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1. Introduction 

The quantum differential equation of the complex projective space Pn−1 is an ordinary 

differential equation 

(1.1) , 
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where the unknown function I(p) takes values in the cohomology algebra H∗(Pn−1;C) and x∗p 

: H∗(Pn−1;C) → H∗(Pn−1;C) is the operator of quantum multiplication by the first Chern class of 

the tautological line bundle over Pn−1. The differential equation has two singular points: a 

regular singular point at p = 0 and an irregular singular point at p = ∞. 

The quantum differential equation has the following remarkable structures. 

The specially normalized asymptotics of its solutions at p = 0 can be described in terms of 

the characteristic gamma class of the tangent bundle of Pn−1. This description of the 

asymptotics by B.Dubrovin in [D1] was the first example of a gamma theorem, which is 

proved now in many examples and is known as the gamma conjecture, see [D1, D2, KKP, GGI, 

GI, GZ, CDG, TV3]. 

The Stokes matrices of the quantum differential equation at the irregular singular point p 

= ∞ are described in terms of the braid group action on the set of full collections of 

exceptional objects in the derived category Derb(Coh(Pn−1)) of coherent sheaves on Pn−1. That 

phenomenon was predicted by B.Dubrovin in [D1] for Fano varieties and was proved for Pn−1 

by D.Guzzetti [Gu]. That braid group action is described with the help of a certain non-

symmetric bilinear form on the K-theory algebra  

In this paper we consider the equivariant quantum differential equation of the projective 

space Pn−1 and establish similar results. 

In the equivariant case the torus T = (C×)n acts on Pn−1 and the quantum differential 

equation takes the form 

(1.2) , 

where z = (z1,...,zn) are equivariant parameters. We also introduce a system of the qKZ 

difference equations 

(1.3) I(p,z1,...,zi − 1,...,zn) = −Ki(p,z1,...,zn)I(p,z1,...,zn), i = 1,...,n, 

where Ki(p,z1,...,zn) are suitable linear operators. The joint system of the equivariant quantum 

differential equation and qKZ difference equations is compatible. The space of solutions of 

this system is a module over the ring of scalar functions in z1,...,zn, 1-periodic with respect to 

each of the variables z1,...,zn. 

We prove an equivariant gamma theorem, which describes the asymptotics of solutions at 

p = 0 of the equivariant quantum differential equation in terms of the equivariant 

characteristic gamma-class of the tangent bundle of Pn−1, see Theorem 4.3. 

We describe the Stokes bases of the equivariant quantum differential equation at p = ∞. 

For that we identify the space of solutions of the joint system of equations (1.2) and (1.3) 

with the space of the equivariant K-theory algebra KT (Pn−1,C). We introduce a sesquilinear 

form on KT (Pn−1,C), exceptional bases of ), a braid group action on the exceptional 

bases, and describe the Stokes bases in terms of that braid group action, see Theorem 7.1. 
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To prove these results we use integral representations for solutions of the joint system of 

equations (1.2) and (1.3) obtained in [TV3]. In [TV3] we constructed q-hypergeometric 

integral representations for solutions of the joint systems of equivariant quantum 

differential equations and associated qKZ difference equations for the cotangent bundle T ∗Fλ 

of a partial flag variety Fλ. In a suitable limit those solutions become solutions of the 

corresponding equations for the partial flag variety Fλ. In this paper we use the special case 

of Fλ = Pn−1. 

The important role in this paper is played by the identification of the space of solutions of 

the joint system of equations (1.2) and (1.3) with the space of the K-theory algebra KT (Pn−1,C). 

This identification also comes from [TV3]. Earlier examples of such an identification see in 

[TV1, TV2]. 

We would like to stress that the equivariant case is simpler than the corresponding 

nonequivariant case. The equivariant case is more rigid because, in addition to the quantum 

differential equation, we also have the compatible system of difference equations, and 

therefore there are less problems with choices of normalizations of solutions. 

The paper is organized as follows. In Section 2 we introduce the equivariant cohomology 

and K-theory algebra of Pn−1. In Section 3 we introduce the equivariant quantum differential 

equation and qKZ difference equations. In Section 4 we describe the integral representations 

for solutions and asymptotics of solutions at p = 0. In Section 5 we discuss asymptotics of 

solutions at p = ∞, introduce Stokes bases in the space of solutions. In Section 6 we introduce 

exceptional bases in the space of solutions and a braid group action on the set of exceptional 

bases. In Section 7 we describe the Stokes bases of the equivariant quantum differential 

equation at p = ∞. Our proofs in Section 7 are similar to the corresponding proofs in [Gu]. 

The authors thank Giordano Cotti, Alexander Givental, and Richard Rima´nyi for many 

helpful discussions. 

2. Projective space 

2.1. Equivariant cohomology. For n > 2, let Pn−1 be the projective space parametrizing one-

dimensional subspaces F ⊂ Cn. 

Let {u1,...,un} be the standard basis of Cn. For I ∈ {1,...,n}, let ptI ∈ Pn−1 be the point 

corresponding to the coordinate line spanned by uI. The complex torus Tn acts diagonally on 

Cn, and hence on Pn−1. The points ptI, I = 1,...,n, compose the fixed point set. 

