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A B S T R A C T

Over more than 100 years, ecological research has been striving to derive internal and external conditions
compatible with the coexistence of a given group of interacting species. To address this challenge, numerous
studies have focused on developing ecological models and deriving the necessary conditions for species
coexistence under equilibrium dynamics, namely feasibility. However, due to mathematical limitations, it has
been impossible to derive analytic expressions for equilibria locations if the isocline equations have five or more
roots, which can be easily reached even in 2-species models. Here, we propose a general formalism to obtain
the set of analytical conditions of feasibility for any polynomial population dynamics model of any dimension
without the need to solve for the equilibrium locations. We illustrate the application of our methodology
by showing how it is possible to derive mathematical relationships between model parameters in modified
Lotka–Volterra models with functional responses and higher-order interactions (model systems with at least
five equilibrium points)—a task that is impossible to do with simulations. This work unlocks the opportunity
to increase our understanding of how parameters and their interconnections affect our conclusions of species
coexistence as a function of model choice.
1. Introduction

Over more than 100 years, ecological research has been striving
to derive the biotic and abiotic conditions compatible with the co-
existence of a given group of interacting species (also known as an
ecological system or community) (Tansley, 1920; Lotka, 1920; Volterra,
1926; Gause, 1932; Case, 2000). These conditions can provide the
keys to understand the mechanisms responsible for the maintenance
of biodiversity and the tolerance of ecological systems to external per-
turbations (Levins, 1968; Sugihara, 1994; Loreau and De Mazancourt,
2013; Kerr et al., 2002). Because of the complexity of this question,
many efforts have been centered on developing phenomenological and
mechanistic models to represent the dynamics of ecological systems
and predict their behavior (MacArthur, 1970; Turchin, 2003; Svirezhev
and Logofet, 1983; Vandermeer and Goldberg, 2013). However, even if
we had knowledge about the exact equations governing the dynamics
of interacting species, extracting and solving the set of conditions
compatible with the coexistence of such species would remain a big
mathematical challenge (Grilli et al., 2017; AlAdwani and Saavedra,
2020; Song et al., 2019). Indeed, most of the analytical work looking at
these coexistence conditions has focused on relatively simple 2-species
systems or strictly particular cases of higher-dimensional systems (Cox
et al., 2010; Strogatz, 2015; Ong and Vandermeer, 2015; Barabás et al.,
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2018; Fort, 2018; Yacine and Loeuille, 2022; Novoa-Muñoz et al.,
2021). In fact, even at the 2-species level, currently there is no general
methodology that can provide us with a full analytical understanding
about coexistence conditions for any arbitrary model (AlAdwani and
Saavedra, 2020). Therefore, the majority of work has relied on numeri-
cal simulations (Valdovinos, 2019; Letten and Stouffer, 2019; Aliyu and
Mohd, 2022), which provide a partial view of the dynamics conditioned
by the choice of model and parameter values (AlAdwani and Saavedra,
2019).

Recent work has started to address the challenge above by focusing
on the necessary conditions for species coexistence under equilibrium
dynamics: feasibility (Hofbauer and Sigmund, 1998; Song et al., 2018).
Mathematically, the feasibility of a generic 𝑛-species dynamical system
𝑑𝑁𝑖∕𝑑𝑡 = 𝑁𝑖𝑓𝑖(N)∕𝑞𝑖(N), where the 𝑓 ’s and 𝑞’s are multivariate polyno-
mials in species abundances N = (𝑁1, 𝑁2,… , 𝑁𝑛)𝑇 , corresponds to the
existence of at least one equilibrium point (i.e., 𝑑𝑁𝑖∕𝑑𝑡 = 0 ∀𝑖) whose
components are all real and positive (i.e., N∗ = (𝑁∗

1 , 𝑁
∗
2 ,… , 𝑁∗

𝑛 )
𝑇 >

0). Feasibility conditions are typically represented by inequalities as a
function of model parameters (Vandermeer, 1975; Barabás et al., 2018).
Traditionally, feasibility conditions have been attained by finding the
isocline equations 𝑓𝑖(N∗) = 0 ∀𝑖 and then solving for N∗ before
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finding the conditions that satisfy N∗ > 0 (Strogatz, 2015; Case, 2000;
Vandermeer and Goldberg, 2013).

For example, let us focus on the linear Lotka–Volterra (LV) model
of the form 𝑑𝑁𝑖∕𝑑𝑡 = 𝑁𝑖(𝑟𝑖 +

∑𝑛
𝑗=1 𝑎𝑖𝑗𝑁𝑗 ), where 𝑎’s and 𝑟’s represent

the interaction coefficients and the intrinsic growth rates, respectively.
In the linear LV model, the isocline equations (for any dimension) can
be written as r + 𝐀N∗ = 0, whose unique root is given by N∗ =
−𝐀−1r. Therefore, feasibility conditions in this case are simply given
by the inequality −𝐀−1r > 0. However, adding nonlinear functional
responses or higher-order terms can increase exponentially the number
of roots of the system (AlAdwani and Saavedra, 2019). Importantly, it
can be shown from elimination theory (via Grobner basis) and Abel’s
impossibility theorem that it is impossible to solve analytically for N∗

when the number of roots of the system is five or more (Abel, 1824,
1826; Adams et al., 1994). Similarly, using numerical approaches, it
as been demonstrated that the probability of feasibility (the proba-
ility of finding at least one equilibrium point whose components are
ll positive by randomly choosing parameter values) is an increasing
unction of the model’s complexity (i.e., number of complex roots
f the isocline equations with generic coefficients) regardless of the
nvoked mechanism, whether they are ecologically motivated or have
o meaning whatsoever (AlAdwani and Saavedra, 2020). This implies
hat traditional approaches can be unsuitable for finding the necessary
onditions for coexistence in generic systems.
Here, we propose a general formalism to obtain for any polynomial

opulation dynamics model and any dimension the set of necessary
onditions leading to species coexistence without the need to solve for
he equilibrium locations. We show how to reduce these conditions
nto a small set of expressions. We illustrate this methodology with an
xample of a univariate system. Additionally, we show how to identify
he feasibility conditions that are compatible with a given range of
arameter values. That is, we show how to find analytic relationships
etween model parameters while maintaining feasibility. We illustrate
his methodology with examples of multispecies systems using modified
V models with functional responses and higher-order interactions,
here isocline analysis cannot be performed. Finally, we discuss advan-
ages and limitations of our formalism, and future avenues of research
erived from our study.

