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Over more than 100 years, ecological research has been striving to derive internal and external conditions
compatible with the coexistence of a given group of interacting species. To address this challenge, numerous
studies have focused on developing ecological models and deriving the necessary conditions for species
coexistence under equilibrium dynamics, namely feasibility. However, due to mathematical limitations, it has
been impossible to derive analytic expressions for equilibria locations if the isocline equations have five or more
roots, which can be easily reached even in 2-species models. Here, we propose a general formalism to obtain
the set of analytical conditions of feasibility for any polynomial population dynamics model of any dimension
without the need to solve for the equilibrium locations. We illustrate the application of our methodology
by showing how it is possible to derive mathematical relationships between model parameters in modified
Lotka-Volterra models with functional responses and higher-order interactions (model systems with at least
five equilibrium points)—a task that is impossible to do with simulations. This work unlocks the opportunity
to increase our understanding of how parameters and their interconnections affect our conclusions of species
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coexistence as a function of model choice.

1. Introduction

Over more than 100 years, ecological research has been striving
to derive the biotic and abiotic conditions compatible with the co-
existence of a given group of interacting species (also known as an
ecological system or community) (Tansley, 1920; Lotka, 1920; Volterra,
1926; Gause, 1932; Case, 2000). These conditions can provide the
keys to understand the mechanisms responsible for the maintenance
of biodiversity and the tolerance of ecological systems to external per-
turbations (Levins, 1968; Sugihara, 1994; Loreau and De Mazancourt,
2013; Kerr et al., 2002). Because of the complexity of this question,
many efforts have been centered on developing phenomenological and
mechanistic models to represent the dynamics of ecological systems
and predict their behavior (MacArthur, 1970; Turchin, 2003; Svirezhev
and Logofet, 1983; Vandermeer and Goldberg, 2013). However, even if
we had knowledge about the exact equations governing the dynamics
of interacting species, extracting and solving the set of conditions
compatible with the coexistence of such species would remain a big
mathematical challenge (Grilli et al., 2017; AlAdwani and Saavedra,
2020; Song et al., 2019). Indeed, most of the analytical work looking at
these coexistence conditions has focused on relatively simple 2-species
systems or strictly particular cases of higher-dimensional systems (Cox
et al., 2010; Strogatz, 2015; Ong and Vandermeer, 2015; Barabas et al.,
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2018; Fort, 2018; Yacine and Loeuille, 2022; Novoa-Muiioz et al.,
2021). In fact, even at the 2-species level, currently there is no general
methodology that can provide us with a full analytical understanding
about coexistence conditions for any arbitrary model (AlAdwani and
Saavedra, 2020). Therefore, the majority of work has relied on numeri-
cal simulations (Valdovinos, 2019; Letten and Stouffer, 2019; Aliyu and
Mohd, 2022), which provide a partial view of the dynamics conditioned
by the choice of model and parameter values (AlAdwani and Saavedra,
2019).

Recent work has started to address the challenge above by focusing
on the necessary conditions for species coexistence under equilibrium
dynamics: feasibility (Hofbauer and Sigmund, 1998; Song et al., 2018).
Mathematically, the feasibility of a generic n-species dynamical system
dN;/dt = N, f;(N)/q;(N), where the f’s and ¢’s are multivariate polyno-
mials in species abundances N = (N}, N, ..., N,)T, corresponds to the
existence of at least one equilibrium point (i.e., d N;/dt = 0 Vi) whose
components are all real and positive (i.e., N* = (N*,N;, ,N:)T >
0). Feasibility conditions are typically represented by inequalities as a
function of model parameters (Vandermeer, 1975; Barabas et al., 2018).
Traditionally, feasibility conditions have been attained by finding the
isocline equations f;(N*) = 0 Vi and then solving for N* before
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finding the conditions that satisfy N* > 0 (Strogatz, 2015; Case, 2000;
Vandermeer and Goldberg, 2013).

For example, let us focus on the linear Lotka—Volterra (LV) model
of the form dN,/dt = N;(r; + Z;’zl a;;N;), where a’s and r’s represent
the interaction coefficients and the intrinsic growth rates, respectively.
In the linear LV model, the isocline equations (for any dimension) can
be written as r + AN* = 0, whose unique root is given by N* =
—A~'r. Therefore, feasibility conditions in this case are simply given
by the inequality —A~'r > 0. However, adding nonlinear functional
responses or higher-order terms can increase exponentially the number
of roots of the system (AlAdwani and Saavedra, 2019). Importantly, it
can be shown from elimination theory (via Grobner basis) and Abel’s
impossibility theorem that it is impossible to solve analytically for N*
when the number of roots of the system is five or more (Abel, 1824,
1826; Adams et al., 1994). Similarly, using numerical approaches, it
has been demonstrated that the probability of feasibility (the proba-
bility of finding at least one equilibrium point whose components are
all positive by randomly choosing parameter values) is an increasing
function of the model’s complexity (i.e., number of complex roots
of the isocline equations with generic coefficients) regardless of the
invoked mechanism, whether they are ecologically motivated or have
no meaning whatsoever (AlAdwani and Saavedra, 2020). This implies
that traditional approaches can be unsuitable for finding the necessary
conditions for coexistence in generic systems.

