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Abstract
Machine Learning (ML) algorithms are widely used in building software-intensive systems, including safety-critical ones. 
Unlike traditional software components, Machine-Learned Components (MLC)s, software components built using ML 
algorithms, learn their specifications through generalizing the common features that they find in a limited set of collected 
examples. While this inductive nature overcomes the limitations of programming hard-to-specify concepts, the same feature 
becomes problematic for verifying safety in ML-based software systems. One reason is that, due to MLCs data-driven nature, 
there is often no set of explicitly written and pre-defined specifications, against which the MLC can be verified. In this regard, 
we propose to partially specify hard-to-specify domain concepts, which MLCs tend to classify, instead of fully relying on 
their inductive learning ability from arbitrarily-collected datasets. In this paper, we propose a semi-automated approach to 
construct a multi-level semantic web to partially outline the hard-to-specify, yet crucial, domain concept “pedestrian” in 
automotive domain. We evaluate the applicability of the generated semantic web in two ways: first, with a reference to the 
web, we augment a pedestrian dataset for a missing feature, wheelchair, to show training a state-of-the-art ML-based object 
detector on the augmented dataset improves its accuracy in detecting pedestrians; second, we evaluate the coverage of the 
generated semantic web based on multiple state-of-the-art pedestrian and human datasets.

Keywords  Requirements specifications · Machine learning · Machine-learned components · Safety-critical systems

1  Introduction

Software components are traditionally built according to a 
set of predefined requirements specifications. These speci-
fications are expected to explicitly and unambiguously 
describe what a software component is expected to do in a 
given context. Requirements are usually gathered based on 
stakeholders’ and users’ needs during the domain analysis 
and requirements engineering phases. However, when engi-
neering domain-specific software systems, requirements are 

often expressed containing domain-specific terminologies 
and concepts that are present in a particular environment 
in which the software operates. In conventional Require-
ments Engineering (RE), if needed, these domain-specific 
concepts and terminologies are typically specified during 
domain analysis and documented, alongside requirements, 
either in the form of natural language or in a more formal 
manner, such as an ontology, taxonomy, and semantic webs 
[11, 12, 17, 30, 49].

With the emergence of Machine Learning (ML) appli-
cations in Software Engineering (SE), domain concepts 
are no longer explicitly specified. The concepts are instead 
implicitly represented within limited variations of con-
cept’s instances in a training dataset. While conventional 
requirements engineers apply elicitation techniques to 
obtain and validate domain knowledge, the use of ML in 
SE has turned this process to be more of an inductive and 
data driven task. As such, ML-based software components, 
Machine-Learned Components (MLC)s, learn their speci-
fications from a set of collected examples rather than a set 
of “agreed upon” specifications. For instance, pedestrian 

 *	 Mona Rahimi 
	 rahimi@cs.niu.edu

	 Hamed Barzamini 
	 hbarzamini@niu.edu

	 Murtuza Shahzad 
	 msyed1@niu.edu

	 Hamed Alhoori 
	 alhoori@cs.niu.edu

1	 Northern Illinois University, DeKalb, IL 60115, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-021-00366-0&domain=pdf


	 Requirements Engineering

1 3

detectors in autonomous technology, learn the concept 
pedestrian solely from images and video frames of vari-
ous pedestrians in a training set; in medical domain, a ML-
based diagnostic software tends to learn the specifications 
of a benign versus a malignant tumor only from a col-
lection of Computed Tomography(CT) scans. Hence, ML 
models suggest specifications (inductively learned from 
the training-validation dataset) rather than implementing 
known specifications. This characteristic makes MLCs 
particularly useful when a domain consists of concepts, 
where little knowledge exists for humans to develop effec-
tive algorithms.

