nonbonded potentials
(see Fig. S1B, ESI†) that accurately captures the structure of the
interactions in the reference system. However, since it is highly
coupled to the underlying structure of the reference system, these
potentials are expected to have lower transferability. On the other
hand, a force-based method, i.e., FM produces single welled
potentials (see Fig. S1D, ESI†) with the same reference system.
Due to its non-specific nature towards the structure of the
interaction, it is surmised that FM potentials could be transferable
to other systems within a limited peptide concentration range.
Also, this method matches forces between the AA reference and
CG models at different scales. In this manner, all forces that are

inherent to the reference system that govern self-assembly of
the peptides are reproduced in the CG model. FM has been
extensively used to generate coarse-grained potentials for
peptides.50 In addition, it works well with long peptide
sequences63 like the one in this study. Thus, a hybrid scheme
involving the IBI and FM methods aims at preserving the structure
of individual peptides, the structure of the peptide–water interface,
and the forces between the peptides that govern assembly.

In this study, a CG model for the V6K2 peptide sequence6,64

is developed. The development of a CG model for such a
peptide sequence poses particular challenges as the DOFs
associated with the long hydrophobic tail group may be
correlated. Hence, a stepwise procedure to build CG potentials
of a short peptide (V2K), and test its transferability on longer
peptides (V4K and V6K2) is developed. The CG model resolves the
structure of the V6K2 peptide sequence. The solvation structure
of individual peptides is in good agreement with the corres-
ponding results from the AA simulations. These peptides self-
assemble into micelles. The relative organization of the peptides
and the effective size of the micelle is in agreement with
corresponding results from AA simulations. Furthermore, a large
number of these peptides self-assemble into an elongated
micelle which is consistent with experimental findings.64,65

Methods
Mapping scheme

All the peptides in the VnKm (n: number of valine residues and m:
number of lysine residues) series are coarse-grained using the
same mapping scheme. These peptides encompass a hydrophobic
tail and hydrophilic head group. The hydrophobic tail group
includes valine residues. As shown in Fig. 1, VBx (V: valine;
B: backbone; x: index of valine residue) CG beads represent the
valine backbone residues that form a linear chain. Each valine
backbone bead is associated with a side chain bead, i.e., VSx

(V: valine; S: side chain; x: index of valine residue). The
hydrophilic head group consists of lysine residues. Since lysine
has a larger excluded volume, two CG beads represent the side
chain KSy1 and KSy2, and one CG bead represents the backbone
bead KBy (where K: lysine; B/S: backbone/side chain; y: index of
lysine residue). On average, there are two to three heavy atoms per
CG bead which is similar to another coarse-graining scheme for
amino acids.50 Capping residues are added on the C terminus
(NH2) and N terminus (CH3CO).6

All the CG models include an explicit description of water and
monovalent chloride ions. A one-site mapping scheme is used for
both components. The development of the CG potential generates
a set of effective pairwise potentials which account for the van der
Waals and electrostatic interactions present in the atomistic simu-
lations. Inclusion of separate electrostatic and van der Waals terms
into the effective CG potentials will be pursued in a future study.

Coarse-grained potential development

The Boltzmann inversion (BI) method has been extensively
used for structure-based coarse-graining.45,54,66 BI depends on
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a structural property of the reference system, such as the RDF of
a pairwise interaction. These distributions can be measured
using particle trajectories from AA simulations. As per the
mapping scheme, the CG coordinates are mapped onto the
AA coordinates. Consequently, the distribution functions
between the CG-mapped coordinates provide a reference for
the equivalent interaction in the CG model. These CG-mapped
distribution functions are representative of the sampling of the
AA particle trajectories. Hence, extended AA particle trajectories
sampled at frequent intervals will generate smooth reference
distributions. The reference distributions are inverted via BI
using eqn (1)–(4) to obtain tabulated potentials:47,48,66

UCGðd;TÞ ¼ �kBT ln
PCGðd;TÞ

d2

� �
(1)

UCGðy;TÞ ¼ �kBT ln
PCGðy;TÞ
sinðyÞ

� �
(2)

UCG(f,T) = �kBT ln(PCG(f, T)) (3)

UCG(r, T) = �kBT ln(g(r, t)) (4)

Eqn (1)–(4) represent the potentials obtained from BI for
bonded and nonbonded interactions. PCG is the normalized
distribution function of a bonded interaction as a function of a
degree of freedom (i.e., d is the bond distance, y is an angle and
f is a dihedral angle). This idea can be extended to nonbonded
interactions where the normalized distribution would be the
radial distribution function (g(r)) of the pairwise interaction
[eqn (4)]. All potentials are state dependent and hence
associated with a specific temperature of T. kB is the Boltzmann
constant.

The potential obtained via BI works well for simple
molecules like polymers.67 However, the BI scheme cannot be
directly applied for complex molecules such as peptides.
This can be explained by the assumptions underlying the BI
scheme: (i) the bonded and nonbonded potential energy terms

should be treated separately. (ii) All bonded DOFs should be
uncorrelated (eqn (5)). In the event that these assumptions do
not hold true, which is typically the case for peptides,47,48,54,67

the IBI scheme is applied to refine the potentials. Further
corrective schemes like addition of special bonded potentials
are used in this study. This is discussed in the Results and
discussions.

PCG(d, y, f, T) = PCG(d, T) � PCG(y, T) � PCG(f, T) (5)

The IBI scheme is highly efficient in correcting Boltzmann
inverted bonded and nonbonded potentials.66 The procedure
is described by eqn (6).

Viþ1ðrÞ ¼ ViðrÞ þ kBT ln
Piðr;TÞ
Prefðr;TÞ

� �
(6)

r is representative of any arbitrary DOF (d, y, f, r). First, a CG
simulation is run using an initial estimate of the potential (Vi(r)).
Next, the resulting CG bonded and nonbonded distributions
are examined. If there is a difference between a CG distribution
(Pi(r, T)) and the corresponding reference distribution (CG-mapped
distributions that are representative of atomistic sampling, i.e.,
Pref(r, T)), the underlying CG potential is corrected. The difference
between the potential of mean force of the CG distribution and the
reference distribution (namely, second term in eqn (6)) is the
correction used to develop a new potential, i.e., Vi+1(r). The process
is repeated until the CG distribution converges with the corres-
ponding reference distribution within a tolerance value.

