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1. Introduction
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The quantum differential equation of the complex projective space P"-1is an ordinary
differential equation

(1.1)

i
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where the unknown function I(p) takes values in the cohomology algebra H*(P"-1;C) and x*p
: H*(Pn-1,C) —» H*(P-1,C) is the operator of quantum multiplication by the first Chern class of
the tautological line bundle over P"-1. The differential equation has two singular points: a
regular singular point at p = 0 and an irregular singular point at p = oo.

The quantum differential equation has the following remarkable structures.

The specially normalized asymptotics of its solutions at p = 0 can be described in terms of
the characteristic gamma class of the tangent bundle of Pr-1. This description of the
asymptotics by B.Dubrovin in [D1] was the first example of a gamma theorem, which is
proved now in many examples and is known as the gamma conjecture, see [D1, D2, KKP, GG,
GI, GZ, CDG, TV3].

The Stokes matrices of the quantum differential equation at the irregular singular point p
= oo are described in terms of the braid group action on the set of full collections of
exceptional objects in the derived category Der?(Coh(P"-1)) of coherent sheaves on Pr-1. That
phenomenon was predicted by B.Dubrovin in [D1] for Fano varieties and was proved for Pr-1
by D.Guzzetti [Gu]. That braid group action is described with the help of a certain non-
symmetric bilinear form on the K-theory algebra VAN &1

In this paper we consider the equivariant quantum differential equation of the projective
space P"-1and establish similar results.

In the equivariant case the torus T = (C*)" acts on P"! and the quantum differential

i
(p : .r'r-:f-,.i_z)fi_p. Zloeean ) =0
idp ,

equation takes the form

(1.2)

where z = (z3,..,Zn) are equivariant parameters. We also introduce a system of the gkZ
difference equations

(1.3) I(p,z1,--,Zi = 1,...,2n) = =Ki(p,21,...,Zn) (D, 21,...,Zn), i=1,.,n

where Ki(p,z1,..,zn) are suitable linear operators. The joint system of the equivariant quantum
differential equation and gKZ difference equations is compatible. The space of solutions of
this system is a module over the ring of scalar functions in z3,....zn, 1-periodic with respect to
each of the variables zy,...,zn.

We prove an equivariant gamma theorem, which describes the asymptotics of solutions at
p = 0 of the equivariant quantum differential equation in terms of the equivariant
characteristic gamma-class of the tangent bundle of P-1, see Theorem 4.3.

We describe the Stokes bases of the equivariant quantum differential equation at p = oo.
For that we identify the space of solutions of the joint system of equations (1.2) and (1.3)
with the space of the equivariant K-theory algebra Kr (P"-1,C). We introduce a sesquilinear
form on Kr (Pr-1,C), exceptional bases of *1{ /™" g rl‘:), a braid group action on the exceptional
bases, and describe the Stokes bases in terms of that braid group action, see Theorem 7.1.
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To prove these results we use integral representations for solutions of the joint system of
equations (1.2) and (1.3) obtained in [TV3]. In [TV3] we constructed g-hypergeometric
integral representations for solutions of the joint systems of equivariant quantum
differential equations and associated gkZ difference equations for the cotangent bundle T *Fa
of a partial flag variety Fi. In a suitable limit those solutions become solutions of the
corresponding equations for the partial flag variety F,. In this paper we use the special case
of Fa= Pn-1,

The important role in this paper is played by the identification of the space of solutions of
the joint system of equations (1.2) and (1.3) with the space of the K-theory algebra Kr(P*-1,C).
This identification also comes from [TV3]. Earlier examples of such an identification see in
[TV1, TV2].

We would like to stress that the equivariant case is simpler than the corresponding
nonequivariant case. The equivariant case is more rigid because, in addition to the quantum
differential equation, we also have the compatible system of difference equations, and
therefore there are less problems with choices of normalizations of solutions.

The paper is organized as follows. In Section 2 we introduce the equivariant cohomology
and K-theory algebra of P"-1. In Section 3 we introduce the equivariant quantum differential
equation and gKZ difference equations. In Section 4 we describe the integral representations
for solutions and asymptotics of solutions at p = 0. In Section 5 we discuss asymptotics of
solutions at p = oo, introduce Stokes bases in the space of solutions. In Section 6 we introduce
exceptional bases in the space of solutions and a braid group action on the set of exceptional
bases. In Section 7 we describe the Stokes bases of the equivariant quantum differential
equation at p = co. OQur proofs in Section 7 are similar to the corresponding proofs in [Gu].

The authors thank Giordano Cotti, Alexander Givental, and Richard Rima'nyi for many
helpful discussions.

2. Projective space

2.1. Equivariant cohomology. For n > 2, let P"-1be the projective space parametrizing one-
dimensional subspaces F c Cn.

Let {u1,.,un} be the standard basis of C. For I € {1,..,n}, let pti € P*-1 be the point
corresponding to the coordinate line spanned by u;. The complex torus T"acts diagonally on
Cn, and hence on P-1. The points pt;, I = 1,..,n, compose the fixed point set.

We consider the equivariant cohomology algebra Hr:(P-1;C). Denote by x the equivariant
Chern root of the tautological line bundle L over P»-1 with fiber F . Denote by y = (y1,....yn-1)
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the equivariant Chern roots of the vector bundle over P»-1 with fiber C"/F . Denote by z =
(z1,..,zn) the Chern roots corresponding to the factors of the torus 77. Then

Hya(P5C) = Cla, 2] [([] (= - =)
2.1) =

n—I

= Clz,y, z]> 'J;’{(u -H_H{r: Y HEH 1}

j=1 a=1
- J

where C[x,y,z]51is the algebra of polynomials in x,y,z symmetric in the variables ys,...,, yn-1, and

the isomorphism of the first quotient to the second one sends an element f{x,z) of the first
quotient to the element f{x,z) of the second.