Here, we propose a general formalism to obtain for any polynomial
population dynamics model and any dimension the set of necessary
conditions leading to species coexistence without the need to solve for
the equilibrium locations. We show how to reduce these conditions
into a small set of expressions. We illustrate this methodology with an
example of a univariate system. Additionally, we show how to identify
the feasibility conditions that are compatible with a given range of
parameter values. That is, we show how to find analytic relationships
between model parameters while maintaining feasibility. We illustrate
this methodology with examples of multispecies systems using modified
LV models with functional responses and higher-order interactions,
where isocline analysis cannot be performed. Finally, we discuss advan-
tages and limitations of our formalism, and future avenues of research
derived from our study.

2. Obtaining feasibility conditions

Our methodology can be applied to any dynamical system of the
form:
ANy _ NifitNy o N,
dt 4;(N,,....N,)
: @
dN, N,f,(N,.....N,)
dt q,(N,...,N,)

where the f’s and ¢’s are multivariate polynomials in species abun-
dances. Let ¥ be the vector of model parameters that include, for
example, species growth rates and species interaction coefficients. Fea-
sibility conditions become consequently conditions on model param-
eters ¥ that guarantee at least one feasible equilibrium point in the
system (Svirezhev and Logofet, 1983; AlAdwani and Saavedra, 2020).
That is, we require that the number of roots of the system defined
by polynomial equations f;(N;,...,N,) = 0 for i = 1,...,n whose
components are all real and positive is at least one. To find such
feasibility conditions, we develop a 3-step methodology: (1) Find sym-
metric sums of the roots of the polynomial. (2) Assemble a function
that counts the number of feasible roots. (3) Use the function of the
number of feasible roots to deduce feasibility conditions, reduce them
and eliminate redundant conditions. Below, we give details of these
three steps. We also provide MATLAB code for its implementation.
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2.1. Finding symmetric sums of the roots

The first step involves in finding the symmetric sums of the roots
that are needed to build the analytic formula of the number of feasible
roots. Such sums can be obtained via different methodologies (Serret,
1849; Macaulay, 1902; Pedersen, 1991). One approach is outlined
below:

1. Fix i, assume that variable N, is constant, and find the total
degree of each polynomial equation f;(Ny,...,N,) =0 for j =
1,...,n. The total degree of f ; is the maximum sum of the
variables’ exponents in each term of f; while treating N; as
constant. Denote the total degree of polynomial f; by d,; for
j =1,...,n. Next, homogenize each term in each of the f’s with
an artificial variable W so that the total degree of each term
in f; is d; ;. Denote to the homogenized equation by Fy ;. For
example, if f,(N, N,, N3) = 1+Nf+N] N, N; and N, is assumed
to be constant, then d;, = 2 and the homogenized equation is
Fy, 2 =W?+ N;W?+ N{N,N;.

2. Let L, =1+ Z;’Zl(d,-,j — 1) and form the set H; as a union of n
monomial sets, where H; = (W% . HL’_d"')U i<t N;

,L1+f ) U (U,-+15j9,Nl.j"’j . HLi /). Define the outer-term of

j ij
HlLk"fd"'k to be the one that is dotted or multiplied by it. For

example W1 is the outer-term of H, | Lo Here, H;, Limdik i the
set of all monomials in W, N, ..., N, not including N that are of
total degree L;—d, , and does not contain the outer-terms of any
of HL I H’,’Lk":f”‘". For example, if d); = 2,d,, = 2 and
d,; = 1, then using variables W, N|, N; where N, is constant,
we have L, =3 and H, = W?-{W, N, N;}UNZ-{W,N,,N;}U
Nj- {N32, W N,,WN,,N,N;}. Note that the second curly bracket
does not contain W? (i.e., outer term of the first curly bracket)
and the third curly bracket does not contain W? nor N 12 (i.e., the
outer-terms of the first and second curly brackets).

Li~d
3. Form the set H; oy = Uigc,f; - H;; " evaluated at W = 1

ij
Note that H, ,,,, is simply H; with outer-term of every H
being replaced by f;. Next, form the monomial set H; . Wthh
is simply H; evaluated at W = 1. After that, form the Macaulay
matrix My , which is a square matrix whose size is ("_)11_)“1"') and
whose (i, j) entry is the coefficient of H; (/) in the expression of
H, 1, (i) assuming that N; is a constant. Then, find the resultant
Resy, N, Nyt (f15 -5 f,) which equals to the determinant
of My,. This resultant is a univariate polynomial in N; that
contains no other N’s.
4. Next, form the matrix M 1/v,’ whose first column is H;,,, and