We refer to such domain-specific concepts as hard-to-
specify for which a universal definition does not exist, as 
they are inherently challenging to clearly define. Therefore, 
these are domain concepts with no clearly delineated and 
agreed-upon definition due to the large difference that exists 
between varying instances of the concept. Although humans 
may recognize various instances of the concept through intu-
ition, yet the concepts’ definite specification is difficult even 
for humans. For instance, what is the exact specification for 
recognizing a potential pedestrian? In a potential require-
ment, “the determined position of the ‘pedestrian’ should 
be accurate within 0.5 m,” [45] but the term ‘pedestrian’ is 
not simply determinable. The concept ‘pedestrian’ is hard to 
specify due to pedestrians’ different appearances in the vis-
ual domain caused by clothes and/or additional equipment.

With the advent of autonomous cars, MLCs are used in 
software systems within autonomous driving technology, 
such as in the Advanced Driver Assistance Systems (ADAS) 
and the Automated Driving Systems (ADS) [27]. In such a 
context, ML-based systems become safety-related as their 
failure may result in loss of life or severe damage to prop-
erties and/or environment [23]. MLCs’ inductive ability to 
learn specifications is desirable for programming hard-to-
specify concepts in this domain. However, the same abil-
ity may also result in a significant and yet inevitable gap 
between the perception of concepts (e.g., ‘pedestrian’) as 
human drivers perceive and what a collected dataset rep-
resents as the concept for MLCs’ training process. MLCs’ 
perception of concepts is confined to generalizing a set of 
seen common features within a limited dataset, collected 
for training purposes of the model. For instance, a pedes-
trian detector in a smart car is partially expected to learn the 
concept ‘pedestrian’ based on images and video streams in 
which pedestrians are annotated. If the real pedestrians in 
the model’s operation environment do not share the same 
learned common features of pedestrians that the model has 
seen during the development process, the detector misclas-
sifies the pedestrians as non-pedestrians. Thus, using MLCs 
in this domain and relying on their learning ability from a 
limited dataset, which may not cover all factors related to the 
concept ‘pedestrian’, introduces safety risks.

In the automotive industry, the applicable functional 
safety standard is referred to as ISO 26262 [20], which does 
not cover specific aspects of ML [37]. This was a key moti-
vation for the extension ISO/PAS 21448 on Safety Of The 
Intended Functionality (SOTIF). However, there is no clear 
guideline in the document on precisely addressing the men-
tioned issues in MLCs [21]. The state-of-the-art pedestrian 
datasets are collected in unsystematic and based on ad hoc 
manners and therefore are generally limited in the number 
of examples and diversity of samples that they comprise [21, 
46]. For instance, the most recently established datasets in 
the context of autonomous driving, such as Caltech [14], 
KITTI [18], CityPersons [53], and EuroCityPerson (ECP) 
[6], are arbitrarily collected by a vehicle-mounted camera 
navigating through suburban roads [21].

In this regard, in this paper, we propose to partially spec-
ify hard-to-specify domain concept, pedestrian, for MLCs 
instead of entirely relying on their ability to learn these 
specifications from a randomly-collected dataset. Specifying 
domain concepts improve requirements engineering tasks in 
developing MLCs by (i) enriching their learning foundation 
with semantic information (ii) providing a more complete 
basis to learn functional requirements specifications (iii) 
disambiguating MLC’s requirements specifications which 
contain hard-to-specify domain terms. To this end, we intro-
duce a novel semi-automated approach to construct a multi-
level semantic web for partially specifying a potential pedes-
trian for MLCs. A process-level overview of our proposed 
approach is illustrated in Fig. 1, containing seven phases. 
Figure 2 uses the same corresponding phase numbers to rep-
resent a more detailed development-level overview of each 
step. As shown in both figures, our approach contains two 
major parts Designing the Semantic Web and Augment-
ing the Dataset. In part “Designing the Semantic Web”, we 
specify the domain concept, pedestrian, first by augment-
ing the concept through searching for accompanying, co-
occurring, and related similar terms, Fig. 1-(1). Second, we 
create a set of high-level topics (Zoom-Out view) from the 
retrieved terms by following a sequence of ML techniques, 
Fig. 1-(2). Third, more details are provided for each topic 
(Zoom-In view), using a part-of-speech tagger, Fig. 1-(3). 
Finally, instead of merely returning a flat list of relevant 
terms and relationships, we compose the terms into a mean-
ingful hierarchy of topics in the form of a semantic web, 
Fig. 1-(4). In part “Augmenting the Dataset”, we assess the 
usefulness of our approach through showing the effectiveness 
of the inferred semantic web in improving MLCs’ accuracy, 
as well as empirically analyzing the coverage of the gener-
ated topics and relationships in benchmark datasests. First 
with a reference to the web, we identified one semantically 
important feature, wheelchair, for pedestrians that appeared 
in the semantic web but was not present in the majority 
of commonly-used datasets, Fig. 1-(5). We then manually 
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collected a balanced number of images of pedestrians in 
wheelchair and augmented the MLC’s original training data-
set, Fig. 1-(6). Finally, we re-trained a state-of-the-art object 
detector to detect the augmented feature, and evaluated the 
effectiveness of our approach in improving MLCs learning 
process, through conducting a series of experiments before 
and after the dataset augmentation, Fig. 1-(7). Additionally, 
to assess the coverage of the semantic web that was gener-
ated by the proposed approach, we analyzed multiple state-
of-the-art datasets with respect to entities and relationships 
built in the semantic web.