The FM49 scheme is extensively used to build CG tabulated
potentials with the help of forces from AA trajectories.63 In FM,
the AA forces on the CG-mapped coordinates are projected onto
the CG model. The method employs a least square approach to
minimize the difference between forces in the AA and CG
resolutions.

w2 ¼
XM
m

XN
n

F ref
mn � FCG

mn

�� ��2 (7)

Fig. 1 The coarse-graining scheme for V6K2. Green and purple beads represent valine and lysine residues, respectively. The smaller green beads (VSx,
V: valine; S: side chain; x: index of valine residue) represents the side chain of the valine residues. The larger green beads (VBx, V: valine; B: backbone;
x: index of valine residue) represents the backbone of the valine residues. Similarly, the smaller and larger purple beads represent the lysine side chain
(KSy1 and KSy2) and backbone (KBy) residues, respectively (K: lysine; B/S: backbone/side chain; y: index of lysine residue). The sizes of the backbone and
side chain beads are kept different for visual clarity (bead sizes are not representative of their mass). The capping residues are not shown for clarity.
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M is the number of frames (or, MD configurations) and N is
the total number of CG beads. Fref

mn refers to the forces in the
reference simulation (AA), acting on the nth CG bead in the mth
configuration. Similarly, FCG

mn refers to the corresponding CG
force. The FM scheme converts eqn (7) into a set of linear
equations.68 These equations can be solved only when they are
overdetermined. That is, the number of parameters should
be less than the product of the number of beads (N) and
configurations (M). This can be ensured by extensive sampling
of the AA system so as to yield a large value for M.

The Versatile Object-oriented Toolkit for Coarse-Graining
Applications (VOTCA) package (version 1.5)69 is used to
determine the CG potentials. FM is used to determine the CG
peptide–peptide nonbonded potentials. The peptide topology is
modified to exclude bonded and intramolecular nonbonded
interactions. This approach is termed as force matching with
exclusions.59 This modification works well when all the bonded
and nonbonded potentials are used in conjunction to run CG
simulations. The reference AA simulations generate 20 000
frames of force data. The force data from the AA simulation
is reevaluated with the modified topology. The FM algorithm
organizes the data into smaller blocks so as to have 100 frames
in each block. Cubic splines are used to fit the force data across
all blocks. The grid spacing between the minimum and
maximum distances of a particular interaction can control
the number of splines. An optimal number of splines would
result in smooth CG potentials that preserve most of the
atomistic details. A grid spacing of 0.03 nm is used which
results in an average of 30 splines for each interaction.

The IBI method is used to determine the other nonbonded
potentials, namely water–water and peptide–water potentials.
Reference RDFs are generated from 100 000 frames of AA
trajectory. Details of the IBI process for specific nonbonded
interactions are discussed in the Results and discussions. Also,
potentials involving ions are discussed in the Results and
discussions.

For bonded potentials, 100 000 frames of configurations
from the AA simulations are used. This results in smooth
bonded distribution functions. BI is applied to obtain the CG
bonded potentials and run the CG simulations. Any discrepancy
in the comparison of the CG distributions with the reference
distributions is addressed by iteratively correcting the CG
bonded potential using IBI.

All atom simulations

The AMBER99SB70 force field is used to simulate all the VnKm

peptides. A previous study on VnKm peptides employs the same
force field. The AMBER force field accounts for effects such as
hydrogen bonds between peptides and water. These interactions
are critical to resolve chemical details such as secondary structure
and peptide solvation. Hence, the AMBER force field generates
good reference trajectories and forces for building the CG
potentials. The AA modeling conditions are analogous to an
earlier study.47 The GROMACS Molecular Dynamics package
(2016.1)71–73 is used run initial energy minimization and
equilibration simulations. The 2020.2 version of GROMACS is

used to compute the AA trajectories and forces. The Lennard-
Jones cut-off is 1.4 nm and the long range dispersion correction
for energy and pressure is employed. The Particle Mesh Ewald
(PME) algorithm is used74 for the long range electrostatics. The
system samples the NPT ensemble. The temperature is set at
300 K using the velocity-rescaling thermostat (with a stochastic
term)75,76 and a pressure of 1 bar using the Parrinello–Rahman
barostat.77 All bond distances are constrained by the LINCS
algorithm.78 A 2 fs time step (using the leap-frog integrator) is
employed to run the AA simulations. An explicit description of
water using the SPC/E79 model is used. Details of runtimes and
sampling rates are provided in the Results and discussions.
The end-to-end distance of the peptide sequence of interest, i.e.,
V6K2 is within the range determined by experiments.6

Coarse-grained simulations

The final AA configuration file is converted to a CG representation
using the csg_map tool in the VOTCA package.69 The volume of
the CG simulation box is the same as that corresponding to the
equilibrated AA system. The 2018 version of GROMACS is used to
run the CG simulations. At the time of development, tabulated
potentials were not compatible with the 2020.2 version of
GROMACS. The CG simulation is run at constant volume with a
leap-frog stochastic dynamics integrator with a timestep of 2 fs.80

The inverse friction coefficient is 1 ps. Bonded and nonbonded
tabulated potentials are used for the CG simulations. Details of
runtimes are provided in the Results and discussions.

Backmapped-atomistic simulations

A code provided by a previous study81 is used to project the AA
coordinates onto the final CG configuration. Next, the
backmapped-atomistic configuration is relaxed using the following
steps:81

(1) 500 steps of energy minimization that excludes nonbonded
interactions between peptides, water molecules and ions.

(2) 500 steps of energy minimization without any exclusions.
(3) A series of 4 short position restrained NVT simulation

runs wherein the timestep is increased in the following order:
0.2, 0.5, 1 and 2 femtoseconds.

Finally, the backmapped-atomistic configuration is simulated in
the same way as the original AA simulations without any position
restraints. The root-mean-square deviation (RMSD) between the
backmapped-atomistic and underlying CG configuration is
measured at different intervals. It is noted that other sophisticated
approaches82 could also be employed for reintroducing atomistic
details in a CG configuration.

