

Draft Metagenome-Assembled Genomes from Methane-Rich Echo Lake, Montana

Abigail M. Ross,^a Logan M. Peoples,^a Evan M. Bilbrey,^a Matthew J. Church^a

^aFlathead Lake Biological Station, University of Montana, Polson, Montana, USA

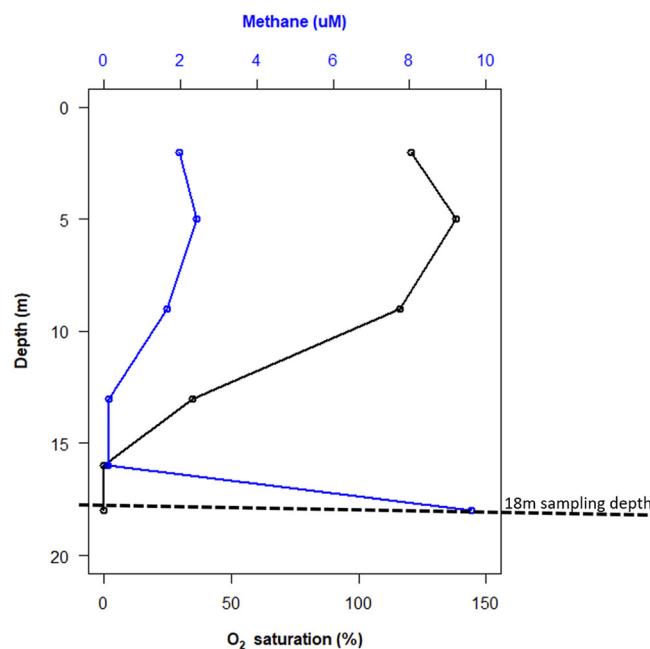
ABSTRACT Five metagenome-assembled genomes were obtained from the bottom waters of Echo Lake, Montana. These genomes suggest that lineages involved in methane oxidation and sulfur cycling flourish near the steep oxygen and methane chemocline in Echo Lake.

Echo Lake is a groundwater-fed pothole lake in the Flathead Valley in northwest Montana (1, 2). The lake has no outlet, leading to nutrient accumulation and anoxic bottom waters. A methane chemocline is present near the oxic/anoxic boundary (Fig. 1), indicating rapid consumption of methane in the water immediately overlying the bottom waters and sediments. We investigated the microbial community associated with this strong methane gradient by performing metagenomic sequencing.

Water was collected from Echo Lake (48.1228N, 114.0360W) on 10 July 2018. Samples were obtained from a depth of 18 m, 3 m above the bottom, using a discrete-depth Van Dorn bottle. The temperature upon collection was 4.5°C. Samples were stored in a cooler prior to processing in the laboratory. Approximately 1 L was filtered onto a 25-mm-diameter, 0.2-μm polyethersulfone filter (SUPOR; Pall Co., NY, USA), which was stored at –80°C. Genomic DNA was extracted using a MasterPure DNA purification kit (Lucigen, WI, USA). DNA libraries were prepared using a DNA preparation kit (Illumina, San Diego, CA, USA), and 150-bp paired-end reads were sequenced on a NextSeq 2000 system at the Microbial Genome Sequencing Center (MiGS) (Pittsburgh, PA). The number of raw reads obtained was 13,360,752. Raw reads were quality trimmed using Trimmomatic v0.39 (3) with the parameters LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:125. Trimmed reads were assembled using metaSPAdes v3.14.1 (4) using default parameters. The depth of coverage of the assembled contigs was estimated using Bowtie2 v2.3.5.1 (5) and SAMtools v1.10 (6). Genome bins were obtained using MetaBAT 2 v2.11.1 (7), with contigs of >5 kb being retained. The size and quality of each genome bin were evaluated using QUAST v5.0.2 (8) and CheckM v1.0.13 (9) with the –reduced_tree flag. We report genome bins with >50% completeness and <10% contamination, representing medium-quality draft genomes (10). Genomes were named taxonomically using GTDB-tk (11), and closely related strains were identified using orthoANIu (12). General features of each genome can be found in Table 1. Functional annotation was performed using Prokka v1.14.6 (13), GhostKOALA (14), KeggDecoder (15), and the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (16).

The presence of microbes related to *Chlorobium*, *Methylotenera*, and *Rhodoferax* within Echo Lake is consistent with communities in other old, stratified lakes in which sulfur cycling and methylotrophy is prevalent (17). The genome related to the genus *Methylovulum* contains both particulate and soluble methane monooxygenase genes; this suggests that this genus is a major contributor to the steep methane chemocline and plays a vital role in regulating methane efflux from Echo Lake. No methanogens were found in the metagenome, suggesting that methane was likely produced in the sediments or introduced with groundwaters. Hence, future work should differentiate these potential sources of methane to the near-bottom waters of the lake.

Editor Julia A. Maresca, University of Delaware
Copyright © 2022 Ross et al. This is an open-access article distributed under the terms of the [Creative Commons Attribution 4.0 International license](https://creativecommons.org/licenses/by/4.0/).


Address correspondence to Logan M. Peoples, logan.peoples@flbs.umt.edu.

The authors declare no conflict of interest.