dijs1

ij+1

its remaining columns are the remaining columns of the matrix
My,. Then, compute its determinant (i.e., det(M '), which has
the form T}, f; + T, f, + --- + T}, f, to obtain the zth row of the
eliminant matrix. Repeat all previous steps for i = 1,...,n to
obtain all entries of the eliminant matrix as well as all resultants.
Then, obtain the Jacobian of the original polynomial system
whose (i, j) entry is df;/0N;. Next, find the determinant of both
the eliminant matrix T and the determinant of the Jacobian J.
5. If the determinant of My, is 0, use the generalized characteristic
polynomial formalism (Canny, 1988) to obtain the resultant. In
this case, the resultant is the non-vanishing coefficient of the
smallest power of ¢ in det(My, —eI), where I is the identity ma-
trix of same size as matrix My, . To find T}; for j = 1, ..., n, form
the matrix M} , whose first column is Hl row and its remaining
columns are the remaining columns of the matrix My —el. Then,
compute its determinant and find the first non-zero coefficient of
powers of ¢ in ascending order, which has the form T, f{+T}, f+
T;.f, (see Appendix 5 for an example of this scenario).
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6. Expand the generating function G(f;(Ny,....N,),....f,
(Ny,...,N,)) that is shown below, around N = ,...,N, = ©
to obtain the 2’s (symmetric sums of the roots).

T SIS0 S0)

G(f1,- s f) ===
: H,_lRele ,,,,, NictNig ooV 15 o5 f)
o (o) (o) Z

_ Z Z ) Z myp.my,....my,

. my+1 5 my+1 m,+1
my=0mp=0 m,,=0N N2 ...N"”

1 2
The expansion of G is done via performing series expansion
of the reciprocal of each resultant separately then multiplying
them along with T and J. For example, the reciprocal of each
resultant can be expanded via MATLAB’s “taylor” command
after performing change of variables N; = 1/x; and expanding

around x; = 0. Alternatively, if the resultant is expressed as
K, 1.
ReSy, N\ Niproo N, S1o s f) = ZI,;O hgN;', then
1 1 i Plim,)
- — m;
Resy, N\ NipjoiN, NI.K’ Im,=1 N;
(_l)m,-+]
Plim) = det(A;[1 : m;, 1 @ m;]),
(i,K;)
1 0 0 0
hiky Pik-y  hik-»  Rak-s)
where A, =| 0 hiky  hik-ny  Pak-y |
0 hiky  hax-n
i=1,...,n

Finally, denote the roots of f;(N,,...,N,) for i = 1,...,n by
M = Mei-Meas - Mealt for k = 1,...,0. The symmetric sum
. . o .

Sy my....m, 18 given by ¥ nlim” 11;:71 . In particular, note
that @ = X, is the number of complex roots of f;(Ny, ..., N,)
for i = 1,...,n with general coefficients. It is important to record

that number.

It is worth mentioning that the previous steps in univariate systems
reduce significantly, where the roots of f(N) are considered. The
jacobian determinant simply becomes J = f/(N) and the resultant
is f(N) itself given that it is the only univariate polynomial in the
system. In turn, the eliminant determinant is 7 = 1 as the resultant,
where written in the form T;,f(N) implies T}, = 1. Thus, the gener-
ating function reduces to G = f/(N)/f(N) (Appendix 1 illustrates a
simplified and detailed methodology for univariate systems). Similarly,
in 2-dimensional systems, the two resultants simplify significantly and
become determinants of Sylvester matrices involving the coefficients of
two polynomial inputs. Then, to find the corresponding eliminant ma-
trix, it is possible to modify a single column in each of the two Sylvester
matrices without changing their determinant to write the resultants in
the form Tj, f + T}, f» (Appendix 2 illustrates a simplified and detailed
methodology for 2-species systems). For higher dimensional systems,
we need to find the symmetric sums as described above or any other
suitable implementation.

2.2. Assembling the function that counts the number of feasible roots

Once we find the symmetric sums of the roots, we construct an
analytical formula of the number of positive roots of the polynomial
system of equations—we call that function F(¥). To derive F(¥), we
apply previous work (Pedersen et al., 1993), which deals with counting
real roots in arbitrary domains, to count the number of real roots in an
orthotope that lies in the first quadrant (i.e., feasible region), which
rests on all the positive axes. Then, we expand the orthotope allowing
all non-zero components of all its vertices to go to infinity to cover the
entire feasible domain. This can be achieved as follows:
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1. Choose a map m(N;, N,, ..., N,) of length © and with indepen-
dent monomial entries. Typically, the first entry of m is the
constant 1. Note that such monomials are chosen so that the
coefficients of the characteristic equation shown in the following
step do not vanish. Next, let OQ(N|,N,,...,N,) = N;N,...,N,
and compute the symmetric matrix S(s;,s,,...,s,) = WAW!
where Wj; = mi(nj 1,00, 1;,,) and 4; = Oy — 51,05 —
53, ....H;, — $,) is a diagonal matrix.

2. The next task is to evaluate the determinant of S(s;,s,,...,s,)
and write it in the form det(S(s, s, ...,s,) — AI) = (=1)91° +
Vo_1(815 595 s 5,)A% 1V + s + 0y (s51, 55, ..., 5,,). Then, consider the
sequence Vv = [0g(s1,50, .5 8,) = (—1)@, 0g_1(515 82, eesSp)seers
vo(sy. 89, ..., 5,)] and let V(s,s,,...,s,) be the number of con-
secutive sign changes in v. The formula of V(sy,s,,...,s,) is

V(s1,80, ...