We consider the equivariant cohomology algebra HTn(Pn−1;C). Denote by x the equivariant 

Chern root of the tautological line bundle L over Pn−1 with fiber F . Denote by y = (y1,...,yn−1) 
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the equivariant Chern roots of the vector bundle over Pn−1 with fiber Cn/F . Denote by z = 

(z1,...,zn) the Chern roots corresponding to the factors of the torus Tn . Then 

(2.1)  

, 

where C[x,y,z]Sn−1 is the algebra of polynomials in x,y,z symmetric in the variables y1,..., yn−1, and 

the isomorphism of the first quotient to the second one sends an element f(x,z) of the first 

quotient to the element f(x,z) of the second. 

The cohomology algebra HTn(Pn−1;C) is a module over  

2.2. Symmetric functions. Consider the algebra ] of Laurent 

polynomials and its elements 

(2.2) ek(Z) = X 

Zi1 ...Zik, 
16i1<···<ik6n 

k = 1,...,n, 

hk(Z) 

Put e0 = 1, h0 = 1. Then 
k 

=  X i1 ...Znin, 
Z1 

i1>0,...,in>0 i1+...+in=k 

k ∈ Z>0 . 

(2.3) X(−1)i hi(Z)ek−i(Z) = 0, 
k ∈ Z>0 . 

i=0 

For f(Z1,...,Zn) ∈ C[Z±1] denote  

2.3. Equivariant K-theory. Consider the equivariant K-theory algebra KTn(Pn−1;C). We have 
n 

(2.4) KTn(Pn−1,C) = C[X±1,Z±1].DY(X − Za)E. 

a=1 

Here the variable X corresponds to the tautological line bundle L over Pn−1; the variables 

Z1,...,Zn are the equivariant parameters corresponding to the factors of is the 

algebra of Laurent polynomials in X, Z1,...,Zn. 

The algebra KTn(Pn−1,C) is a module over KTn(pt;C) = C[Z±1]. 

We have a map 

, 
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which sends the class of a vector bundle to the class of the dual vector bundle. 

The map to a point ψ : Pn−1 → pt gives us the push-forward map ψ∗ : KTn(Pn−1,C) → C[Z±1] 

defined by the formula 

(2.5)  

The push-forward map ψ∗ gives us a symmetric bilinear form on KTn(Pn−1,C) defined by the 

formula (f,g) = ψ∗(fg). We are interested in its non-symmetric sesquilinear version, (2.6) 

 

. 

Lemma 2.1. For i,j ∈ Z, we have A(Xi,Xj) = hj−i(Z) if i 6 j , and A(Xi,Xj) = 0 if j < i < j + n.  

3. Quantum equivariant differential equation and qKZ difference 
equations 

3.1. Quantum multiplication. In enumerative geometry the 

multiplication in the equivariant cohomology algebra HTn(Pn−1,C) is 

deformed. The deformed quantum multiplication depends on the 

quantum parameter p and equivariant parameters z. The quantum 

multiplication is determined by the C[z]-linear operator 

 

of multiplication by the generator ). In the basis {1,x,...,xn−1}, we have 

, 

where ei(z) are the elementary symmetric functions in z .3 

We also use the basis {g1,...,gn}, 

 , and gn = 1. 

In this basis we have 

 
3 These formulas were explained to us by A.Givental 
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x ∗p,z gi = zigi + gi−1 , i = 2,...,n, x ∗p,z g1 = z1g1 

+ pgn . 

3.2. R-matrices and qKZ operators. For a,b ∈ {1,...,n}, a 6= b, define 

a C[z]-linear operator 

Rab(u) : HTn(Pn−1,C) → HTn(Pn−1,C), 

depending on u ∈ C and called the R-matrix, by the formula 

 Rab(u)gi = gi , i 6= a,b, 

 Rab(u)gb = ga , Rab(u)ga = gb + uga . 

These R-matrices satisfy the Yang-Baxter equation 

Rab(u − v)Rac(u)Rbc(v) = Rbc(v)Rac(u)Rab(u − v), 

for all distinct a,b,c, and the inversion relation 

Rab(u)Rba(−u) = 1. 

Define the operators E1,...,En such that 

Ei gj = δij gi. 

Define the qKZ operators K1,...,Kn by the formula 

Ki = Ri,i−1(zi − zi−1 − 1)...Ri,1(zi − z1 − 1)p−EiRi,n(zi − zn)...Ri,i+1(zi − zi+1). 

3.3. Isomorphisms Θi,z. The basis {g1,...,gn} allows us to define the isomorphisms Θi,z, i = 1,...,n, 

of the vector spaces, 

Θi,(z1,...,zn) : HTn(Pn−1;C)|(z1,...,zn) → HTn(Pn−1;C)|(z1,...,zi−1,...,zn) gj(x,z1,...,zn) 7→ gj(x,z1,...,zi − 

1,...,zn), j = 1,...,n. 