The primary contribution of this work is, therefore, a 
paradigm shift to formally specify hard-to-specify domain 
concepts and partial requirements for MLCs. The advantages 
of outlining hard-to-specify domain concepts in the form of 
a semantic web are (i) to set a benchmark for the specifica-
tion of unambiguous hard-to-specify concepts, (ii) to build 
a library to reuse and augment the shared knowledge, (iii) 
to automatically verify whether the datasets and ML models 
are consistent with the specifications, given that the formal-
ism form of the knowledge is represented in a semantic web. 
Thus, we can use the established benchmarks to serve as a 
reference for assessing the correctness and completeness of 
a concept captured in a collected dataset for training-validat-
ing-testing MLC, (iv) to improve the process of specifying 
unambiguous requirements for MLCs. For example, in the 
requirement, “The determined position of the ‘pedestrian’ 
should be accurate within 0.5 m”, outlining the term ‘pedes-
trian’ relatively resolves the inherited ambiguity of domain-
related concept ‘pedestrian’ and results in a more explicit 
requirement specification.

In this paper, we selected the automotive domain and 
pedestrian as a hard-to-specify domain concept mainly 
because most safety-related perceptional requirements for 
an intelligent pedestrian detector are based on the incorrect 

assumption that such domain specification exists and is 
agreed upon. We use our proposed approach to semi-auto-
matically build a semantic web for the hard-to-specify con-
cept ‘pedestrian’. We then show that augmenting a dataset, 
according to our established semantic web, improves the 
accuracy of a pedestrian classifier trained on this dataset.

The remainder of this paper is organized in the following 
manner. In Sect. 2, we discuss our semi-automated process 
to design a multi-level semantic web fro specifying hard-to-
specify concepts. We describe how we created a high-level 
view (Zoom-Out view), and the process of creating a more 
detailed view (Zoom-In View) of the concept ‘pedestrian’. 
We finish this section by representing the process of creat-
ing a semantic web from the words and relations previously 
retrieved. Section 3 describes how we applied our inferred 
semantic web to augment a publicly available pedestrian 
dataset in order to improve the performance of selected 
pedestrian detectors. Sections 4, 5, and 6 discuss threats to 
the validity of our approach, related work, and conclusion 
and future work, respectively.

2 � Designing the semantic web

(Figure 1-(1)) In this section, we present our approach to 
design a semantic web with the purpose of formally speci-
fying hard-to-specify domain concepts. While we use our 
approach to semi-automatically construct an extendable 
domain-specific semantic web for the concept, ‘pedestrian’ 
in the automotive domain, the process is not domain-specific 
and can be generalized to other concepts and domains. The 
output of this section, the constructed semantic web, serves 
as a benchmark for the concept ‘pedestrian’ and a point of 
reference, against which collected ‘pedestrian’ datasets for 
training ML algorithms can be assessed for completeness.

