
Vol.:(0123456789)1 3

Requirements Engineering
https://doi.org/10.1007/s00766-021-00366-0

ORIGINAL ARTICLE

A multi‑level semantic web for hard‑to‑specify domain concept,
Pedestrian, in ML‑based software

Hamed Barzamini1 · Murtuza Shahzad1 · Hamed Alhoori1 · Mona Rahimi1

Received: 11 November 2020 / Accepted: 30 October 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Machine Learning (ML) algorithms are widely used in building software-intensive systems, including safety-critical ones.
Unlike traditional software components, Machine-Learned Components (MLC)s, software components built using ML
algorithms, learn their specifications through generalizing the common features that they find in a limited set of collected
examples. While this inductive nature overcomes the limitations of programming hard-to-specify concepts, the same feature
becomes problematic for verifying safety in ML-based software systems. One reason is that, due to MLCs data-driven nature,
there is often no set of explicitly written and pre-defined specifications, against which the MLC can be verified. In this regard,
we propose to partially specify hard-to-specify domain concepts, which MLCs tend to classify, instead of fully relying on
their inductive learning ability from arbitrarily-collected datasets. In this paper, we propose a semi-automated approach to
construct a multi-level semantic web to partially outline the hard-to-specify, yet crucial, domain concept “pedestrian” in
automotive domain. We evaluate the applicability of the generated semantic web in two ways: first, with a reference to the
web, we augment a pedestrian dataset for a missing feature, wheelchair, to show training a state-of-the-art ML-based object
detector on the augmented dataset improves its accuracy in detecting pedestrians; second, we evaluate the coverage of the
generated semantic web based on multiple state-of-the-art pedestrian and human datasets.

Keywords  Requirements specifications · Machine learning · Machine-learned components · Safety-critical systems

1  Introduction

Software components are traditionally built according to a
set of predefined requirements specifications. These speci-
fications are expected to explicitly and unambiguously
describe what a software component is expected to do in a
given context. Requirements are usually gathered based on
stakeholders’ and users’ needs during the domain analysis
and requirements engineering phases. However, when engi-
neering domain-specific software systems, requirements are

often expressed containing domain-specific terminologies
and concepts that are present in a particular environment
in which the software operates. In conventional Require-
ments Engineering (RE), if needed, these domain-specific
concepts and terminologies are typically specified during
domain analysis and documented, alongside requirements,
either in the form of natural language or in a more formal
manner, such as an ontology, taxonomy, and semantic webs
[11, 12, 17, 30, 49].

With the emergence of Machine Learning (ML) appli-
cations in Software Engineering (SE), domain concepts
are no longer explicitly specified. The concepts are instead
implicitly represented within limited variations of con-
cept’s instances in a training dataset. While conventional
requirements engineers apply elicitation techniques to
obtain and validate domain knowledge, the use of ML in
SE has turned this process to be more of an inductive and
data driven task. As such, ML-based software components,
Machine-Learned Components (MLC)s, learn their speci-
fications from a set of collected examples rather than a set
of “agreed upon” specifications. For instance, pedestrian

 *	 Mona Rahimi
	 rahimi@cs.niu.edu

	 Hamed Barzamini
	 hbarzamini@niu.edu

	 Murtuza Shahzad
	 msyed1@niu.edu

	 Hamed Alhoori
	 alhoori@cs.niu.edu

1	 Northern Illinois University, DeKalb, IL 60115, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-021-00366-0&domain=pdf

	 Requirements Engineering

1 3

detectors in autonomous technology, learn the concept
pedestrian solely from images and video frames of vari-
ous pedestrians in a training set; in medical domain, a ML-
based diagnostic software tends to learn the specifications
of a benign versus a malignant tumor only from a col-
lection of Computed Tomography(CT) scans. Hence, ML
models suggest specifications (inductively learned from
the training-validation dataset) rather than implementing
known specifications. This characteristic makes MLCs
particularly useful when a domain consists of concepts,
where little knowledge exists for humans to develop effec-
tive algorithms.

We refer to such domain-specific concepts as hard-to-
specify for which a universal definition does not exist, as
they are inherently challenging to clearly define. Therefore,
these are domain concepts with no clearly delineated and
agreed-upon definition due to the large difference that exists
between varying instances of the concept. Although humans
may recognize various instances of the concept through intu-
ition, yet the concepts’ definite specification is difficult even
for humans. For instance, what is the exact specification for
recognizing a potential pedestrian? In a potential require-
ment, “the determined position of the ‘pedestrian’ should
be accurate within 0.5 m,” [45] but the term ‘pedestrian’ is
not simply determinable. The concept ‘pedestrian’ is hard to
specify due to pedestrians’ different appearances in the vis-
ual domain caused by clothes and/or additional equipment.

With the advent of autonomous cars, MLCs are used in
software systems within autonomous driving technology,
such as in the Advanced Driver Assistance Systems (ADAS)
and the Automated Driving Systems (ADS) [27]. In such a
context, ML-based systems become safety-related as their
failure may result in loss of life or severe damage to prop-
erties and/or environment [23]. MLCs’ inductive ability to
learn specifications is desirable for programming hard-to-
specify concepts in this domain. However, the same abil-
ity may also result in a significant and yet inevitable gap
between the perception of concepts (e.g., ‘pedestrian’) as
human drivers perceive and what a collected dataset rep-
resents as the concept for MLCs’ training process. MLCs’
perception of concepts is confined to generalizing a set of
seen common features within a limited dataset, collected
for training purposes of the model. For instance, a pedes-
trian detector in a smart car is partially expected to learn the
concept ‘pedestrian’ based on images and video streams in
which pedestrians are annotated. If the real pedestrians in
the model’s operation environment do not share the same
learned common features of pedestrians that the model has
seen during the development process, the detector misclas-
sifies the pedestrians as non-pedestrians. Thus, using MLCs
in this domain and relying on their learning ability from a
limited dataset, which may not cover all factors related to the
concept ‘pedestrian’, introduces safety risks.

In the automotive industry, the applicable functional
safety standard is referred to as ISO 26262 [20], which does
not cover specific aspects of ML [37]. This was a key moti-
vation for the extension ISO/PAS 21448 on Safety Of The
Intended Functionality (SOTIF). However, there is no clear
guideline in the document on precisely addressing the men-
tioned issues in MLCs [21]. The state-of-the-art pedestrian
datasets are collected in unsystematic and based on ad hoc
manners and therefore are generally limited in the number
of examples and diversity of samples that they comprise [21,
46]. For instance, the most recently established datasets in
the context of autonomous driving, such as Caltech [14],
KITTI [18], CityPersons [53], and EuroCityPerson (ECP)
[6], are arbitrarily collected by a vehicle-mounted camera
navigating through suburban roads [21].

In this regard, in this paper, we propose to partially spec-
ify hard-to-specify domain concept, pedestrian, for MLCs
instead of entirely relying on their ability to learn these
specifications from a randomly-collected dataset. Specifying
domain concepts improve requirements engineering tasks in
developing MLCs by (i) enriching their learning foundation
with semantic information (ii) providing a more complete
basis to learn functional requirements specifications (iii)
disambiguating MLC’s requirements specifications which
contain hard-to-specify domain terms. To this end, we intro-
duce a novel semi-automated approach to construct a multi-
level semantic web for partially specifying a potential pedes-
trian for MLCs. A process-level overview of our proposed
approach is illustrated in Fig. 1, containing seven phases.
Figure 2 uses the same corresponding phase numbers to rep-
resent a more detailed development-level overview of each
step. As shown in both figures, our approach contains two
major parts Designing the Semantic Web and Augment-
ing the Dataset. In part “Designing the Semantic Web”, we
specify the domain concept, pedestrian, first by augment-
ing the concept through searching for accompanying, co-
occurring, and related similar terms, Fig. 1-(1). Second, we
create a set of high-level topics (Zoom-Out view) from the
retrieved terms by following a sequence of ML techniques,
Fig. 1-(2). Third, more details are provided for each topic
(Zoom-In view), using a part-of-speech tagger, Fig. 1-(3).
Finally, instead of merely returning a flat list of relevant
terms and relationships, we compose the terms into a mean-
ingful hierarchy of topics in the form of a semantic web,
Fig. 1-(4). In part “Augmenting the Dataset”, we assess the
usefulness of our approach through showing the effectiveness
of the inferred semantic web in improving MLCs’ accuracy,
as well as empirically analyzing the coverage of the gener-
ated topics and relationships in benchmark datasests. First
with a reference to the web, we identified one semantically
important feature, wheelchair, for pedestrians that appeared
in the semantic web but was not present in the majority
of commonly-used datasets, Fig. 1-(5). We then manually

Requirements Engineering	

1 3

collected a balanced number of images of pedestrians in
wheelchair and augmented the MLC’s original training data-
set, Fig. 1-(6). Finally, we re-trained a state-of-the-art object
detector to detect the augmented feature, and evaluated the
effectiveness of our approach in improving MLCs learning
process, through conducting a series of experiments before
and after the dataset augmentation, Fig. 1-(7). Additionally,
to assess the coverage of the semantic web that was gener-
ated by the proposed approach, we analyzed multiple state-
of-the-art datasets with respect to entities and relationships
built in the semantic web.

The primary contribution of this work is, therefore, a
paradigm shift to formally specify hard-to-specify domain
concepts and partial requirements for MLCs. The advantages
of outlining hard-to-specify domain concepts in the form of
a semantic web are (i) to set a benchmark for the specifica-
tion of unambiguous hard-to-specify concepts, (ii) to build
a library to reuse and augment the shared knowledge, (iii)
to automatically verify whether the datasets and ML models
are consistent with the specifications, given that the formal-
ism form of the knowledge is represented in a semantic web.
Thus, we can use the established benchmarks to serve as a
reference for assessing the correctness and completeness of
a concept captured in a collected dataset for training-validat-
ing-testing MLC, (iv) to improve the process of specifying
unambiguous requirements for MLCs. For example, in the
requirement, “The determined position of the ‘pedestrian’
should be accurate within 0.5 m”, outlining the term ‘pedes-
trian’ relatively resolves the inherited ambiguity of domain-
related concept ‘pedestrian’ and results in a more explicit
requirement specification.

In this paper, we selected the automotive domain and
pedestrian as a hard-to-specify domain concept mainly
because most safety-related perceptional requirements for
an intelligent pedestrian detector are based on the incorrect

assumption that such domain specification exists and is
agreed upon. We use our proposed approach to semi-auto-
matically build a semantic web for the hard-to-specify con-
cept ‘pedestrian’. We then show that augmenting a dataset,
according to our established semantic web, improves the
accuracy of a pedestrian classifier trained on this dataset.

The remainder of this paper is organized in the following
manner. In Sect. 2, we discuss our semi-automated process
to design a multi-level semantic web fro specifying hard-to-
specify concepts. We describe how we created a high-level
view (Zoom-Out view), and the process of creating a more
detailed view (Zoom-In View) of the concept ‘pedestrian’.
We finish this section by representing the process of creat-
ing a semantic web from the words and relations previously
retrieved. Section 3 describes how we applied our inferred
semantic web to augment a publicly available pedestrian
dataset in order to improve the performance of selected
pedestrian detectors. Sections 4, 5, and 6 discuss threats to
the validity of our approach, related work, and conclusion
and future work, respectively.