Results and discussion

A bottom-up coarse-graining approach is employed to preserve
the structural properties of V6K2 while capturing its aggregation
characteristics. AA simulation data is used to derive CG bonded
and nonbonded potentials. These potentials work in conjunction
to reproduce the overall structure of a single V6K2 peptide in
aqueous solution. The AA solvation structure of the peptide is
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reproduced in the CG model. In addition, internal DOFs like
the linear extension of the hydrophobic tail group and the RDF
of the backbone beads are in agreement with corresponding
results from the AA simulations. The CG model is tested on
systems that are not a part of the parameterization. Systems
with multiple V6K2 peptides in aqueous solution are used for
these tests. First, the structure of individual peptides in multi-
peptide systems is assessed. Next, the relative organization of
peptides in a micelle formed by 8 peptides is compared across
the AA and CG resolutions. The effective size of the micelle
formed in the AA and CG simulations are also compared.
Furthermore, the morphology of an aggregate formed by a
large number of peptides is validated against the supramolecular
structure of self-assembled peptides reported by an experimental
study.64,65 The outcomes of the tests demonstrate that the CG
model preserves the individual structure of the peptide while
capturing its assembly. The steps followed to develop the CG
model are summarized in Fig. 2.

Water–water potentials

A system with 2100 water molecules in a simulation box
(of dimensions 4 nm) is used to sample the water–water
nonbonded interactions. The simulation is run in the NPT
ensemble for 200 ns, and the trajectories from the final 50 ns
are sampled for building a reference RDF. The RDF is inverted

using BI to generate a CG potential. This potential serves as an
initial estimate for the CG simulation. The volume of the CG
simulation box is the same as the equilibrated AA simulation
box. The simulation is run in the NVT ensemble using the
leap-frog stochastic dynamics integrator80 with a timestep of
2 fs. The resulting RDF for CG water–water interactions does
not match with the reference RDF. Hence, IBI is applied to
correct the CG potential. This correction requires 300 IBI steps,
each running for 300 picoseconds. The resulting CG water–water
RDF in a system with a single V6K2 peptide is in perfect agreement
with the corresponding reference RDF (see Fig. S2, ESI†).

The water–water interactions do not incorporate any effects
from other molecules (i.e., peptides and ions). Hence, the CG
water–water nonbonded potential is transferable across systems
with varying peptide concentration. This is supported by the
agreement between AA and CG RDFs of water–water interactions
at different peptide concentrations (see Fig. S3, ESI†).

It is noted that a high concentration of peptides could
disrupt the packing of water molecules. In this study, the
formation of elongated micelles is reported with 128 CG
peptides (discussed later). The water–water RDF of the
corresponding AA simulation shows a slight disruption in the
packing of water (see Fig. S4, ESI†). This is based on the observation
that the water–water RDF does not decay to 1 at a distance of 1 nm (the
water–water RDF of pure water decays to 1 at a distance below 1 nm).

Fig. 2 The workflow for the systematic bottom-up coarse-graining of the V6K2 peptide sequence in aqueous solution.
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The CG model is able to reproduce the water–water RDF of the AA
128 peptide model. This demonstrates that the CG water–water
potential is transferable to systems where the packing of water is
slightly disrupted. However, for higher concentrations, one can
expect that these potentials may result in errors. One may need to
make further refinements to the force field to account for the
disruption of the packing of water molecules.

Initial estimates for bonded potentials

The BI method is used to generate potentials for all bonded
interactions. An AA system consisting of a single V2K peptide in
aqueous solution serves as the reference system. The system is
simulated for 500 ns. 100 000 coordinate frames of AA trajectory
are processed (from the final 100 ns of AA simulation) to produce
smooth CG bonded potentials. These potentials can be used as
an initial estimate for bonded potentials in any VnKm peptide
sequence. These potentials can approximately model the inter-
nal structure of these peptides, and can be refined using IBI.

Peptide–water potentials

To develop peptide–water nonbonded potentials, the peptide–
peptide, water–water nonbonded and initial estimates of the

bonded potentials need to be derived a priori. A single peptide in
water is sampled for 1 microsecond. The simulation box has
dimensions of 4 nm. Reference RDFs are constructed using
100 000 coordinate frames from the final 100 ns of AA
trajectory. A 100 step IBI procedure generates CG potentials that
reproduce the reference RDF. Each IBI step runs for 300 picose-
conds. The transferability of these potentials is assessed by apply-
ing the peptide–water potentials developed for the CG V2K peptide
on the CG V6K2 peptide. Fig. S5 (ESI†) shows that the solvation
structure of the CG V6K2 peptide is primarily in agreement with the
corresponding AA reference system. There are extremely minor
differences between the AA and CG RDFs at some of the peak
positions. Since the AA trajectory of the V6K2 peptide sequence was
available at the time of force field development, it was used to build
separate peptide–water potentials for the CG model of V6K2. This
improves the agreement between the AA and CG peptide–water
RDFs (see Fig. 3). The agreement between these RDFs demonstrates
the correct solvation of the peptide in the CG representation.

Potentials involving ions

An effective CG potential accounts for all underlying effects that
are explicitly modelled in the AA representation of the system.

Fig. 3 Peptide–water and ion–water radial distribution functions. (A–C) shows the solvation of the peptide beads. (D) shows the same for the chloride
beads. The black and red curves represent reference and CG distributions, respectively.
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Hence, interactions involving ions are modelled with effective
CG potentials that account for the electrostatic, van der Waals
and other interactions present in the AA model. Three types of
effective CG potentials are developed to account for the ions:
ion–ion, peptide–ion and ion–water potentials. The objective of
these potentials is to capture the electrostatic interactions
between charged moieties, namely Chloride ions and lysine
residues. The ion–ion and peptide–ion potentials are resolved
using FM along with the peptide–peptide nonbonded
potentials, thereby preserving the electrostatic forces between
the moieties in the CG model. The procedure for building FM
potentials is described later. Consequently, across all CG
simulations, ions are well-coordinated with the lysine residues
(Fig. S6, ESI†).

Finally, the ion–water potential is developed along with the
peptide–water potentials. Fig. 3D shows agreement between the
reference and CG RDFs. There is a minor discrepancy in
the height of the first peak of the CG RDF. Further refinement
of the potential is avoided as it impacts the accuracy of the
peptide–water potentials (as ion–water and peptide–water
potentials are resolved simultaneously using IBI). However,
the ion–water potential ensures that the overall solvation
structure of the CG ion beads is correct.