The cohomology algebra Hr.(P"1;C) is a module over H7-ipi: C) — Clz].

2.2. Symmetric functions. Consider the algebra Clz*'] = Clzi. ..., E’_,j‘] of Laurent
polynomials and its elements
(2.2) ex(2)= X k=1,.,n,
Zir..Li,
16i1<--<ik6n
h(2) = X i1 Znin, k € Z>0.
Z1
i1>0,...,in>0 [1+...+in=k

Puteo=1, ho=1. Then

(2.3) X(-1) hi(2)ex-i(2) = 0,

i=0
For f{Zi,..,7) € C[z£\] denotef (Z ') = f(Z; ... . Z1).

2.3. Equivariant K-theory. Consider the equivariant K-theory algebra Kr.(P"-1;C). We have

n

(2.4) K1a(Pn-1,C) = C[X+1,Z+1].DY (X - Za)E.

a=1

Here the variable X corresponds to the tautological line bundle L over Pr-1; the variables

o , TR 1ol
Z4,..,Zn are the equivariant parameters corresponding to the factors of /™" C X Z% isthe
algebra of Laurent polynomials in X, Z3,...,Zn.

The algebra K7:(P"-1,C) is a module over Kr:(pt;C) = C[Z*1].

We have a map
p ot Kpo (PP LC) = Kpo (PP LC), fIX.Z2) fIX 12 :j’
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which sends the class of a vector bundle to the class of the dual vector bundle.
The map to a point Y : P-1 - pt gives us the push-forward map ¥« : Km.(P"-1,C) - C[Z*1]
defined by the formula
AX. Z)

. - f(Za; Z) -
v f(X, Z) = : - = — ) Resy_z, —5—
(25) uzl_; l[J:?lErl(J - /"I:‘I!-"II"("I'I,.J-}I HZ_: o \l' l[_]l=| I-.]' - ‘ll" -"l'/;!JII

The push-forward map - gives us a symmetric bilinear form on Kr.(P"-1,C) defined by the

formula (f,g) = ¥«(fg). We are interested in its non-symmetric sesquilinear version, (2.6)

n—I
n : -
H.J’ 1 "{.-‘

N IELEN D) S X2 6 2)
a=1 l_[.ff*f(l - 'zij.-":lz'-'.:l e X l_[:l—l Il - zﬂa ."Ilar,]

Alf, g) U X" f)yg)

H—I

Lemma 2.1. For i,j € Z, we have A(X',X)) = hj-i(2) ifi 6, and A(X,X) =0 ifj<i<j+n.

3. Quantum equivariant differential equation and gKZ difference
equations

3.1. Quantum multiplication. In enumerative geometry the
multiplication in the equivariant cohomology algebra Hr.(P-1,C) is
deformed. The deformed quantum multiplication depends on the
quantum parameter p and equivariant parameters z. The quantum
multiplication is determined by the C[z]-linear operator

wkyy o Hyo(P"1C) — Hya (P71, C)

of multiplication by the generator® & (1™ g ©). In the basis {1,x,..,x-1}, we have
i At .

= 1

I ‘hy
i *I,_z.r“_l p+a P+ Z{—l};_lrﬂ:’z:l_.l"

where ei(z) are the elementary symmetric functions in z .3
We also use the basis {g1,...,gn},

amatl , and gn=1

In this basis we have

3 These formulas were explained to us by A.Givental
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X *pzQi=Zigi+ gi-1, [ = 2,..,N, X *pzg1= Z1g1
+ pgn.

3.2. R-matrices and gKZ operators. For g,b € {1,..,n}, a 6= b, define
a C[z]-linear operator

Rap(u) : Hra(P"-1,C) = Hrm:(P1,0),
depending on u € C and called the R-matrix, by the formula
Rab(u)gi= gi, i6=a,b,
Rav(u)gb = ga, Rav(u)ga=gb + uga.
These R-matrices satisfy the Yang-Baxter equation
Rab(u = V)Rac(u)Rbc(v) = Rbe(V)Rac(u)Ran(u - v),
for all distinct a,b,c, and the inversion relation
Rab(u)Rba(-u) = 1.
Define the operators Ej,.., En such that
Eigj= 6ijgi.
Define the gKZ operators Kj,..., Kn by the formula
Ki= Riji-1(zi - zi-1- 1)...Ri1(zi = z1 = 1)p-EiRin(zi — Zn)...Rii+1(zi — zi+1).
3.3.Isomorphisms 0;.. The basis {g1,..,gn} allows us to define the isomorphisms 9;,, i =1,..,n,
of the vector spaces,
0i(z,.z2) : Hr(Pn-1;C) | (z1,2) = H(Pn-1;C)| (21,2 1,.20) (%, 21, Zn) 7= Gi(X,21,...,Zi =
1,..,zn),j = 1,.,n.

Remark. Let T *Pr-1be the cotangent bundle of P"-1. The elements g1,..,gn €

Hr.(Pr-1,C) are the limits of the stable envelopes for T *Pn-1, in the limit when the cotangent
bundle T *Pr-1turns into the projective space P*-1. See [RTV] on the stable envelopes for the
cotangent bundle T *Pn-1, see [GRTV, Section 7] and [TV3, Section 11.4] on this limit. The
cotangent bundle of the projective space is an example of a quiver variety. Stable envelopes
were introduced in this generality by Maulik and Okounkov in [MO] together with the
systems of equivariant quantum differential equations and compatible difference equations
generalizing the gkZ equations.