2 � Designing the semantic web

(Figure 1-(1)) In this section, we present our approach to
design a semantic web with the purpose of formally speci-
fying hard-to-specify domain concepts. While we use our
approach to semi-automatically construct an extendable
domain-specific semantic web for the concept, ‘pedestrian’
in the automotive domain, the process is not domain-specific
and can be generalized to other concepts and domains. The
output of this section, the constructed semantic web, serves
as a benchmark for the concept ‘pedestrian’ and a point of
reference, against which collected ‘pedestrian’ datasets for
training ML algorithms can be assessed for completeness.

Fig. 1   Process-level overview of our proposed approach

	 Requirements Engineering

1 3

2.1 � Augmenting a concept

The process is initiated with the augmentation of the hard-
to-specify domain concept ‘pedestrian’. A class of hard-to-
specify concepts refers to terms in a domain that are more
socially-constructed rather than being defined according
to a definite, explicit, and written description. Moreover,
the definition of pedestrian is highly subjective and, thus,
differs from person to person depending on their perspec-
tive, past experience, and knowledge. For instance, is a per-
son riding a bike; carrying a bike; or standing on a bike; a
pedestrian? Therefore, to specify such concepts, for which
no set of domain documents exists, we decided to refer to
human perception as a reference model. For this purpose,
we referred to platforms where humans easily share their

views, thoughts, and knowledge, such as social platforms,
news feeds, and online encyclopedias. Through mining such
resources, we identified terms that are connected to the term
pedestrian. To identify terms which are closely related to
the given concept, we adopted three sets of approaches to
achieve more enhanced and thorough results:

1.	 Accompanying terms (Fig. 2(1)-(a)): We defined
accompanying terms as terms which most frequently
appeared before and after the term pedestrian in high
ranked online corpora. To identify such terms, we
referred to Google books N-gram1, an online search

Fig. 2   Development-level overview of our proposed approach

1  https://​www.​engli​sh-​corpo​ra.​org/​googl​ebooks/.

https://www.english-corpora.org/googlebooks/

Requirements Engineering	

1 3

engine that provides a search for 155 billion words
from American English and 34 billion words from Brit-
ish English and provides high-frequency terms associ-
ated with a given term as a search query. We searched
Google books N-gram for sources printed between the
years 1500 and 2000 in the American English language
while using the word pedestrian as a part of our search
query. We used four variations of search queries includ-
ing: pedestrian + [any verb]; [any verb] + pedestrian;
pedestrian + [any noun]; [any noun] + pedestrian.
Table 1 shows some examples of the returned terms by
the search engine for the variations mentioned. This step
resulted in 692 non-unique terms accompanying with the
term pedestrian.

2.	 Co-occurring terms (Fig. 2(1)-(b)): Relying solely on
the terms extracted in the previous step, we potentially
miss the terms which do not appear immediately before
or after a given term but are still closely related to the
concept. For instance, in the phrase “In cities with poor
infrastructures, pedestrians who use wheelchairs often
are forced to use the street.” The terms pedestrian and
wheelchair are potentially relevant (i.e., a pedestrian on
a wheelchair is a pedestrian) but are not subsequent. To
avoid such errors, we additionally defined and searched
for co-occurring terms with the term pedestrian within
the same phrase. We defined co-occurring terms as the
most common terms, which occurred up to four terms
apart from the term pedestrian in corpora. We assumed
further apart terms have lower relevance to our search
query and, therefore, less important to our seman-
tic web. To achieve co-occurring terms, we searched
Google N-gram to extract the most common verbs and
nouns that appeared up to four terms apart from the term
pedestrian, and this step resulted in 1,601 co-occurring
terms. As such, we assumed that co-occurring terms in
further distance than four spaces are mostly irrelevant

to the concept and are, therefore, excluded from our
study. We later compensate for further-apart-yet-relevant
terms that were mistakenly removed by this assumption
through adding the following metrics.

3.	 Related terms (Fig. 2(1)-(c)): We defined related terms
as terms that have a meaningful relationship with the
concept pedestrian but do not occur within a short dis-
tance or together with the term pedestrian in corpora. To
search for such terms, we used RelatedWords2, which
is an open-source project. RelatedWords runs several
algorithms, such as word embedding, to convert words
into multidimensional real-valued vectors (often tens or
hundreds of dimensions), representing their meanings.
The generated vectors of the words are then compared to
a database of pre-computed vectors according to a set of
existing corpora. Each word’s vector values are learned
based on the word’s usage in the given corpora and is
placed in the space for these values. This allows words
used in similar ways to have similar representations and
closer distance in the space, naturally capturing their
meaning. An additional algorithm used by RelatedWords
crawls through ConceptNet [42] to retrieve additional
associated terms. ConceptNet is a knowledge graph that
collects its knowledge from many sources, such as Wik-
tionary, Open Mind Common Sense (OMCS) [41], and
WordNet [5]. RelatedWords provided 453 words related
to the term pedestrian. In addition to RelatedWords, we
used Onelook3, which indexes over a thousand online
dictionaries and encyclopedias to return the words
related to a search query. In addition to dictionaries and
encyclopedia, Onelook internally works on Datamuse
API to search various data sources, such as the CMU

Table 1   Top ten words returned by different search queries on Google books N-gram

“Pedestrian”+ [any verb] “Pedestrian” + [any noun]

Pedestrian crossing Pedestrian traffic
Pedestrian walks Pedestrian mall
Pedestrian killed Pedestrian bridge
Pedestrian pass Pedestrian street
Pedestrian moving Pedestrian zone

[Any verb] + “pedestrian” [Any noun] + “pedestrian”

Protect pedestrian Child pedestrian
Warn pedestrian Adult pedestrian
Hurrying pedestrian Level pedestrian
Involving pedestrian Street pedestrian
Encourage pedestrian Block pedestrian

2  https://​relat​edwor​ds.​org/.
3  https://​www.​onelo​ok.​com/.

https://relatedwords.org/
https://www.onelook.com/

	 Requirements Engineering

1 3

pronouncing dictionary as a source of phonetic tran-
scriptions; Corpus-based data to build a language model
that scores candidate words by context; and WordNet for
semantic lexical relations. Using pedestrian as the search
query, Onelook returned 527 words related to the term.
Although RelatedWords and Onelook use a few common
data sources, such as WordNet, they returned a different
set of terms for the search query pedestrian. Onelook
returned 140 words in common with RelatedWords.

Merging Results: We merged the acquired (1) accompa-
nying, (2) co-occurring, and (3) related terms to form 3273
words that have meaningful relationships with the term
pedestrian. The process of removing duplicate terms led to
1207 unique words.

Computing Similarity Score (Fig. 2(1)-(d)): Once
words were merged, and duplicates were removed, we used
the Gensim library to compute a similarity score for each
term with the term pedestrian. The goal of computing simi-
larity scores was to filter the incorrectly retrieved terms and
have a ranking value to prioritize and distinguish more rel-
evant terms from less relevant ones. To compute similarity
scores, we used the Gensim library, which includes various
pre-trained mathematical models and a collection of public
corpora, often used for unsupervised topic modeling and
natural language processing. The library contains an imple-
mentation of the Word2vec models, a group of related mod-
els used to produce word embedding. Word2vec takes, as
its input, a large corpus of text and produces a vector space,
typically of several hundred dimensions. Each unique word
in the corpus is being assigned a corresponding vector in
the space. Word vectors are positioned in the vector space
such that words that share common contexts in the corpus
are located close to one another in the space [33].

We used two public and widely used corpora, namely
Wikipedia and Google News since they are built on a sub-
stantial number of words, 400,000 and 3 billion words,
respectively. In the Gensim library, the terms included in
these corpora are embedded in the form of vectors. The
library provides a Word2vec two-layer neural network
model which produces a set of similar terms to a given
query, according to their cosine similarity score between
− 1 and 1. Table 2 shows the top 10 (N = 10) most similar
terms to the term pedestrian from our corpora, Wikipe-
dia, and Google News. We can observe that similar words
differ between the two corpora. For example, the Word-
2vec model using Wikipedia returns words with a slightly
higher similarity score than Google News. Out of the
unique merged 1207 terms, only 907 terms were present
in the Word2vec models constructed from Wikipedia, and

902 were present in Google News corpora. Therefore, we
continued our process only with these 907 and 902 rel-
evant terms with similarity scores retrieved from the two
corpora. We noticed that the rest of the terms were among
the least relevant terms to the concept ‘pedestrian’.

Filtering Results: We selected words with similarity
scores within the upper quartile of all terms’ similarity
score boxplot to further eliminate the ineffectual terms
from the remaining terms. Figure 3 represents the boxplots
for both corpora, Wikipedia and Google News similarity
scores. We found that the similarity score cutoff values
(third quartile value) for Wikipedia and Google News
were 0.3258 and 0.2137, respectively. After removing
terms with similarity scores below the threshold limit, 227
terms from Wikipedia and 226 terms from Google News
were obtained. Merging and removing the duplicate terms
resulted in 303 unique terms closely relevant to the term
pedestrian. In the following sections, we refer to these 303
relevant terms as “augmented terms.”

Table 2   Top ten similar words to pedestrian from Wikipedia and
Google News corpora

Wiki terms Similarity Google terms Similarity

Walkway 0.6928 Bicyclist 0.6166
Lanes 0.6808 Crosswalk 0.5942
Sidewalks 0.6572 Motorist 0.5460
Roadway 0.6411 Bike lanes 0.5416
Vehicular 0.6380 Pedestrian walkways 0.5328
Thoroughfare 0.6337 Bicycle lanes 0.5256
Subway 0.6296 Bikeway 0.5248
Underpass 0.6193 Traffic calming 0.5239
Overpass 0.6157 Roadway 0.5181
Parking 0.6129 Traffic 0.5173

Fig. 3   Box plot of similarity scores for terms retrieved from Wikipe-
dia and Google News

Requirements Engineering	

1 3

2.2 � Discovering high‑level topics: providing
a zoom‑out view of topics

(Fig. 1-(2)) To better summarize and organize the gathered
information and to improve its readability, we intended to
extract high-level abstract topics from the “augmented terms”,
acquired in the previous phase. In this step, we experimented
with two approaches. While the first approach has not pro-
vided us with the expected results, it guided us to a second and
improved subsequent approach.

2.2.1 � First approach

Preprocessing: To use the root of the “augmented terms”,
we performed a stemming phase on this set of relevant terms.
After stemming the terms back to their basic form, the total
number of remaining unique words was 230. Stemming
decreased the number of words, as some words ended up hav-
ing similar root words. For instance, terms such as cross and
crossed have the same root cross.

Vectorized Representation: Further, to achieve a set of
high-level abstract topics, we aimed to categorize the “aug-
mented terms” into a set of cohesive clusters to place simi-
lar terms in the same clusters. To perform clustering, we first
transformed each “augmented term” into a vector in the space,
using Word2vec models. As explained earlier, the Word2vec
algorithm uses simple two-layers neural network models to
learn words’ associations from a large body of text. Once
again, we used the two corpora Google News and Wikipe-
dia to train the neural networks. Once learned, each term was
transformed into vectors and located in the space so that terms
with higher cosine similarity were placed close to each other.