Remark. Let T ∗Pn−1 be the cotangent bundle of Pn−1. The elements g1,...,gn ∈ 

HTn(Pn−1,C) are the limits of the stable envelopes for T ∗Pn−1, in the limit when the cotangent 

bundle T ∗Pn−1 turns into the projective space Pn−1. See [RTV] on the stable envelopes for the 

cotangent bundle T ∗Pn−1, see [GRTV, Section 7] and [TV3, Section 11.4] on this limit. The 

cotangent bundle of the projective space is an example of a quiver variety. Stable envelopes 

were introduced in this generality by Maulik and Okounkov in [MO] together with the 

systems of equivariant quantum differential equations and compatible difference equations 

generalizing the qKZ equations. 

3.4. Quantum differential equation and qKZ difference equations. The equivariant 

quantum differential equation is the differential equation 
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(3.1) . 

The system of the qKZ difference equations is the system of difference equations 

(3.2) I(p,z1,...,zi − 1,...,zn) = −[Θi,z ◦ Ki(p,z1,...,zn)]I(p,z1,...,zn), i = 1,...,n. 

In these equations the unknown function I(p,z) takes values in the cohomology algebra 

HTn(Pn−1,C) extended by functions in p,z. 

Theorem 3.1. The joint system of equations (3.1) and (3.2) is compatible. 

Proof. The proof is straightforward.  

4. Integral representations for solutions 

The quantum differential equation (3.1) was solved by A.Givental in [Gi]. In this section we 

follow [TV3] and describe the integral representations for solutions of the joint system of 

equations (3.1) and (3.2). 

Notice that the space of solutions to the joint system of equations (3.1) and (3.2) is a 

module over the ring of scalar functions in z1,...,zn, 1-periodic with respect to each of the 

variables z1,...,zn. 

4.1. Master and weight functions. Consider the variables t,p, z = (z1,...,zn). Define the master 

function Φ and HTn(Pn−1;C)-valued weight function W by the formulas: 

(4.1) , 

where Γ is the gamma function. 

4.2. Solutions as Jackson integrals. Consider C with coordinate p and Cn with coordinates z 

= (z1,...,zn). 

Let L0 be the p-line C with a cut to fix the argument of p, that is, we delete from C a ray from 

0 to ∞ and fix the argument of p on the complement. 

Let L00 be the complement in Cn to the union of the hyperplanes 

(4.2) za − zb = m forall a,b = 1,...,n, a 6= b,andall m ∈ Z. Set L = L0× L00 ⊂ C × 

Cn. For J = 1,...,n define 

(4.3) ΨJ(p,y,z) = − X Rest=zJ+r Φ(t,p,z)W(t,y). 
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r∈Z>0 

These sums are called the Jackson integrals. 

Theorem 4.1 ([TV3]). The functions ΨJ(p,y,z), J = 1,...,n, belong to the extension of HTn(Pn−1,C) 

by holomorphic functions in p,z on the domain L ⊂ C × Cn. Each of the functions is a solution to 

the joint system of equations (3.1) and (3.2). These functions form a basis of solutions. 

Proof. The theorem is proved in [TV3, Section 11.4], see formula (11.18) in there. In 

particular, the fact that the functions form a basis follows from the determinant formula 

(11.23). 

In fact, in Section 11.4 the solutions to the joint system of the equivariant quantum 

differential equations and associated qKZ equations are described for an arbitrary partial flag 

variety.  

The solutions ΨJ(p,y,z), J = 1,...,n, are called the q-hypergeometric solutions. 

4.3. Asymptotics as p → 0 and equivariant gamma theorem. 

Corollary 4.2 ([TV3, Formula (11.19)]). As p → 0, we have 

(4.4) Ψ  , 

where the equivariant class ∆J restricts to 1 at the fixed point ptJ and restricts to zero at all other 
fixed points ptI with I 6= J. The classes ΨJ,k(y,z) are suitable rational functions in z regular on 

L00.  

Recall that ) is the equivariant total Chern class of the 

tangent bundle of Pn−1 and x ∈ HTn(Pn−1,C) is the equivariant first Chern class c1(L) of the 

tautological line bundle L over Pn−1. The function ) is called the 

equivariant gamma class of the tangent bundle of Pn−1. Corollary 4.2 can be reformulated as 

the following statement. 

Theorem 4.3. The leading term of the asymptotics as p → 0 of the q-hypergeometric solutions 

 is the product of the equivariant gamma class of the tangent bundle of Pn−1and 
the exponential of the equivariant first Chern class of the tautological line bundle L: 

(4.5) .  This assertion is an equivariant analog of Dubrovin’s 

gamma theorem for Pn−1, see [D1, D2] and also [KKP, GGI, GI, GZ, CDG]. 

4.4. Solutions as elements of the equivariant K-theory. Introduce new functions: 

(4.6)  

Denote Z´ = (Z´
1,...,Z´

n). 
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Let Q(X,Z) ∈ C[X±1,Z±1] be a Laurent polynomial. Define 

(4.7) Ψ  . 

Clearly, ΨQ(p,y,z) is a solution on the domain L ⊂ C × Cn of the joint system (3.1) and (3.2), 

as a linear combination of solutions ΨJ(p,y,z) with coefficients, 1-periodic with respect to 

z1,...,zn and independent of p. 

It is also clear that if Q lies in the ideal in C[X±1,Z±1] generated by the polynomial 

), then ΨQ(p,y,z) is the zero solution. Hence formula (4.7) defines a map Q 7→ 

ΨQ(p,y,z) from the equivariant K-theory algebra KTn(Pn−1,C) to the space of solutions on the 

domain L to the joint system (3.1) and (3.2). 