Coarse-grained bonded potentials

The initial estimates for the potentials for all the bonded
interactions are derived by BI. The potentials are further
refined via IBI. This procedure is aimed at building a

transferable CG model that could be applicable to longer
peptides in the VnKm series. The bonded potentials are
constructed from an AA reference of a short peptide (V2K),
and the transferability of the potentials to longer peptide
chains (for example: V6K2) is assessed. Since V6K2 is signifi-
cantly longer than V2K, the length of the peptide chain is
increased in a stepwise manner (V2K - V4K - V6K2), as shown
in Fig. S7 (ESI†). At every step, corrections are made to the set of
potentials, and the updated set of potentials are transferred to
the subsequent step. The solvent is explicitly represented in all
AA and CG systems. The corrections in the CG potentials for the
V4K and V6K2 sequences are almost identical. The CG model
development for V6K2 is discussed in detail as it is the peptide
sequence of interest.

Five types of bonds are defined for any peptide sequence in
the VnKm series: valine backbone (VBx–VB(x+1)), valine side chain
(VBx–VSx), valine–lysine connector (VBx–KBy), lysine long bond
(KBy–KSy1) and lysine short bond (KSy1–KSy2). Schematic
representations of these bonds are shown in Table S1 (ESI†).

The BI method is used to generate the potentials for the
shorter bonds in the peptide, namely the valine side chain and
lysine short bond (see the width of distributions in the lower
panel of Fig. 4). These CG potentials are generated by processing
the AA trajectory of a V2K peptide, and are transferable to the CG
representation of a V6K2 peptide (see agreement between the AA
and CG curves in Fig. 4D and E). On the other hand, BI is unable
to generate suitable potentials for the longer bonds (see the
width of distributions in the upper panel of Fig. 4). The resultant

Fig. 4 Comparison of the reference (black) and CG (red) distributions for (A–C) long and (D and E) short bonds in the V6K2 peptide sequence.
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CG distributions only sample one of the peaks in the underlying
reference distribution. Hence, these potentials provide con-
strained conformations as they ignore significant AA details.
Such errors arise whilst dealing with longer bonds, especially the
ones that have a bimodal distribution. It is surmised that these
types of bonds do not satisfy the assumptions of BI (see
Methods). The CG potentials associated with these bonds are
corrected by applying IBI. Reference distributions for these
bonds in V6K2 are required to initiate the IBI process. The AA
representation of a single V6K2 peptide in water is sampled for
1 microsecond. 100 000 coordinate frames from the final 100 ns
of AA trajectory are processed to generate reference bond
distributions. Three steps of IBI are applied to correct the
bonded potentials. Each IBI step runs for 10 ns. Fig. 4 shows
the resulting CG distributions to be in agreement with the
reference distributions.

The BI method is unable to derive the correct CG angle
potentials. Majority of the reference angles only reproduce one
peak. Seven steps of IBI are applied to correct all the angle
potentials (see Fig. S8, ESI†). Each IBI step runs for 20 ns.

The dihedral potentials developed using AA references for
V2K and V4K are partially transferable to the CG model of V6K2.
To improve the agreement between the AA and CG dihedral
distributions for V6K2, the AA reference trajectories for a
single V6K2 peptide is sampled. The BI method processes
500 000 coordinate frames from the final 500 ns of AA trajectory.
This procedure generates smooth dihedral potentials. Fig. S9
(ESI†) shows the CG dihedral potentials to sample the majority
of the underlying AA distributions. Hence, the local structural
details are preserved in the CG model. However, there are some
minor inconsistencies: the CG potential for the VBx–VB(x+1)–
VB(x+2)–VB(x+3) dihedral slightly over-samples the more likely
conformation at �140 degree. On the other hand, the potential
slightly under samples the less likely conformation at +140
degrees. The same behavior is observed for the VSx–VBx–VB(x+1)–
VS(x+1) dihedral. Further refinement of these potentials using IBI
impacts other interactions in the CG model. Since majority of the
AA details are preserved by the CG dihedrals, further refinement of
the associated potentials is not performed.

Peptide–peptide potentials

The main objective of these nonbonded potentials is to model
the interpeptide interactions that govern the assembly of
peptides, and the intramolecular nonbonded interactions that
contribute to the structure of individual peptides. Both types of
interactions are resolved by the same set of CG potentials.
The FM method with exclusions59 is employed to develop these
potentials. This modification excludes all forces associated
with bonded and intramolecular nonbonded interactions from
the net forces in the system during the FM process. In this way,
the FM process only matches the intermolecular forces rather
than the forces associated with the bonded and intramolecular
nonbonded interactions. A previous study59 shows that
the exclusion approach results in good agreement with the
corresponding reference system. In the context of this work, it
is surmised that intramolecular nonbonded interactions could

significantly vary as the peptide chain length increases. Hence,
the exclusion of intrapeptide forces could enhance the transfer-
ability of the peptide–peptide nonbonded potentials (namely,
to longer peptide molecules in the VnKm series). However, this
process leads to loss in peptide backbone conformation as the
CG intramolecular nonbonded potentials do not account for AA
intramolecular nonbonded interactions. This is corrected by
employing special bonded potentials which will be discussed in
a later section. An AA representation of 25 V2K peptides
solvated with 1600 water molecules in a simulation box (of
dimensions 4 nm) serves as the reference system. This system
has a high peptide concentration of 0.65 M so as to sample the
reference forces that govern peptide assembly. Twenty-five
monovalent chloride ions are added to maintain charge
neutrality of the system. This system is simulated for 500 ns
in the NPT ensemble. The final 100 ns of simulation trajectory
is used to extract force data. The FM algorithm compiles the
force data to generate CG potentials. The peptide–peptide
nonbonded potentials will be best suited for systems with the
same peptide concentration as the current system (i.e., 0.65 M).