K-Means Clustering: We then fed these user-defined
Word2vec models into a K-Means clustering model [22] to
cluster the “augmented terms”. K-Means algorithm is an itera-
tive clustering algorithm used to partition the data points into
K clusters, whereas each data point is placed in one cluster
with the closest mean [32]. Mathematically, the K-Means algo-
rithm is designed to minimize an objective function J. Here we
used, the objective function to be the squared error function
as below:

where:

(1)J =

k∑

j=1

n∑

i=1

||xj
i
− �j||2

We used the scikit-learn implementation of K-Means clus-
tering, which has slightly different parameters, such as:

–	 algorithm: This parameter allows to select the type of
K-Means algorithm to be used. Current research has
shown choosing ‘elkan’ value for this parameter is more
efficient on data with well-defined clusters, using the tri-
angle inequality [15]. Thus, we used this value in our
experiment.

–	 n_clusters: Representing the number of clusters and the
number of centroids to be formed. For this parameter,
we selected an optimal number of clusters according to
a method explained in the following section.

–	 init: Representing the various methods used for initializa-
tion. We used the default method k-means++ [1].

–	 n_init: Indicating the number of times the algorithm
should run for different centroids values. We used the
default value 10.

–	 max_iter: This parameter indicates the maximum number
of iterations for the algorithm. We used the default value
of 300.

Optimal Number of Clusters: To determine the optimal
number of clusters, we adopted a method called elbow [47].
The elbow method is a technique that plots the relationship
between several clusters, used in building the K-Means clus-
tering model, and a chosen metric. Using this method, one
can select the elbow of the curve, the point where the curve
bends, as the cutoff point, and the optimal number of clusters

J = objective function

k = number of clusters

n = number of cases

x
j

i
= each data point

�j = the centroid for cluster j

||xj
i
− �j||2 = the Euclidean distance

Fig. 4   Elbow method to obtain the optimal number of clusters

	 Requirements Engineering

1 3

according to the chosen metric. Choosing the number of
clusters exceeding this point results in over-fitting rather
than improving the information gained from the clusters.
We selected

Within Cluster Sum of Squares (WCSS) as our determin-
ing metric. WCSS calculates the sum of squares of each data
point’s distances in all clusters to their respective centroids.
In other words, WCSS measures and represents the vari-
ability of the observations within each cluster. In general, a
cluster with a smaller sum of squares is more compact than
a cluster with a larger sum of squares. As demonstrated in
Fig. 4, the optimal number of clusters is five for the Wikipe-
dia Word2vec model and four clusters for the Google News
Word2vec model.

Discussion: After selecting the proper number of clusters
for the K-Means clustering algorithm, we expected that the
group of terms within each cluster to represent a meaning-
ful high-level topic. However, following a manual inspec-
tion, all the authors unanimously agreed that the majority of
the clustered words were not explicitly relevant to the same
high-level topic. This turned the process of labeling clusters
with only one meaningful topic, which is relevant to the
majority of the terms within the cluster, into an impractical
task. For example, one of the clusters contained words, such
as access, arcade, area, bike, block, bus-only, bustling, car-
riageway, cobblestone, corridor, creating, east-west, elderly,
front, gateless, interurban, intoxicated, and jaywalking.
Since we found the task of obtaining a representative topic
for the formed clusters to be impractical, we concluded that
this is not the proper approach to form a series of meaningful
and representative high-level topics from the “augmented
terms”. One possible reason for this is that we performed
clustering only on individual terms and outside any sen-
tence or paragraph. Clustering words out of their context
caused the words to lose their semantics. Thus, we decided
to experiment with a slightly different approach, as will be
explained next.

2.2.2 � Second approach

As an alternative strategy, we formed clusters not merely
based on unconnected terms but rather on full sentences,
containing additional connecting and supporting terms.
Since we are attempting to ultimately specify socially
constructed concepts, we used a social media platform,
namely Twitter, to extract additional relevant text for each
“augmented term”. We collected tweets rather than posts
on alternative social media, such as Facebook and Insta-
gram, because Twitter is primarily used for sharing ideas and
thoughts, whereas other social platforms are more adopted to
connect with friends and family members. To achieve high-
level meaningful topics relevant to terms associated with
the concept ‘pedestrian’, we followed the following steps:

Extracting relevant text (Fig. 2(2)-(a)): To extract
tweets relevant to the concept ‘pedestrian,’ we used a social
media analytics platform called Crimson Hexagon4. We
used Crimson Hexagon to query the Twitter platform for
tweets containing terms relevant to the concept ‘pedestrian’.
The tool extracts and returns tweets that include the given
search query. To extract tweets associated with the term
pedestrian, we queried Crimson Hexagon repeatedly, using
search queries of a combination of term pedestrian with each
of the “augmented terms”, such as “pedestrian and traffic,”
“pedestrian and kill,” “pedestrian and wheelchair”. Since
the number of retrieved tweets for each of these queries var-
ied, the acquired text data were, therefore, imbalanced with
respect to queries. The imbalanced dataset could potentially
cause a bias in the process of building topics. Therefore, we
adopted a sampling approach to select a balanced number
of tweets in each group randomly. In case of queries where
the returned results were more than 10,000 tweets, we ran-
domly selected 10,000 tweets posted from May 2015 to May
2020. In the case of queries, where the returned result was
less than 10,000 tweets, we stretched the start of the time
frame to May of 2008. The older tweets, posted before May
2008, were not retrieved for any of the queries to avoid the
risk of incorporating outdated data into the semantic web.
For the 230 queries, the total number of obtained tweets
was 1,326,488. The average number of tweets per query
was 5,869, while the minimum number of retrieved tweets
was one tweet for the query “pedestrian and stumbler”. One
hundred of the queries collected 10,000 tweets, the maxi-
mum number we set. Four of the queries did not return any
tweets, including “pedestrian and gateless”, “pedestrian and
midfoot,” “pedestrian and stair,” “pedestrian and stalker”.

Preprocessing the acquired text data (Fig. 2(2)-(b)):
After retrieving the raw tweets, we performed preprocessing,
by removing hyperlinks, usernames, stop words, punctua-
tion, extra spacing, and numbers from the obtained tweets
during this process. Before performing the topic modeling,
we performed stemming using the NLTK python library. In
stemming, we eliminate the prefixes and suffixes from the
inflated terms.

Performing Topic Modeling (Fig. 2(2)-(c)): To perform
topic modeling, we adopted the Latent Dirichlet Allocation
(LDA) [4]. LDA is a probabilistic approach used to discover
latent topics relevant to a set of words in a collection of
documents. Each topic yields its own probability distribu-
tion over the words, and LDA uses maximum likelihood
estimation to learn the best probability distributions for each
latent topic. It also explicitly surfaces the probability distri-
bution of words for each learned topic. Because LDA looks
to assign topics to cohesive units of text, the latent topics it

4  https://​www.​brand​watch.​com/.

https://www.brandwatch.com/

Requirements Engineering	

1 3

learns often correspond to semantically meaningful topics
that can be named.

We used the Scikit-learn library to build topic models
from the retrieved tweets. After experimenting with a cou-
ple of different values for parameters, the parameters we
selected for base topic models were 30 and 25, respectively,
for the number of topics and number of words within each
topic. This step’s output was 30 clusters, where each cluster
was a combination of a different set of words associated with
each other representing a topic. Each word is associated with
a weight that indicates the importance of that word in a clus-
ter. Table 3 shows a sample output of this step. We excluded
the weights associated with each word for representational
purposes. From the table, we observe that several words are
grouped in each cluster that constitutes a particular topic.
For instance, words such as hit, car, kill, polic, driver, away,
elderli, injur, morn, run were grouped to form a potential
topic, such as “car killing a person.” Similarly, other topics
were formed, such as “planning and improving safety” and
“collapsing bridge.”

Obtaining topics (Fig. 2(2)-(d), (e)): Through building
the LDA model and clustering similar words together, we
were able to manually identify a topic for each cluster so
that most of the terms in the cluster were relevant to that
topic. Table 3 shows some of the topics that we manually
derived from the clustered terms. The 30 topics include “car
killing a person”, “Uber accident’’, “planning and improv-
ing safety”, “collapsing bridge” , “bike and cyclist traffic”,
“passing the red signal”, “detecting traffic in Portland”,
“truck on overpass highway”, “space needed on streets of
Times Square”, “giving access to bridge for traffic”, “call-
ing ambulance”, “people riding bike”, “malls and shops in
subway”, “pedestrian running at night”, “drunk driver kills
old man”, “police writing ticket to car driver”, “jaywalk-
ing on flyover”, “disabled person needing help to cross”,
“closed lane of train causing fatal accident”, “body in
hospital”, “tracking sidewalk, walkway and crosswalk”,
“police arresting driver”, “restriction on vehicular move-
ment”, ‘“regularly jog and exercise”, “serious injury in
vehicle collision”, “new bridge construction over river”,
“parking space on street”, “criminal gangs on street”,

“traffic signals at junctions and intersections”, “delay in
tunnel causing traffic”.

2.3 � Extending the topics: providing a zoom‑in view
of topics

(Fig. 1-(3)) In the previous sections, we partially specified
the hard-to-specify concept ‘pedestrian’ by identifying a
set of high-level topics and their associating terms relevant
to the concept ‘pedestrian’. Here, we also provide a more
detailed or zoom-in view of topics. For this purpose, we
need to identify potential relationships among the “aug-
mented terms” and topics retrieved by LDA. For instance,
we specified “wheelchair” as one of the “augmented terms”,
closely associated with the concept ‘pedestrian’. We found
this term within the LDA clustered terms: {wheelchair,
user,disabl, need, push, person, barrier, help...}, which we
labeled with the topic “disabled person needing help to
cross”. In this step, we intend to specify a more detailed
relationship between the “augmented term” “wheelchair”
and the topic “disabled person”.

To achieve this, we applied Part-Of-Speech (POS) tag-
ger to the collection of the previously extracted tweets. POS
tagger reads a sentence and tags each term with their role
in the given sentence, such as noun, verb, and adjective.
POS taggers generally tag terms in a sentence based on their
definition and the context, as corresponding to a particular
part of speech.

For the implementation, we used Stanford CoreNLP5 to
tag parts of the tweets that we previously extracted. We wrote
a Python wrapper script that uses the Stanford CoreNLP
parser to parse and tag 1,326,488 tweets. We labeled the
terms in each sentence of the retrieved tweets as triplets of
subject, predicate, and object. Not every sentence neces-
sarily yields a set of triplets. For instance, “person killed
in pedestrian accident near collier exit” returns “person,
killed, exit” as the subject, predict, and object, respectively,
whereas “contracting opp wildwood trail pedestrian bridge

Table 3   A few of the selected
topics for the terms returned by
the topic modeling algorithm on
the Twitter dataset. Weights are
excluded

Topic Top words in the Topic

1 Car killing a person Hit, car, kill, polic, driver, away, elderli, injur, morn, run.
2 Uber accident Drive, car, accid, kill, self, uber, fatal, vehicl, driver, hit.
3 Planning and improving safety Safeti, improv, bicycl, plan, citi, bike, transport, street, project, new.
4 Collapsing bridge Bridg, one, collaps, sign, way, person, univers, florida, peopl, traffic.
5 Bike & cyclist traffic Like, good, infrastructur, rule, know, look, traffic, cyclist, lane, bike.
6 Passing the red light Light, speed, turn, red, cross, limit, left, traffic, driver, car.
7 Traffic signals at junctions Cross, road, stop, traffic, pleas, use, crosswalk, light, signal, driver.
8 Delay in tunnel causing traffic Delay, tunnel, expect, bridg, north, traffic, caus, rush, america.