Fig. 1   Process-level overview of our proposed approach
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2.1 � Augmenting a concept

The process is initiated with the augmentation of the hard-
to-specify domain concept ‘pedestrian’. A class of hard-to-
specify concepts refers to terms in a domain that are more 
socially-constructed rather than being defined according 
to a definite, explicit, and written description. Moreover, 
the definition of pedestrian is highly subjective and, thus, 
differs from person to person depending on their perspec-
tive, past experience, and knowledge. For instance, is a per-
son riding a bike; carrying a bike; or standing on a bike; a 
pedestrian? Therefore, to specify such concepts, for which 
no set of domain documents exists, we decided to refer to 
human perception as a reference model. For this purpose, 
we referred to platforms where humans easily share their 

views, thoughts, and knowledge, such as social platforms, 
news feeds, and online encyclopedias. Through mining such 
resources, we identified terms that are connected to the term 
pedestrian. To identify terms which are closely related to 
the given concept, we adopted three sets of approaches to 
achieve more enhanced and thorough results:

1.	 Accompanying terms (Fig.  2(1)-(a)): We defined 
accompanying terms as terms which most frequently 
appeared before and after the term pedestrian in high 
ranked online corpora. To identify such terms, we 
referred to Google books N-gram1, an online search 

Fig. 2   Development-level overview of our proposed approach

1  https://​www.​engli​sh-​corpo​ra.​org/​googl​ebooks/.

https://www.english-corpora.org/googlebooks/
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engine that provides a search for 155 billion words 
from American English and 34 billion words from Brit-
ish English and provides high-frequency terms associ-
ated with a given term as a search query. We searched 
Google books N-gram for sources printed between the 
years 1500 and 2000 in the American English language 
while using the word pedestrian as a part of our search 
query. We used four variations of search queries includ-
ing: pedestrian + [any verb]; [any verb] + pedestrian; 
pedestrian + [any noun]; [any noun] + pedestrian. 
Table 1 shows some examples of the returned terms by 
the search engine for the variations mentioned. This step 
resulted in 692 non-unique terms accompanying with the 
term pedestrian.

2.	 Co-occurring terms (Fig. 2(1)-(b)): Relying solely on 
the terms extracted in the previous step, we potentially 
miss the terms which do not appear immediately before 
or after a given term but are still closely related to the 
concept. For instance, in the phrase “In cities with poor 
infrastructures, pedestrians who use wheelchairs often 
are forced to use the street.” The terms pedestrian and 
wheelchair are potentially relevant (i.e., a pedestrian on 
a wheelchair is a pedestrian) but are not subsequent. To 
avoid such errors, we additionally defined and searched 
for co-occurring terms with the term pedestrian within 
the same phrase. We defined co-occurring terms as the 
most common terms, which occurred up to four terms 
apart from the term pedestrian in corpora. We assumed 
further apart terms have lower relevance to our search 
query and, therefore, less important to our seman-
tic web. To achieve co-occurring terms, we searched 
Google N-gram to extract the most common verbs and 
nouns that appeared up to four terms apart from the term 
pedestrian, and this step resulted in 1,601 co-occurring 
terms. As such, we assumed that co-occurring terms in 
further distance than four spaces are mostly irrelevant 

to the concept and are, therefore, excluded from our 
study. We later compensate for further-apart-yet-relevant 
terms that were mistakenly removed by this assumption 
through adding the following metrics.

3.	 Related terms (Fig. 2(1)-(c)): We defined related terms 
as terms that have a meaningful relationship with the 
concept pedestrian but do not occur within a short dis-
tance or together with the term pedestrian in corpora. To 
search for such terms, we used RelatedWords2, which 
is an open-source project. RelatedWords runs several 
algorithms, such as word embedding, to convert words 
into multidimensional real-valued vectors (often tens or 
hundreds of dimensions), representing their meanings. 
The generated vectors of the words are then compared to 
a database of pre-computed vectors according to a set of 
existing corpora. Each word’s vector values are learned 
based on the word’s usage in the given corpora and is 
placed in the space for these values. This allows words 
used in similar ways to have similar representations and 
closer distance in the space, naturally capturing their 
meaning. An additional algorithm used by RelatedWords 
crawls through ConceptNet [42] to retrieve additional 
associated terms. ConceptNet is a knowledge graph that 
collects its knowledge from many sources, such as Wik-
tionary, Open Mind Common Sense (OMCS) [41], and 
WordNet [5]. RelatedWords provided 453 words related 
to the term pedestrian. In addition to RelatedWords, we 
used Onelook3, which indexes over a thousand online 
dictionaries and encyclopedias to return the words 
related to a search query. In addition to dictionaries and 
encyclopedia, Onelook internally works on Datamuse 
API to search various data sources, such as the CMU 