To access the accuracy of the peptide–peptide nonbonded
potentials, the RDFs of the AA and CG representations of the 25
V2K peptide system are compared (see Fig. S10, ESI†). There is
overall qualitative agreement between the AA and CG RDFs.
The major peak positions of the RDFs are in agreement with
each other. However, due to coarse-graining, the CG RDFs are
unable to capture the ordering between the peptides. For
example, Fig. S10A (ESI†) shows that the CG RDF averages over
the atomistic details between 0.3 to 1 nm. This behavior could
be a consequence of coarse-graining wherein the underlying
effect of empty spaces in the AA fragments are smoothened out
in the CG model. Also, since FM is not designed to match the
structure of the underlying AA interactions, the CG model is
unable to reproduce the local structure of these nonbonded
interactions. A previous study on FM enhances the agreement
with the underlying structure using 3-body potentials.57,58

Currently, this approach is beyond the scope of this study
and will be pursued in future. Further, Fig. S10D (ESI†) shows
the distribution of ions around the peptides in the AA and CG
systems. The position of the major peak of the CG RDF is in
agreement with that of the AA RDF. However, the CG peak is
higher than the AA peak, thereby indicating that the ion
concentration near the peptide surface is higher in the CG
simulation. This could be a consequence of implicitly accounting
for electrostatics with effective CG potentials.

These nonbonded potentials contribute to the individual
structure and assembly of the peptides. These features are
examined in subsequent sections and serve as validation for
the peptide–peptide nonbonded potentials.

Peptide chain conformations

The equilibrium chain conformations of the peptide are
governed by the CG model. The end-to-end distance is mea-
sured to characterize the chain conformation of the V6K2

peptide (see Fig. S11A, ESI†). This is the distance between the
two capping residues at the ends of the peptide. In Fig. S11A (ESI†),
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the peak at 0.25 nm in the CG distribution corresponds to a
folded conformation of the CG peptide. This conformation
could be attributed to the unrestrained flexibility of the CG
peptide backbone and is due to the assumptions of the FM with
exclusions method. The method derives the peptide–peptide
nonbonded potentials by excluding bonded and intramolecular
nonbonded interactions. Whereas this approach yields
peptide–peptide nonbonded potentials which are transferable
across the VnKm series, the intramolecular nonbonded
potentials are not derived explicitly. To obtain further clarity
on the backbone flexibility, the degree of bending of the back-
bone in the AA and CG representation of the peptide is
compared. This comparison requires the measurement of the
1–3–5 angles (VBx–VB(x+2)–VB(x+4) and VBx–VB(x+2) � KBy) across
the peptide backbone.

Fig. S11B (ESI†) shows that the region between 20–40
degrees is sampled by the CG simulation but not by the AA
simulation. This could be a consequence of the unrestrained
flexibility of the peptide backbone. Hence, 1–3–5 special angles
are derived from BI to reduce the flexibility of the CG peptide
backbone. These potentials are further refined by five steps of
IBI. This procedure does not yield good quality potentials if the
regular backbone angles (e.g., VBx–VB(x+1)–VB(x+2)) are fixed.
This observation could be attributed to the correlations
between the conformations sampled by the 1–3–5 special
angles and the regular backbone angles. Hence, these angles
are simultaneously refined using IBI. Fig. 5A shows that these
refinements result in perfect agreement between the end-to-
end distances corresponding to the AA and CG representations
of the peptide. This result indicates that all CG potentials work in
conjunction to preserve the chain conformation of the peptide.
However, less likely conformations between 40–80 degrees are not
sampled by the CG model (see Fig. 5B). This minor inconsistency
is ignored as the refinements are responsible for the good
agreement in the chain conformation of the peptide.

Another measure of the chain conformation, namely the
radius of gyration, corresponding to the AA and CG representations
of the peptides are compared. This measurement quantifies the
effective dimension of the peptide. Fig. S12 (ESI†) shows the radius

of gyration of the CG representation of the peptide to be in
agreement with the corresponding value for the AA representation
of the peptide. This observation further demonstrates that the
CG model preserves the chain conformation of the peptide.
The solvation of the peptide remains unaffected by the refinement
and addition of bonded potentials.

In addition to the chain conformation of the peptide, key
internal structural properties such as the linear extension of the
long hydrophobic tail group and the RDF of the backbone
beads need to be validated. Fig. S13A (ESI†) compares the
extension of the hydrophobic tail group using the AA and CG
models. The less likely conformation yielding a distance of
0.8 nm is not sampled by the CG model. This could be
attributed to minor inconsistencies in the CG model (i.e., some
of the CG dihedral potentials ignore the less likely conformations
sampled in the AA simulation). However, given the chemical
complexity of the amphiphilic peptide sequence (long
hydrophobic and charged hydrophilic blocks), the internal
structure of the CG peptide is well aligned with the reference
data. The internal structure of the peptide backbone is further
investigated using the RDF between the backbone beads. This
measurement includes six valine and two lysine backbone
beads. Fig. S13B (ESI†) shows the CG RDF to be in good
agreement with the reference distribution. The RDF at
distances greater than 1 nm (see inset of Fig. S13B, ESI†) is
nearly in perfect agreement with the AA RDF. This result is
significant as these interactions are not explicitly modeled by
any specific CG potential. These interactions are cumulatively
governed by bonded and nonbonded potentials. Hence, this
result validates the use of a hybrid approach towards deriving
bonded and nonbonded potentials.

Time scales and computational efficiency

In CG simulations, the reduced DOFs and smooth interaction
potentials can accelerate the dynamics of the molecules.83,84

Earlier studies have compared the AA and CG timescales using
various methods.63,85 One approach is to compare the diffusion
coefficients of a single peptide in the two representations.
The self-diffusion coefficient is determined using AA and CG