3.4. Quantum differential equation and gKkZ difference equations. The equivariant
quantum differential equation is the differential equation
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I|I i \
(3.1) (“F:'p .r'*,-;,z) Ip, 21 ee s 2n)

The system of the gKZ difference equations is the system of difference equations

]

(3.2) I(p,z1,..,zi = 1,...,zn) = =[Bi; ° Ki(p,21,...,2n)|1(p,21,...,Zn), i=1,..,n

In these equations the unknown function I(p,z) takes values in the cohomology algebra
Hr:(P"-1,C) extended by functions in p,z.

Theorem 3.1. The joint system of equations (3.1) and (3.2) is compatible.

Proof. The proof is straightforward.

4. Integral representations for solutions

The quantum differential equation (3.1) was solved by A.Givental in [Gi]. In this section we
follow [TV3] and describe the integral representations for solutions of the joint system of
equations (3.1) and (3.2).

Notice that the space of solutions to the joint system of equations (3.1) and (3.2) is a
module over the ring of scalar functions in zi,..,za, 1-periodic with respect to each of the
variables zi,...,zn.

4.1. Master and weight functions. Consider the variables t,p, z = (z1,...,zn). Define the master
function ® and Hr:(P"-1;C)-valued weight function W by the formulas:

D(t.p.z) = [r:‘.-f_ll_i—n'll!.,]" H [z, — 1), Wit.y) = Hl_“_u_l, — 1)
(4.1) a=1 j=1 ,

where I' is the gamma function.
4.2. Solutions as Jackson integrals. Consider C with coordinate p and C"with coordinates z
= (z1,...,Zn).

Let LObe the p-line C with a cut to fix the argument of p, that is, we delete from C a ray from
0 to oo and fix the argument of p on the complement.

Let L9 be the complement in C"to the union of the hyperplanes
(4.2) za-zp=m forall a,b = 1,..,n, a 6= b,andall m € Z. Set L = L% L9 c C x

Cn. ForJ = 1,..,n define

(4.3) W(p,y,2) = - X Reseyer D(tp,2) W(EY).
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r€z>0

These sums are called the Jackson integrals.

Theorem 4.1 ([TV3]). The functions Wj(p,y,z), ] = 1,..,n, belong to the extension of Hr.(P"~1,C)
by holomorphic functions in p,z on the domain L c C x C". Each of the functions is a solution to
the joint system of equations (3.1) and (3.2). These functions form a basis of solutions.

Proof. The theorem is proved in [TV3, Section 11.4], see formula (11.18) in there. In
particular, the fact that the functions form a basis follows from the determinant formula
(11.23).

In fact, in Section 11.4 the solutions to the joint system of the equivariant quantum
differential equations and associated gKZ equations are described for an arbitrary partial flag
variety.

The solutions Wj(p,y,z), ] = 1,...,n, are called the g-hypergeometric solutions.
4.3. Asymptotics as p — 0 and equivariant gamma theorem.

Corollary 4.2 ([TV3, Formula (11.19)]). As p = 0, we have

i w0
Jipy.z) = (™ TE Gy H 1+ z, L.I}(A.J } Zﬁkw.f.ﬂ.-{y- z))
(4.4) v ait ] k=1 ,

where the equivariant class Ajrestricts to 1 at the fixed point ptjand restricts to zero at all other

fixed points ptiwith I 6= J. The classes Wjk(y,z) are suitable rational functions in z regular on
L0,

n—1 e e L g i i i
Recall that [Li=1 (¥ — =) € Hr ) is the equivariant total Chern class of the
tangent bundle of P*-1 and x € Hrm(P"-1C) is the equivariant first Chern class ci(L) of the

“ n—1 1
tautological line bundle L over P»-1. The function Cpnt = Tici T+ 90 — ) is called the
equivariant gamma class of the tangent bundle of P*-1. Corollary 4.2 can be reformulated as
the following statement.

Theorem 4.3. The leading term of the asymptotics as p — 0 of the q-hypergeometric solutions
(Walpu 20102 is the product of the equivariant gamma class of the tangent bundle of P"-1and

the exponential of the equivariant first Chern class of the tautological line bundle L:
y 5] |.I'.1: -4

[ .‘\-"'—_'.:_:'—rr'l
(4.5) ¢ P) [pn-t This assertion is an equivariant analog of Dubrovin’s

gamma theorem for P-1, see [D1, D2] and also [KKP, GGI, GI, GZ, CDG].

4.4. Solutions as elements of the equivariant K-theory. Introduce new functions:

(46) _f.-_| f Ty —1 r- .:‘E'.I: r_l'_’-—. =1 i Jl ..., -

Denote Z* = (_le,...,Z,n).
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Let Q(X,Z2) € C[X*1,Z¢1] be a Laurent polynomial. Define

olp.y.z) = Z Q(f_;.f]'-lf_;[p.y.z]
(4.7) v J=1 .

Clearly, Wo(p,y,2) is a solution on the domain L c C x C" of the joint system (3.1) and (3.2),
as a linear combination of solutions W)(p,y,z) with coefficients, 1-periodic with respect to
71,..,Zn and independent of p.