. Obtaining feasibility conditions

Our methodology can be applied to any dynamical system of the
orm:
𝑑𝑁1
𝑑𝑡

=
𝑁1𝑓1(𝑁1,… , 𝑁𝑛)
𝑞1(𝑁1,… , 𝑁𝑛)

⋮

𝑑𝑁𝑛
𝑑𝑡

=
𝑁𝑛𝑓𝑛(𝑁1,… , 𝑁𝑛)
𝑞𝑛(𝑁1,… , 𝑁𝑛)

,

(1)

where the 𝑓 ’s and 𝑞’s are multivariate polynomials in species abun-
dances. Let 𝜳 be the vector of model parameters that include, for
xample, species growth rates and species interaction coefficients. Fea-
ibility conditions become consequently conditions on model param-
ters 𝜳 that guarantee at least one feasible equilibrium point in the
system (Svirezhev and Logofet, 1983; AlAdwani and Saavedra, 2020).
That is, we require that the number of roots of the system defined
by polynomial equations 𝑓𝑖(𝑁1,… , 𝑁𝑛) = 0 for 𝑖 = 1,… , 𝑛 whose
omponents are all real and positive is at least one. To find such
easibility conditions, we develop a 3-step methodology: (1) Find sym-
etric sums of the roots of the polynomial. (2) Assemble a function
hat counts the number of feasible roots. (3) Use the function of the
umber of feasible roots to deduce feasibility conditions, reduce them
nd eliminate redundant conditions. Below, we give details of these
2

hree steps. We also provide MATLAB code for its implementation.
2.1. Finding symmetric sums of the roots

The first step involves in finding the symmetric sums of the roots
that are needed to build the analytic formula of the number of feasible
roots. Such sums can be obtained via different methodologies (Serret,
1849; Macaulay, 1902; Pedersen, 1991). One approach is outlined
below:

1. Fix 𝑖, assume that variable 𝑁𝑖 is constant, and find the total
degree of each polynomial equation 𝑓𝑗 (𝑁1,… , 𝑁𝑛) = 0 for 𝑗 =
1,… , 𝑛. The total degree of 𝑓𝑗 is the maximum sum of the
variables’ exponents in each term of 𝑓𝑗 while treating 𝑁𝑖 as
constant. Denote the total degree of polynomial 𝑓𝑗 by 𝑑𝑖,𝑗 for
𝑗 = 1,… , 𝑛. Next, homogenize each term in each of the 𝑓 ’s with
an artificial variable 𝑊 so that the total degree of each term
in 𝑓𝑗 is 𝑑𝑖,𝑗 . Denote to the homogenized equation by 𝐹𝑁𝑖 ,𝑗 . For
example, if 𝑓2(𝑁1, 𝑁2, 𝑁3) = 1+𝑁3

1 +𝑁1𝑁2𝑁3 and 𝑁1 is assumed
to be constant, then 𝑑1,2 = 2 and the homogenized equation is
𝐹𝑁1 ,2 = 𝑊 2 +𝑁3

1𝑊
2 +𝑁1𝑁2𝑁3.

2. Let 𝐿𝑖 = 1 +
∑𝑛

𝑗=1(𝑑𝑖,𝑗 − 1) and form the set 𝐻𝑖 as a union of 𝑛
monomial sets, where 𝐻𝑖 = (𝑊 𝑑𝑖,1 ⋅ 𝐻𝐿𝑖−𝑑𝑖,1

𝑖,1 ) ∪ (∪1≤𝑗≤𝑖−1𝑁
𝑑𝑖,𝑗+1
𝑗 ⋅

𝐻
𝐿𝑖−𝑑𝑖,𝑗+1
𝑖,𝑗+1 ) ∪ (∪𝑖+1≤𝑗≤𝑛𝑁

𝑑𝑖,𝑗
𝑗 ⋅ 𝐻

𝐿𝑖−𝑑𝑖,𝑗
𝑖,𝑗 ). Define the outer-term of

𝐻𝐿𝑖−𝑑𝑖,𝑘
𝑖,𝑘 to be the one that is dotted or multiplied by it. For

example 𝑊 𝑑𝑖,1 is the outer-term of 𝐻𝐿𝑖−𝑑𝑖,1
𝑖,1 . Here, 𝐻𝐿𝑖−𝑑𝑖,𝑘

𝑖,𝑘 is the
set of all monomials in𝑊 ,𝑁1,… , 𝑁𝑛 not including𝑁𝑖 that are of
total degree 𝐿𝑖−𝑑𝑖,𝑘 and does not contain the outer-terms of any
of 𝐻𝐿𝑖−𝑑𝑖,1

𝑖,1 ,… ,𝐻𝐿𝑖−𝑑𝑖,𝑘−1
𝑖,𝑘−1 . For example, if 𝑑2,1 = 2, 𝑑2,2 = 2 and

𝑑2,3 = 1, then using variables 𝑊 ,𝑁1, 𝑁3 where 𝑁2 is constant,
we have 𝐿2 = 3 and 𝐻2 = 𝑊 2 ⋅ {𝑊 ,𝑁1, 𝑁3}∪𝑁2

1 ⋅ {𝑊 ,𝑁1, 𝑁3}∪
𝑁3 ⋅{𝑁2

3 ,𝑊 𝑁1,𝑊 𝑁1, 𝑁1𝑁3}. Note that the second curly bracket
does not contain 𝑊 2 (i.e., outer term of the first curly bracket)
and the third curly bracket does not contain 𝑊 2 nor 𝑁2

1 (i.e., the
outer-terms of the first and second curly brackets).

3. Form the set 𝐻𝑖,row = ∪1≤𝑗≤𝑛𝑓𝑗 ⋅ 𝐻
𝐿𝑖−𝑑𝑖,𝑗
𝑖,𝑗 evaluated at 𝑊 = 1.

Note that 𝐻𝑖,row is simply 𝐻𝑖 with outer-term of every 𝐻
𝐿𝑖−𝑑𝑖,𝑗
𝑖,𝑗

being replaced by 𝑓𝑗 . Next, form the monomial set 𝐻𝑖,col which
is simply 𝐻𝑖 evaluated at 𝑊 = 1. After that, form the Macaulay
matrix 𝑀𝑁𝑖

, which is a square matrix whose size is
(𝑛−1+𝐿𝑖

𝑛−1

)

and
whose (𝑖, 𝑗) entry is the coefficient of𝐻𝑖,col(𝑗) in the expression of
𝐻𝑖,row(𝑖) assuming that 𝑁𝑖 is a constant. Then, find the resultant
Res𝑁1 ,…,𝑁𝑖−1 ,𝑁𝑖+1 ,…,𝑁𝑛

(𝑓1,… , 𝑓𝑛) which equals to the determinant
of 𝑀𝑁𝑖

. This resultant is a univariate polynomial in 𝑁𝑖 that
contains no other 𝑁 ’s.

4. Next, form the matrix 𝑀 ′
𝑁𝑖
, whose first column is 𝐻𝑖,row and

its remaining columns are the remaining columns of the matrix
𝑀𝑁𝑖

. Then, compute its determinant (i.e., det(𝑀 ′
𝑁𝑖
)), which has

the form 𝑇𝑖1𝑓1 + 𝑇𝑖2𝑓2 + ⋯ + 𝑇𝑖𝑛𝑓𝑛 to obtain the 𝑖th row of the
eliminant matrix. Repeat all previous steps for 𝑖 = 1,… , 𝑛 to
obtain all entries of the eliminant matrix as well as all resultants.
Then, obtain the Jacobian of the original polynomial system
whose (𝑖, 𝑗) entry is 𝜕𝑓𝑖∕𝜕𝑁𝑗 . Next, find the determinant of both
the eliminant matrix 𝑇 and the determinant of the Jacobian 𝐽 .