Fig. 5 The (A) end-to-end distance and a (B) selected 1–3–5 angle of a V6K2 peptide. The black and red curves represent the AA and CG distributions,
respectively.
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trajectories. The ratio of the coefficients in the CG (DCG)
representation to the corresponding value in the AA representation
(DAA) provides an estimate of the acceleration in the dynamics.
Values of DCG and DAA are provided in Table S2 (ESI†). The speed-
up factor, i.e., DCG/DAA is B1.5 for a single V6K2. This means that
the effective CG simulation time is approximately 1.5 times that of
the AA simulation time. However, in the case of multiple peptide
systems, the speed-up factor could be a function of the peptide
concentration. Hence, for systems with multiple peptides, the study
will focus on the final equilibrated structures observed in the
respective models. However, the performance (as reported by the
MD software in nanoseconds per day) of the AA and CG models can
be compared for multiple peptide systems. An 8 peptide system
(discussed in the next section) is scaled across a selected number of
CPUs on a supercomputer (see Fig. S14, ESI†). The system is
solvated with approximately 2000 water molecules in a simulation
box of dimension 4 nm. The CG model has a performance of
430 ns per day with 8 CPU cores. Whereas the AA model has a
performance of 110 ns per day on the same computing resources.
Hence, coarse-graining yields a gain in computational efficiency
(ratio of the performance of the CG and AA models) by at least a
factor of 4. Further, the CG model can resolve the self-assembly of
128 peptides into an elongated micelle within a short time span.
This is not feasible with the corresponding AA model. It is noted
that the gain in computational efficiency is not sufficiently high.
This could be attributed to the bottom-up coarse-graining
approach. Here, several bonded potentials consist of multiple
energy wells of varying depths. These features are particularly
observed in the dihedral and 1–3–5 angle potentials. The complex
nature of these potentials captures the underlying chemistry of
the AA fragments. Additionally, these potentials are used in
tabulated form instead of fitting the energy values with an
analytical function. Due to these reasons, a low CG simulation
time step of 2 femtoseconds is employed, thereby resulting in a low
gain in computational efficiency. It is noted that another bottom-up
study reports a similar gain in computational efficiency.47 The
study accurately resolves the AA conformation of peptides in the CG
model with the same CG simulation time step. In future, following
a previous study on relatively longer peptides,63 the mapping
scheme of the VnKm peptides will be modified to investigate its
effect on the computational efficiency.

Multiple peptide systems

Prior to using the CG model for investigating self-assembly, the
model must be examined for its ability to preserve the structure
of a peptide in multi-peptide systems. Hence, the CG model is
tested on systems encompassing 2, 4, 8 and 16 solvated peptide
molecules. The corresponding AA systems are generated for
comparison. The concentration of these systems ranges from
0.05 M to 0.29 M. With the exception of the 16 peptide system,
all the other systems are simulated in a box of dimensions
4 nm. The 16 peptide system is placed in a simulation box of
dimension 4.5 nm. Both AA and CG simulations start from
an initial configuration where the peptides are randomly
distributed, solvated in a simulation box and the system
is equilibrated using the NPT ensemble for 5 ns. Next, the

production AA and CG simulations are simulated for 500 ns and
200 ns, respectively. On some occasions, the CG simulations are
run for longer durations to obtain better statistics. The final
100 000 coordinate frames are sampled for analysis.

Fig. 6 shows the end-to-end distances of peptides in the
multi-peptide systems. There is good agreement between the
AA and CG distributions for all except the 2 peptide system.
The CG distributions for 2, 4 and 8 peptide systems are nearly
the same, and is equivalent to that of the single peptide system.
This result could be attributed to the bonded potentials that are
fitted to the single peptide reference system. This could explain
the disagreement in the 2 peptide system (see Fig. 6B).
To improve the agreement between these distributions, the
bonded potentials for this system can be further refined using a
suitable reference (AA trajectory for the 2 peptide system).
In this study, further refinement of the bonded potentials is
not performed as there is overall agreement in the structure
associated with AA and CG representations of the peptides.
In addition, the CG model only captures the major peak of the
16 peptide system at B2.5 nm. The compact conformations
between 1 nm and 2 nm are not sampled by the CG model.
These conformations have a low probability of occurrence, and
hence further refinements to the force field are not performed.

Fig. S15 (ESI†) compares the radius of gyration of the AA and
CG representation of the peptides in multi-peptide systems.
There is qualitative agreement between the AA and CG simulations
for all except the 2 peptide system. Fig. S15 (ESI†) shows
that the AA distributions becomes narrower as the peptide
concentration is increased. This means that the conformation
of these peptides becomes relatively restrained as the peptide
concentration is increased. Except for the 2 peptide system, the
CG model is able to capture this behavior. This is significant as
the restraining effect was not a part of the parameterization.
On some occasions, the individual AA peptides sample
relatively compact conformations. This can be seen in the 8
and 16 peptide systems where the peaks of the AA distributions
are at relatively smaller values (B0.82 nm) in comparison to
the peaks of the CG distributions (B0.85 nm). Further, the
discrepancy in the 2 peptide system could be attributed to
frequent conformational changes (see Fig. S16A and B, ESI†). It
is observed that both AA and CG simulations of 2 V6K2 peptides
yield a peptide dimer (see inset in Fig. S16A and B, ESI†). The
AA peptides organize antiparallel to each other in the dimer
(Fig. S16A, ESI†). This organization between the peptides is
preserved for the entire duration of the AA simulation. Whereas
the CG peptides organize in both antiparallel and parallel
orientations (Fig. S16B, ESI†). This means that the CG peptides
frequently undergo conformational changes during the course
of the simulation. This could explain the wider distribution of
the radius of gyration values in the CG simulation (see
Fig. S15B, ESI†). To summarize, the end-to-end distance and
radius of gyration calculations show that the CG model is able
to preserve the overall structure of V6K2 peptides even in the
presence of interactions with neighboring peptides. The latter
is not explicitly accounted for in the parameterization process,
and hence demonstrates the robustness of the CG model.
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The assembly of the peptides is tested on the 8 peptide
system with a peptide concentration of 0.21 M, which is within
the same order of magnitude at which the peptide–peptide
nonbonded potentials are developed. Both the AA and CG
simulations yield a self-assembled micelle (see Fig. 7A and B).

The final CG configuration (Fig. 7B) is backmapped to AA
coordinates to test the stability of the CG configuration in the
AA representation. The backmapped-atomistic configuration is
simulated for 1 ns without any restraints. The RMSD between
the backmapped-atomistic and the initial CG (see Fig. 7B)
configuration after 1 ns is 0.5 nm. An additional 10 ns of
dynamics increases the RMSD to 0.8 nm (see the final
backmapped-atomistic configuration in Fig. 7C). This deviation
from the underlying CG configuration is very small given that
the backmapped-atomistic simulation explicitly considers a
higher number of DOFs.