Table 1   Top ten words returned by different search queries on Google books N-gram

“Pedestrian”+ [any verb] “Pedestrian” + [any noun]

Pedestrian crossing Pedestrian traffic
Pedestrian walks Pedestrian mall
Pedestrian killed Pedestrian bridge
Pedestrian pass Pedestrian street
Pedestrian moving Pedestrian zone

[Any verb] + “pedestrian” [Any noun] + “pedestrian”

Protect pedestrian Child pedestrian
Warn pedestrian Adult pedestrian
Hurrying pedestrian Level pedestrian
Involving pedestrian Street pedestrian
Encourage pedestrian Block pedestrian

2  https://​relat​edwor​ds.​org/.
3  https://​www.​onelo​ok.​com/.

https://relatedwords.org/
https://www.onelook.com/
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pronouncing dictionary as a source of phonetic tran-
scriptions; Corpus-based data to build a language model 
that scores candidate words by context; and WordNet for 
semantic lexical relations. Using pedestrian as the search 
query, Onelook returned 527 words related to the term. 
Although RelatedWords and Onelook use a few common 
data sources, such as WordNet, they returned a different 
set of terms for the search query pedestrian. Onelook 
returned 140 words in common with RelatedWords.

Merging Results: We merged the acquired (1) accompa-
nying, (2) co-occurring, and (3) related terms to form 3273 
words that have meaningful relationships with the term 
pedestrian. The process of removing duplicate terms led to 
1207 unique words.

Computing Similarity Score (Fig.  2(1)-(d)): Once 
words were merged, and duplicates were removed, we used 
the Gensim library to compute a similarity score for each 
term with the term pedestrian. The goal of computing simi-
larity scores was to filter the incorrectly retrieved terms and 
have a ranking value to prioritize and distinguish more rel-
evant terms from less relevant ones. To compute similarity 
scores, we used the Gensim library, which includes various 
pre-trained mathematical models and a collection of public 
corpora, often used for unsupervised topic modeling and 
natural language processing. The library contains an imple-
mentation of the Word2vec models, a group of related mod-
els used to produce word embedding. Word2vec takes, as 
its input, a large corpus of text and produces a vector space, 
typically of several hundred dimensions. Each unique word 
in the corpus is being assigned a corresponding vector in 
the space. Word vectors are positioned in the vector space 
such that words that share common contexts in the corpus 
are located close to one another in the space [33].

We used two public and widely used corpora, namely 
Wikipedia and Google News since they are built on a sub-
stantial number of words, 400,000 and 3 billion words, 
respectively. In the Gensim library, the terms included in 
these corpora are embedded in the form of vectors. The 
library provides a Word2vec two-layer neural network 
model which produces a set of similar terms to a given 
query, according to their cosine similarity score between 
− 1 and 1. Table 2 shows the top 10 (N = 10) most similar 
terms to the term pedestrian from our corpora, Wikipe-
dia, and Google News. We can observe that similar words 
differ between the two corpora. For example, the Word-
2vec model using Wikipedia returns words with a slightly 
higher similarity score than Google News. Out of the 
unique merged 1207 terms, only 907 terms were present 
in the Word2vec models constructed from Wikipedia, and 

902 were present in Google News corpora. Therefore, we 
continued our process only with these 907 and 902 rel-
evant terms with similarity scores retrieved from the two 
corpora. We noticed that the rest of the terms were among 
the least relevant terms to the concept ‘pedestrian’.