4.5. Solutions Ψm. For m ∈ Z, denote by Ψm(p,y,z) the solution ΨQ(p,y,z) corresponding to the 

Laurent polynomial Q = Xm−1. 

Corollary 4.4. For any k ∈ Z, we have 

(4.8) , 

where e0(Z´),...,en(Z´) are the elementary symmetric functions in Z´.  

Theorem 4.5 ([TV3, Theorem 11.3]). For any k ∈ Z, the solutions Ψk+m(p,y,z), m = 0, ...,n − 1, 

form a basis of the space of solutions on the domain L of the joint system (3.1) and (3.2). 

4.6. Module Sn. The space of solutions of the joint system of equations (3.1) and (3.2) is a 

module over the algebra of functions in z1,...,zn, which are 1-periodic with respect to each 

variable. 

We will consider the space Sn of solutions of the form 

(4.9) , where Qm(Z) ∈ C[Z±1]. 

This space is a C[Z±1]-module, in which multiplication by Q(Z) is defined as multiplication by 

Q(Z´). With this choice of the space of solutions, we allow ourselves to multiply solutions 

Ψm(p,y,z) only by 1-periodic functions of the form Qm(Z´), where Q(Z) ∈ C[Z±1]. 

By Corollary 4.4, the module Sn contains all solutions Ψm(p,y,z), m ∈ Z. 

Corollary 4.6. The module Sn contains a basis of solutions of the joint system (3.1) and 

(3.2). Moreover, the map θ : KTn(Pn−1,C) → Sn, defined by 
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(4.10) θ : Xm−1 7→ Ψm(p,y,z), m ∈ Z, 

is an isomorphism of the C[Z±1]-modules. 

Proof. The corollary follows from Theorem 4.5.  

Using the isomorphism θ we define a sesquilinear form A on Sn as the image of the form A 

on KTn(Pn−1,C). 

4.7. Monodromy of the quantum differential equation. The equivariant quantum 

differential equation (3.1) has two singular points. A regular singular point at p = 0 and an 

irregular singular point at p = ∞. 

Fix (p,z) and increase the argument of p by 2π. The analytic continuation of the solutions 

along this curve will produce the monodromy operator M(z) on the space of solutions. 

Theorem 4.7. For every m ∈ Z we have M(z) : Ψm(p,y,z) →7 Ψm+1(p,y,z). In particular, for any k 

∈ Z, the matrix of the monodromy operator in the basis {Ψk+m(p,y,z)|m = 0, 

...,n− 1} is the companion matrix of the polynomial Xn − e1(Z´)Xn−1 + ... + (−1)nen(Z´), that defines 

the relation in the equivariant K-theory algebra, 

  0 0 ... ... 0 (−1)n+1en(Z´)  

  1 0 ... ... 0 (−1)nen−1(Z´)  

   

  0 1 ... ... ... ...  

... ... ... ... ... ... .  0 0 ... ... 0 −e (Z´)  

2 

 0 0 ... ... 1 e1(Z´) 

√  

Proof. The shift of the argument of p by 2π leads to multiplication by√ e2π −1zJ of each term 

 
in the sum in (4.3). This means that M(z) : ΨJ(p,y,z) 7→ e2π −1zJΨJ(p,y,z), and hence M(z) : 

Ψm(p,y,z) →7 Ψm+1(p,y,z) for any m ∈ Z. Now the shape of the monodromy matrix in the basis 

{Ψk+m(p,y,z)|m = 0,...,n − 1} follows from relation (2.4) in the 

K-theory algebra.  

4.8. Solutions as integrals over a parabola. For A ∈ C, let C(A) ⊂ C be the parabola with the 

following parametrization: 

(4.11) . 
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Given z, take A such that all the points z1,...,zn lie inside C(A). The integral (4.12) below does 

not depend on a particular choice of A, so we will denote C(A) by C(z). 

Lemma 4.8 ([TV3, Lemma 11.5]). For any Laurent polynomial Q(X,Z) we have 

(4.12) Ψ  

where the integral converges for any (p,z) ∈ L. 

In particular, we have 

(4.13) Ψ  

5. Asymptotics as p → ∞ 

5.1. Asymptotics of Ψm. We make the change of variables: 

(5. 1). 

Denote 

Lemma 5.1. For m ∈ Z, ϕ ∈ R, and 

(5.2)  , 

we have the asymptotic expansion as r → ∞, 

. 

where arg(−ωms) = 2πm/n − π − 2πϕ, so that |arg(−ωms)| < π . 

Proof. The proof of this lemma is a modification of the proof of [Gu, Lemma 5]. Consider the 

logarithm of the integrand in (4.13), 

, 

and apply to Υ the Stirling formula 

 , as u → ∞, |argu| < π . 

As t → ∞ and |arg(−t)| < π, we have 
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. 

The critical point equation of this expression with respect to t yields 

(5.4) log(  . 