To compare the relative organization of the peptides in a
micelle, the interactions between the hydrophobic residues are
investigated. Fig. S17 (ESI†) shows that the hydrophobic
residues of the peptides are aligned with each other. Inter-
molecular RDFs between first (V1) and last (V6) valines in the
V6K2 peptide sequence characterizes the relative orientation of
these peptides (see Fig. S16E and F, ESI†). A higher count of
either V1–V1 (black lines) or V6–V6 (red lines) interactions is
indicative of parallel orientation between the peptides.
Whereas a higher count of V1–V6 interactions (blue lines)
is indicative of antiparallel orientation between the peptides.
The antiparallel orientation is dominant in the AA 8 peptide

system (Fig. S16E, ESI†). Whereas Fig. S16F (ESI†) shows that
the antiparallel orientation is lost to a certain degree in the CG
8 peptide system.‡ In addition, the intermolecular RDFs show
that the CG representation of the peptides prefer to pack tightly
within the micelle. This observation is based on the starting
points of the AA and CG RDFs. The starting point of the AA
RDFs is B0.5 nm and the starting point of the CG RDFs is
B0.25 nm. This discrepancy can be explained by the underlying
effects modeled in the AA and CG simulations. The AA model
employs the AMBER force field that accounts for interactions
such as hydrogen bonding between peptides and water.
These interactions result in higher number of peptide–water
interactions. Fig. S18 (ESI†) reports higher solvation of AA
peptides in comparison to the CG peptides. These interactions
with water could hinder the AA peptides from packing tightly
within the micelle. On the other hand, the CG model does
not explicitly model interactions such as hydrogen bonding
between peptides and water, thereby resulting in a tighter
packing of the peptides.

The dimension of these micelles are compared by
measuring their radius of gyration (see Fig. S19, ESI†). The
AA simulation samples radius of gyration values between 1 and
3 nm. The CG simulation samples a slightly wider range which
encompasses values between 1–3 nm. In addition, the
probability of finding a compact conformation of the micelle

Fig. 6 The end-to-end distances of peptides in the (A) 1, (B) 2, (C) 4, (D) 8 and (E) 16 peptide systems. The black and red curves represent AA and CG
distributions, respectively.

‡ Simulation files for the CG 1 and 8 peptide systems are available in a GitHub
repository.87
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(between 1–1.5 nm) is relatively higher in the CG model.
These compact conformations are representative of the tight
packing of the CG representation of the peptides in the micelle
(see Fig. S16E and F, ESI†). As previously discussed, this could
explain the under-solvation of the valine backbone and side
chain residues in the CG representation (see Fig. S18, ESI†).
This indicates some loss in transferability of the CG potentials.
The degree of peptide solvation can be addressed by tuning the
peptide–water potentials with a suitable reference system
(i.e., an AA system with 8 peptides). It is noted that reducing
the strength of the interpeptide potentials does not correct the
packing of the valine residues in the hydrophobic core of the
micelle. However, further refinement of the peptide–water
CG potentials is not deemed necessary as there is overall
agreement on the size of the micelles. For the backmapped-
atomistic system, the distribution of radius of gyration values is
approximately at the center of the AA and CG distributions.
The solvation of the backmapped-atomistic peptides is in agreement
with corresponding results from the original AA simulation (see
Fig. S18, ESI†), demonstrating the preservation of a solvation
structure which is consistent with the AA description. These
results demonstrate the stability of the aggregates sampled by
the CG model.

It is noted that the individual conformations of the AA
peptides are relatively more compact than CG peptides (see
Fig. S15D, ESI†). However, the intermolecular RDFs (Fig. S16E
and F, ESI†) shows that the AA peptides are not as tightly
packed in the micelle as the CG peptides. Hence, even with
individual AA peptides sampling compact conformations, the
resultant micelle has a larger size.

To further understand the relative organization of the
peptides, the interactions between all the hydrophobic residues
are investigated. The probability of interactions between all
possible valine residues within a cut-off distance (i.e., 0.65 nm)
are presented as a contact map34 (see Fig. S17, ESI†). The
backbone section of each valine residue is considered for this
measurement. The CG-mapped coordinates of the AA model are
used to compute the contact map for the AA systems. Hence,
the interactions between the valine residues can be compared
across the AA and CG resolutions. In the contact maps
(see Fig. S17, ESI†), V1 represents the valine residue farthest
away from the lysine residues, and V6 represents the valine
residue closest to the lysine residues (see Fig. 1). The AA contact
map shows a high probability of interactions between V2, V3

and V4 residues (see lower middle section of Fig. S17A, ESI†).
This suggests that these valine residues from neighboring
peptides are aligned which is a characteristic of a b-sheet-like
organization. In addition, the high probability of interactions
along an edge of the map (V4–V1, V5–V1 and V6–V1) indicate a
preference towards antiparallel orientation between the peptide
chains. The antiparallel orientation minimizes the repulsions
between the lysine residues by increasing the distances
between lysine residues. Furthermore, V2–V2 and V3–V3
interactions are preferred over V5–V5 and V6–V6. This indicates
that the valine residues that are closer to the N terminus (e.g.:
V2, V3) have a higher affinity towards each other as compared
to the residues closer to the C terminus (e.g.: V5, V6).
As reported in a previous study,34 this result could be due to
a cooperative hydrophobic effect (namely, V2, V3 have more
hydrophobic neighbors as compared to V5, V6 that have Lysine
neighbors on one side). It is surmised that the cooperative
hydrophobic effect plays a role in stabilizing the peptide
aggregate. Finally, it is noted that the AA contact map is highly
asymmetric (for example, interactions like V1–V6 is not equivalent
to V6–V1). This means that peptides are not perfectly aligned with
each other in the micelle. It is surmised that the high magnitude
of electrostatic repulsions between the lysine residues could
prevent perfect alignment between the peptides.