5. If the determinant of𝑀𝑁𝑖
is 0, use the generalized characteristic

polynomial formalism (Canny, 1988) to obtain the resultant. In
this case, the resultant is the non-vanishing coefficient of the
smallest power of 𝜖 in det(𝑀𝑁𝑖

−𝜖𝐼), where 𝐼 is the identity ma-
trix of same size as matrix 𝑀𝑁𝑖

. To find 𝑇𝑖𝑗 for 𝑗 = 1,… , 𝑛, form
the matrix 𝑀 ′′

𝑁𝑖
, whose first column is 𝐻𝑖,row and its remaining

columns are the remaining columns of the matrix𝑀𝑁𝑖
−𝜖𝐼 . Then,

compute its determinant and find the first non-zero coefficient of
powers of 𝜖 in ascending order, which has the form 𝑇𝑖1𝑓1+𝑇𝑖2𝑓2+

⋯ + 𝑇𝑖𝑛𝑓𝑛 (see Appendix 5 for an example of this scenario).
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6. Expand the generating function 𝐺(𝑓1(𝑁1,… , 𝑁𝑛),… , 𝑓𝑛
(𝑁1,… , 𝑁𝑛)) that is shown below, around 𝑁1 = ∞,… , 𝑁𝑛 = ∞
to obtain the 𝛴’s (symmetric sums of the roots).

𝐺(𝑓1,… , 𝑓𝑛) =
𝑇 (𝑓1,… , 𝑓𝑛)𝐽 (𝑓1,… , 𝑓𝑛)

∏𝑛
𝑖=1 Res𝑁1 ,…,𝑁𝑖−1 ,𝑁𝑖+1 ,…,𝑁𝑛

(𝑓1,… , 𝑓𝑛)

=
∞
∑

𝑚1=0

∞
∑

𝑚2=0
…

∞
∑

𝑚𝑛=0

𝛴𝑚1 ,𝑚2 ,…,𝑚𝑛

𝑁𝑚1+1
1 𝑁𝑚2+1

2 …𝑁𝑚𝑛+1
𝑛

The expansion of 𝐺 is done via performing series expansion
of the reciprocal of each resultant separately then multiplying
them along with 𝑇 and 𝐽 . For example, the reciprocal of each
resultant can be expanded via MATLAB’s ‘‘taylor’’ command
after performing change of variables 𝑁𝑖 = 1∕𝑥𝑖 and expanding
around 𝑥𝑖 = 0. Alternatively, if the resultant is expressed as
Res𝑁1 ,…,𝑁𝑖−1 ,𝑁𝑖+1 ,…,𝑁𝑛

(𝑓1,… , 𝑓𝑛) =
∑𝐾𝑖

𝑙𝑖=0
ℎ(𝑖,𝑙𝑖)𝑁

𝑙𝑖
𝑖 , then

1
Res𝑁1 ,…,𝑁𝑖−1 ,𝑁𝑖+1 ,…,𝑁𝑛

= 1
𝑁𝐾𝑖−1

𝑖

∞
∑

𝑚𝑖=1

𝑝(𝑖,𝑚𝑖)

𝑁𝑚𝑖
𝑖

,

𝑝(𝑖,𝑚𝑖) =
(−1)𝑚𝑖+1

ℎ𝑚𝑖
(𝑖,𝐾𝑖)

det(𝐴𝑖[1 ∶ 𝑚𝑖, 1 ∶ 𝑚𝑖]),

where 𝐴𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 …
ℎ(𝑖,𝐾𝑖) ℎ(𝑖,𝐾𝑖−1) ℎ(𝑖,𝐾𝑖−2) ℎ(𝑖,𝐾𝑖−3) …
0 ℎ(𝑖,𝐾𝑖) ℎ(𝑖,𝐾𝑖−1) ℎ(𝑖,𝐾𝑖−2) …
0 0 ℎ(𝑖,𝐾𝑖) ℎ(𝑖,𝐾𝑖−1) …
⋮ ⋮ ⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑖 = 1,… , 𝑛.

Finally, denote the roots of 𝑓𝑖(𝑁1,… , 𝑁𝑛) for 𝑖 = 1,… , 𝑛 by
𝜼𝒌 = [𝜂𝒌,1, 𝜂𝒌,2,… , 𝜂𝒌,𝑛]𝑇 for 𝑘 = 1,… , 𝛩. The symmetric sum
𝛴𝑚1 ,𝑚2 ,…,𝑚𝑛

is given by ∑𝛩
𝑘=1 𝜂

𝑚1
𝒌,1𝜂

𝑚2
𝒌,2 … 𝜂𝑚𝑛

𝒌,𝑛. In particular, note
that 𝛩 = 𝛴0,0,…,0 is the number of complex roots of 𝑓𝑖(𝑁1,… , 𝑁𝑛)
for 𝑖 = 1,… , 𝑛 with general coefficients. It is important to record
that number.

It is worth mentioning that the previous steps in univariate systems
reduce significantly, where the roots of 𝑓 (𝑁) are considered. The
jacobian determinant simply becomes 𝐽 = 𝑓 ′(𝑁) and the resultant
is 𝑓 (𝑁) itself given that it is the only univariate polynomial in the
system. In turn, the eliminant determinant is 𝑇 = 1 as the resultant,
where written in the form 𝑇11𝑓 (𝑁) implies 𝑇11 = 1. Thus, the gener-
ating function reduces to 𝐺 = 𝑓 ′(𝑁)∕𝑓 (𝑁) (Appendix 1 illustrates a
simplified and detailed methodology for univariate systems). Similarly,
in 2-dimensional systems, the two resultants simplify significantly and
become determinants of Sylvester matrices involving the coefficients of
two polynomial inputs. Then, to find the corresponding eliminant ma-
trix, it is possible to modify a single column in each of the two Sylvester
matrices without changing their determinant to write the resultants in
the form 𝑇𝑖1𝑓1 + 𝑇𝑖2𝑓2 (Appendix 2 illustrates a simplified and detailed
methodology for 2-species systems). For higher dimensional systems,
we need to find the symmetric sums as described above or any other
suitable implementation.

2.2. Assembling the function that counts the number of feasible roots

Once we find the symmetric sums of the roots, we construct an
analytical formula of the number of positive roots of the polynomial
system of equations—we call that function 𝐹 (𝜳 ). To derive 𝐹 (𝜳 ), we
apply previous work (Pedersen et al., 1993), which deals with counting
real roots in arbitrary domains, to count the number of real roots in an
orthotope that lies in the first quadrant (i.e., feasible region), which
rests on all the positive axes. Then, we expand the orthotope allowing
all non-zero components of all its vertices to go to infinity to cover the
entire feasible domain. This can be achieved as follows:
3

1. Choose a map 𝑚(𝑁1, 𝑁2,… , 𝑁𝑛) of length 𝛩 and with indepen-
dent monomial entries. Typically, the first entry of 𝑚 is the
constant 1. Note that such monomials are chosen so that the
coefficients of the characteristic equation shown in the following
step do not vanish. Next, let 𝑄(𝑁1, 𝑁2,… , 𝑁𝑛) = 𝑁1𝑁2 … , 𝑁𝑛
and compute the symmetric matrix 𝑆(𝑠1, 𝑠2,… , 𝑠𝑛) = 𝑊𝛥𝑊 𝑡

where 𝑊𝑖𝑗 = 𝑚𝑖(𝜂𝒋,1, 𝜂𝒋,2,… , 𝜂𝒋,𝑛) and 𝛥𝑖𝑖 = 𝑄(𝜂𝒊,1 − 𝑠1, 𝜂𝒊,2 −
𝑠2,… , 𝜂𝒊,𝑛 − 𝑠𝑛) is a diagonal matrix.