This implies that for 

(5.5)  

the function Υ(t,y,z) has a critical point tm ∈ C, with respect to t, such that 

(5.6) log(−tm) = log(−ωms) + O(1/r), 

where arg(−ωms) = 2πm/n − π − 2πϕ, so that |arg(−ωms)| < π . Inequalities (5.5) give us 

relations between m and ϕ, which are exactly the inequalities in (5.2). We also have 

, 

. 

We apply the steepest descent method to the integral in (4.13) as in [Gu, Appendix 1] and 

obtain 

 

which proves the lemma.  

5.2. Admissible ϕ and m. 

Corollary 5.2. If the argument ϕ of s satisfies the inequalities 

(5.7)  , for some k ∈ Z, 

then there are exactly n integers satisfying (5.2). They are k + 1,...,k + n. Hence each element of 

the basis  of the space of solutions of the joint system of 
equations (3.1) and (3.2) has the asymptotic expansion (5.3).  

Corollary 5.3. If ϕ = k/n for some k ∈ Z, then there are exactly n − 1 integers m satisfying (5.2). 

They are m = k + 1,...,k + n − 1.  
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We say that ϕ ∈ R is resonant, if ϕ = k/n for some k ∈ Z. 

Corollary 5.4. Given m ∈ Z, the function  has the asymptotic expansion (5.3) if the 

argument ϕ of s satisfies the inequalities 

(5.8)  , 

cf. (5.2). Thus, the function  has the asymptotic expansion (5.3) on C with the ray ϕ 

= m/n deleted and the argument of s fixed by (5.8).  
√ 

5.3. Stokes rays. The Stokes rays in C with coordinate s = re−2π −1ϕ are the rays defined by the 

equations 

(5.9) . 

The rays with k even (resp., odd) will be called even (resp., odd). 

Consider an interval k/n < ϕ < (k + 1)/n between consecutive even rays. Then each element 

of the basis  has the asymptotic expansion (5.3) on that 

interval, see Corollary 5.2. 

For given k/n < ϕ < (k + 1)/n and r → ∞, the absolute value of a basis solution 

) is determined by the real number Re(ωk+ms). Namely, if Re(ωk+m1s) < 

Re(ωk+m2s) for some 1 6 m1,m2 6 n, then 

  as r → ∞, 

see formula (5.3). 

The meaning of Stokes rays is explained by the following lemma. 

Lemma 5.5. A number ϕ ∈ R is of the form ϕ = k/2n for some k ∈ Z, if and only if there are m1,m2 

such that Re(ωm1s) = Re(ωm2s) and m1 6≡ m2 (mod n).  

5.4. Definition of Stokes bases. 

Definition 5.6. Let  be a basis of solutions of the joint system of 
equations (3.1) and (3.2). Let a < b be real numbers. We say that the basis is a Stokes basis on 
an interval (a,b) if the basis can be reordered so that for every m = 1,...,n and every non-resonant 
ϕ ∈ (a,b), we have 

 

as s → ∞. Here for every m, the argument of −ωms is chosen so that |arg(−ωms)| < π when ϕ 
tends to b inside (a,b), and the argument of −ωms is continuous when ϕ ∈ (a,b). 

For example, for k ∈ Z, the basis  is a Stokes basis on the 

interval (k/n,(k + 1)/n), see Lemma 5.1. 
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For any ray ϕ = a, which is not a Stokes ray, we will construct a Stokes basis on the interval 

( ), where  is a small positive number. We will formulate the result in terms 

of a suitable braid group action. 

6. Exceptional bases and braid group 

6.1. Braid group action. Let Mn be a free C[Z±1]-module with basis {w1,...,wn}. Define a 

sesquilinear form A on Mn by the formulas: 

 A(wi,wi) = 1, A(wi,wj) = 0 for i > j, A(wi,wj) = hj−i(Z) for i < j, 

 A(a(Z)x,b(Z)y) = a(Z−1)b(Z)A(x,y) fora,b ∈ C[Z±1], x,y ∈ Mn. 

Here the elements hk(Z) ∈ C[Z±1] for k ∈ Z>0 are defined in (2.2). Cf. Section 2.3. 

The matrix of A in the basis {w1,...,wn} will be called canonical. 

A basis {v1,...,vn} of Mn will be called exceptional if 

 A(vi,vi) = 1, A(vi,vj) = 0 for i > j. 

In particular the basis {w1,...,wn} is exceptional. 

Let Bn be the braid group on n strands with standard generators τ1,...,τn−1. The element 

(6.1) C = τ1τ2 ...τn−1 ∈ Bn is called the Coxeter element. 

Lemma 6.1. The braid group acts on the set of exceptional bases by the formula, 

Q = {v1,...,vn} 7→ τiQ = {...,vi−1,vi+1 − A(vi,vi+1)vi,vi,vi+2,...}. 

Proof. The fact that the basis τiQ is exceptional, if Q is exceptional, and the equality τiτi+1τiQ = 

τiτi+1τiQ are checked by direct calculations.  

Lemma 6.2. Let Q = {v1,...,vn} be an exceptional basis in which the matrix of A is canonical. Then 

(6.2) CQ = {vn − e1(Z)vn−1 + ... + (−1)nen(Z)v1,v1,v2,...,vn−1}. 