Similarly, the CG contact map (Fig. S17B, ESI†) demonstrates
the probability of interactions between the valine residues in the
CG model. The plot shows that relative organization of the
peptides is consistent with corresponding results using the AA
description. A high probability of interactions between V2, V3 and
V4 residues indicates b-sheet-like organization. In addition, the
cooperative hydrophobic effect is reproduced in the CG model;
namely, the V2–V2 and V3–V3 interactions are greater than the
V5–V5 and V6–V6 interactions. However, due to the removal of
selected AA features, a few discrepancies are observed; namely,
the CG model shows a diminished preference for antiparallel
orientation. Since lysine–lysine repulsions are not explicitly
modeled by electrostatic potentials, the CG V6K2 peptides
show a reduced tendency towards organizing in the antiparallel
orientation. Furthermore, the distribution of hues is different in
the AA and CG contact maps. The distribution of the hues in a
contact map reflects the relative packing of hydrophobic residues
in the micelle. The CG contact map reports a uniform distribution
of hues: the packing of the hydrophobic residues gradually
decreases from the center (V3 or V4) to the sides (V1 or V6) of

Fig. 7 A micelle consisting of eight peptides in (A) AA and (B) CG resolutions. (C) Equilibrated backmapped-atomistic conformation of the micelle.
Color scheme – green: valine and purple: lysine.
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the map. On the other hand, the AA contact map (Fig. S17A, ESI†)
reports a relatively random distribution of hues. Thus, the hydro-
phobic residues in the AA simulation do not pack in a uniform
manner as reported by the CG simulation. The discrepancy could
be a consequence of coarse-graining wherein the empty spaces
associated with the underlying AA fragments are smoothened out
in the CG model. It is noted that the CG contact map is relatively
more symmetric in comparison to the AA contact map. It is
surmised that the peptides are more aligned with each other as
the effect of electrostatic repulsions between lysine residues is
reduced in the CG model. This could be a consequence of the
using effective CG potentials.

Finally, Fig. S17C (ESI†) demonstrates the probability of
interactions between the valine residues in the backmapped-
atomistic model. It shows the reproduction of two structural
properties; namely, the relative packing of hydrophobic
residues, and preference towards the antiparallel orientation.
Also, the contact map is asymmetric like the AA contact map
(Fig. S17A, ESI†). All these features are reproduced as the CG
model correctly samples the overall structure of the peptides.

In summary, the morphology of the final aggregate and
relative organization of the peptides are in agreement with
corresponding results from the AA simulations. Hence, all CG
bonded and nonbonded potentials accurately model peptide
aggregation. In addition, the CG model has successfully
captured the relative organization of the peptides within an
aggregate in a short span of time relative to the AA model.

Fig. S16 (ESI†) shows the intermolecular RDFs for 2, 4, 8
and 16 peptide systems. In the AA simulations, it is observed
that peptides prefer to organize in a parallel orientation
with increasing peptide concentration. For smaller peptide con-
centrations (namely the 2 peptide system), the AA simulation
only samples the antiparallel orientation (Fig. S16A, ESI†). The
corresponding CG simulation (Fig. S16B, ESI†) samples both
antiparallel and parallel orientations (the antiparallel orientation
is relatively preferred). On the other hand, at higher peptide
concentrations (namely the 16 peptide system), the AA simulation
primarily samples the parallel orientation (Fig. S16G, ESI†).
The corresponding CG simulation primarily samples the same
orientation (Fig. S16H, ESI†). This shows qualitative agreement

between the intermolecular packing of peptides in the AA and CG
simulations.

The ability of the CG model to capture the self-assembly of
V6K2 peptides into large nanostructures reported by experiments
is assessed. Earlier experiments have reported V6K2 peptides to
assemble into nanorods for concentrations ranging from B0.05
to 0.5 mM.64,65 In this computational study, a much higher
peptide concentration of 0.21 M is chosen. This enables faster
self-assembly of the peptides at a lower computational cost.53,80

The system of interest encompasses 128 V6K2 peptides in the CG
representation in a simulation box of dimension 10 nm. The
peptides are solvated with approximately 26 000 water molecules,
and 256 chloride ions are added to maintain charge neutrality of
the system. It is observed that the majority of the peptides
assemble into an elongated micelle (see Fig. 8) which is a
precursor to nanorods and thereby consistent with experimental
observations.64,65 Another study using the Martini model has
reported the formation of a large nanorod using longer
simulations.86 To permit large scale assembly within a bottom-
up CG framework, appropriate references (an AA model of 128
V6K2 peptides) need to be integrated into the parametrization
process. This approach is out of scope of the present study and
will be pursued in a future work.

Conclusions

In this study, a hybrid CG model is used to resolve the structure
of a V6K2 peptide and capture its assembly in aqueous solution.
The underlying AA solvation structure of the peptide is perfectly
reproduced in the CG model. The CG model is developed with
AA trajectories and forces as references, and hence accounts for
complex DOFs that govern the structure and solvation of
peptides. In addition, due to the reduced representation of
the system, longer spatiotemporal scales can be easily accessed.
The CG model provides a gain in computational efficiency by a
factor of 4. The structure of individual V6K2 peptides are tested
in multiple peptide systems. The potentials preserve the
structure of the individual peptides in the presence of interac-
tions with neighboring peptides. The aggregation of a few

Fig. 8 Self-assembly of 128 CG V6K2 peptides. (A) Self-assembled nanostructures after 107 timesteps of the CG MD simulation. The largest aggregate,
i.e., an elongated micelle is represented by regular beads, and the smaller aggregates are represented by translucent beads. (B) Side and (C) end views of
the elongated micelle. The smaller aggregates are removed from (B) and (C) for clarity. Also, water and ion beads are removed from (A–C) for clarity.
Color scheme – green: valine and purple: lysine.
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peptides is successfully validated against corresponding results
from AA simulations. In addition, the self-assembled nano-
structure formed by a large number of these CG peptides is in
agreement with prior experimental observations.64,65

This study outlines a method to resolve the structure of
peptides within aggregates. This is critical towards understanding
structure–function relationships of tunable peptide sequences.
Hence, this method can be extended to other molecules that
assemble into nanostructures. Future improvements to the CG
model can be made with additional AA simulations to enhance
the agreement with multiple peptide systems. In addition, the use
of complex potentials to better approximate the many-body PMF
could improve the transferability of the potentials across various
systems.55–58 This could resolve the structure of peptides within
much larger nanostructures. Furthermore, the impact of local
interactions on the properties of the nanostructure spanning large
spatiotemporal scales, such as curvature and bending rigidity, can
be investigated.
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