2. The next task is to evaluate the determinant of 𝑆(𝑠1, 𝑠2,… , 𝑠𝑛)
and write it in the form det(𝑆(𝑠1, 𝑠2,… , 𝑠𝑛) − 𝜆𝐼) = (−1)𝛩𝜆𝛩 +
𝑣𝛩−1(𝑠1, 𝑠2,… , 𝑠𝑛)𝜆𝛩−1 +⋯ + 𝑣0(𝑠1, 𝑠2,… , 𝑠𝑛). Then, consider the
sequence v = [𝑣𝛩(𝑠1, 𝑠2,… , 𝑠𝑛) = (−1)𝛩, 𝑣𝛩−1(𝑠1, 𝑠2,… , 𝑠𝑛),… ,
𝑣0(𝑠1, 𝑠2,… , 𝑠𝑛)] and let 𝑉 (𝑠1, 𝑠2,… , 𝑠𝑛) be the number of con-
secutive sign changes in v. The formula of 𝑉 (𝑠1, 𝑠2,… , 𝑠𝑛) is

𝑉 (𝑠1, 𝑠2,… , 𝑠𝑛) =
𝛩−1
∑

𝑖=0

1 − sign(𝑣𝑖(𝑠1, 𝑠2,… , 𝑠𝑛)𝑣𝑖+1(𝑠1, 𝑠2,… , 𝑠𝑛))
2

.

(2)

3. Consider the feasibility domain and think about it as a box
whose 2𝑛 vertices compose of zeros and infinities. Note that
𝑣𝑖(𝑚1, 𝑚2,… , 𝑚𝑛), where 𝑚1, 𝑚2,… , 𝑚𝑛 ∈ {0,∞} is the coefficient
of the highest power of 𝑠𝑘11 𝑠𝑘22 … 𝑠𝑘𝑛𝑛 in 𝑣𝑖(𝑠1, 𝑠2,… , 𝑠𝑛) where
𝑘𝑖 = 0 if 𝑚𝑖 = 0 and 𝑘𝑖 = 1 if 𝑚𝑖 = ∞. Finally, let #(𝑠1, 𝑠2,… , 𝑠𝑛)
be the number of infinities that appear in the string 𝑠1, 𝑠2,… , 𝑠𝑛.
The expression of 𝐹 (𝜳 ) is given by

𝐹 (𝜳 ) = 1
2𝑛−1

∑

𝑠1 ,𝑠2 ,…,𝑠𝑛∈{0,∞}
(−1)#(𝑠1 ,𝑠2 ,…,𝑠𝑛)𝑉 (𝑠1, 𝑠2,… , 𝑠𝑛) (3)

2.3. Deducing feasibility conditions and reducing them

The third and last step of our methodology involves deducing
feasibility conditions and reducing them. This has the purpose of
unveiling the key inequalities that need to be satisfied in order to reach
feasibility. This can be achieved as follows:

1. Call 𝑣𝑖(𝑚1, 𝑚2,… , 𝑚𝑛), where 𝑚1, 𝑚2,… , 𝑚𝑛 ∈ {0,∞} and 𝑖 =
0, 1,… , 𝛩−1 forms the feasibility basis involving 𝛩2𝑛 quantities
(feasibility conditions are only dependent on those quantities).
Because there are 𝛩2𝑛 quantities and each can take a positive
or a negative sign (we neglect the zero case as the values of
ecological parameters are never exact), then there are 2𝛩2𝑛 sign
combinations. Many of those combinations are impossible to
occur (empty) for any choice of real 𝜳 . To detect the non-empty
sign combinations, compute the signs of all the 𝑣’s (the feasibility
basis) as well as 𝐹 (𝜳 ) for a range of parameters 𝜳 , where each
component of 𝜳 varies independently in a large domain (say
uniformly between −100 and 100 or in any suitable domain)
when parameters are unrestricted. If one or more parameters are
restricted, they need to be varied randomly in the domains they
are defined at. This operation can be easily computed as it is only
necessary to evaluate a few functions without solving systems
of equations. Next, extract unique sign combinations of the 𝑣’s,
which yield 𝐹 (𝜳 ) ≥ 1. Then, put these sign combinations in a
feasibility table (i.e., matrix), whose rows are the signs of the
𝑣’s and columns are the individual feasibility conditions.

2. After forming the feasibility table, perform a minimization to
it. Here, we illustrate a simple minimization technique: If two
columns differ by a single sign (in one row), the two columns are
combined into one and an X (or 0) is placed in the row where
there is a single sign difference. We repeat the same process until
no two columns differ by a single sign. Next, we go through
a single column at a time and iterate through each quantity

in the basis. Then, we compute the conditional probabilities
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where the quantity takes its correspondent sign given that all
remaining quantities have their correspondent signs. If one or
more conditional probabilities are 1, the sign of one of those
quantities may be replaced by 𝐗 in the table. We then repeat
computing the same conditional probabilities, which were 1 but
without the 𝐗’ed quantity being part of the calculation. We
repeat the process until no conditional probability is one. We
then go through all columns and repeat the same process until
it terminates. It is worth noting that these are not the only
minimization approaches. For instance, comparing signs of 𝑣’s
with 𝐹 (𝜳 ) may reveal to us redundant quantities in the system
(see the examples in Appendices 3–6).

.4. Illustrative example

We illustrate the methodology above using the following univariate
ystem:
𝑑𝑁
𝑑𝑡

= 𝑁(𝑎𝑁2 + 𝑏𝑁 + 𝑐). (4)

First, we find the symmetric sums of roots. For this purpose, let us focus
on the quadratic polynomial 𝑓 (𝑁) = 𝑎𝑁2 + 𝑏𝑁 + 𝑐 of the equation
above with model parameters 𝜳 = (𝑎, 𝑏, 𝑐). This example has the same
mathematical form of a population model with an Allee effect (Case,
2000; Sun, 2016). Denote the two roots of 𝑓 (𝑁) by 𝜂1 and 𝜂2. Let
𝑚(𝑁) = [1, 𝑁] be a monomial map of length 𝑛 = 2 and 𝑄(𝑁) = 𝑁 .
Now, we can compute the matrix 𝑆(𝑠1) = 𝑊𝛥𝑊 𝑡, where 𝑊𝑖𝑗 = 𝑚𝑖(𝜂𝑗 )
and 𝛥𝑖𝑖 = 𝑄(𝜂𝑖 − 𝑠1) is the diagonal matrix

𝑆(𝑟) =
[

1 1
𝜂1 𝜂2

] [

𝜂1 − 𝑠1 0
0 𝜂2 − 𝑠1

] [

1 𝜂1
1 𝜂2

]

=

[

𝜂1 + 𝜂2 − 2𝑠1 𝜂21 + 𝜂22 − 𝑠1(𝜂1 + 𝜂2)

𝜂21 + 𝜂22 − 𝑠1(𝜂1 + 𝜂2) 𝜂31 + 𝜂32 − 𝑠1(𝜂21 + 𝜂22 )

]

.