5  https://​stanf​ordnlp.​github.​io/​CoreN​LP/.

https://stanfordnlp.github.io/CoreNLP/

	 Requirements Engineering

1 3

project” only returns “contracting” as predicate without
yielding any subject or object. Similarly, after parsing and
probing for triplets in 1,326,488 tweets, we observed that
only 1,213,178 tweets yielded triplets.

We further filtered and selected only those triplets in
which either the subject or object was among the “aug-
mented terms”, resulted in 33,230 triplets. We merged all
the predicates, which belonged to the same subject-object
pair, as a single list. The duplicates having interchange-
able subject-object pairs were removed. After merging and
removing the duplicates, the final result of this process was
333 records. Each record contained a subject, an object,
and a list of all predicates associated with the subject and
object. For instance, in one record, we had pedestrian as the
subject, freeway as the object, and {killed, hit, run, closed,
cross, identified, filmed, dies, struck, call, crossing, backed,
injured, forcing} as a set of predicates.

In subject-object pairs with more than 20 predicates, we
filtered the predicates based on similarity scores of the predi-
cate to both the subject and object, using Word2vec models
and Wikipedia and Google News corpora as the reference.
Therefore, we selected the top 10 predicates with higher
similarity scores to the corresponding subject and object.

Finally, to connect the zoom-in and zoom-out views,
we selected triplets with subjects or objects matching the
“augmented terms”. This step’s result was 124 triplets to be
included in the zoom-in view of the closely related terms
to the concept ‘pedestrian’. For instance, in the example at
the beginning of this section, the topic “disabled users” is
a high-level topic associated with the concept ‘pedestrian’.
Under this topic, the word “wheelchair” is presented as a
term (among other sets of words) relevant to the concept and
topic. A more detailed zoom-in view represents the Sub-
ject-Predicate-Object triplets {woman parked wheelchair}
and {bus hit wheelchair}, where bus and women are also
included within the “augmented terms”, closely relevant to
the concept ‘pedestrian’. In the following section, we discuss
how we represent these terms and relationships in the form
of a semantic web. Further, we explain how we use the con-
structed web for the hard-to-specify concept ‘pedestrian’ to
improve a state-of-the-art object detector’s accuracy.

2.4 � Representation

(Fig. 1-(4)) The goal of a semantic web is to make internet
data machine-readable [13]. Controlled Natural Languages
(CNLs), such as Web Ontology Language (OWL), are used
to express knowledge about resources in a semantic web and
specify relations in a human-readable way [6, 48]. The ben-
efit of CNLs is that while they are understandable by humans
(i.e., declarative language), they can be directly translated to
a formal language (i.e., have formal syntax).

We exploit the terms and relations that we extracted in
the previous steps to build a semantic web for the hard-to-
specify domain concept ‘pedestrian’. In the semantic web,
an entity was formed for each distinct term; and an edge
was drawn between two nodes for each specified relation.
This process resulted in 78 entities for unique terms of sub-
jects and objects, as well as 339 unique edges representing
predicates terms in the semantic graph. Our semantic web
benchmarks a common understanding of the concept and
facilitates better communication over domain knowledge
between humans and MLCs. This benchmark represents the
shared and consensual knowledge of domain specifications,
which is generally accepted by the public.

To visualize the selected domain concept, we used a tool
called WebVOWL6 (Web-based Visualization of Ontolo-
gies). WebVOWL uses a Resource Description Framework
(RDF) file as the input to visually display the terms and
their relations. We wrote a script to automatically transform
the subject, object, and predicate triplets into an acceptable
format for the tool. Due to the large size of the generated
semantic web, we only provided a snapshot of it, as shown
in Fig. 5. The complete semantic web can be found on our
GitHub repository7. In the following sections, we discuss
how we exploited the established benchmark as a reference
for augmenting the concept ‘pedestrian’ in a collected data-
set to improve the accuracy of an object detector (MLC).

3 � Augmenting the dataset

This section discusses our evaluation of the proposed
approach. Assessing correctness of the constructed semantic
web through conducting a qualitative study with human par-
ticipants is highly subjective to the participants’ conditions,
experiences, and perspectives and, therefore, can be biased.
In addition, evaluating completeness of the built semantic
web in specifying all variances of the concept, pedestrian, is
inconclusive. In view of the raised issues, to instead evaluate
the usefulness of the proposed approach we (i) first, evalu-
ated the approach effectiveness in improving the accuracy
of MLCs. For this purpose, we identified the existing gap
in a state-of-the-art pedestrian dataset and augmented it for
one missing entity. We then compared the accuracy of a
state-of-the-art object detector, trained on this dataset, in
detecting various instances of ‘pedestrian’ before and after
the augmentation. (ii) second, we evaluated the coverage of
the generated entities and relations of the semantic web on
multiple commonly used datasets, which in turn, the gaps
in these datasets.

6  http://​vowl.​visua​ldata​web.​org/​webvo​wl.​html.
7  https://​github.​com/​REJou​rnal2​021.

http://vowl.visualdataweb.org/webvowl.html
https://github.com/REJournal2021

Requirements Engineering	

1 3

3.1 � Evaluating effectiveness

To evaluate the effectiveness of the established multi-level
semantic web, we initially selected a benchmark dataset. We
identified one common and semantically important feature,
wheelchair, that was often associated with potential pedes-
trians with respect to the constructed web, (Fig. 1-(5)). In
our semantic web wheelchair showed relatively high simi-
larity to the domain concept, and frequent co-appearance
with the term pedestrian in corpora, yet it was missing from
the images of the primary dataset. Although we selected
wheelchair as a missing feature, this decision was not only
due to its high semantic similarity to pedestrian, but also
our investigations of five state-of-the-art pedestrian and per-
son datasets, which we will further introduce in Sect. 3.2.1,
revealed the term’s absence from 80% of the datasets. There-
fore, we manually collected a balanced number (w.r.t. the
size of other classes in the dataset) of images containing
the instances of the concept (various-looking pedestrians)
interacting (sitting in) with the missing feature (wheel-
chair), (Fig. 1-(6)). We augmented the training dataset and
re-trained the ML model on the augmented dataset for a fair
comparison of two models’ accuracy in classifying pedes-
trians (Fig. 1-(7)).

Please note that we only augmented the dataset for one
partial specification (one triplet in the semantic web) as
the image collection, localization, and annotation for the
missing feature, in this case, was manually performed and
required a significant amount of labor. However, this man-
ual task needs to only occur once because when “enough”

number of images—relative to the size of other classes—are
collected for an underrepresented feature, then a ML model
can be re-trained to classify the missing feature in images.
Thus, this new model can be applied to automatically iden-
tify a set of images that contain the missing feature among
a large collection of images. In addition, we further discuss
an alternative method to automate this process in Sects. 3.2.2
and 3.2.3 .

Primary Dataset: We used images from the dataset
Microsoft Common Objects in Context (COCO) [31]. This
dataset is a publicly available large-scale collection of com-
mon objects’ images in their natural context. Each image is
annotated with all objects recognizable in the image through
crowd workers’ manual collaborative work. Additionally, the
objects’ boundaries are identified and segmented in each
image. Image annotations and segmentations are further ana-
lyzed and evaluated by a group of expert workers. COCO
consists of 2.5 million labeled instances in 328k images,
labeled with 91 different object categories [31]. We selected
this dataset because more than 35% of annotated objects are
‘person’ with various poses, characteristics, and within dif-
ferent contexts. Moreover, the COCO dataset contains more
categories and instances per image on average than other
publicly available datasets, such as PASCAL and ImageNet.
Additionally, YOLO, a state-of-the-art real-time object
detector, is pre-trained and holds weights learned according
to the COCO dataset.

We decided to conduct a series of experiments to evalu-
ate the application of our semantic web. Due to the large
size of images in COCO, using the entire dataset resulted in

Fig. 5   A snapshot of the con-
structed semantic web for the
hard-to-specify concept ‘pedes-
trian’. Circles represent the enti-
ties, and the labeled edges show
the relations between the pairs
of entities

	 Requirements Engineering

1 3

Table 4   Statistics of the
selected dataset from COCO
using stratified random
sampling

Object-no Image-no Image-percent Object-percent Obj/image

Person 27518.0 5139.0 72.62 26.15 5.35
Chair 7138.0 2243.0 31.69 6.78 3.18
Car 6604.0 1710.0 24.16 6.28 3.86
Bottle 4695.0 1693.0 23.92 4.46 2.77
Book 4225.0 916.0 12.94 4.01 4.61
Cup 4017.0 1646.0 23.26 3.82 2.44
Bowl 2440.0 1165.0 16.46 2.32 2.09
Handbag 2417.0 1329.0 18.78 2.30 1.82
Dining table 2149.0 1489.0 21.04 2.04 1.44
Backpack 1788.0 1133.0 16.01 1.70 1.58
Bench 1585.0 852.0 12.04 1.51 1.86
Knife 1572.0 674.0 9.52 1.49 2.33
Truck 1532.0 921.0 13.01 1.46 1.66
Traffic light 1481.0 484.0 6.84 1.41 3.06
Potted plant 1461.0 784.0 11.08 1.39 1.86
Umbrella 1166.0 444.0 6.27 1.11 2.63
Spoon 1152.0 613.0 8.66 1.09 1.88
Bicycle 1116.0 545.0 7.70 1.06 2.05
Wine glass 1106.0 363.0 5.13 1.05 3.05
Sink 1049.0 902.0 12.75 1.00 1.16
Tv 933.0 716.0 10.12 0.89 1.30
Fork 893.0 498.0 7.04 0.85 1.79
Suitcase 803.0 389.0 5.50 0.76 2.06
Vase 767.0 465.0 6.57 0.73 1.65
Laptop 760.0 564.0 7.97 0.72 1.35
Couch 738.0 581.0 8.21 0.70 1.27
Cell phone 702.0 573.0 8.10 0.67 1.23
Sports ball 677.0 462.0 6.53 0.64 1.47
Apple 614.0 220.0 3.11 0.58 2.79
Carrot 596.0 179.0 2.53 0.57 3.33
Oven 580.0 502.0 7.09 0.55 1.16
Orange 550.0 209.0 2.95 0.52 2.63
Boat 544.0 182.0 2.57 0.52 2.99
Motorcycle 552.0 230.0 3.25 0.52 2.40
Remote 535.0 322.0 4.55 0.51 1.66
Bus 536.0 390.0 5.51 0.51 1.37
Keyboard 527.0 374.0 5.28 0.50 1.41
Bird 521.0 166.0 2.35 0.50 3.14
Dog 487.0 371.0 5.24 0.46 1.31
Mouse 482.0 397.0 5.61 0.46 1.21
Kite 471.0 102.0 1.44 0.45 4.62
Cake 470.0 208.0 2.94 0.45 2.26
Banana 461.0 227.0 3.21 0.44 2.03
Refrigerator 456.0 434.0 6.13 0.43 1.05
Clock 453.0 402.0 5.68 0.43 1.13
Microwave 449.0 428.0 6.05 0.43 1.05
Toothbrush 443.0 238.0 3.36 0.42 1.86
Baseball bat 435.0 303.0 4.28 0.41 1.44
Horse 418.0 216.0 3.05 0.40 1.94
Donut 420.0 98.0 1.38 0.40 4.29
Cow 418.0 159.0 2.25 0.40 2.63

Requirements Engineering	

1 3

excessively expensive experiments and therefore limited the
number of experiments we were willing to perform. For this
reason, we instead systematically selected a subset of COCO
to perform a variety of experiments. To select our samples,
we used a stratified random sampling technique rather than
simple random sampling to represent the population of
images in each category. In stratified sampling, data points
are randomly selected from each sub-population (category)
in proportion to its original size. Samples in each category
(i.e., strata) are expected to share the same characteristics.
In our case, the samples in each category share the same
class label. As a result, more samples were selected from
categories with a larger number of images, and similarly, a
smaller number of images were collected from the smaller
groups. Table 4 represents our dataset’s statistics, includ-
ing 7077 total images and total objects labels of 105,239
selected from the COCO dataset. For ease of reference, we
refer to this selected subset of COCO as COCO in the rest
of this article and Table 5.