Itis also clear that if Q lies in the ideal in C[X*1,Z*1] generated by the polynomial

| Eu), then Wo(p,y,z) is the zero solution. Hence formula (4.7) defines a map Q 7—
Wo(p,y,z) from the equivariant K-theory algebra Kr.(P"-1,C) to the space of solutions on the
domain L to the joint system (3.1) and (3.2).

4.5. Solutions W™, For m € Z, denote by W™(p,y,z) the solution W¢(p,y,z) corresponding to the
Laurent polynomial Q = Xm-1,

Corollary 4.4. For any k € Z, we have

Y (—1)"eni(Z) ¥ (py, z) = 0
(4.8) i=0) ,

where eo(Z'),..,en(Z’) are the elementary symmetric functions in Z'.

Theorem 4.5 ([TV3, Theorem 11.3]). For any k € Z, the solutions Wk*m(p,y,z), m = 0, ..,n - 1,
form a basis of the space of solutions on the domain L of the joint system (3.1) and (3.2).

4.6. Module S;. The space of solutions of the joint system of equations (3.1) and (3.2) is a
module over the algebra of functions in zi,..,zs, which are 1-periodic with respect to each
variable.

We will consider the space Snof solutions of the form
> QulZ)v"(py. z)
(4.9) m=1 , where  Qm(2) € C[Z*1].
This space is a C[Z*1]-module, in which multiplication by Q(Z) is defined as multiplication by
Q(Z"). With this choice of the space of solutions, we allow ourselves to multiply solutions
Wm(p,y,z) only by 1-periodic functions of the form Qm(Z"), where Q(2) € C[Z*1].
By Corollary 4.4, the module S contains all solutions W™(p,y,z), m € Z.

Corollary 4.6. The module Sh contains a basis of solutions of the joint system (3.1) and
(3.2). Moreover, the map 6 : Kt.(P"-1,C) — S», defined by



QUANTUM DIFFERENTIAL EQUATION AND K-THEORY FOR A PROJECTIVE SPACE 11

(4.10) 0: Xm-17—- WYm(p,y,z), mezZ

is an isomorphism of the C[Z*1]-modules.
Proof. The corollary follows from Theorem 4.5.

Using the isomorphism 6 we define a sesquilinear form A on S as the image of the form A
on Kr.(P-1,C).

4.7. Monodromy of the quantum differential equation. The equivariant quantum
differential equation (3.1) has two singular points. A regular singular point at p = 0 and an
irregular singular point at p = co.

Fix (p,z) and increase the argument of p by 2m. The analytic continuation of the solutions
along this curve will produce the monodromy operator M(z) on the space of solutions.

Theorem 4.7. For every m € Z we have M(z) : ¥™(p,y,z) =7 WYm*1(p,y,z). In particular, for any k
€ Z, the matrix of the monodromy operator in the basis {¥**™(p,y,z)|m = 0,

.,n— 1} is the companion matrix of the polynomial X" - e1(Z)X"1 +... + (-1)"en(Z’), that defines
the relation in the equivariant K-theory algebra,

0 0 o . 0 (~1)e(z)?
1 0 o . 0 (-De(2)d
0 1 .
PR, By @@ 00.... 0 - (2)
2
o o . . 1 ei(Z)

Vv
Proof. The shift of the argument of p by 2w leads to multiplication byv e?m-1zof each term

in the sum in (4.3). This means that M(z) : Wi(p,y,z) 7— €27 -12W(p,y,z), and hence M(z) :
Wm(p,y,z) =7 WYm*1(p,y,z) for any m € Z. Now the shape of the monodromy matrix in the basis
{Wkm(p,y,z)|m = 0,..,n — 1} follows from relation (2.4) in the

K-theory algebra.

4.8. Solutions as integrals over a parabola. For A € C, let C(4) c Cbe the parabola with the
following parametrization:

(4.11) C(A) = {(A+s°+svV-1) | seR}
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Given z, take A such that all the points zi,..,zn lie inside C(A4). The integral (4.12) below does
not depend on a particular choice of 4, so we will denote C(4) by C(2).

Lemma 4.8 ([TV3, Lemma 11.5]). For any Laurentpolynomial Q(X,2) we have

[Jl:l!u.y.:z:,:l f ?’]ilil:f p,z) Wit y)dt,
(4.12) v v —
where the integral converges for any (p,z) € L.
In particular, we have

n—I1

) . ] ' o f
"py.z) = ] .f""\' [mto—xv=Tnt "H [z, — 1) H[r,rj—f]u'f.
(413) ¥ IV —L Joiz) a=1

5. Asymptotics as p = ©

5.1. Asymptotics of ¥, We make the change of variables:

jJ=."in. g = I_f,—i:x.-"—h_--‘ e — ”-__‘-'_l_:'_\.r"_—lr'l r20, ._,_Z‘i_:E
W= ¢ Py — 1

(5. 1).
Denote
Lemma 5.1. Form € Z, ¢ €R, and

Mmoo
(5.2) I L
we have the asymptotic expansion asr — o,

{EET}I:II 1)/2 i =il i i n |

(53) W(s"y2) = T € ()T B [ (i —wms) (1+0(1/5))

i=1
where arg(-w™s) = 2mm/n - w - 21, so that |arg(-w™s)| <.

Proof. The proof of this lemma is a modification of the proof of [Gu, Lemma 5]. Consider the
logarithm of the integrand in (4.13),

Tl::r-lylz] — ]-U;_I:(r2.—-,‘__.-'_[rr|.|l:,,—:\_-"'_l.-.-|'p.' H 1—[.__.” . i,-':l H“h o I,-':I)
a=] j=1 )

and apply to Y the Stirling formula

log I'(u) wlogu — w4+ - lm_,l[ miu)+ O u)
asu — oo, |argu| <.