Note that we only have symmetric sums of 𝜂’s up to the power of
2𝑛 − 1 = 3 (i.e., 𝜂𝑘1 + 𝜂𝑘2 where 𝑘 = 1, 2, 3). Second, we need to assemble
the function that counts the number of feasible roots. Thus, to evaluate
these symmetric sums, we need to evaluate the Laurent series of the
generating function 𝐺(𝑁) = 𝑓 ′(𝑁)∕𝑓 (𝑁) at 𝑁 = ∞ up to the order
𝑂(𝑁−5) as shown below

𝐺(𝑁) = 2𝑎𝑁 + 𝑏
𝑎𝑁2 + 𝑏𝑁 + 𝑐

= 2
𝑁

+ −𝑏
𝑎𝑁2

+ 𝑏2 − 2𝑎𝑐
𝑎2𝑁3

+ −𝑏3 + 3𝑎𝑏𝑐
𝑎3𝑁4

+ 𝑂(𝑁−5).

Hence, 𝜂1 + 𝜂2 = −𝑏∕𝑎, 𝜂21 + 𝜂22 = (𝑏2 − 2𝑎𝑐)∕𝑎2, and 𝜂31 + 𝜂32 =
−𝑏3+3𝑎𝑏𝑐)∕𝑎3. Let us denote these sums by 𝛴1, 𝛴2 and 𝛴3 respectively.
Now, the characteristic equation of 𝑆(𝑠1) is

det(𝑆(𝑠1) − 𝜆𝐼) =𝜆2 + 𝜆[−𝛴1 − 𝛴3 + 𝑠1(2 + 𝛴2)]+

[𝛴1𝛴3 − 𝛴2
2 + 𝑠1(𝛴1𝛴2 − 2𝛴3) + 𝑠21(2𝛴2 − 𝛴2

1 )].

Next, we can construct the characteristic equation whose coefficients
are [𝑣2(𝑠1) = 1, 𝑣1(𝑠1), 𝑣0(𝑠1)] and evaluate the signs of 𝑣’s at both 𝑠1 = 0
and 𝑠1 = ∞. That is,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sign(𝑣2(0)) = 1, sign(𝑣1(0)) = sign(−𝛴1 − 𝛴3),

sign(𝑣0(0)) = sign(𝛴1𝛴3 − 𝛴2
2 )

sign(𝑣2(∞)) = 1, sign(𝑣1(∞)) = sign(2 + 𝛴2),

sign(𝑣0(∞)) = sign(2𝛴2 − 𝛴2
1 ),

where 𝑣𝑖(0) and 𝑣𝑖(∞) are the coefficient of the trailing (constant) and
leading term of 𝑣𝑖(𝑠1) respectively. Now, we compute 𝑉 (0) and 𝑉 (∞) to
have

𝑉 (0) =
1 − sign(−𝛴1 − 𝛴3)

2
+

1 − sign(−𝛴1 − 𝛴3)sign(𝛴1𝛴3 − 𝛴2
2 )

2

𝑉 (∞) =
1 − sign(2 + 𝛴2)

2
+

1 − sign(2 + 𝛴2)sign(2𝛴2 − 𝛴2
1 )

2
.

sing the formula 𝐹 (𝑎, 𝑏, 𝑐) = 𝑉 (0) − 𝑉 (∞) together with two basic
properties of sign functions (namely sign(𝑥𝑦) = sign(𝑥)sign(𝑦) and
4

f

sign(𝑦) = 1∕sign(𝑦) for any non-zero real numbers 𝑥 and 𝑦), we obtain
the expression of 𝐹 (𝑎, 𝑏, 𝑐):

(𝑎, 𝑏, 𝑐) = −
sign(𝑎𝑏(𝑎2 + 𝑏2 − 3𝑎𝑐))[1 + sign(𝑎𝑐(𝑏2 − 4𝑎𝑐))]

2

+
sign(2𝑎2 + 𝑏2 − 2𝑎𝑐)[1 + sign(𝑏2 − 4𝑎𝑐)]

2
.

The feasibility basis in this case is given by 𝑣0(0), 𝑣1(0), 𝑣0(∞), 𝑣1(∞).
e use the factors shown in the expression of 𝐹 (𝑎, 𝑏, 𝑐) as our basis in
he feasibility table. The five quantities that constitute the basis are
1 = 𝑎𝑏,𝑄2 = 𝑎2 + 𝑏2 − 3𝑎𝑐,𝑄3 = 𝑎𝑐,𝑄4 = 𝑏2 − 4𝑎𝑐,𝑄5 = 2𝑎2 + 𝑏2 − 2𝑎𝑐.
ext, we randomize 𝑎, 𝑏 and 𝑐 uniformly between −100 to 100 and
valuate the signs of the 𝑄𝑖’s as well as 𝐹 (𝑎, 𝑏, 𝑐). We find that there
re only 3 sign combinations that yield 𝐹 (𝑎, 𝑏, 𝑐) ≥ 1 and are given by
he feasibility conditions 𝐶1, 𝐶2 and 𝐶3 shown below

𝐶1 𝐶2 𝐶3
𝑎𝑏 + − −
𝑎2 + 𝑏2 − 3𝑎𝑐 + + +
𝑎𝑐 − − +
𝑏2 − 4𝑎𝑐 + + +
2𝑎2 + 𝑏2 − 2𝑎𝑐 + + +
𝐹 (𝑎, 𝑏, 𝑐) 1 1 2

Once the table is obtained, we start the minimization process of
he number of feasibility conditions. It is clear from columns 1 and 2
bove that the sign of 𝑄1 does not matter and can be replaced by an X
ymbol. This concludes the first minimization step as no two columns
iffer by a single sign and we end up with the feasibility conditions
1+2 = {𝑄2 > 0, 𝑄3 < 0, 𝑄4 > 0, 𝑄5 > 0} and 𝐶3 = {𝑄1 < 0, 𝑄2 > 0, 𝑄3 >
,𝑄4 > 0, 𝑄5 > 0}. For the second minimization step, we focus on
olumn 𝐶1+2. We find that the conditional probabilities 𝑃 (𝑄2 > 0|𝑄3 <
,𝑄4 > 0, 𝑄5 > 0) = 1, 𝑃 (𝑄3 < 0|𝑄2 > 0, 𝑄4 > 0, 𝑄5 > 0) ≠ 1, 𝑃 (𝑄4 >
|𝑄2 > 0, 𝑄3 < 0, 𝑄5 > 0) = 1 and 𝑃 (𝑄5 > 0|𝑄2 > 0, 𝑄3 < 0, 𝑄4 > 0) = 1,
hich implies that the sign of 𝑄2, 𝑄4, or 𝑄5 can be replaced by 𝐗 in
hat column. Then, let us replace the sign of 𝑄2 by 𝐗. Next, we continue
omputing the conditional properties that were one but without the
ondition 𝑄2 > 0. We find that 𝑃 (𝑄4 > 0|𝑄3 < 0, 𝑄5 > 0) = 1 and
(𝑄5 > 0|𝑄3 < 0, 𝑄4 > 0) = 1. This implies that we can replace
he sign of 𝑄4 or 𝑄5 by 𝐗. Now, let us replace the sign of 𝑄4 by 𝐗
nd eliminate it from the latter conditional probability to find that
(𝑄5 > 0|𝑄3 < 0) = 1. This time, the sign of 𝑄4 can be replaced
y 𝐗 in column 𝐶1+2. We repeat the same process with the column
3 and obtain the feasibility table including the 2-step minimization
hown below