0-1 .
5= Z 1 —sign(v;(s1,52, ... 5 $)0;41(51, 52, ..., S,))
n/ = .
i=0 2

(2)

3. Consider the feasibility domain and think about it as a box

whose 2" vertices compose of zeros and infinities. Note that
,m,), where m;,m,, ..., m, € {0,c0} is the coefficient
of the highest power of s']“slz€2 sk in v;(s1, 82, ..., 5,) Where
k; =0if m; =0 and k; = 1 if m; = co. Finally, let #(s(,s,,...,s,)
be the number of infinities that appear in the string s, s, ..., s,-
The expression of F(¥) is given by

rn=sn ¥

51,52,...,5,€{0,00}

v(my,my, ...

(_1)#(S1.s2 ,,,,, s")V(SlaSZw--’sn) 3)

2.3. Deducing feasibility conditions and reducing them

The third and last step of our methodology involves deducing
feasibility conditions and reducing them. This has the purpose of
unveiling the key inequalities that need to be satisfied in order to reach
feasibility. This can be achieved as follows:

1. Call v;(m;,m,,...,m,), where m,m,,....,m, € {0,00} and i =
0,1,...,0—1 forms the feasibility basis involving ©2" quantities
(feasibility conditions are only dependent on those quantities).
Because there are ©2" quantities and each can take a positive
or a negative sign (we neglect the zero case as the values of
ecological parameters are never exact), then there are 292" sign
combinations. Many of those combinations are impossible to
occur (empty) for any choice of real ¥. To detect the non-empty
sign combinations, compute the signs of all the v’s (the feasibility
basis) as well as F(¥) for a range of parameters ¥, where each
component of ¥ varies independently in a large domain (say
uniformly between —100 and 100 or in any suitable domain)
when parameters are unrestricted. If one or more parameters are
restricted, they need to be varied randomly in the domains they
are defined at. This operation can be easily computed as it is only
necessary to evaluate a few functions without solving systems
of equations. Next, extract unique sign combinations of the v’s,
which yield F(¥) > 1. Then, put these sign combinations in a
feasibility table (i.e., matrix), whose rows are the signs of the
v’s and columns are the individual feasibility conditions.

2. After forming the feasibility table, perform a minimization to
it. Here, we illustrate a simple minimization technique: If two
columns differ by a single sign (in one row), the two columns are
combined into one and an X (or 0) is placed in the row where
there is a single sign difference. We repeat the same process until
no two columns differ by a single sign. Next, we go through
a single column at a time and iterate through each quantity
in the basis. Then, we compute the conditional probabilities
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where the quantity takes its correspondent sign given that all
remaining quantities have their correspondent signs. If one or
more conditional probabilities are 1, the sign of one of those
quantities may be replaced by X in the table. We then repeat
computing the same conditional probabilities, which were 1 but
without the X’ed quantity being part of the calculation. We
repeat the process until no conditional probability is one. We
then go through all columns and repeat the same process until
it terminates. It is worth noting that these are not the only
minimization approaches. For instance, comparing signs of v’s
with F(¥) may reveal to us redundant quantities in the system
(see the examples in Appendices 3-6).

2.4. Illustrative example

We illustrate the methodology above using the following univariate
system:

dd—tj = N@N? +bN +o). @
First, we find the symmetric sums of roots. For this purpose, let us focus
on the quadratic polynomial f(N) = aN? + bN + ¢ of the equation
above with model parameters ¥ = (a, b, ¢). This example has the same
mathematical form of a population model with an Allee effect (Case,
2000; Sun, 2016). Denote the two roots of f(N) by 5, and #,. Let
m(N) = [1, N] be a monomial map of length » = 2 and Q(N) = N.
Now, we can compute the matrix S(s;) = WAW', where W;; = m;(n;)
and 4;; = O(y; — s;) is the diagonal matrix

S M | KPR |
m m My =5 m

_ |: 0+ — 28 '1%'*‘7/%—51('11"'712)]

m A = s O +m) )+ ny = s () )
Note that we only have symmetric sums of 5’s up to the power of
2n—1=3 (i.e., n¥ +n% where k = 1,2,3). Second, we need to assemble
the function that counts the number of feasible roots. Thus, to evaluate
these symmetric sums, we need to evaluate the Laurent series of the
generating function G(N) = f/(N)/f(N) at N = oo up to the order
O(N %) as shown below

2aN +b 2 —b  b*—2ac , —b +3abc _s
G(N)= ——— = — + — + O(N7).
) aN2+bN +c N aN? a’N3 a’N* ( )
Hence, 1, + 1, = —b/a, ;112 + r]% = (b* - 2ac)/d?, and r]? + ;13 =