Auxiliary Datasets: Moreover, we used two additional
datasets, namely Open Images and Mobility Aids data-
sets, to retrieve images of entities that were missing from
the primary dataset according to our semantic web. Open
images are a dataset that has approximately 9 million varied
images with rich annotations8. The images are very diverse
and often contain complex scenes with several objects (8.4
per image on average). It contains 15,851,536 boxes on 600
categories, image-level labels annotations, object bounding
boxes, object segmentation, visual relationships, and local-
ized narratives.

Object Detector: In our experiments, the YOLOv5 algo-
rithm was used for object detection, specifically to detect
pedestrians (people in the context of streets) in the image
dataset. Since the COCO dataset contains people’s images
in the streets, we used the existing YOLO’s detectable
label ‘person’ to be interchangeable with ‘pedestrian’. The

Table 4   (continued) Object-no Image-no Image-percent Object-percent Obj/image

Sandwich 416.0 209.0 2.95 0.40 1.99
Skis 417.0 160.0 2.26 0.40 2.61
Elephant 406.0 187.0 2.64 0.39 2.17
Sheep 410.0 77.0 1.09 0.39 5.32
Pizza 411.0 178.0 2.52 0.39 2.31
Parking meter 409.0 230.0 3.25 0.39 1.78
Teddy bear 410.0 241.0 3.41 0.39 1.70
Skateboard 408.0 233.0 3.29 0.39 1.75
Scissors 400.0 301.0 4.25 0.38 1.33
Toilet 400.0 348.0 4.92 0.38 1.15
Broccoli 403.0 166.0 2.35 0.38 2.43
Airplane 400.0 234.0 3.31 0.38 1.71
Bed 402.0 359.0 5.07 0.38 1.12
Bear 400.0 291.0 4.11 0.38 1.37
Zebra 402.0 158.0 2.23 0.38 2.54
Giraffe 400.0 225.0 3.18 0.38 1.78
Tie 404.0 238.0 3.36 0.38 1.70
Frisbee 400.0 282.0 3.98 0.38 1.42
Snowboard 403.0 206.0 2.91 0.38 1.96
Baseball glove 403.0 282.0 3.98 0.38 1.43
Surfboard 400.0 172.0 2.43 0.38 2.33
Tennis racket 400.0 254.0 3.59 0.38 1.57
Cat 400.0 348.0 4.92 0.38 1.15
Stop sign 402.0 370.0 5.23 0.38 1.09
Fire hydrant 403.0 372.0 5.26 0.38 1.08
Hot dog 402.0 147.0 2.08 0.38 2.73
Train 403.0 337.0 4.76 0.38 1.20
Toaster 225.0 217.0 3.07 0.21 1.04
Hair drier 198.0 189.0 2.67 0.19 1.05

8  https://​stora​ge.​googl​eapis.​com/​openi​mages/​web/​index.​html.

https://storage.googleapis.com/openimages/web/index.html

	 Requirements Engineering

1 3

process of object detection in YOLO happens through two
levels, involving image classification and object localiza-
tion. Image classification assigns an image to a different set
of existing classes or categories, such as a person, car, and
plane, whereas object localization positions the objects in the
image. Through this process, the object detector algorithm
identifies objects and their positions in an image by labeling
the objects and creating a bounding box around them. The
object detector also generates a confidence score, represent-
ing the probability that an anchor box contains an object.
The bounding boxes are later compared to the ground-truth
according to an evaluation metric called Intersection over
Union (IoU). IoU score identifies the area of overlap between
the predicted bounding box and the ground-truth bounding
box. According to the IoU value of interest, the classification
accuracy is computed according to standard metrics such
as Recall, Precision, and Mean Average Percentage (mAP)
score (with different IoU values). The algorithm considers
a detected label to be correct if the detected class matches
the label in the ground-truth, the confidence score is greater
than the selected threshold, and the detected bounding box
for the object overlaps with X% of the bounding box in the
ground-truth, where X is the selected value for IoU. In our
experiments, we selected X to be 50%, and in another case,
range from 50% to 95% (Table 7).

Experiments: Here, we explain the series of experiments
we conducted to evaluate the application of our previously
constructed semantic web. Table 5 represents a summary of
all our experiments, while Table 7 reports the object detec-
tor’s performance in the conducted experiments for detecting
the label ‘Person’. To better evaluate our proposed approach
for building the semantic web, we divided the experiments
into two main categories (1) Before Dataset Augmentation
and (2) After Dataset Augmentation.

In the experiments within the Before Dataset Augmen-
tation category, we recorded YOLO’s performance on our
selected dataset, before referring to the constructed semantic
web for dataset augmentation. These sets of experiments
served as base cases for assessing YOLO’s improvements
after augmenting the dataset according to the semantic web.

After Dataset Augmentation category consists of experi-
ments for evaluating YOLO’s performance after we aug-
ment the dataset with reference to our semantic web. For this
purpose, we carefully went through the primary dataset as
well as the set of subject-predicate-object triplets, obtained
in section 2.3, representing entities with close relations to
the pedestrian. We identified a set of subjects and objects
that were not initially present in the collection of pedestrian
images within the primary dataset. To augment the dataset,
we chose one missing object or subject at a time and added
a balanced number of images of the subject or object to the
original dataset. These additional images were selected from
our auxiliary datasets, Open Images, and Mobility Aids.

Augmented Training Datasets: In all of our experi-
ments in this article, within After Dataset Augmenta-
tion category, we considered wheelchair as a missing
object from the primary dataset. We chose the wheelchair
because it appeared in our semantic web subject-predicate-
object triplets, showing a strong association with the term
‘pedestrian’ and was not initially present in the primary
dataset. We selected 608 images of pedestrians on wheel-
chairs from the Open Image and Mobility Aids datasets
for training purposes. For the missing term wheelchair,
we augmented two versions of training datasets with addi-
tional images:

1.	 Merged-Labels Dataset: In this version, as shown in
Fig. 6b, we augmented the dataset with the images of
pedestrians on wheelchairs, where the bounding box
is drawn around the entire boundary of the person and
wheelchair together. We selected the wheelchair and
the person in the wheelchair as one object, and labeled
them as ‘Person’, and created a bounding box around
them. We augmented the COCO dataset with this set
of labeled images, which resulted in 117,266 and 4952
images, respectively, for training and validation.

2.	 Split-Labels Dataset: In the second version of the aug-
mented dataset, as illustrated in Fig. 6c, d, using the
same set of 608 images of pedestrians on wheelchairs,
we created two different bounding boxes: one around
the person and one around the wheelchair. We labeled
the two objects with two separate labels as ‘Person’ and
‘Wheelchair’.

The primary reason for conducting experiments with two
training datasets is to study the impact of augmenting the
dataset with both a new label, ‘Person-in-wheelchair’, and
an already existing label, ‘Person’.

Testing Datasets: We evaluated the performance of
YOLO on two testing datasets.

1.	 Basic Dataset: In the first version, we randomly selected
106 images containing a pedestrian in a wheelchair from
Open Images and Mobility Aids datasets. We ensured
that these 106 images were not included in our training
datasets and were previously unseen by the object detec-
tor. This dataset is to evaluate YOLO’s performance on
unseen data after the dataset augmentation.

2.	 Integrated Dataset: In the second version, we inte-
grated the same 106 images of the Basic Dataset into
our primary dataset to evaluate the overall performance
of YOLO on previously seen images in addition to the
unseen ones. In three experiments, we only used the
COCO dataset as our testing set to evaluate YOLO only
on previously seen data.

Requirements Engineering	

1 3

In all the experiments, we only report YOLO’s perfor-
mance on detecting the label ‘Person’ as our dataset aug-
mentation process is only concerned with this label and
does not interfere with other classes’ trained weights.

3.1.1 � Before dataset augmentation (base cases)

–	 Experiment 1a: In this experiment, we chose the
Merged-Labels dataset. We assessed YOLO’s overall
performance in detecting the label ‘Person’ only for the
106 unseen images of pedestrians in a wheelchair in
addition to the seen images of COCO (Integrated data-
set). Note that the ground-truth for pedestrians’ images

Fig. 6   Different labels for a
sample image

Table 5   A summary of the
conducted experiments

Exp. Training set Testing set Ground truth/added label

Before Dataset Augmentation
(Base Case)

1a - Integrated Merged-Labels
2a - Integrated Split-Labels
3a - Basic Merged-Labels
4a - Basic Split-Labels
5a - COCO Default

After Dataset Augmentation 1b Merged-Labels Integrated Person-in-wheelchair
2b Split-Labels Integrated Person + Wheelchair
3b Merged-Labels Basic Person-in-wheelchair
4b Split-Labels Basic Person + Wheelchair
5b Merged-Labels COCO Person
5c Split-Labels COCO Person + Wheelchair

	 Requirements Engineering

1 3

in a wheelchair in this experiment was the Merged-
Labels dataset and, therefore, had the bounding box,
as shown in Fig. 6b.

–	 Experiment 2a: In this experiment, similar to the pre-
vious experiment, we assessed YOLO’s overall perfor-
mance in detecting the label ‘Person’ for images in the
Integrated dataset. The only difference is that in this
experiment, the ground-truth was the Split-Labels data-
set. Therefore, the images of pedestrians in a wheel-
chair had the bounding box as illustrated in Fig. 6c, d.

–	 Experiment 3a: In experiment 3a, we repeated experi-
ment 1a; however, we evaluated YOLO’s performance
only on the 106 images of pedestrians in a wheelchair
(Basic dataset). The ground-truth in this experiment
similarly was the Merged-Labels dataset.

–	 Experiment 4a: In experiment 4a, similar to experi-
ment 3a, we assessed YOLO’s performance in detect-
ing the label ‘Person’ on the Basic dataset. The only
difference is that in this experiment, the ground-truth
was the Split-Labels dataset.

–	 Experiment 5a: In this experiment, we ran the original
pre-trained YOLO on our selected subset of COCO.

