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ABSTRACT Five metagenome-assembled genomes were obtained from the bottom
waters of Echo Lake, Montana. These genomes suggest that lineages involved in
methane oxidation and sulfur cycling flourish near the steep oxygen and methane
chemocline in Echo Lake.

Echo Lake is a groundwater-fed pothole lake in the Flathead Valley in northwest
Montana (1, 2). The lake has no outlet, leading to nutrient accumulation and

anoxic bottom waters. A methane chemocline is present near the oxic/anoxic
boundary (Fig. 1), indicating rapid consumption of methane in the water immedi-
ately overlying the bottom waters and sediments. We investigated the microbial
community associated with this strong methane gradient by performing metage-
nomic sequencing.

Water was collected from Echo Lake (48.1228N, 114.0360W) on 10 July 2018. Samples
were obtained from a depth of 18 m, 3 m above the bottom, using a discrete-depth Van
Dorn bottle. The temperature upon collection was 4.5°C. Samples were stored in a cooler
prior to processing in the laboratory. Approximately 1 L was filtered onto a 25-mm-diame-
ter, 0.2-mm polyethersulfone filter (SUPOR; Pall Co., NY, USA), which was stored at 280°C.
Genomic DNA was extracted using a MasterPure DNA purification kit (Lucigen, WI, USA).
DNA libraries were prepared using a DNA preparation kit (Illumina, San Diego, CA, USA),
and 150-bp paired-end reads were sequenced on a NextSeq 2000 system at the Microbial
Genome Sequencing Center (MiGS) (Pittsburgh, PA). The number of raw reads obtained
was 13,360,752. Raw reads were quality trimmed using Trimmomatic v0.39 (3) with the pa-
rameters LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:125. Trimmed reads were
assembled using metaSPAdes v3.14.1 (4) using default parameters. The depth of coverage
of the assembled contigs was estimated using Bowtie2 v2.3.5.1 (5) and SAMtools v1.10 (6).
Genome bins were obtained using MetaBAT 2 v2.11.1 (7), with contigs of .5 kb being
retained. The size and quality of each genome bin were evaluated using QUAST v5.0.2 (8)
and CheckM v1.0.13 (9) with the --reduced_tree flag. We report genome bins with .50%
completeness and ,10% contamination, representing medium-quality draft genomes
(10). Genomes were named taxonomically using GTDB-tk (11), and closely related strains
were identified using orthoANIu (12). General features of each genome can be found in
Table 1. Functional annotation was performed using Prokka v1.14.6 (13), GhostKOALA (14),
KeggDecoder (15), and the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (16).

The presence of microbes related to Chlorobium, Methylotenera, and Rhodoferax within
Echo Lake is consistent with communities in other old, stratified lakes in which sulfur cy-
cling and methylotrophy is prevalent (17). The genome related to the genus Methylovulum
contains both particulate and soluble methane monooxygenase genes; this suggests that
this genus is a major contributor to the steep methane chemocline and plays a vital role in
regulating methane efflux from Echo Lake. No methanogens were found in the metage-
nome, suggesting that methane was likely produced in the sediments or introduced with
groundwaters. Hence, future work should differentiate these potential sources of methane
to the near-bottom waters of the lake.
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Data availability. This genome sequencing project has been deposited in GenBank
under the BioProject accession number PRJNA761446. The raw reads are available
under the SRA accession number SRR15811987.
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FIG 1 Depth profile of methane concentrations in Echo Lake, Montana, collected 22 July 2021. High
methane concentrations were measured at the deepest depths within the anoxic zone. Discrete water
samples for methane analyses were collected using a Van Dorn bottle, subsampled into crimp-sealed
serum bottles, and amended with 8 M NaOH. Methane concentrations were determined by gas
chromatography (model 8610C; SRI Instruments). Oxygen concentrations were measured using a
Hydrolab (OTT HydroMet).

TABLE 1 Genomic features of the five metagenome-assembled genomes obtained from Echo Lake

Parameter

Data for genome for:

Rhodoferax sp. strain
Echo1

Chlorobium sp. strain
Echo2

Methylotenera sp. strain
Echo3

Methylovulum sp. strain
Echo5

“Candidatus
Contendobacter” sp.
strain Echo7

Completeness (%) 82.44 95.88 69.31 74.88 78.21
Contamination (%) 0.76 0 0 0.01 0.65
Coverage (�) 26 17 11 9 9
Length (Mbp) 3.07 2.17 1.25 1.99 2.69
No. of contigs 248 128 83 173 233
N50 (bp) 14,913 19,992 18,723 13,127 13,745
GC content (%) 60.38 47.85 49.5 41.33 58.36
No. of genes 2,946 2,101 1,270 1,888 2,507
NCBI assembly accession

no.
GCA_020035295.1 GCA_020035305.1 GCA_020035195.1 GCA_020035215.1 GCA_020035205.1

Related strain
(NCBI assembly
accession no., ANI)

Comamonadaceae
bacterium
PowLak16_MAG17
(GCA_007280205.1,
98.44)

Pelodictyon
phaeoclathratiforme BU-1
(GCA_000020645.1, 82.08)

Methylotenera sp. strain
Baikal-deep-G82
(GCA_009693125.1,
74.47)

Methylococcaceae
bacterium
PowLak16_MAG1
(GCA_007280895.1,
99.15)

“Candidatus
Competibacteraceae”
bacterium CPB_P15
(GCA_003989085.1,
81.16)
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