𝐶1 𝐶2 𝐶3 𝐶1+2 𝐶3 𝐶1+2 𝐶3
𝑎𝑏 + − − X − X −
𝑎2 + 𝑏2 − 3𝑎𝑐 + + + + + X X
𝑎𝑐 − − + ⟶ − + ⟶ − +
𝑏2 − 4𝑎𝑐 + + + + + X +
2𝑎2 + 𝑏2 − 2𝑎𝑐 + + + + + X X
𝐹 (𝑎, 𝑏, 𝑐) 1 1 2 1 2 1 2

From the last step, we conclude that the condition 𝑎𝑐 < 0 guarantees
xactly one feasible equilibrium point (i.e., 𝐹 (𝑎, 𝑏, 𝑐) = 1), while the
ondition 𝑎𝑏 < 0, 𝑎𝑐 > 0, 𝑏2 − 4𝑎𝑐 > 0 guarantees exactly 2 feasible
quilibrium points (i.e., 𝐹 (𝑎, 𝑏, 𝑐) = 2). Note that a special case of this
s the Allee effect model that has the following form (Sun, 2016):
𝑑𝑁
𝑑𝑡

= 𝑁
(𝑁
𝐴

− 1
)(

1 − 𝑁
𝐾

)

= 𝑁
(( −1

𝐴𝐾

)

𝑁2 +
( 1
𝐾

+ 1
𝐴

)

𝑁 − 1
)

, 0 < 𝐴 < 𝑁 < 𝐾
(5)

where 𝑎 = −1∕𝐴𝐾, 𝑏 = 1∕𝐴 + 1∕𝐾 and 𝑐 = −1. It is clear that
he second feasibility condition is satisfied as 𝑎𝑏 < 0, 𝑎𝑐 > 0 and
𝑏2 − 4𝑎𝑐 = (𝐴 − 𝐾)2∕(𝐴2𝐾2) > 0 (see Appendix 3 for a minimized
easibility table of a 2-species system with higher-order terms).
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3. Unfolding links between model parameters

To illustrate additional applications of our methodology, we study
the mathematical relationships between model parameters while satis-
fying feasibility conditions in models that are impossible to solve via
isocline approaches. First, let us consider the simplest 2-species LV
model with type III functional responses (Turchin, 2003) that is im-
possible to solve for the location of the equilibrium points analytically.

𝑑𝑁1
𝑑𝑡

= 𝑁1(𝑟1 + 𝑎11𝑁1 + 𝑎12
𝑁1𝑁2

1 + ℎ𝑁2
1

)

𝑑𝑁2
𝑑𝑡

= 𝑁2(𝑟2 + 𝑎21
𝑁2

1

1 + ℎ𝑁2
1

+ 𝑎22𝑁2).
(6)

Here, the set of model parameters is given by 𝜳 =
(𝑟1, 𝑟2, 𝑎11, 𝑎12, 𝑎21, 𝑎22, ℎ). The common numerators of the RHS of the
ystem above, after deleting 𝑁1 and 𝑁2 outside the brackets, are given
by

𝑓1(𝑁1, 𝑁2) = 𝑟1 + 𝑎11𝑁1 + 𝑎12𝑁1𝑁2 + 𝑟1ℎ𝑁
2
1 + 𝑎11ℎ𝑁

3
1

𝑓2(𝑁1, 𝑁2) = 𝑟2 + 𝑎22𝑁2 + (𝑎21 + 𝑟2ℎ)𝑁2
1 + 𝑎22ℎ𝑁

2
1𝑁2.

Upon eliminating 𝑁1 from both 𝑓1(𝑁1, 𝑁2) and 𝑓2(𝑁1, 𝑁2), we
obtain Res𝑁1

(𝑓1, 𝑓2) which is a polynomial of degree 5 in 𝑁2 and
cannot be solved analytically in closed-form (Abel, 1826). Similarly,
upon eliminating 𝑁2 from both 𝑓1(𝑁1, 𝑁2) and 𝑓2(𝑁1, 𝑁2), we obtain
Res𝑁2

(𝑓1, 𝑓2) that is a polynomial of degree 5 in 𝑁1 as shown below:

Res𝑁2
(𝑓1, 𝑓2) =(−𝑎11𝑎22ℎ2)𝑁5

1 + (−𝑎22ℎ2𝑟1)𝑁4
1

+(𝑎12𝑎21 − 2𝑎11𝑎22ℎ + 𝑎12ℎ𝑟2)𝑁3
1

+(−2𝑎22ℎ𝑟1)𝑁2
1 + (𝑎12𝑟2 − 𝑎11𝑎22)𝑁1 + (−𝑎22𝑟1)

Res𝑁1
(𝑓1, 𝑓2) =(𝑎212𝑎

3
22ℎ

2)𝑁5
2 + (3𝑟2𝑎212𝑎

2
22ℎ

2 + 2𝑎21𝑎212𝑎
2
22ℎ)𝑁

4
2

+(𝑎212𝑎
2
21𝑎22 + 4𝑎212𝑎21𝑎22ℎ𝑟2

+3𝑎212𝑎22ℎ
2𝑟22 + 2𝑎11𝑎12𝑎21𝑎222ℎ)𝑁

3
2

+(𝑎212𝑎
2
21𝑟2 + 2𝑎212𝑎21ℎ𝑟

2
2 + 𝑎212ℎ

2𝑟32
+2𝑎11𝑎22𝑎12𝑎221 + 4𝑎11𝑎22𝑎12𝑎21ℎ𝑟2)𝑁2

2

+(𝑎22𝑎211𝑎
2
21 + 2𝑎12𝑎11𝑎221𝑟2

+2𝑎12ℎ𝑎11𝑎21𝑟22 + 𝑎22ℎ𝑎
2
21𝑟

2
1)𝑁2

+(𝑟2𝑎211𝑎
2
21 + 𝑎321𝑟

2
1 + ℎ𝑟2𝑎

2
21𝑟

2
1).

In other words, the number of roots of 𝑓1(𝑁1, 𝑁2) and 𝑓2(𝑁1, 𝑁2) is
5. Note that the roots of the univariate polynomials Res𝑁1

(𝑓1, 𝑓2) and
Res𝑁2

(𝑓1, 𝑓2), upon appropriate pairing of roots of the first polynomial
with the second, are the roots of the system 𝑓1(𝑁1, 𝑁2) = 0 and
𝑓2(𝑁1, 𝑁2) = 0. Since the roots of either Res𝑁1

(𝑓1, 𝑓2) or Res𝑁2
(𝑓1, 𝑓2)

are unattainable analytically, then the system 𝑓1(𝑁1, 𝑁2) = 0 and
𝑓2(𝑁1, 𝑁2) = 0 is unsolvable analytically.