3.1.2 � After dataset augmentation

–	 Experiment 1b: In this experiment, using the Merged-
Labels dataset contained pedestrians in wheelchair
images, we retrained YOLO with a new label ‘Person-in-
wheelchair’ for 20 epochs with pre-trained checkpoints
as the initial model weights. We evaluated YOLO’s per-
formance on the Integrated dataset.

–	 Experiment 2b: Here, we repeated the previous experi-
ment using the Split-Labels dataset instead of retraining
YOLO with the new label ‘Person-in-wheelchair’, we
retrained it with the existing label ‘Person’ and a new
label ‘Wheelchair’. In this experiment, we tested YOLO’s
overall performance on the Integrated dataset.

–	 Experiment 3b: In this experiment, similar to experi-
ment 1b, we once again used the Merged-Labels dataset
and re-trained YOLO with the new label ‘Person-in-
wheelchair’. We evaluated YOLO’s performance on the
Basic dataset of pedestrians in a wheelchair.

–	 Experiment 4b: This experiment is the repetition of the
previous experiment, except that in this experiment, we
re-trained the model with the Split-Labels dataset.

–	 Experiment 5b: In this experiment, we applied the same
re-trained model in experiment 3b, but we tested the
model only on the COCO dataset.

–	 Experiment 5c: In our last experiment, we applied the
same re-trained model in experiment 4b, but we tested
the model only on the COCO dataset (Table 6).

3.1.3 � Comparing results and discussion

To compare results and conclusions more expressive, we
discuss each experiment’s results by comparing it with its
associated baseline. The association between the experi-
ments and their relevant base cases are also color-coded in
Table 7. For instance, experiment 2a serves as the baseline
for experiment 2b, and both demonstrated in blue. Simi-
larly, Experiment 3a serves as the baseline for experiment
3b (in green), while experiment 4a is the base case for
experiment 4b (in red).

Table 6   YOLO performance
report for detecting label
Person before and after the
augmentation

Exp. Recall Precision mAP%50 mAP%50-to-%95
Before 1a 0.749 0.311 0.585 0.327

(Base Cases) 2a 0.935 0.162 0.300 0.163
Dataset 3a 0.872 0.153 0.249 0.116

Augmentation 4a 0.751 0.311 0.591 0.331
5a 0.745 0.324 0.630 0.354
1b 0.747 0.327 0.627 0.351

After 2b 0.957 0.485 0.898 0.626
Dataset 3b 0.943 0.764 0.934 0.707

Augmentation 4b 0.738 0.349 0.635 0.366
5b 0.747 0.329 0.630 0.352
5c 0.732 0.344 0.629 0.357

Experiments match their baseline with the same color

Table 7   Dataset statistics: object and relations are detected by USGG

Dataset #Image #Object #Distinct object #Relation #Dis-
tinct
relation

COCO 7077 212,310 149 141,540 27
CrowdH. 15,000 450,000 148 300,000 26
WiderP. 8000 240,000 147 160,000 19
CityP. 2975 89,250 102 59,500 17
Caltech 4285 128,550 111 85,700 22
ECP 23,892 716,790 134 477,860 22

Requirements Engineering	

1 3

Overall Performance:

–	 After Adding ‘Person-in-wheelchair’ Label: To
assess the change in YOLO’s overall performance on
seen and unseen images after re-training the model with
the Merged-Labels dataset, we compare the accuracy
metrics of experiments 1a and 1b. As shown in table 7,
we observe a slight improvement in precision and mAP
values. The mAP %50 is increased from 0.585 to 0.627
and mAP %50-to-%95 from 0.327 to 0.351.

–	 After Adding ‘Person’ and ‘Wheelchair’ Labels: We
observed an increase of mAP %50 value from 0.300
in experiment 2a to 0.898 in experiment 2b, where we
re-trained YOLO using two separate labels of ‘Person’
and ‘Wheelchair’. Additionally, recall is increased from
0.935 to 0.957.

Performance on Unseen Data:

–	 After Adding ‘Person-in-wheelchair’ Label: To
evaluate YOLO’s performance before and after being
retrained with the new label and over a set of images
that the model has not seen before, we compare the
results of experiments 3a and 3b. As reflected in
Table 7, the recall and precision are improved from
0.872 and 0.153 to 0.943 and 0.764, respectively. Simi-
larly, mAP values for 50% and 50%-to-95% IoU are
increased from 0.249 and 0.116 to 0.934 and 0.707.

–	 After Adding ‘Person’ and ‘Wheelchair’ Labels:
The comparison of experiments 4a and 4b represent
the change in YOLO performance in detecting pedes-
trians before and after the model was retrained with
Split-Labels dataset. We observe an improvement in
precision from 0.311 to 0.349. The mAP %50 and mAp
%50-to-%95 values are increased from 0.591 and 0.331
to 0.635 and 0.366, respectively.

Performance on Previously Seen Data:

–	 After Adding ‘Person’ Label: For the evaluation of
YOLO only on the COCO dataset after retraining the
model with the Merged-Labels dataset, we compare
experiments 5a and 5b. As illustrated in Table 7, recall
and precision are slightly improved from 0.745 and
0.324 to 0.747 and 0.329.

–	 After Adding ‘Person’ and ‘Wheelchair’ Labels: We
observed a slight decrease in recall value from 0.745 in
experiment 5a to 0.732 in experiments 5c and a slight
increase of precision value from 0.324 to 0.344.

To summarize, augmenting the dataset according to
our semantic web (for the missing feature ‘wheelchair’)
improved the precision and mAP %50 values in all the

conducted experiments. In a few of the experiments, this
improvement appeared to be minor. However, considering
the safety context of the problem at hand, even slight per-
formance improvements for pedestrian detection can save
lives. Additionally, to the best of our knowledge, our pro-
posed approach has the novelty to provide the foundation of
a pragmatic approach for addressing the inherent ambiguity
of domain concepts for MLCs.

3.2 � Evaluating coverage

Since evaluating the completeness of the established terms
and relationships—within the semantic web—in specify-
ing every variance of potential pedestrians is somewhat
inconclusive, we instead assessed the semantic web’s rela-
tive completeness with respect to several state-of-the-art
pedestrian, human, and generic datasets. For each dataset,
we first translated the contained images into natural lan-
guage; then we found the intersection of image descriptions
with entities and relations established within our semantic
graph. Evaluating the coverage of “important” features of a
pedestrian and their relations—that the proposed approach
identified—in commonly-used datasets, provides an empiri-
cal estimation of whether the approach returns generally use-
ful specifications for the domain concept pedestrian.

3.2.1 � Datasets

For this purpose, in addition to COCO dataset [31], pre-
viously introduced, we referred to three of the most com-
monly-used datasets of pedestrian images and video frames,
namely Caltech [14], CityPersons [53], and EuroCity Per-
sons (ECP) [8]. The pedestrian dataset benchmarks have
been proposed from the context of autonomous driving.
However, these datasets are monotonous, such that they lack
diverse scenarios. Hence, we selected two additional large-
scale human datasets, CrowdHuman [40], and WiderPerson
[54], which unlike pedestrian datasets, are not limited to traf-
fic scenarios, and include images of people in more generic
contexts, such as people in parks, restaurants, and selfies.

3.2.2 � Converting image datasets to natural language

Since the entities and relations in the generated semantic
web are in natural language, to evaluate the graph cover-
age, we initially translated the image datasets to natural lan-
guage as well. As such, we were able to determine whether
the semantic web’s partial specifications appeared in the
image descriptions, and to identify the specifications that
are underrepresented in benchmark datasets.

For this purpose, we carefully reviewed and experi-
mented with the existing approaches in Computer Vision
(CV) domain. As a result, we selected the state-of-the-art

	 Requirements Engineering

1 3

Unbiased Scene Graph Generation (USGG) framework
which generates a scene graph from an image so that to
describe the scenes in the image [44]. The model first,
detects the objects present in an image, and second, extracts
the existing relationships between the detected objects in
the form of Object1-Relation-Object2 triplets. The model is
previously trained on Genome Dataset across 75,000 object
categories and 37,000 relations categories [29].

To the best of our knowledge USGG framework gener-
ated less biased and more accurate predictions over other
existing approaches that we investigated, such as Iterative
Message Passing [51], MOTIFs [43, 52], and VCTree [29].
USGG also provided more fine-grained relationships in
comparison to alternative models, such as replacing near
with behind/in front of, and on with standing on/walking on/
parking on/driving on.

Applying USGG to each of the six datasets, we extracted,
in total, about 2 and 1.5 millions objects and relations,
respectively. Table 7 represents these numbers in more detail
for each dataset. As shown, the largest number of objects and
relations belong to ECP dataset, while COCO contains the
largest number of distinct objects and relations.

3.2.3 � Mapping the semantic web to image descriptions

To estimate the coverage of the established semantic web
with respect to each dataset, we initially searched for the
exact word-to-word matches between the object terms,
extracted by USGG, and entities in the constructed seman-
tic web. Similarly, we looked for the exact matches between
the established relations for each pair of entities in the web
and USGG-extracted relation terms. Word-to-word mapping
resulted in an average of about 10 out of 78 and 3 out of 339
matches for entities and relations, respectively.

Further, to additionally identify the terms that were not
necessarily word-to-word match, yet referred to the same
feature, we also considered semantic similarity between the
terms. For this purpose for each dataset, the cosine similar-
ity score, according to Google News Word2vec model, was
computed for each entity in our graph with each object that
USGG detected in the dataset; similarly between each graph
relation and each USGG-detected relation. Later, for each
entity and each relation in the web only the top five USGG-
detected terms with the highest similarity scores were
selected. Among the remaining terms, there were still terms
with relatively low similarity scores. Such dissimilar terms
with similarity score less than � − � were further removed,
where � is the mean of all similarity scores in the dataset;
and � is the standard deviation of the distribution. As such,
the remaining term(s)—the number of the terms is between
0 and 5—, represent the most probable matches among the
USGG-detected objects for each entity that the proposed
approach established in the semantic web. We repeated the

same process to semantically map the relations, we inferred
and represented on the edges of the semantic web, to rela-
tions that USGG detected between the objects in the images.

Finally to evaluate the coverage of the established web
in each dataset, we asked an independent PhD researcher—
with no information about or connection to the project—to
label the remaining matched pairs as “meaningful”, “non-
meaningful”, or “I don’t know”. We asked the researcher to
select “meaningful” if only according to her intuition both
terms represent the same feature, “non-meaningful” if they
do not, and “I don’t know” if she is not certain about their
relevance. We did not limit the time of the study and allowed
the researcher to complete the task using as much time as
necessary. Finally, we computed precision, recall, and F1
measure according to the final labels, considering (entity,
object) pairs labeled “meaningful” as true positives; (entity,
object) pairs labeled “non-meaningful” as false positives;
and (object, entity) pairs labeled “non-meaningful” as false
negatives, which were “important” pedestrian features erro-
neously missing from the web. There was no pair labeled as
“I don’t know” in the study showing that the evaluator was
certain about the labels she selected. Table 8 represents the
results of the evaluation of the semantic web entities with
respect to USGG-detected objects in each dataset. As shown,
the semantic web has the highest precision with reference
to the WiderPerson dataset, and the highest recall and F1
scores in comparison to CityPerson dataset. We discuss the
results more in detail in the following subsection.