(=b>+3abc)/a’. Let us denote these sums by X;, X, and X, respectively.
Now, the characteristic equation of S(s,) is

det(S(s)) — AD) =2+ A[-Z; — 55+ 5,2 + S+
(22— 224 51(2) 5, —233) + 5223, — ZD)].
Next, we can construct the characteristic equation whose coefficients
are [v,(s)) = 1,v,(s}), vy(s;)] and evaluate the signs of v’s at both s; =0
and s, = o. That is,
sign(uy(0)) = 1,
sign(vy(0)) = sign(Z, X — 23)

sign(v,(0)) = sign(-X; — %3),
sign(v,(e0)) = 1,  sign(v;(e0)) = sign(2 + ,),

sign(vy(c0)) = sign(2.3, — 32),
where v;(0) and v;(c0) are the coefficient of the trailing (constant) and

leading term of v;(s;) respectively. Now, we compute V' (0) and V() to
have

1 —sign(—%, — Zy)sign(Z; Z; — 2)

1 —sign(-%, - %
gn(—=; 3)+

Vo= 2 2
1 —sien(2 + = 1 —sign(2 + X,)sign2>, — =?)
V(oo) = 51gn2( ) + 22 2 s

Using the formula F(a,b,c) = V(0) — V(o) together with two basic
properties of sign functions (namely sign(xy) = sign(x)sign(y) and
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sign(y) = 1/sign(y) for any non-zero real numbers x and y), we obtain
the expression of F(a,b,c):

sign(ab(a® + b* — 3ac))[1 + sign(ac(b® — 4ac))]
2
sign(2a? + b% — 2ac)[1 + sign(b? — 4ac)]
+ ) .

The feasibility basis in this case is given by v,(0), v,(0), vy(c0), v;(c0).
We use the factors shown in the expression of F(a, b, c) as our basis in
the feasibility table. The five quantities that constitute the basis are
Q, = ab,Q, = a® + b* — 3ac, Q5 = ac,Q, = b — 4ac, Q5 = 2a° + b*> — 2ac.
Next, we randomize a,b and ¢ uniformly between —100 to 100 and
evaluate the signs of the Q,’s as well as F(a,b,c). We find that there
are only 3 sign combinations that yield F(a,b,c) > 1 and are given by
the feasibility conditions C;,C, and C; shown below

F(a,b,c)=—-

C, C, (e
ab + - -
a* + b — 3ac + + +
ac - - +
b — 4dac + + +
242 + b - 2ac + + +
F(a,b,c) 1 1 2

Once the table is obtained, we start the minimization process of
the number of feasibility conditions. It is clear from columns 1 and 2
above that the sign of Q; does not matter and can be replaced by an X
symbol. This concludes the first minimization step as no two columns
differ by a single sign and we end up with the feasibility conditions
Ciyp={0,>0,0;<0,0,>0,05>0} and C; = {Q; < 0,0, > 0,05 >
0,0, > 0,05 > 0}. For the second minimization step, we focus on
column C;,. We find that the conditional probabilities P(Q, > 0|05 <
0,0, > 0,05 >0) =1, P(Q; < 0]Q, > 0,0, > 0,05 > 0) # 1, P(Q, >
0/Q, > 0,03 <0,05>0)=1and P(Q5 >0[0, >0,0;<0,0, >0) =1,
which implies that the sign of Q,, Q,4, or Qs can be replaced by X in
that column. Then, let us replace the sign of O, by X. Next, we continue
computing the conditional properties that were one but without the
condition Q, > 0. We find that P(Q, > 0|03 < 0,05 > 0) = 1 and
P(Qs > 0|03 < 0,04 > 0) = 1. This implies that we can replace
the sign of Q, or Qs by X. Now, let us replace the sign of Q, by X
and eliminate it from the latter conditional probability to find that
P(Qs > 0|03 < 0) = 1. This time, the sign of O, can be replaced
by X in column C;,,. We repeat the same process with the column
C; and obtain the feasibility table including the 2-step minimization
shown below

Cl CZ C3 Cl+2 C3 Cl+2 C3
ab + - - X - X -
a+b-3a + + + + + X X
ac - - + —_— - + —_— - +
b* — dac + o+ o+ + + X +
282+ b —2ac + + + + + X X
F(a, b,c) 1 1 2 1 2 1 2

From the last step, we conclude that the condition ac < 0 guarantees
exactly one feasible equilibrium point (i.e., F(a,b,c) = 1), while the
condition ab < 0,ac > 0,b> — 4ac > 0 guarantees exactly 2 feasible
equilibrium points (i.e., F(a,b,c) = 2). Note that a special case of this
is the Allee effect model that has the following form (Sun, 2016):

2o (5-1)(-2)

T A K )
-1 o1
:N((—>N2+(—+—)N—l>, 0<A<N<K
AK K2
where a = —-1/AK, b = 1/A+ 1/K and ¢ = -1. It is clear that

the second feasibility condition is satisfied as ab < 0, ac > 0 and
b — 4ac = (A — K)?/(A’K?) > 0 (see Appendix 3 for a minimized
feasibility table of a 2-species system with higher-order terms).
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3. Unfolding links between model parameters

To illustrate additional applications of our methodology, we study
the mathematical relationships between model parameters while satis-
fying feasibility conditions in models that are impossible to solve via
isocline approaches. First, let us consider the simplest 2-species LV
model with type III functional responses (Turchin, 2003) that is im-
possible to solve for the location of the equilibrium points analytically.