Moreover, if we multiply the first element of the basis CQ by (−1)n+1en(Z−1), then the basis will 

remain exceptional and the matrix of A in this new basis 

(6.3) {(−1)n+1en(Z−1)(vn − e1(Z)vn−1 + ... + (−1)nen(Z)v1),v1,v2,...,vn−1} 

is canonical. 

Proof. By induction we observe that τiτi+1 ...τn−1Q = (v1,...,vi−1,vn − e1(Z)vn−1 + ... + 

(−1)n−ien−i(Z)vi,vi,vi+1,...,vn}. 
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Then we calculate the matrix of A relative to the basis C0Q from the definitions. In these 

calculations we use relations (2.3).  

The map of bases 

{v1,...,vn} 7→ {(−1)n+1en(Z−1)(vn − e1(Z)vn−1 + ... + (−1)nen(Z)v1) ,v1,v2,...,vn−1} will be called the 

modified Coxeter map and denoted by C0. 

6.2. The element γn ∈ Bn. Let ` = n − 1 for n odd and ` = n − 2 for n even. Thus ` is always even. 

Set γ2 = 1, and for n > 3, 

 βk = τkτk+1 ...τn−1, γn = β`β`−2 ...β2. 

For example, γ3 = τ2 , γ4 = τ2τ3 , γ5 = (τ4)(τ2τ3τ4), γ6 = 

(τ4τ5)(τ2τ3τ4τ5). 

Define 

 

 δn,odd = τ1τ3 ...τn−2 , δn,even = τ2τ4 ...τn−1 , for n odd, 

 δn,odd = τ1τ3 ...τn−1 , δn,even = τ2τ4 ...τn−2 , 

Lemma 6.3. We have the following identity in Bn : 

(6.4) δn,even δn,odd γn = γn C . 

for n even. 

Proof. The proof is straightforward.  

6.3. Bases Q0 and Q00. Let n = 2k + 1. Let Q = {v1,...,vn} be a basis of Mn. For 1 6 l 6 m 6 n denote 

(6.5) vm(l) = vm − e1(Z)vm−1 + ··· + (−1)m−lem−l(Z)vl. 

Introduce a basis Q0 in which the vectors v1,...,vk+1 stay at the positions 1, 3, 5,..., 

2k + 1, respectively, and the vectors v2k+1(2), v2k(3),...,vk+2(k + 1) stay at the positions 

2,4,6,...,2k, respectively. 

Introduce a basis Q00 in which the vectors v1,...,vk+1 stay at the positions 2,4,6,..., 

2k,2k + 1, respectively, and the vectors v2k+1(1), v2k(2),...,vk+2(k) stay at the positions 1,3,5,...,2k 

− 1, respectively. 

For example for n = 5, we have 

(6.6) Q0 = {v1,v5 − e1(Z)v4 + e2(Z)v3 − e3(Z)v2,v2,v4 − e1(Z)v3,v3}, 

Q00 = {v5 − e1(Z)v4 + e2(Z)v3 − e3(Z)v2 + e4(Z)v1,v1, v4 − 

e1(Z)v3 + e2(Z)v2,v2,v3}. 
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Let n = 2k. Let Q = {v1,...,vn} be a basis of Mn. Introduce a basis Q0, in which the vectors 

v1,...,vk+1 stay at the positions 1,3,5,...,2k − 1, 2k, respectively, and the vectors v2k(2), 

v2k−1(3),...,vk+2(k) stay at the positions 2,4,6,...,2k − 2, respectively. 

Introduce a basis Q00, in which the vectors v1,...,vk stay at the positions 2,4,6,...,2k, 

respectively, and the vectors v2k(1), v2k−1(2),...,vk+1(k) stay at the positions 1,3,5,..., 2k − 1, 

respectively. 

For example for n = 6, we have 

(6.7) Q0 = {v1,v6 − e1(Z)v5 + e2(Z)v4 − e3(Z)v3 + e4(Z)v2,v2, 

v5 − e1(Z)v4 + e2(Z)v3,v3,v4}, 

Q00 = {v6 − e1(Z)v5 + e2(Z)v4 − e3(Z)v3 + e4(Z)v2 − e5(Z)v1, v1,v5 − e1(Z)v4 

+ e2(Z)v3 − e3(Z)v2,v2,v4 − e1(Z)v3,v3}. 

Lemma 6.4. Let n > 1. Let Q = {v1,...,vn} be a basis of Mn such that the matrix of A relative to Q is 
canonical. Then 

γnQ = Q0, δn,oddQ0 = Q00.  

Proof. The proof is straightforward.   

6.4. Modules Mn, KTn(Pn−1,C), and Sn. 

Lemma 6.5. The map , defined by 

(6.8) ι : wj →7 Xj−1, j = 1,...,n, 

is an isomorphism of C[Z±1]-modules, which identifies the form A on Mn with the form A on 

KTn(Pn−1,C).  

Recall the isomorphism θ : KTn(Pn−1,C) → Sn. The composition isomorphism θ ◦ ι : Mn → Sn 

is defined by 

(6.9) θ ◦ ι : wm 7→ Ψm, m = 1,...,n. 

Using the isomorphism θ ◦ι we define exceptional bases of Sn with the action of the braid 

group Bn on them. 