We only evaluated the coverage of the semantic graph’s
entities, representing the “important” features of the concept
pedestrian, and not the relations. The reason for excluding
the evaluation of relations is that considering their large
number in the semantic web—there are multiple inferred
and established relations between each pair of entities—,
the cross product between the graph relations and the USGG
relations was too large to be manually evaluated in a reason-
able time. For instance, to evaluate the coverage of the graph
entities, a total of 78 unique terms of subject and object are
contained in the semantic web. USGG detected 149 unique
terms of Object1 and Object2 in the images of COCO data-
set. The cross product between them results in 11,622 pairs,

Table 8   Coverage of the semantic web entities w.r.t. each dataset and
USGG

Dataset Precision Recall F1

COCO 0.697 0.524 0.598
CrowdHuman 0.697 0.530 0.602
WiderPerson 0.710 0.540 0.613
CityPerson 0.697 0.630 0.662
Caltech 0.693 0.565 0.622
EuroCity Person 0.684 0.553 0.611

Requirements Engineering	

1 3

which after the removal of less confident pairs this number
is reduced to 390 to be manually evaluated. However, this
number was 1,580 for evaluating the coverage of the graph
relations in the same dataset.

3.2.4 � Discussion

According to the evaluation, an entity, for which none of
the—most semantically similar—USGG-detected and
matched terms is evaluated as “meaningfull” by our human
evaluator, potentially represents a non-relevant feature to
the concept pedestrian i.e., false positives of the approach.
However, such non-matched entities do not necessarily rep-
resent a meaningless or an impractical feature, specified by
our approach, as there are several other factors involved in
the scenario: (1) The entity, in the best case scenario, may
propose an underrepresented feature in the dataset. (2) There
is also a chance that the USGG detector was not trained, and
therefore, was unable to detect the particular object in the
images. (3) The semantic similarity algorithm failed to cre-
ate a semantic mapping between the terms. (4) The corpora
which was referred to for establishing the semantic mapping
may not contain the appropriate similar terms within its con-
text. (5) The relevant terms that could establish a meaning-
ful mapping were mistakenly eliminated during the process
of filtering the less confident terms. While it is difficult to
draw a concrete conclusion, the results in table 8 provide an
estimation of the semantic web’s relative completeness with
respect to USGG and the selected datasets.

Further a review of the evaluated mapped pairs, flagged
with both “meaningful” and “non-meaningful”, we noticed
several interesting patterns. For instance, among those
labeled as “meaningful” there were several pairs with simi-
lar terms referring to the same feature, such as the entities
sidewalk, walkway, and footpath in the semantic web that
were associated with the object sidewalk detected by USGG.
In the same order were the entities gate and entrance with
the detected object door; subway with train; light with lamp;
mall with building, path with track; stop sign with sign;
and road with street. However, we also noticed several pairs
with similar terms that were not precisely referring to the
same feature, yet were relevant to the same subject, such as
the entity tunnel and rail in our web with the object train
detected by USGG. In the same order ride and horse with
bike; and cyclist with bike.

Another interesting pattern we identified among “non-
meaningful” pairs that potentially revealed the possible mis-
classification candidates. For instance, the entities walker
and wheelchair in the web were semantically mapped with
the object bike in datasets. While both pairs were evaluated
as “non-meaningful” by the researcher, aside from possi-
bly proposing two underrepresented features (wheelchair
and walker in the dataset), they could also suggest that the

classifier, if not re-trained, may potentially detect wheelchair
and walker as bike mistakenly.

Several pairs proposed a corresponding detectable object
with perceptual concepts in the semantic web, assisting to
explain, add, and precept a concept in an image through
the associated object which is detectable by the classifier.
For instance, the entities safety and injuries were mapped
to detectable object helmet; the entity drunk was matched
with the detected object bottle; and the entities accident and
fatality in the semantic web were mapped to the detected
object motorcycle.

4 � Threats to validity

Our study has several potential threats. Concerning gen-
eralizability, we experimented with only one domain, the
automotive domain, and one hard-to-specify domain con-
cept, ‘pedestrian’. We selected this domain because of the
increasing application of ML in software systems being
used in this domain. Additionally, recent extensive testing
of Autonomous Vehicle (AV) on public roads has raised
serious concerns [9, 10, 26–28], especially with the recent
reported failures of autonomous driving systems [34, 46].
Moreover, in the automotive domain, there are significant
safety risks that are introduced due to the lack of an explicit
set of requirements specifications and the ambiguity of
potential specifications. We selected this concept because
the term pedestrian is present in many potential requirements
specifications relevant to this domain, thus is the root of
ambiguity in specifications. To the best of our knowledge,
there is no other systematic method to ground hard-to-spec-
ify socially-constructed domain specifications for MLCs.
Thus, our initiative work and our future extensions can be
the start of a significant contribution to this problem in the
domain. Additionally, the process we defined is general and
fully automatable (with the exception of topic selection) and
can be applied to specify other domain-specific concepts in
other domains.

The creation of the semantic web is based on the infor-
mation that we extracted from the web and social media,
namely Twitter, Wikipedia, and Google News. These plat-
forms contain accurate, true, and relevant but also inac-
curate, false, and out-dated information. Considering the
socially-constructed nature of our concepts and the lack
of documentation for these concepts, we found social data
to be helpful for specifying socially-constructed concepts.
To mitigate bias, we only extracted up-to-date informa-
tion, and we used more real-time idea-sharing platforms.
However, further work is needed to evaluate the validity
of the extracted information and to claim absolute com-
pleteness of the constructed semantic web. Further, using
Natural Language Processing (NLP) techniques introduces

	 Requirements Engineering

1 3

linguistic limitations, such as polysemy, to the approach that
is required to be addressed in future work.

Finally, in terms of evaluation, we have only used one
dataset and object detector to illustrate the application of
our approach. Although the selected dataset and detector
are among the state-of-the-art pedestrian datasets and object
detectors, we plan to extend the application of our meth-
odology. However, we believe that this work is an encour-
aging initiation to ground partial domain specifications for
MLCs instead of fully relying on their abilities to learn the
concepts.

5 � Related work

The stochastic nature of ML methods and the lack of rec-
ognition of the developmental standard creates many chal-
lenges in specifying requirements for MLCs. In a previous
study, the authors specified performance, robustness, reus-
ability, and interpretability as a list of desired properties
for MLCs [2]. There is a large body of work in testing and
verification of the robustness of MLCs, as a desired prop-
erty, by the software engineering community [19, 50]. Some
existing work has explored the generation and identification
of adversarial examples [18, 35]. Similarly, in our previ-
ous work, we studied multiple image transformations to
assess the robustness of MLCs base on the Human Visual
System (HVS) [7]. There are other attempts by different
communities to specify requirements for MLCs in different
types of software systems by creating (a) component-level
specifications: to define the behavior of MLCs as a whole
with respect to how they address the target applications
[38]. However, in such approaches, it is unclear what is the
implication of the high-level specification to the downstream
MLCs development tasks, such as data collection and model
selection (b) dataset specifications: since dataset manage-
ment is critical to the overall quality of systems with MLCs
[24, 25]. However, studies in this area are very limited to
specific domains (c) model specifications: which based on
the particular ML algorithms, they normally define how the
theoretical properties should hold during implementation
[39], and (d) development process specifications: of MLCs
to enable a consistent training result a set of predefined steps
and configurations need to be carefully followed [36]. One
common challenge remains as the lack of specifications for
the domain-specific concepts. Within the safety domain, for
verification purposes, it is pivotal to construct the traceable
path to demonstrate the compliance of source code with the
design specification and coding guidelines [36]. The trace-
able path can support building the safety case to demonstrate
that the identified hazards are sufficiently mitigated. [16]
also called for building the infrastructure to support trace-
ability in automotive software when integrating a V model

for data development with the standard V model for software
development, what they called a W model. A recent work [3]
has demonstrated the potential of traceability by maintain-
ing and implementing the high-level software requirements
through building confidence in training data. The confidence
includes nine items such as that the data are sufficient, does
not contain bias, and is self-consistent. However, the specific
step to achieve this confidence in the training data is still
open to question. For example, for the automated pedestrian
collision avoidance system, what are the specific criteria of
sufficiency for managing the dataset to recognize the concept
of “pedestrian”? As we described earlier, the difficulty starts
with our very limited understanding of how this concept
should be defined even in the high-level specification, and
how it is presented in the training data. Our work sets off to
tackle the ambiguity in domain concept semantics and cre-
ate a framework for specifying and validating requirements
for MLCs. Our proposed approach supports identifying the
gaps among the high-level specification and data instances.

6 � Conclusion

In this paper, we emphasized to formally benchmark hard-
to-specify domain concepts and verify their capture in a
collected dataset for software components built based on
machine learning algorithms. We proposed a semi-auto-
mated approach to formally specify the domain concepts
in the form of a semantic web. We selected the concept
pedestrian from the automotive domain and used a series
of machine learning algorithms to automatically create a
semantic web for the concept. Since the selected concept
is socially-constructed, we used social platforms, such as
Twitter, Wikipedia, Google News, and Google books, to
construct the semantic web. Further, as a proof-of-concept,
we augmented a pedestrian dataset according to a feature
in our semantic web, wheelchair, which was captured to be
closely related to the concept pedestrian. Our experiments
showed that the accuracy of a state-of-the-art object detec-
tor, Yolo, in detecting pedestrians has been improved after
this augmentation.

The problem of specifying requirements for MLCs rep-
resents a pressing and challenging area of research need.
The results presented here depict the benefit of grounding
hard-to-specify domain concepts as part of the requirements
specification process. While encouraging, our results are
preliminary, and we aim to improve on them in future work.
We plan to work on the generalizability of our approach for
other concepts, such as traffic and other domains. Addition-
ally, we will evaluate the effectiveness of the automatically
generated semantic webs with domain experts and with more
datasets and algorithms.

Requirements Engineering	

1 3

Acknowledgements  This work is partially funded by the US National
Science Foundation Grants CCF: 2124606. This research used
resources of the data, devices and interaction Laboratory (ddiLab) at
Northern Illinois University.