—le =N,(r; +a; N +a12—N1N2 )
dt 1+ hN? 6
N _ Ny(ry + ay _le +anN,). (
dt 1+ hN?

Here, the set of model parameters is given by ¥ =
(ry,ry, 41,412, o1, ay, h). The common numerators of the RHS of the
system above, after deleting N| and N, outside the brackets, are given
by
fiIN,Ny) =r| +a; Ny +a;yN Ny +r hN} + a; hN;

[2o(N1. Ny) =ry + anNy +(ay) + r;h)N} + aphNN,.

Upon eliminating N; from both f;(N,N,) and f,(N;,N,), we
obtain Resy, (f;,f,) which is a polynomial of degree 5 in N, and
cannot be solved analytically in closed-form (Abel, 1826). Similarly,
upon eliminating N, from both f,(N;, N,) and f,(N;, N,), we obtain
Resy, (f1, f») that is a polynomial of degree 5 in N; as shown below:

Resy, (fi, f2) =(=a; a3 h*) N} + (—anh’r))N}
+(ajpay; — 2ay1ah + a1zh"2)N13

+(=2ayhr))N? + (ay5ry — ayyag) Ny + (—axr)

2 3 12\A75 2 2 12 2 2 4
ResNl (f1, f2) =(aj,a5,h")N;3 + (Bryay,a5,h™ + 2a,,a7,a5,h) N,

2 2 2
+(aj,a5, a0 +4aj,ay1ahr,

2 2.2 2 3
+3aj,aph°r; +2a 01,05 05, N;
2 2 2 2, .2 123
+(aj,a3,r0 + 2a12a21hr2 + alzh r
2 2
+2a11a22012a21 +4a”022a12a21hr2)N2

2 2 2
+(aypay, a5, +2ayay a3,

+2a12ha”a2]r§ + azzhaz r2)N2

2171
2 2 2 2)

2 3
+(ryay, a3, + a3 1 + hryay ry

r

In other words, the number of roots of f(N,N,) and f,(N,,N,) is
5. Note that the roots of the univariate polynomials Resy, (f}, f>) and
Resy, (f1, f»), upon appropriate pairing of roots of the first polynomial
with the second, are the roots of the system f,(N,,N,) = 0 and
f2(Ny, N,) = 0. Since the roots of either Resy (f, f,) or Resy, (f1, f2)
are unattainable analytically, then the system f,(N;,N,) = 0 and
f>(Ny, N,) =0 is unsolvable analytically.

Next, to find relationships between model parameters, for illustra-
tion purposes, let us consider the parameters ¥ = (r|,r,, a;;, a3, ay) =
0.5,-1.5,1,-1.5,1), and the parameters a,; € [-6,—1] and A € [0.5,4].
In this special case, we find that feasibility (i.e., F(¥) > 1) can only
be satisfied under the single condition v((0,0) < 0. See Appendix
4 for the expression of v,(0,0) written as symmetric sums (i.e., sig-
mas), along with closed forms of the sigmas and derivations. We find
that the feasibility domain generated via solving numerically (using
the software tool PHCLab) the isocline equations (i.e., f{(N{, N,) =
0, f,(N,, N,) = 0) and checking for the feasibility of roots matches the
domain generated by the inequality v,(0,0) < 0 (see Fig. 1A-B). Note
that a,, and h are independent in the model, yet they are bounded by
feasibility.

As a second example, let us consider the LV model with higher-
order interactions that is shown below. This example is the simplest
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ecological 3-species model whose isocline equations are impossible to
be solved analytically as it has five roots (see Appendix 6).

dN

d—tl = N,(ry + a;; Ny + a;aNy +a;3N;y + b Ny N3),

Ny N N N N; + b,N|N. )
T 2(ry + a3 Ny +an Ny +ap N3 + b, N|N3),

dN,

TS = N3(r3 + a3y N| 4+ a3 Ny + az3 N3 + b3 N | N,).

To study the feasibility conditions of this model, we need to consider
the three polynomials inside the brackets. The resultants are shown in
Appendix 6. Let us consider

¥ = (r1,rp,r3, 411, A1, 13, A, A3, 431, 432, A33, by, b)) =
(1.5,-1.5,-1.5,2,-1.5,-1.5,2,-1.5,-1.5,-1,1,1,-1),

where the parameters a,;, € [1,6] (pairwise effect of species 1 on 2)
and b; € [2,5] (higher-order effect on species 3) are restricted. We
find that feasibility (i.e., F(¥) > 1) is satisfied when v((0, ,0) > 0
(see Appendix 6 for more details). Again, for confirmation purposes,
the feasibility domain generated by solving numerically the isocline
equations (i.e., f;(N;, N, N3) = 0 for i = 1,2,3) using the software
tool PHCLab and checking for the feasibility of roots matches the
domain generated by the inequality vy(0,,0) > 0 (see Fig. 1C-D).
This illustrates that pairwise and higher-order interactions can be non-
trivially linked and their incorporation into ecological models must be
done with caution.