As t - o0 and |arg(-t)| < m, we have
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T = 2nv—1mt — m/—1 u|f+1.rl[]u3_|.r — 2 x.“"—_li,:'jl.f

+ i([:“ —t)log(za —t) — (20— 1) —%]ug(

T
n=1 ot

9 n—1

)j Zluh y; —t) + O(1/t)

The critical point equation of this expression with respect to t yields

i —
t) = 2myv/ -1 v =1 4+ logr — 2my/=1p + O(1/t)
(5.4) log( n B voiy s UL

This implies that for

o .
T < 27 T—2mp < T,

(5.5) d

the function Y(t,y,z) has a critical point tm € C, with respect to t, such that

(5.6) log(-tm) =log(-wms) + O(1/r),
where arg(-w™s) = 2mm/n - w - 2n¢, so that |arg(-w™s)| < m . Inequalities (5.5) give us

relations between m and ¢ which are exactly the inequalities in (5.2). We also have
n—1

Tl: ma 'y = ”..J..- g + Z ]H‘L m‘&| + — ]U‘}_'( “h‘) Z ](pu Il-lrll ;_,'_'” ] f:'l | ”‘.‘I

n=1

7’

7
—Th’myzj = +[’3'{1“l J
df? —wMs

We apply the steepest descent method to the integral in (4.13) as in [Gu, Appendix 1] and
obtain

| m n—1
[ —w™s

sy 2) =

" (—wmg)2ea=r 22 (92 T (s — w™s) (14 O(1/7))

2mn

pra™s (— "”'-‘i_]:}—"”

Vv T (4, —w™s) (1 + O(1/s)),

which proves the lemma.

5.2. Admissible ¢ and m.

Corollary 5.2. If the argument ¢ of s satisfies the inequalities
ko k1

—_ o

(5.7) n T 7 n o, forsome k€zZ

then there are exactly n integers satisfying (5.2). They are k + 1,..,.k + n. Hence each element of

the basis 1V ™ (5" y.z) [m = L..., nj of the space of solutions of the joint system of
equations (3.1) and (3.2) has the asymptotic expansion (5.3).

Corollary 5.3. If ¢ = k/n for some k € Z, then there are exactly n - 1 integers m satisfying (5.2).
Theyarem=k+1,..,k+n-1
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We say that ¢ € R is resonant, if ¢ = k/n for some k € Z.

[J‘i".":' '

Corollary 5.4. Given m € Z, the function ¥\ 5", Y. Z) has the asymptotic expansion (5.3) if the

argument ¢ of s satisfies the inequalities
T s

(5.8) ERR A
cf. (5.2). Thus, the function ¥™ (5", 4. Z has the asymptotic expansion (5.3) on C with the ray ¢
= m/n deleted and the argument of s fixed by (5.8).
v

5.3. Stokes rays. The Stokes rays in C with coordinate s = re-27-1¢ are the rays defined by the
equations

P e %
(5.9) T ST
The rays with k even (resp., odd) will be called even (resp., odd).

Consider an interval k/n < ¢ < (k+ 1)/n between consecutive even rays. Then each element
of the basis { ¥ (5" y.z)|m=1..., n} has the asymptotic expansion (5.3) on that
interval, see Corollary 5.2.

For given k/n < ¢ < (k+ 1)/n and r — oo, the absolute value of a basis solution
WA 4. 2) is determined by the real number Re(w*ms). Namely, if Re(wk'ms) <
Re(wk+mzs) for some 1 6 m1,m26 n, then

|1L|-|'.'|Ili|{h.”_y_z.:|| 4.."_\:{-' |wrl|lril[-ﬁ'JJ.y.z::|| as I — O

see formula (5.3).
The meaning of Stokes rays is explained by the following lemma.

Lemma 5.5. A number ¢ € Ris of the form ¢ = k/2n for some k € Z, if and only if there are m1,mz

such that Re(w™s) = Re(w™2s) and m1 6= m2 (mod n).

5.4. Definition of Stokes bases.

Definition 5.6. Let 1{1(5". . z).. ... L.(s".y. 2]} pe q basis of solutions of the joint system of
equations (3.1) and (3.2). Let a < b be real numbers. We say that the basis is a Stokes basis on
an interval (a,b) if the basis can be reordered so that for every m = 1,..,n and every non-resonant

¢ € (a,b), we have

I.-,J,_I-Il'.n |_|‘a ) =11 P 5 nol -
(5.10) I (s"y.z) = — ™" [ _yMg)am Zat(lom)/2 I I (1, —w™s) (1 4+ O(1/5)
510 RS T4 x.-"#; f ( 5 L1 [ ] [ (1/s}))

as s = oo. Here for every m, the argument of —w™s is chosen so that |arg(-w™s)| < m when ¢
tends to b inside (a,b), and the argument of —w™s is continuous when ¢ € (a,b).

For example, for k € Z, the basis {WEtm(sm y,z)|m = 1.....n}is a Stokes basis on the
interval (k/n,(k + 1)/n), see Lemma 5.1.
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For any ray ¢ = a, which is not a Stokes ray, we will construct a Stokes basis on the interval
(= 1/2—¢ a4 ), where is a small positive number. We will formulate the result in terms
of a suitable braid group action.