6.5. Exceptional bases of Sn. 

Lemma 6.6. For every k ∈ Z, the basis Qk = {Ψk+1,...,Ψk+n} of Sn is an exceptional basis, in which 

the matrix of A is canonical. We also have C0Qk = Qk−1.  

Proof. The first statement follows from Lemma 2.1. The second statement follows from 

Lemma 6.2 and formula (4.8).  
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Using the formulas of Section 6.3 we assign to every basis Qk two exceptional bases Q0k and 

Q00k. For example for n = 5, we define 

Q0k = {Ψk+1,Ψk+5 − e1(Z)Ψk+4 + e2(Z)Ψk+3 − e3(Z)Ψk+2,Ψk+2, 

Ψk+4 − e1(Z)Ψk+3,Ψk+3}, 

Q00k = {Ψk+5 − e1(Z)Ψk+4 + e2(Z)Ψk+3 − e3(Z)Ψk+2 + e4(Z)Ψk+1,Ψk+1, Ψk+4 − 

e1(Z)Ψk+3 + e2(Z)Ψk+2,Ψk+2,Ψk+3}. 

cf. (6.6). For any n and k we have 

(6.10) , 

by Lemma 6.4. 

Lemma 6.7. For any n and k ∈ Z, multiplying the first basis vector of the basis δn,evenQ00k by 

(−1)n+1en(Z−1) yields the basis Q0k−1. 

Proof. The lemma follows from Lemmas 6.3 and 6.6.  

7. Stokes bases 

7.1. Main theorem. 

Theorem 7.1. The basis Q0k is a Stokes basis on the interval  

((2k + 1)/2n,(k + 1)/n) and  is small enough. The basis Q00k is a Stokes basis on the interval 

 and  is small enough. 

The smallness of  means that the intervals ( ) and (  2) do not 

contain points of the form r/2n where r ∈ Z. 

Corollary 7.2. Consider the three consecutive asymptotic bases Q0k,Q00k,Q0k−1. Then Q00k = 

δn,oddQ0k, and Q0k−1 is obtained from the basis δn,evenQ00k by multiplying the first basis vector of 

δn,evenQ00k by (−1)n+1en(Z−1).  

It is enough to prove Theorem 7.1 for k = 0, since the case of arbitrary k is obtained from 

the case of k = 0 by the change of variables m 7→ k + m and ϕ 7→ ϕ + k/n in the integral (4.13). 

Theorem 7.1 for k = 0 is proved in Section 7.4. 

7.2. Paths and functions. For integers l 6 m we define the path Cm(l) on the regular n-gone ∆ 

with vertices {ω1,ω2,...,ωn} as the path along the boundary of ∆, which starts at the vertex ωl 

and goes to the vertex ωm through the vertices ωl+1,...,ωm−1. The vertices ωm and ωl are the 
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head and tail of the path. The number m − l is the length of the path. The path Cm(l) goes 

around ∆ counterclockwise. 

All our paths will be of length less than n. 

Let l 6 m and m − l < n. Define the reflected path C¯m(l) to be the path along the boundary of 

∆, which goes from the vertex ωl−1 to the vertex ωm−n = ωm through the vertices 

ωl−2,ωl−3,...,ωm−n+1. The reflected path C¯m(l) goes around ∆ clockwise. 

Both Cm(l) and C¯m(l) have the same heads. The sum of lengths of Cm(l) and C¯m(l) equals n 

− 1. 

Definition 7.3. Let l 6 m and m − l < n. Assign to the path Cm(l) the function 

(7.1) Ψm(l) = Ψm − e1(Z)Ψm−1 + ··· + (−1)m−lem−l(Z)Ψl, 

and to the reflected path C¯m(l) the function 

(7.2) Ψ¯m(l) = (−1)n−1en(Z)Ψm−n +(−1)n−2en−1(Z)Ψm−n+1 +...+(−1)m−lem−l+1(Z)Ψl−1. 

Notice that the functions Ψm(l) and Ψ¯m(l) are equal by formula (4.8), while the summands 

in Ψm(l) correspond to the vertices of the path Cm(l) and the summands in Ψ¯m(l) correspond 

to the vertices of the path C¯m(l). 

 √  √  √  

Consider the rotated n-gone e−2π −1ϕ∆ and rotated paths e−2π −1ϕCm(l), e−2π −1ϕC¯m(l). 

 √ √  
We say that the path e−2π −1ϕCm(l) is admissible if the number Re(e−2π −1ϕωm) is greater √ 

than the number Re(e−2π −1ϕωk) for any other vertex of the path Cm(l), and we say that the 

 √ √  

path e−2π −1ϕC¯m(l) is admissible if the number Re(e−2π −1ϕωm) is greater than the number 
√ 

Re(e−2π −1ϕωk) for any other vertex of the path C¯m(l). 

7.3. Bases . We have 

(7.3) Q00 = {Ψ1,Ψn − e1(Z)Ψn−1 + ··· + (−1)n−2en−2(Z)Ψ2, 

Ψ2,Ψn−1 − e1(Z)Ψn−2 + ··· + (−1)n−4en−4(Z)Ψ3,Ψ3,...}, 

(7.4) Q000 = {Ψn − e1(Z)Ψn−1 + ··· + (−1)n−1en−1(Z)Ψ1,Ψ1, 

Ψn−1 − e1(Z)Ψn−2 + ··· + (−1)n−2en−3(Z)Ψ2,Ψ2,...,}. 
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7.4. Proof of Theorem 7.1 for k = 0. We will prove the theorem for . The proof for is 
completely similar. 