4. Discussion

Feasibility conditions can be obtained analytically by solving the
isocline equations for species abundances N* = (N],NJ,..., NI
before imposing the positivity condition N* > 0. This approach
works well for LV model, whose isocline equations is the linear sys-
tem r + AN* = 0 and whose feasibility conditions are given by
N* = —A7!r > 0 (Goh, 1976; Volterra and Brelot, 1931; Saavedra
et al., 2020). However, when the isocline equations have five or more
complex roots, the system of polynomial equations cannot be solved
analytically. This is a consequence of Grobner elimination theorem
combined with Abel’s impossibility theorem (Adams et al., 1994; Abel,
1824, 1826). Specifically, from the elimination theorem, in any system
of polynomial equations which has @ complex roots and n variables,
any n — 1 variables can be eliminated from the system to obtain a
univariate polynomial with the remaining variable of degree at least
O. The roots of this univariate polynomial are all the correspondent
coordinates of the roots of the isocline equations (Adams et al., 1994).
This is a generalization of Gaussian elimination, which can eliminate
any n — 1 variables from the system leaving a single linear univariate
polynomial in the remaining variable to be solved (Lazard, 1983).
However, from Abel’s impossibility theorem, it is impossible to solve
a univariate polynomial in terms of radicals (i.e., analytically) (Abel,
1824, 1826) if this polynomial has five or more roots. For instance,
this number of roots is quickly reached by adding Type III functional
responses to a 2-species LV model or adding higher-order interactions
to a 3-species LV model (AlAdwani and Saavedra, 2019).

In this work, we have proposed a general formalism to analytically
obtain the feasibility conditions for any multivariate, polynomial, popu-
lation, dynamics model of any dimensions without the need to solve for
the equilibrium locations. We found that feasibility conditions are en-
tirely functions of symmetric sums of the roots of the isocline equations.
Unlike the location of the roots, which cannot be obtained analytically,
symmetric sums of the roots can be obtained for any polynomial system
regardless of order and dimension. We have also created an analytical
formula of the number of feasible roots in the system, which are func-
tions of signs of ©2" quantities (i.e., the v’s evaluated at the feasibility
box whose coordinates compose of zeros and infinities). We have shown
how to create a feasibility table (i.e., matrix) whose columns are the
individual feasibility conditions of the model. We have then provided
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Fig. 1. Unfolding mathematical links between model parameters. Panels A-B show the mathematical link between a pairwise interaction a,, and the constant 4 while maintaining
feasibility in a modified Lotka-Volterra model with type III functional responses (see main text), where (r|,r,,a,,,a,,a,) = (0.5,—-1.5,1,-1.5,1), a,; € [-6,—1] and h € [0.5,4].
The panels show the sign of v,(0,0) and the number of feasible roots. Note that v,(0,0) is the constant or trailing term of the characteristic equation (i.e., coefficient of 1°)
evaluated at s; =0 and s, =0 (the s’s are the variables in the symmetric matrix .§ = W AW, see Methodology). The number of feasible roots is obtained by solving the isocline
equations numerically using the software package PHCLab and checking for the feasibility of roots. Both panels confirm that the number of feasible roots is greater than zero when
05(0,0) < 0. Hence, the theoretical relationship is given by F(¥) = -2 « sign(v,(0,0)). Panels C-D show the mathematical link between a pairwise interaction a,, and a higher-order
interaction b, while maintaining feasibility in a modified Lotka-Volterra model with higher-order interactions (see main text), where (r|,ry,r3,a,,,a,5. 03,05, 03,03, a3, a33, by, by)
=(1.5,-15,-15,2,-15,-1.5,2,-1.5,-1.5,-1,1,1,-1), a5, € [1,6] and b; € [2,5]. The panels show the sign of v,(0,0,0) and the number of feasible roots. Note that v,(0, ,0) is
the coefficient of the highest power in s, in the trailing term of the characteristic equation (see Methodology). Again, the number of feasible roots is obtained by solving the
isocline equations numerically using the software package PHCLab and checking for the feasibility of roots. Both panels confirm that the number of feasible roots is positive when

05(0, 00, 0) > 0. Hence, the theoretical relationship is given by F(¥) = 2 s sign(v,(0, 0, 0)).

a minimization process that can combine feasibility conditions into
fewer ones and remove redundant quantities. Of course, the expressions
involved in the inequality are complicated, nevertheless, they can be
significantly simplified by sophisticated factorization.