6. Exceptional bases and braid group

6.1. Braid group action. Let M, be a free C[Z*1]-module with basis {wsx,..,wn}. Define a

sesquilinear form A on M, by the formulas:
A(wiwi) =1, A(wi,wj) =0fori>j, A(wi,wj) = hj-i(Z) fori <},
A(a(2)x,b(2)y) = a(ZY)b(DA(xy) fora,b € C[Z*1], x,y € Mh.
Here the elements hk(Z) € C[Z*1] for k € Z-0 are defined in (2.2). Cf. Section 2.3.

The matrix of A in the basis {ws,...,wn} will be called canonical.

A basis {vi,...,vn} of My will be called exceptional if
A(vivi) =1, A(vivj)) =0fori>j.
In particular the basis {wz,..,wn} is exceptional.

Let Bn be the braid group on n strands with standard generators t31,..,7n-1. The element

(6.1) C=r1172..Tn-1 € Bnis called the Coxeter element.

Lemma 6.1. The braid group acts on the set of exceptional bases by the formula,
Q ={v1,....va} 7 TiQ = {..,Vi-1,Vis1 — A(Vi,Vi+1) Vi, Vi, Vi+2,... }.

Proof. The fact that the basis 7iQ is exceptional, if Q is exceptional, and the equality titi+17iQ =

TiTi+1TiQ are checked by direct calculations.
Lemma 6.2. Let Q = {v1,..,va} be an exceptional basis in which the matrix of A is canonical. Then
(6.2) CQ ={vn-e1(Q)vn-1+... + (-1)"en(2)v1,v1,V2,...,Vn-1}.

Moreover, if we multiply the first element of the basis CQ by (-1)"*1en(Z°1), then the basis will
remain exceptional and the matrix of A in this new basis

(6.3) ((~1)"1en(%1) (Vn = e1(D)Vnt + .. + (=1)7en(2)V1),V,v2yr V1)

is canonical.

Proof. By induction we observe that titi+1 ..tn-1Q = (vi,..,Vi-L,vn — ei1(Z)va-1 + .. +

(=D)n-ien-i(2)vi,vi,vis1,...,vn}.
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Then we calculate the matrix of A relative to the basis C°Q from the definitions. In these
calculations we use relations (2.3).

The map of bases

{v1,..,vn} 7= {(-1)"*1en(Z 1) (vn — €1(Z)Vn-1 + ... + (-1)"en(2)v1) ,v1,V2,..,vn-1} Will be called the
modified Coxeter map and denoted by C°.
6.2. The element y» € Ba. Let '=n -1 fornodd and "=n - 2 for n even. Thus "is always even.

Sety2=1, and forn > 3,

Pk = TkTk+1...Tn-1, yn=[f-2..52
For example, y3 = 12, y4 = 1213, V5 = (74)(127374), V6 =
(t4715)(T273T4T5).
Define
Onodd = T1T3..Tn-2, Oneven = T2T4...Tn-1, for n odd,
Onodd = T1T3...Tn-1, Oneven = T2T4..Tn-2, for n even.

Lemma 6.3. We have the following identity in Bn:

(6.4) On,even On,0dd Yn=1Yn C.
Proof. The proof is straightforward.

6.3. Bases Qand Q. Let n = 2k + 1. Let Q = {v1,..,,vn} be a basis of Ma. For 1 6 I 6 m 6 n denote
(6.5) vm(l) = vin = e1(Z)vm-1+ +++ + (=1)"lem-1(2)vi.

Introduce a basis Q0in which the vectors vj,...,vk+1 stay at the positions 1, 3, 5,...,
2k + 1, respectively, and the vectors vak+1(2), vak(3),..,vk+2(k + 1) stay at the positions
2,4,6,..,2k, respectively.

Introduce a basis Q% in which the vectors vj,...,vk+1 stay at the positions 2,4,6,...,
2k, 2k + 1, respectively, and the vectors vak+1(1), v2k(2),...,vk+2(k) stay at the positions 1,3,5,..., 2k
- 1, respectively.

For example for n = 5, we have

(6.6) Q0= {v1,vs - e1(Z2)va + e2(2)v3 - e3(Z)vz,vz,va - ei1(Z)v3,vs},
Q00 = {vs - e1(Z)va + e2(2)vs - e3(Z)v2 + ea(2)vi,v1, va—

e1(2)vs + e2(2)v2,va,v3}.
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Let n = 2k. Let Q = {v1,..,va} be a basis of Mn. Introduce a basis @9, in which the vectors
V1,..,Vk+s1 Stay at the positions 1,3,5,..,2k - 1, 2k, respectively, and the vectors vzk(2),
v2k-1(3),..,Vk+2(k) stay at the positions 2,4,6,...,2k - 2, respectively.

Introduce a basis Q%, in which the vectors vi,.,vk stay at the positions 2,4,6,..,2k,
respectively, and the vectors vak(1), v2k-1(2),...,vk+1(k) stay at the positions 1,3,5,.., 2k - 1,
respectively.

For example for n = 6, we have

(6.7) Q0= {v1,ve — e1(Z2)vs + e2(2)va— e3(Z)vs + es(2)vz,v2,

vs — e1(2)va + e2(2)v3,v3,va},

Q0 = {ve - e1(Z2)vs + e2(2)va - e3(Z)vs + es(2)v2 - es(Z)v1, v1,vs — e1(2)va
+ e2(Z)vs - e3(2)vz,v2,va — e1(2)vs,vs3}.