We will prove that the basis  is a Stokes basis on the interval ( ), if a ∈ 
(1/2n,1/n), where  is small. The Stokes rays divide the non-resonant points of the interval (

) into the subintervals (1  . The first and 
last of these subintervals are shorter than the intervals between the Stokes rays, since they 
have boundary points lying in between Stokes rays. We will prove that  is 
a Stokes basis on each of these subintervals. 

We start with the first two subinterval (1 ) and (0,1/2n). We assume that  is small 
so that (1  

The functions Ψ , appearing in (7.3) are all admissible for the 

interval (0,1/n) in the sense of Corollary 5.2. For ϕ ∈ (0,1/n) each of these functions has 

√  
an asymptotic expansion with the leading term exp(nre−2π −1ϕωm). The magnitude of a 

√  

function Ψ ) is determined by the real 

part of the number e−2π −1ϕωm. Hence to order 

the magnitudes of the solutions Ψ 

√  
we need to consider the rotated n-gone e−2π −1ϕ∆ and order the real parts of its vertices. Using 

notations of Section 7.2 we write 

(7.5) . 

These functions are the functions, which were assigned to the sequence of paths {C1(1), Cn(2), 
C2(2), Cn−1(3), C3(3), ...} in Definition 7.3. Each of these paths is admissible with √  

respect to e−2π −1ϕ∆ for ϕ ∈ (0,1/n). Hence each linear combination Ψm(l) appearing in 

√  
this sequence has asymptotic expansion with leading term exp(nre−2π −1ϕωm), coming from 

the summand Ψm of Ψm(l), corresponding to the head of the path Cm(l). Therefore the basis

 is an asymptotic basis on the two subintervals (1 ) and (0,1/2n). 

Consider the next two subintervals (−1/2n,0) and (−1/n,−1/2n). On the interval (−1/n,0) 

the admissible functions are Ψ0,...,Ψn−1. For ϕ ∈ (−1/n,0) each of these func- 
√ 

tions has an asymptotic expansion with the leading term exp(nre−2π −1ϕωm). 

In formula (7.3) the function Ψn(2) is the only function that uses the non-admissible 

function Ψn. We replace the presentation of Ψn(2) in (7.3) by the equal sum 

Ψ¯n(2) = (−1)n−1en(Z)Ψ0 + (−1)n−2en−1(Z)Ψ1, 

which uses only the admissible functions Ψ0,...,Ψn−1. On the interval (−1/n,0) we have 

(7.6) , 
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where the dots indicates the same functions as in (7.3). This new presentation of the 

basis corresponds to the sequence of paths {C1(1),C¯n(2),C2(2),Cn−1(3),C3(3),...}. 

√  

Each of these paths is admissible with respect to e−2π −1ϕ∆ for ϕ ∈ (−1/n,0). Hence each 

linear combination of the functions Ψ0,...,Ψn−1 appearing as a basis vector in (7.6) has 

√  
asymptotic expansion with leading term exp(nre−2π −1ϕωm), coming from the summand Ψm 

corresponding to the head of the corresponding path. Therefore the basis  is an asymptotic 

basis on the two subintervals (−1/2n,0) and (−1/n,−1/2n). 

On the next two subintervals (−3/2n,−1/n) and (−2/n,−3/2n) the admissible functions are 

Ψ−1,...,Ψn−2. For ϕ ∈ (−2/n,−1/n) each of these functions has an asymptotic expan- 

√  
sion with the leading term exp(nre−2π −1ϕωm). 

In formula (7.6) the function Ψn−1(3) is the only function that uses the non-admissible Ψn−1. 

We replace the presentation of Ψn−1(3) in (7.3) by the equal sum 

Ψ¯n−1(3) = (−1)n−1en(Z)Ψ−1 + (−1)n−2en−1(Z)Ψ0 + 

(−1)n−3en−2(Z)Ψ1 + (−1)n−4en−3(Z)Ψ2, 

which uses only the admissible functions Ψ−1,...,Ψn−2. On the interval (−2/n,−1/n) we have 

(7.7) , 
where the dots indicates the same functions as in (7.3). This new presentation of the 

basis corresponds to the sequence of paths {C1(1),C¯n(2),C2(2),C¯n−1(3),C3(3),...}. 
√ 

Each of these paths is admissible with respect to e−2π −1ϕ∆ for ϕ ∈ (−2/n,−1/n). Hence each 

linear combination of the functions Ψ−1,...,Ψn−2 appearing as a basis vector in (7.7) 
√ 

has asymptotic expansion with leading term exp(nre−2π −1ϕωm), coming from the summand 

Ψm corresponding to the head of the corresponding path. Therefore the basis  is an 

asymptotic basis on the two subintervals (−3/2n,−1/n) and (−2/n,−3/2n). 

Repeating this procedure we prove Theorem 7.1 . See a similar reasoning in [Gu]. 
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