Received 17 November 2021

Accepted 14 January 2022

Published 3 February 2022

FIG 1 Depth profile of methane concentrations in Echo Lake, Montana, collected 22 July 2021. High methane concentrations were measured at the deepest depths within the anoxic zone. Discrete water samples for methane analyses were collected using a Van Dorn bottle, subsampled into crimp-sealed serum bottles, and amended with 8 M NaOH. Methane concentrations were determined by gas chromatography (model 8610C; SRI Instruments). Oxygen concentrations were measured using a Hydrolab (OTT HydroMet).

Data availability. This genome sequencing project has been deposited in GenBank under the BioProject accession number [PRJNA761446](#). The raw reads are available under the SRA accession number [SRR15811987](#).

ACKNOWLEDGMENTS

We thank the 2018 and 2021 Aquatic Microbial Ecology summer course students at the University of Montana Flathead Lake Biological Station for collecting samples used in this project. We thank John Dore and Kate Evans for helpful scientific input.

We are grateful for funding from Kirk and Anne Hubbard and the National Science Foundation (grant DEB 1951002).

TABLE 1 Genomic features of the five metagenome-assembled genomes obtained from Echo Lake

Parameter	Data for genome for:				
	<i>Rhodoferax</i> sp. strain Echo1	<i>Chlorobium</i> sp. strain Echo2	<i>Methylotenera</i> sp. strain Echo3	<i>Methylovulum</i> sp. strain Echo5	" <i>Candidatus</i> <i>Contendobacter</i> " sp. strain Echo7
Completeness (%)	82.44	95.88	69.31	74.88	78.21
Contamination (%)	0.76	0	0	0.01	0.65
Coverage (×)	26	17	11	9	9
Length (Mbp)	3.07	2.17	1.25	1.99	2.69
No. of contigs	248	128	83	173	233
<i>N</i> ₅₀ (bp)	14,913	19,992	18,723	13,127	13,745
GC content (%)	60.38	47.85	49.5	41.33	58.36
No. of genes	2,946	2,101	1,270	1,888	2,507
NCBI assembly accession no.	GCA_020035295.1	GCA_020035305.1	GCA_020035195.1	GCA_020035215.1	GCA_020035205.1
Related strain (NCBI assembly accession no., ANI)	<i>Comamonadaceae</i> bacterium PowLak16_MAG17 (GCA_007280205.1 , 98.44)	<i>Pelodictyon</i> <i>phaeoclasthariforme</i> BU-1 (GCA_000020645.1 , 82.08)	<i>Methylotenera</i> sp. strain Baikal-deep-G82 (GCA_009693125.1 , 74.47)	<i>Methylococcaceae</i> bacterium PowLak16_MAG1 (GCA_007280895.1 , 99.15)	" <i>Candidatus</i> <i>Competibacteraceae</i> " bacterium CPB_P15 (GCA_003989085.1 , 81.16)

REFERENCES

- Walker-Smith K. 1995. Environmental and biological factors limiting reproduction recruitment, and growth of largemouth bass in Seeley and Echo Lakes, Montana. MS thesis. University of Montana, Missoula, MT.
- Rose J. 2018. Three-dimensional hydrostratigraphic model of the subsurface geology, Flathead Valley, Kalispell, Montana. Montana Bureau of Mines and Geology Open-File Report 703. Montana Bureau of Mines and Geology, Billings, MT. <http://mbmg.mtech.edu/pdf-open-files/mbmg703.pdf>.
- Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30:2114–2120. <https://doi.org/10.1093/bioinformatics/btu170>.
- Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. *Genome Res* 27:824–834. <https://doi.org/10.1101/gr.213959.116>.
- Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* 9:357–359. <https://doi.org/10.1038/nmeth.1923>.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25:2078–2079. <https://doi.org/10.1093/bioinformatics/btp352>.
- Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. *PeerJ* 7:e7359. <https://doi.org/10.7717/peerj.7359>.
- Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. *Bioinformatics* 29:1072–1075. <https://doi.org/10.1093/bioinformatics/btt086>.
- Parks DH, Imelfort M, Skennerton CT, Hugenholz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res* 25:1043–1055. <https://doi.org/10.1101/gr.186072.114>.
- Bowers RM, Kyripides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Elloe-Fadros EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becroft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu W-T, Baker BJ, Ratei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Genome Standards Consortium, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholz P, Woyke T. 2017. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. *Nat Biotechnol* 35:725–731. <https://doi.org/10.1038/nbt.3893>.
- Chaumeil P-A, Mussig AJ, Hugenholz P, Parks DH. 2019. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. *Bioinformatics* 36:1925–1927. <https://doi.org/10.1093/bioinformatics/btz848>.
- Yoon S, Ha S, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. *Antonie Van Leeuwenhoek* 110:1281–1286. <https://doi.org/10.1007/s10482-017-0844-4>.
- Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30:2068–2069. <https://doi.org/10.1093/bioinformatics/btu153>.
- Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. *J Mol Biol* 428:726–731. <https://doi.org/10.1016/j.jmb.2015.11.006>.
- Graham ED, Heidelberg JF, Tully BJ. 2018. Potential for primary productivity in a globally-distributed bacterial phototroph. *ISME J* 12:1861–1866. <https://doi.org/10.1038/s41396-018-0091-3>.
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. *Nucleic Acids Res* 44:6614–6624. <https://doi.org/10.1093/nar/gkw569>.
- Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DWR. 2019. Geomicrobiology of the carbon, nitrogen, and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. *Environ Microbiol* 21:3927–3952. <https://doi.org/10.1111/1462-2920.14743>.