Additionally, we have shown how to provide feasibility conditions
under parameter restrictions. We have shown that by restricting param-
eters, the feasibility domain can be described by a single inequality
only. In recent years, the topic of feasibility has been focused on
relationships between parameters while maintaining feasibility (Saave-
dra et al.,, 2017). Using simulations (i.e., solving for the location of
the isocline equations numerically then checking for the feasibility
of roots) one can plot the feasibility domain for one, two, or three
parameters at most while fixing the remaining ones. However, it is
impossible to generate a four-dimensional plot that the human eye can
capture. Also, it is impossible to find an analytical expression of the
feasibility domain using numerical simulations. Of course, someone
can find an approximate formula of the feasibility domain, neverthe-
less, there is no unique formula and different approximations may
lead to different interpretations of how parameters are linked while
maintaining feasibility. Following our proposed methodology, we can
determine mathematically how any number of parameters are linked
by describing polynomial inequalities that are functions of those free-
parameters while maintaining feasibility: a task that is impossible to

perform with simulations. This is an important property to consider in
ecological modeling given that mathematical expressions are frequently
formed assuming that parameters are independent of each other. How-
ever, once one imposes mechanisms or constraints, such as feasibility,
these parameters can be linked and break the conclusions based on
independent parameters (Song et al., 2019).

Our methodology provides a fast method for plotting feasibility
domains, computing the number of feasible roots, and displaying feasi-
bility conditions. For example, for our 3-species example with higher-
order interactions, plotting the feasibility domain by solving the iso-
cline equations numerically using the software package PHCLab (Guan
and Verschelde, 2008) took more than 1.5 h to compute the number of
feasible points with 2!° trials. Instead, using our methodology (and code
which involves a naive implementation of our methodology without
parallelization), it took less than 11.5 min to run the analysis, and
a few seconds to plot the feasibility domain for different ranges of
the free parameters using the same number of trials. Moreover, when
we change the ranges of our free parameters a,, and b;, we only
need a few seconds to run our code, whereas we need to repeat the
entire 1.5 h with the traditional numerical technique. With a clever
implementation of the methodology and parallelizing the code (since
the entire methodology can be parallelized), a faster computation of
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the feasibility domain/conditions and links between parameters can be
achieved.

One significant drawback of the methodology is that it requires the
handling of large symbolic expressions. Thus, careful implementation
is required to run a successful code using the presented methodology.
For example, when we created the generating function G, we did not
multiply the determinant of the eliminant 7' and the determinant of the
Jacobian of the isocline equations J, divided them by the product of all
resultants, and took the series expansion of the final polynomial quo-
tient. Instead, we took the series expansion of each resultant reciprocal
separately, wrote T'J as multivariate polynomial in species abundances,
found the coefficients of each term, and multiplied it by a single appro-
priate term in the series expansion of each resultant reciprocal to find
the X’s. However, it is always possible to handle such large expressions
as the entire methodology can be parallelized. The second drawback
of the methodology is its susceptibility to numerical errors. In our
3-species application example, our code gives as output non-integer val-
ues of the number of feasible roots in the system. Nevertheless, in our
example we rectified it quickly by assigning non-integer values to their
closest integers (see Appendix 6). Remember that the methodology
requires only checking signs of large symbolic expressions, and we do
not need them to be computed accurately. Nevertheless, such quantities
can be computed more accurately by following several techniques such
as increasing precision of numeric calculations. Similarly, cancellation
errors can be reduced by combining positive numbers and negative
ones together, and then performing a single subtraction. Round-off and
truncation errors can also be avoided when ratios are computed. For
example, instead of computing (10°° — 10°1)/10° by computing (10% —
10°") then dividing the result by 10%, it is better to add 10%0/10% =1
with —10°1/10° = —10 as the latter reduces round-off errors in large
computations (Trefethen and Bau III, 1997). Of course, there are other
techniques to reduce such errors, nevertheless, it is important to think
about numerical errors in the implementation process.

Previous work has already provided foundational knowledge on
species coexistence from microbial to plant-pollinator systems by fo-
cusing on how the behavior of such systems change as a function
of both model choice and parameter values (Fort, 2018; Deng et al.,
2021; Yacine and Loeuille, 2022; Aliyu and Mohd, 2022). However,
this work has had to rely either on relatively simple models or nu-
merical solutions, limiting our understanding of how the behavior of
these systems will be affected by adding much more complex dynam-
ics, increasing the dimension of the systems, or taking into account
the entire parameter space. In this line, our work has unlocked the
opportunity to increase our systematic understanding of how more
complex models and the full set of parameters affect our conclusions
of species coexistence. Indeed, it has been shown that the existence of
a feasible solution is a necessary condition for persistence and perma-
nence under equilibrium dynamics in models of the form dN,/dt =
N, f;(N)/q;(N) (Hofbauer and Sigmund, 1998; Stadler and Happel,
1993). Similarly, it has been proved that this type of models cannot
have bounded orbits in the feasibility domain without a feasible free-
equilibrium point (Hofbauer and Sigmund, 1998). In fact, we cannot
talk about asymptotic or local stability without the existence of a
feasible equilibrium point (AlAdwani and Saavedra, 2020). Hence,
coexistence, stability, or permanence domains are subsets of the feasi-
bility domain and their conditions are effectively part of the feasibility
conditions obtained in this work.
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