Lemma 6.4. Let n > 1. Let Q = {v1,..,vn} be a basis of Mn such that the matrix of A relative to Q is
canonical. Then

ynQ = QO, 6n,0ddQO = QOO.
Proof. The proof is straightforward.
6.4. Modules M, Kr.(P"-1,C), and Sn.

Lemma 6.5. The map' : Mu — Ko (P L C) defined by
(6.8) L:wj—=7 X, j=1,..,n,

is an isomorphism of C[Z*1]-modules, which identifies the form A on Mn with the form A on
Kr(Pr-1,C).

Recall the isomorphism 6 : K7:(P"-1,C) — Sn. The composition isomorphism 6 ° t: Mp— Sn

is defined by

(6.9) O t:wmn7-Pm m=1,.,n.
Using the isomorphism 8 -t we define exceptional bases of S» with the action of the braid
group Bron them.

6.5. Exceptional bases of Sn.

Lemma 6.6. For every k € Z, the basis Qr= {¥*+1,..,Wk+n} of Sy is an exceptional basis, in which

the matrix of A is canonical. We also have COQk= Qk-1.

Proof. The first statement follows from Lemma 2.1. The second statement follows from
Lemma 6.2 and formula (4.8).
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Using the formulas of Section 6.3 we assign to every basis Qxtwo exceptional bases Q%and
Q%%. For example for n = 5, we define

Qok = {Wi+1,Wk+5 — €1(Z)WPr+4 + €2(2)Wk+3 — e3(2)Wk+2, Wk+2,
Wirs — e1(2)Wk+3,Wi+3},
Qook = {Wk+5 — e1(2)WPk+a + €2(2)Wk+3 — e3(Z)Wk+2 + e4(Z)Wk+1, Wk+1, Wkea —
e1(2)Wk+3 + e2(2)Wr+2, Wk+2, Wk+3}.
cf. (6.6). For any n and k we have
(6.10) Ve L 'QI.-.” "‘j-..-..m{f’i Qg,
by Lemma 6.4.
Lemma 6.7. For any n and k € Z, multiplying the first basis vector of the basis &n,evenQ%% by

(=1)r+len(Z-1) yields the basis Q%-1.

Proof. The lemma follows from Lemmas 6.3 and 6.6.

7. Stokes bases

7.1. Main theorem.

Theorem 7.1. The basis Q%is a Stokes basis on the interval \@ 1/2 —ea+te)ifac
((2k+1)/2n,(k+ 1)/n) and ¢ == (1is small enough. The basis Q%°is a Stokes basis on the interval
la—1/2—€a+e)ifac (k/n(2k+1)/2n) gnd ¢ = (s small enough.

The smallness of means that the intervals (@ | €) and (* — /2 — .0 — I/ 2) do not

contain points of the form r/2n where r € Z.

Corollary 7.2. Consider the three consecutive asymptotic bases Q%% Q% Q%-1. Then Q% =
On,0ddQ%, and Q%-1 is obtained from the basis 6nevenQ%% by multiplying the first basis vector of
6n,evenQOOk by (—1)n+1en(2—1).

It is enough to prove Theorem 7.1 for k = 0, since the case of arbitrary k is obtained from
the case of k = 0 by the change of variables m 7— k+ m and ¢ 7— ¢ + k/n in the integral (4.13).
Theorem 7.1 for k = 0 is proved in Section 7.4.

7.2. Paths and functions. For integers [ 6 m we define the path Cm([) on the regular n-gone A
with vertices {w?,w?..,w"} as the path along the boundary of A, which starts at the vertex w!
and goes to the vertex w™ through the vertices w'1,..,w™m1. The vertices w™ and w!are the
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head and tail of the path. The number m - [ is the length of the path. The path C™(I) goes
around A counterclockwise.

All our paths will be of length less than n.
Let 16 m and m - I < n. Define the reflected path C"™(I) to be the path along the boundary of

A, which goes from the vertex w!! to the vertex w™” = w™ through the vertices

w-2,w!-3,...,wm -+l The reflected path C_’"(I) goes around A clockwise.

Both C(I) and C-m(l) have the same heads. The sum of lengths of C™(I) and C_’"(I) equals n
-1

Definition 7.3. Let [ 6 m and m - | < n. Assign to the path C(I) the function

(7.1) Wn(]) = W - e (Z)Wm-1+ e + (=1)-lem ()W,

and to the reflected path C_’"(I) the function
(72) lp_m(l) = (—1)n—1en(Z)lpm—n +(—1)n—26n—1(2)q1m—n+1 +...+(-1)m—1€m—1+1(2)q"1—1.

Notice that the functions ¥™(I) and LI’_m(l) are equal by formula (4.8), while the summands
in Wm(I) correspond to the vertices of the path C(I) and the summands in qu([) correspond
to the vertices of the path C_m(l).

v v v_
Consider the rotated n-gone e-27-19A and rotated paths e-27-1¢(Cm(]), e—2”-1¢C_m(I).

v v
We say that the path e-27-1¢Cm(]) is admissible if the number Re(e-27-16wm) is greater v

than the number Re(e-27-1¢wk) for any other vertex of the path C™(1), and we say that the
v v

path e-27 4¢C_m(l) is admissible if the number Re(e-27-1¢wm) is greater than the number
v

Re(e-2m-1¢wk) for any other vertex of the path C_m(l).
7.3. Bases /i €/ii, We have
(7.3) QO ={¥YLWn-e1(2)Wr-1+ - + (-1)"2en-2(2) V2

Yo, Wn-1-e1(2)Wn-2+ - + (-1)n-4en-4(2)W3,¥3,...},
(7.4) Q%o ={¥n-e1(2Q)W1+ -+ (-1)"1en-1(2) VYL V1,

Yn-1— o (Z)Pn-2 + - + (-1)2e,-3(2) P2 W2,... ).
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7.4. Proof of Theorem 7.1 for k = 0. We will prove the theorem for ¢n. The proof for tnis
completely similar. a .