Next, to find relationships between model parameters, for illustra-
tion purposes, let us consider the parameters 𝜳 = (𝑟1, 𝑟2, 𝑎11, 𝑎12, 𝑎22) =
(0.5,−1.5, 1,−1.5, 1), and the parameters 𝑎21 ∈ [−6,−1] and ℎ ∈ [0.5, 4].
In this special case, we find that feasibility (i.e., 𝐹 (𝜳 ) ≥ 1) can only
be satisfied under the single condition 𝑣0(0, 0) < 0. See Appendix
4 for the expression of 𝑣0(0, 0) written as symmetric sums (i.e., sig-
mas), along with closed forms of the sigmas and derivations. We find
that the feasibility domain generated via solving numerically (using
the software tool PHCLab) the isocline equations (i.e., 𝑓1(𝑁1, 𝑁2) =
0, 𝑓2(𝑁1, 𝑁2) = 0) and checking for the feasibility of roots matches the
domain generated by the inequality 𝑣0(0, 0) < 0 (see Fig. 1A–B). Note
that 𝑎21 and ℎ are independent in the model, yet they are bounded by
feasibility.

As a second example, let us consider the LV model with higher-
5

order interactions that is shown below. This example is the simplest
ecological 3-species model whose isocline equations are impossible to
be solved analytically as it has five roots (see Appendix 6).
𝑑𝑁1
𝑑𝑡

= 𝑁1(𝑟1 + 𝑎11𝑁1 + 𝑎12𝑁2 + 𝑎13𝑁3 + 𝑏1𝑁2𝑁3),

𝑑𝑁2
𝑑𝑡

= 𝑁2(𝑟2 + 𝑎21𝑁1 + 𝑎22𝑁2 + 𝑎23𝑁3 + 𝑏2𝑁1𝑁3),

𝑑𝑁3
𝑑𝑡

= 𝑁3(𝑟3 + 𝑎31𝑁1 + 𝑎32𝑁2 + 𝑎33𝑁3 + 𝑏3𝑁1𝑁2).

(7)

To study the feasibility conditions of this model, we need to consider
the three polynomials inside the brackets. The resultants are shown in
Appendix 6. Let us consider

𝜳 = (𝑟1, 𝑟2, 𝑟3, 𝑎11, 𝑎12, 𝑎13, 𝑎22, 𝑎23, 𝑎31, 𝑎32, 𝑎33, 𝑏1, 𝑏2) =

(1.5,−1.5,−1.5, 2,−1.5,−1.5, 2,−1.5,−1.5,−1, 1, 1,−1),

where the parameters 𝑎21 ∈ [1, 6] (pairwise effect of species 1 on 2)
and 𝑏3 ∈ [2, 5] (higher-order effect on species 3) are restricted. We
find that feasibility (i.e., 𝐹 (𝜳 ) ≥ 1) is satisfied when 𝑣0(0,∞, 0) > 0
(see Appendix 6 for more details). Again, for confirmation purposes,
the feasibility domain generated by solving numerically the isocline
equations (i.e., 𝑓𝑖(𝑁1, 𝑁2, 𝑁3) = 0 for 𝑖 = 1, 2, 3) using the software
tool PHCLab and checking for the feasibility of roots matches the
domain generated by the inequality 𝑣0(0,∞, 0) > 0 (see Fig. 1C–D).
This illustrates that pairwise and higher-order interactions can be non-
trivially linked and their incorporation into ecological models must be
done with caution.

4. Discussion

Feasibility conditions can be obtained analytically by solving the
isocline equations for species abundances 𝑵∗ = (𝑁∗

1 , 𝑁
∗
2 ,… , 𝑁∗

𝑛 )
𝑇

before imposing the positivity condition 𝑵∗ > 0. This approach
works well for LV model, whose isocline equations is the linear sys-
tem 𝒓 + 𝑨𝑵∗ = 𝟎 and whose feasibility conditions are given by
𝑵∗ = −𝑨−1𝒓 > 𝟎 (Goh, 1976; Volterra and Brelot, 1931; Saavedra
et al., 2020). However, when the isocline equations have five or more
complex roots, the system of polynomial equations cannot be solved
analytically. This is a consequence of Grobner elimination theorem
combined with Abel’s impossibility theorem (Adams et al., 1994; Abel,
1824, 1826). Specifically, from the elimination theorem, in any system
of polynomial equations which has 𝛩 complex roots and 𝑛 variables,
any 𝑛 − 1 variables can be eliminated from the system to obtain a
univariate polynomial with the remaining variable of degree at least
𝛩. The roots of this univariate polynomial are all the correspondent
coordinates of the roots of the isocline equations (Adams et al., 1994).
This is a generalization of Gaussian elimination, which can eliminate
any 𝑛 − 1 variables from the system leaving a single linear univariate
polynomial in the remaining variable to be solved (Lazard, 1983).
However, from Abel’s impossibility theorem, it is impossible to solve
a univariate polynomial in terms of radicals (i.e., analytically) (Abel,
1824, 1826) if this polynomial has five or more roots. For instance,
this number of roots is quickly reached by adding Type III functional
responses to a 2-species LV model or adding higher-order interactions
to a 3-species LV model (AlAdwani and Saavedra, 2019).

In this work, we have proposed a general formalism to analytically
obtain the feasibility conditions for any multivariate, polynomial, popu-
lation, dynamics model of any dimensions without the need to solve for
the equilibrium locations. We found that feasibility conditions are en-
tirely functions of symmetric sums of the roots of the isocline equations.
Unlike the location of the roots, which cannot be obtained analytically,
symmetric sums of the roots can be obtained for any polynomial system
regardless of order and dimension. We have also created an analytical
formula of the number of feasible roots in the system, which are func-
tions of signs of 𝛩2𝑛 quantities (i.e., the 𝑣’s evaluated at the feasibility
box whose coordinates compose of zeros and infinities). We have shown
how to create a feasibility table (i.e., matrix) whose columns are the

individual feasibility conditions of the model. We have then provided
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Fig. 1. Unfolding mathematical links between model parameters. Panels A–B show the mathematical link between a pairwise interaction 𝑎21 and the constant ℎ while maintaining
easibility in a modified Lotka–Volterra model with type III functional responses (see main text), where (𝑟1 , 𝑟2 , 𝑎11 , 𝑎12 , 𝑎22) = (0.5,−1.5, 1,−1.5, 1), 𝑎21 ∈ [−6,−1] and ℎ ∈ [0.5, 4].
he panels show the sign of 𝑣0(0, 0) and the number of feasible roots. Note that 𝑣0(0, 0) is the constant or trailing term of the characteristic equation (i.e., coefficient of 𝜆0)
valuated at 𝑠1 = 0 and 𝑠2 = 0 (the 𝑠’s are the variables in the symmetric matrix 𝑆 = 𝑊𝛥𝑊 𝑡, see Methodology). The number of feasible roots is obtained by solving the isocline
quations numerically using the software package PHCLab and checking for the feasibility of roots. Both panels confirm that the number of feasible roots is greater than zero when
0(0, 0) < 0. Hence, the theoretical relationship is given by 𝐹 (𝜳 ) = −2 ∗ sign(𝑣0(0, 0)). Panels C–D show the mathematical link between a pairwise interaction 𝑎21 and a higher-order
nteraction 𝑏3 while maintaining feasibility in a modified Lotka–Volterra model with higher-order interactions (see main text), where (𝑟1 , 𝑟2 , 𝑟3 , 𝑎11 , 𝑎12 , 𝑎13 , 𝑎22 , 𝑎23 , 𝑎31 , 𝑎32 , 𝑎33 , 𝑏1 , 𝑏2)
(1.5,−1.5,−1.5, 2,−1.5,−1.5, 2,−1.5,−1.5,−1, 1, 1,−1), 𝑎21 ∈ [1, 6] and 𝑏3 ∈ [2, 5]. The panels show the sign of 𝑣0(0,∞, 0) and the number of feasible roots. Note that 𝑣0(0,∞, 0) is