Filtering Results: We selected words with similarity 
scores within the upper quartile of all terms’ similarity 
score boxplot to further eliminate the ineffectual terms 
from the remaining terms. Figure 3 represents the boxplots 
for both corpora, Wikipedia and Google News similarity 
scores. We found that the similarity score cutoff values 
(third quartile value) for Wikipedia and Google News 
were 0.3258 and 0.2137, respectively. After removing 
terms with similarity scores below the threshold limit, 227 
terms from Wikipedia and 226 terms from Google News 
were obtained. Merging and removing the duplicate terms 
resulted in 303 unique terms closely relevant to the term 
pedestrian. In the following sections, we refer to these 303 
relevant terms as “augmented terms.”

Table 2   Top ten similar words to pedestrian from Wikipedia and 
Google News corpora

Wiki terms Similarity Google terms Similarity

Walkway 0.6928 Bicyclist 0.6166
Lanes 0.6808 Crosswalk 0.5942
Sidewalks 0.6572 Motorist 0.5460
Roadway 0.6411 Bike lanes 0.5416
Vehicular 0.6380 Pedestrian walkways 0.5328
Thoroughfare 0.6337 Bicycle lanes 0.5256
Subway 0.6296 Bikeway 0.5248
Underpass 0.6193 Traffic calming 0.5239
Overpass 0.6157 Roadway 0.5181
Parking 0.6129 Traffic 0.5173

Fig. 3   Box plot of similarity scores for terms retrieved from Wikipe-
dia and Google News
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2.2 � Discovering high‑level topics: providing 
a zoom‑out view of topics

(Fig. 1-(2)) To better summarize and organize the gathered 
information and to improve its readability, we intended to 
extract high-level abstract topics from the “augmented terms”, 
acquired in the previous phase. In this step, we experimented 
with two approaches. While the first approach has not pro-
vided us with the expected results, it guided us to a second and 
improved subsequent approach.

2.2.1 � First approach

Preprocessing: To use the root of the “augmented terms”, 
we performed a stemming phase on this set of relevant terms. 
After stemming the terms back to their basic form, the total 
number of remaining unique words was 230. Stemming 
decreased the number of words, as some words ended up hav-
ing similar root words. For instance, terms such as cross and 
crossed have the same root cross.

Vectorized Representation: Further, to achieve a set of 
high-level abstract topics, we aimed to categorize the “aug-
mented terms” into a set of cohesive clusters to place simi-
lar terms in the same clusters. To perform clustering, we first 
transformed each “augmented term” into a vector in the space, 
using Word2vec models. As explained earlier, the Word2vec 
algorithm uses simple two-layers neural network models to 
learn words’ associations from a large body of text. Once 
again, we used the two corpora Google News and Wikipe-
dia to train the neural networks. Once learned, each term was 
transformed into vectors and located in the space so that terms 
with higher cosine similarity were placed close to each other.

K-Means Clustering: We then fed these user-defined 
Word2vec models into a K-Means clustering model [22] to 
cluster the “augmented terms”. K-Means algorithm is an itera-
tive clustering algorithm used to partition the data points into 
K clusters, whereas each data point is placed in one cluster 
with the closest mean [32]. Mathematically, the K-Means algo-
rithm is designed to minimize an objective function J. Here we 
used, the objective function to be the squared error function 
as below:

where:

(1)J =

k∑

j=1

n∑

i=1

||xj
i
− �j||2

We used the scikit-learn implementation of K-Means clus-
tering, which has slightly different parameters, such as:

–	 algorithm: This parameter allows to select the type of 
K-Means algorithm to be used. Current research has 
shown choosing ‘elkan’ value for this parameter is more 
efficient on data with well-defined clusters, using the tri-
angle inequality [15]. Thus, we used this value in our 
experiment.

–	 n_clusters: Representing the number of clusters and the 
number of centroids to be formed. For this parameter, 
we selected an optimal number of clusters according to 
a method explained in the following section.

–	 init: Representing the various methods used for initializa-
tion. We used the default method k-means++ [1].