We will prove that the basis ¢nis a Stokes basis on the interval (¢ — 1/2 —¢.¢+¢) ifg €
(1/2nr1/n) where is small. The Stokes rays divide the non-resonant pomts of the interval (
a—1/2—¢.u+¢) into the subintervals (1/21.a+€). (0.1/2n). (=1/2n.0),... The first and
last of these subintervals are shorter than the intervals between the Stokes rays, since they
have boundary points® = ¢. & — 1/2 — flying in between Stokes rays. We will prove that®n is
a Stokes basis on each of these submtervals

We start with the first two subinterval (1/ 2,0+ ¢)and (0,1/2n). We assume that is small
so that (1/2n.a +€) < (1/2n, 1/n).

The functions ¥ (5" 4.z}, m = L.....7n appearing in (7.3) are all admissible for the
interval (0,1/n) in the sense of Corollary 5.2. For ¢ € (0,1/n) each of these functions has

v
an asymptotic expansion with the leading term exp(nre-27-1¢wm). The magnitude of a
. \/7
function ¥"'\5"; ¥ 2) is determined by the real
part of the number e-27-1¢m. Hence to order
the magnitudes of the solutions ¥

!

sty z),m=1, ..., n, for p € (0,1/n)

v
we need to consider the rotated n-gone e-27-1¢A and order the real parts of its vertices. Using

notations of Section 7.2 we write
(7.5) Q= {P'(1), " (2), ¥*(2), v 1(3), ¥3(3),... },
These functions are the functions, which were assigned to the sequence of paths {C1(1), C"(2),
C%(2), Cn-1(3), C3(3), ...} in Definition 7.3. Each of these paths is admissible with v__

respect to e~27-1¢A for ¢ € (0,1/n). Hence each linear combination W¥™(I) appearing in
v
this sequence has asymptotic expansion with leading term exp(nre-27-1¢wm), coming from
the summand W of Wm(I), corresponding to the head of the path Cm(I). Therefore the basis
(Zhis an asymptotic basis on the two subintervals (1/ 20— €) and (0,1/2n).
Consider the next two subintervals (-1/2n,0) and (-1/n,-1/2n). On the interval (-1/n,0)

the admissible functions are W9,...,Wn-1, For ¢ € (-1/n,0) each of these func-
v

tions has an asymptotic expansion with the leading term exp(nre=-27-1¢@m).

In formula (7.3) the function Wn(2) is the only function that uses the non-admissible
function Wn. We replace the presentation of ¥7(2) in (7.3) by the equal sum

LIJ_n(Z) = (—1)n—1€n(Z)LPO + (—1)n—2€n—1(Z)lP1,

which uses only the admissible functions W9,..,¥"-1. On the interval (-1/n,0) we have

(7.6) Qo = {U'(1),9"(2), ¥*(2), ¥"1(3), ¥¥(3),... }
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o where the dots indicates the same functions as in (7.3). This new presentation of the
“" basis corresponds to the sequence of paths {C1(1),C "(2),C%(2),C"-1(3),C3(3),...}.
Vv

Each of these paths is admissible with respect to e-27 -1¢A for ¢ € (-1/n,0). Hence each

linear combination of the functions W9,..,W"-1appearing as a basis vector in (7.6) has
Vv

asymptotic expansion with leading term exp(nre-27 -1¢w™), coming from the summand ¥m
corresponding to the head of the corresponding path. Therefore the basis is an asymptotic
basis on the two subintervals (-1/2n,0) and (-1/n,-1/2n).

On the next two subintervals (-3/2n,-1/n) and (-2/n,-3/2n) the admissible functions are
Y-, W2 For ¢ € (-2/n,—1/n) each of these functions has an asymptotic expan-

v

sion with the leading term exp(nre-27-1¢wm).

In formula (7.6) the function Wn-1(3) is the only function that uses the non-admissible ¥7-1.
We replace the presentation of W"-1(3) in (7.3) by the equal sum

Yn1(3) = (-Dn-1en(2)¥W-1 + (-1)n-2en-1(2)%Po0 +
(-1)n-3en-2(2)W1+ (-1)n-4en-3(2) Y2,

which uses only the admissible functions W-1,..,¥"-2, On the interval (-2/n,-1/n) we have
(7.7) Qo = { W' (1)."(2), ¥*(2), ¥"1(3), ¥3(3),... }
where the dots indicates the same functions as in (7.3). This new presentation of the
' basis corresponds to the sequence of paths {Cl(l),C:;’(Z),CZ(Z),C_”-l(3),C3(3),...}.

Each of these paths is admissible with respect to e—Zﬂ—le for ¢ € (-2/n,-1/n). Hence each

linear combination of the functions W-1,..,W"-2appearing as a basis vector in (7.7)
\/
has asymptotic expansion with leading term exp(nre-27-1¢wm), coming from the summand

Wm corresponding to the head of the corresponding path. Therefore the basis (% is an
asymptotic basis on the two subintervals (-3/2n,-1/n) and (-2/n,-3/2n).
Repeating this procedure we prove Theorem 7.1 for €27, See a similar reasoning in [Gu].
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