References

	 1.	 Arthur D, Vassilvitskii S (2006) k-means++: the advantages of
careful seeding. Technical report, Stanford

	 2.	 Ashmore R, Calinescu R, Paterson C (2019) Assuring the machine
learning lifecycle: desiderata, methods, and challenges. arXiv:​
1905.​04223

	 3.	 Banks A, Ashmore R (2019) Requirements assurance in machine
learning. In: Workshop on artificial intelligence safety 2019 co-
located with the thirty-third AAAI conference on artificial intel-
ligence 2019 (AAAI-19)

	 4.	 Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J
Mach Learn Res 3(Jan):993–1022

	 5.	 Bond F, Foster R (2013) Linking and extending an open multilin-
gual wordnet. In: Proceedings of the 51st annual meeting of the
association for computational linguistics, vol 1. Long Papers, pp
1352–1362

	 6.	 Bossche MV, Ross P, MacLarty I, Van Nuffelen B, Pelov N (2007)
Ontology driven software engineering for real life applications. In:
Proceedings of the 3rd international workshop on semantic web
enabled software engineering. Citeseer

	 7.	 Hu BC, Salay R, Czarnecki K, Rahimi M, Selim G, Chechik M
(2020) Towards requirements specification for machine-learned
perception based on human performance. In: Proceedings of the
25th international conference on requirements engineering. IEEE,
Proceedings

	 8.	 Braun M, Krebs S, Flohr F, Gavrila D (2019) EuroCity persons: a
novel benchmark for person detection in traffic scenes. IEEE Trans
Pattern Anal Mach Intell 41(8):1844–1861

	 9.	 Burton S, Gauerhof L, Heinzemann C (2017) Making the case for
safety of machine learning in highly automated driving. In: inter-
national conference on computer safety, reliability, and security.
Springer, pp 5–16

	10.	 Burton S, Gauerhof L, Sethy BB, Habli I, Hawkins R (2019)
Confidence arguments for evidence of performance in machine
learning for highly automated driving functions. In: International
conference on computer safety, reliability, and security. Springer,
pp 365–377

	11.	 Cleland-Huang J (2015) Mining domain knowledge [require-
ments]. IEEE Softw 32(3):16–19

	12.	 Dermeval D, Vilela J, Bittencourt II, Castro J, Isotani S, Brito
P, Silva A (2016) Applications of ontologies in requirements
engineering: a systematic review of the literature. Requir Eng
21(4):405–437

	13.	 Dillon TS, Chang E, Wongthongtham P (2008) Ontology-based
software engineering-software engineering 2.0. In: 19th Austral-
ian conference on software engineering (ASWEC 2008). IEEE,
pp 13–23

	14.	 Dollar P, Wojek C, Schiele B, Perona P (2009) Pedestrian detec-
tion: a benchmark. In: 2009 IEEE conference on computer vision
and pattern recognition, pp 304–311. https://​ieeex​plore.​ieee.​org/​
Xplore/​home.​jsp

	15.	 Elkan C (2003) Using the triangle inequality to accelerate
k-means. In: Proceedings of the 20th international conference on
Machine Learning (ICML-03), pp 147–153

	16.	 Falcini F, Lami G, Costanza AM (2017) Deep learning in auto-
motive software. IEEE Softw 34(3):56–63

	17.	 Guo J, Gibiec M, Cleland-Huang J (2017) Tackling the term-
mismatch problem in automated trace retrieval. Empir Softw
Eng 22(3):1103–1142

	18.	 Ho Y, Wookey S (2020) The human visual system and adver-
sarial AI. arXiv:​2001.​01172

	19.	 Huang X, Kwiatkowska M, Wang S, Wu M (2017) Safety veri-
fication of deep neural networks. In: CAV’17, pp 3–29

	20.	 ISO I (2018) International organization for standardization: ISO
26262: road vehicles—functional safety. International Standard
ISO/FDIS 26262

	21.	 Kaindl H, Kramer S (2020) Towards probability-based safety
verification of systems with components from machine learning.
arXiv:​2003.​01155

	22.	 Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman
R, Wu AY (2002) An efficient k-means clustering algorithm:
analysis and implementation. IEEE Trans Pattern Anal Mach
Intell 24(7):881–892

	23.	 Knight JC (2002) Safety critical systems: challenges and direc-
tions. In: Proceedings of the 24th international conference on
software engineering, association for computing machinery,
New York, NY, USA, ICSE ’02, pp 547–550. https://​doi.​org/​
10.​1145/​581339.​581406,

	24.	 Kohli M, Summers R, Geis J (2017) Medical image data and
datasets in the era of machine learning. JDI 30(4):392–399.
https://​doi.​org/​10.​1007/​s10278-​017-​9976-3

	25.	 Kohli MD, Summers RM, Geis JR (2017) Medical image data
and datasets in the era of machine learning—whitepaper from
the 2016 C-MIMI meeting dataset session. J Digit Imaging
30(4):392–399

	26.	 Koopman P, Osyk B (2019) Safety argument considerations for
public road testing of autonomous vehicles. Technical report,
SAE Technical Paper

	27.	 Koopman P, Wagner M (2016) Challenges in autonomous vehi-
cle testing and validation. SAE Int J Transp Saf 4(1):15–24

	28.	 Koopman P, Kane A, Black J (2019) Credible autonomy safety
argumentation

	29.	 Krishna R, Zhu Y, Groth O, Johnson J, Hata K, Kravitz J, Chen
S, Kalantidis Y, Li LJ, Shamma DA et al (2017) Visual genome:
connecting language and vision using crowdsourced dense
image annotations. Int J Comput Vis 123(1):32–73

	30.	 Li Y, Cleland-Huang J (2013) Ontology-based trace retrieval.
In: 2013 7th international workshop on traceability in emerging
forms of software engineering (TEFSE). IEEE, pp 30–36

	31.	 Lin TY, Maire M, Belongie S, Bourdev L, Girshick R, Hays J,
Perona P, Ramanan D, Zitnick CL, Dollár P (2014) Microsoft
coco: common objects in context. arXiv:​1405.​0312

	32.	 MacQueen J et al (1967) Some methods for classification and
analysis of multivariate observations. In: Proceedings of the
fifth Berkeley symposium on mathematical statistics and prob-
ability, Oakland, CA, USA, vol 1, pp 281–297

	33.	 Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient esti-
mation of word representations in vector space. arXiv preprint
arXiv:​13013​781

	34.	 NYtimes (2019) Self-driving Uber car kills pedestrian in Ari-
zona, where robots roam. https://​www.​nytim​es.​com/​2018/​03/​
19/​techn​ology/​uber-​drive​rless-​fatal​ity.​html

	35.	 Rozsa A, Rudd EM, Boult TE (2016) Adversarial diversity and
hard positive generation. CVPRW’16, pp 410–417

	36.	 Salay R, Czarnecki K (2018) Using machine learning safely in
automotive software: an assessment and adaption of software
process requirements in ISO 26262. arXiv:​1808.​01614

	37.	 Salay R, Czarnecki K (2019) Improving ML safety with par-
tial specifications. In: Romanovsky A, Troubitsyna E, Gashi
I, Schoitsch E, Bitsch F (eds) Computer safety, reliability, and
security. Springer International Publishing, Cham, pp 288–300

http://arxiv.org/abs/1905.04223
http://arxiv.org/abs/1905.04223
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
http://arxiv.org/abs/2001.01172
http://arxiv.org/abs/2003.01155
https://doi.org/10.1145/581339.581406
https://doi.org/10.1145/581339.581406
https://doi.org/10.1007/s10278-017-9976-3
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/13013781
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
http://arxiv.org/abs/1808.01614

	 Requirements Engineering

1 3

	38.	 Seshia SA, Sadigh D (2016) Towards verified artificial intelli-
gence. arXiv:​1606.​08514

	39.	 Seshia SA, Desai A, Dreossi T, Fremont DJ, Ghosh S, Kim E,
Shivakumar S, Vazquez-Chanlatte M, Yue X (2018) Formal speci-
fication for deep neural networks. In: International symposium on
automated technology for verification and analysis. Springer, pp
20–34

	40.	 Shao S, Zhao Z, Li B, Xiao T, Yu G, Zhang X, Sun J (2018)
CrowdHuman: a benchmark for detecting human in a crowd.
arXiv:​1805.​00123

	41.	 Singh P, Lin T, Mueller ET, Lim G, Perkins T, Zhu WL (2002)
Open mind common sense: knowledge acquisition from the gen-
eral public. In: OTM confederated international conferences
“On the move to meaningful internet systems”. Springer, pp
1223–1237

	42.	 Speer R, Chin J, Havasi C (2017) Conceptnet 5.5: an open multi-
lingual graph of general knowledge. In: Thirty-first AAAI confer-
ence on artificial intelligence

	43.	 Tang K, Zhang H, Wu B, Luo W, Liu W (2019) Learning to com-
pose dynamic tree structures for visual contexts. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern rec-
ognition, pp 6619–6628

	44.	 Tang K, Niu Y, Huang J, Shi J, Zhang H (2020) Unbiased scene
graph generation from biased training. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 3716–3725. https://​opena​ccess.​thecvf.​com/​menu

	45.	 Team S, Rucinski S, Slenk E, Wigell D, Manning J (2013) Soft-
ware requirements specification (SRS) automated pedestrian col-
lision avoidance (APCA1)

	46.	 TechCrunch (2019) Tesla model x fatal crash investigation. https://​
techc​runch.​com/​story/​tesla-​model-x-​fatal-​crash-​inves​tigat​ion/

	47.	 Thorndike RL (1953) Who belongs in the family? Psychometrika
18(4):267–276

	48.	 Tilbrook M, Schwitter R (2004) Controlled natural language meets
the semantic web. In: Australasian language technology work-
shop, vol 2, p 2004

	49.	 Verma K, Kass A (2008) Requirements analysis tool: a tool for
automatically analyzing software requirements documents. In:
International semantic web conference. Springer, pp 751–763

	50.	 Xie X, Ho JWK, Murphy C, Kaiser G, Xu B, Chen TY (2011)
Testing and validating machine learning classifiers by metamor-
phic testing. J Syst Softw 84(4):544–558. https://​doi.​org/​10.​
1016/j.​jss.​2010.​11.​920

	51.	 Xu D, Zhu Y, Choy CB, Fei-Fei L (2017) Scene graph generation
by iterative message passing. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp 5410–5419

	52.	 Zellers R, Yatskar M, Thomson S, Choi Y (2018) Neural motifs:
scene graph parsing with global context. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
5831–5840

	53.	 Zhang S, Benenson R, Schiele B (2017) Citypersons: a diverse
dataset for pedestrian detection. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp 3213–
3221. https://​opena​ccess.​thecvf.​com/​menu

	54.	 Zhang S, Xie Y, Wan J, Xia H, Li SZ, Guo G (2019) WiderPerson:
a diverse dataset for dense pedestrian detection in the wild. arXiv:​
1909.​12118

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1606.08514
http://arxiv.org/abs/1805.00123
https://openaccess.thecvf.com/menu
https://techcrunch.com/story/tesla-model-x-fatal-crash-investigation/
https://techcrunch.com/story/tesla-model-x-fatal-crash-investigation/
https://doi.org/10.1016/j.jss.2010.11.920
https://doi.org/10.1016/j.jss.2010.11.920
https://openaccess.thecvf.com/menu
http://arxiv.org/abs/1909.12118
http://arxiv.org/abs/1909.12118

	A multi-level semantic web for hard-to-specify domain concept, Pedestrian, in ML-based software
	Abstract
	1 Introduction
	2 Designing the semantic web
	2.1 Augmenting a concept
	2.2 Discovering high-level topics: providing a zoom-out view of topics
	2.2.1 First approach
	2.2.2 Second approach

	2.3 Extending the topics: providing a zoom-in view of topics
	2.4 Representation

	3 Augmenting the dataset
	3.1 Evaluating effectiveness
	3.1.1 Before dataset augmentation (base cases)
	3.1.2 After dataset augmentation
	3.1.3 Comparing results and discussion

	3.2 Evaluating coverage
	3.2.1 Datasets
	3.2.2 Converting image datasets to natural language
	3.2.3 Mapping the semantic web to image descriptions
	3.2.4 Discussion

	4 Threats to validity
	5 Related work
	6 Conclusion
	Acknowledgements
	References