the coefficient of the highest power in 𝑠2 in the trailing term of the characteristic equation (see Methodology). Again, the number of feasible roots is obtained by solving the
isocline equations numerically using the software package PHCLab and checking for the feasibility of roots. Both panels confirm that the number of feasible roots is positive when
𝑣0(0,∞, 0) > 0. Hence, the theoretical relationship is given by 𝐹 (𝜳 ) = 2 ∗ sign(𝑣0(0,∞, 0)).
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a minimization process that can combine feasibility conditions into
fewer ones and remove redundant quantities. Of course, the expressions
involved in the inequality are complicated, nevertheless, they can be
significantly simplified by sophisticated factorization.

Additionally, we have shown how to provide feasibility conditions
under parameter restrictions. We have shown that by restricting param-
eters, the feasibility domain can be described by a single inequality
only. In recent years, the topic of feasibility has been focused on
relationships between parameters while maintaining feasibility (Saave-
dra et al., 2017). Using simulations (i.e., solving for the location of
the isocline equations numerically then checking for the feasibility
of roots) one can plot the feasibility domain for one, two, or three
parameters at most while fixing the remaining ones. However, it is
impossible to generate a four-dimensional plot that the human eye can
capture. Also, it is impossible to find an analytical expression of the
feasibility domain using numerical simulations. Of course, someone
can find an approximate formula of the feasibility domain, neverthe-
less, there is no unique formula and different approximations may
lead to different interpretations of how parameters are linked while
maintaining feasibility. Following our proposed methodology, we can
determine mathematically how any number of parameters are linked
by describing polynomial inequalities that are functions of those free-
6

parameters while maintaining feasibility: a task that is impossible to t
perform with simulations. This is an important property to consider in
ecological modeling given that mathematical expressions are frequently
formed assuming that parameters are independent of each other. How-
ever, once one imposes mechanisms or constraints, such as feasibility,
these parameters can be linked and break the conclusions based on
independent parameters (Song et al., 2019).

Our methodology provides a fast method for plotting feasibility
omains, computing the number of feasible roots, and displaying feasi-
ility conditions. For example, for our 3-species example with higher-
rder interactions, plotting the feasibility domain by solving the iso-
line equations numerically using the software package PHCLab (Guan
nd Verschelde, 2008) took more than 1.5 h to compute the number of
easible points with 216 trials. Instead, using our methodology (and code
hich involves a naive implementation of our methodology without
arallelization), it took less than 11.5 min to run the analysis, and
few seconds to plot the feasibility domain for different ranges of
he free parameters using the same number of trials. Moreover, when
e change the ranges of our free parameters 𝑎21 and 𝑏3, we only
eed a few seconds to run our code, whereas we need to repeat the
ntire 1.5 h with the traditional numerical technique. With a clever
mplementation of the methodology and parallelizing the code (since

he entire methodology can be parallelized), a faster computation of
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the feasibility domain/conditions and links between parameters can be
achieved.

One significant drawback of the methodology is that it requires the
handling of large symbolic expressions. Thus, careful implementation
is required to run a successful code using the presented methodology.
For example, when we created the generating function 𝐺, we did not
multiply the determinant of the eliminant 𝑇 and the determinant of the
Jacobian of the isocline equations 𝐽 , divided them by the product of all
esultants, and took the series expansion of the final polynomial quo-
ient. Instead, we took the series expansion of each resultant reciprocal
eparately, wrote 𝑇𝐽 as multivariate polynomial in species abundances,
ound the coefficients of each term, and multiplied it by a single appro-
riate term in the series expansion of each resultant reciprocal to find
he 𝛴’s. However, it is always possible to handle such large expressions
s the entire methodology can be parallelized. The second drawback
f the methodology is its susceptibility to numerical errors. In our
-species application example, our code gives as output non-integer val-
es of the number of feasible roots in the system. Nevertheless, in our
xample we rectified it quickly by assigning non-integer values to their
losest integers (see Appendix 6). Remember that the methodology
equires only checking signs of large symbolic expressions, and we do
ot need them to be computed accurately. Nevertheless, such quantities
an be computed more accurately by following several techniques such
s increasing precision of numeric calculations. Similarly, cancellation
rrors can be reduced by combining positive numbers and negative
nes together, and then performing a single subtraction. Round-off and
runcation errors can also be avoided when ratios are computed. For
xample, instead of computing (1090 − 1091)∕1090 by computing (1090 −
091) then dividing the result by 1090, it is better to add 1090∕1090 = 1
ith −1091∕1090 = −10 as the latter reduces round-off errors in large
omputations (Trefethen and Bau III, 1997). Of course, there are other
echniques to reduce such errors, nevertheless, it is important to think
bout numerical errors in the implementation process.
Previous work has already provided foundational knowledge on

pecies coexistence from microbial to plant–pollinator systems by fo-
using on how the behavior of such systems change as a function
f both model choice and parameter values (Fort, 2018; Deng et al.,
021; Yacine and Loeuille, 2022; Aliyu and Mohd, 2022). However,
his work has had to rely either on relatively simple models or nu-
erical solutions, limiting our understanding of how the behavior of
hese systems will be affected by adding much more complex dynam-
cs, increasing the dimension of the systems, or taking into account
he entire parameter space. In this line, our work has unlocked the
pportunity to increase our systematic understanding of how more
omplex models and the full set of parameters affect our conclusions
f species coexistence. Indeed, it has been shown that the existence of
feasible solution is a necessary condition for persistence and perma-
ence under equilibrium dynamics in models of the form 𝑑𝑁𝑖∕𝑑𝑡 =
𝑖𝑓𝑖(𝑵)∕𝑞𝑖(𝑵) (Hofbauer and Sigmund, 1998; Stadler and Happel,
993). Similarly, it has been proved that this type of models cannot
ave bounded orbits in the feasibility domain without a feasible free-
quilibrium point (Hofbauer and Sigmund, 1998). In fact, we cannot
alk about asymptotic or local stability without the existence of a
easible equilibrium point (AlAdwani and Saavedra, 2020). Hence,
oexistence, stability, or permanence domains are subsets of the feasi-
ility domain and their conditions are effectively part of the feasibility
onditions obtained in this work.
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