–	 n_init: Indicating the number of times the algorithm 
should run for different centroids values. We used the 
default value 10.

–	 max_iter: This parameter indicates the maximum number 
of iterations for the algorithm. We used the default value 
of 300.

Optimal Number of Clusters: To determine the optimal 
number of clusters, we adopted a method called elbow [47]. 
The elbow method is a technique that plots the relationship 
between several clusters, used in building the K-Means clus-
tering model, and a chosen metric. Using this method, one 
can select the elbow of the curve, the point where the curve 
bends, as the cutoff point, and the optimal number of clusters 

J = objective function

k = number of clusters

n = number of cases

x
j

i
= each data point

�j = the centroid for cluster j

||xj
i
− �j||2 = the Euclidean distance

Fig. 4   Elbow method to obtain the optimal number of clusters
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according to the chosen metric. Choosing the number of 
clusters exceeding this point results in over-fitting rather 
than improving the information gained from the clusters. 
We selected

Within Cluster Sum of Squares (WCSS) as our determin-
ing metric. WCSS calculates the sum of squares of each data 
point’s distances in all clusters to their respective centroids. 
In other words, WCSS measures and represents the vari-
ability of the observations within each cluster. In general, a 
cluster with a smaller sum of squares is more compact than 
a cluster with a larger sum of squares. As demonstrated in 
Fig. 4, the optimal number of clusters is five for the Wikipe-
dia Word2vec model and four clusters for the Google News 
Word2vec model.

Discussion: After selecting the proper number of clusters 
for the K-Means clustering algorithm, we expected that the 
group of terms within each cluster to represent a meaning-
ful high-level topic. However, following a manual inspec-
tion, all the authors unanimously agreed that the majority of 
the clustered words were not explicitly relevant to the same 
high-level topic. This turned the process of labeling clusters 
with only one meaningful topic, which is relevant to the 
majority of the terms within the cluster, into an impractical 
task. For example, one of the clusters contained words, such 
as access, arcade, area, bike, block, bus-only, bustling, car-
riageway, cobblestone, corridor, creating, east-west, elderly, 
front, gateless, interurban, intoxicated, and jaywalking. 
Since we found the task of obtaining a representative topic 
for the formed clusters to be impractical, we concluded that 
this is not the proper approach to form a series of meaningful 
and representative high-level topics from the “augmented 
terms”. One possible reason for this is that we performed 
clustering only on individual terms and outside any sen-
tence or paragraph. Clustering words out of their context 
caused the words to lose their semantics. Thus, we decided 
to experiment with a slightly different approach, as will be 
explained next.

2.2.2 � Second approach

As an alternative strategy, we formed clusters not merely 
based on unconnected terms but rather on full sentences, 
containing additional connecting and supporting terms. 
Since we are attempting to ultimately specify socially 
constructed concepts, we used a social media platform, 
namely Twitter, to extract additional relevant text for each 
“augmented term”. We collected tweets rather than posts 
on alternative social media, such as Facebook and Insta-
gram, because Twitter is primarily used for sharing ideas and 
thoughts, whereas other social platforms are more adopted to 
connect with friends and family members. To achieve high-
level meaningful topics relevant to terms associated with 
the concept ‘pedestrian’, we followed the following steps:

Extracting relevant text (Fig.  2(2)-(a)): To extract 
tweets relevant to the concept ‘pedestrian,’ we used a social 
media analytics platform called Crimson Hexagon4. We 
used Crimson Hexagon to query the Twitter platform for 
tweets containing terms relevant to the concept ‘pedestrian’. 
The tool extracts and returns tweets that include the given 
search query. To extract tweets associated with the term 
pedestrian, we queried Crimson Hexagon repeatedly, using 
search queries of a combination of term pedestrian with each 
of the “augmented terms”, such as “pedestrian and traffic,” 
“pedestrian and kill,” “pedestrian and wheelchair”. Since 
the number of retrieved tweets for each of these queries var-
ied, the acquired text data were, therefore, imbalanced with 
respect to queries. The imbalanced dataset could potentially 
cause a bias in the process of building topics. Therefore, we 
adopted a sampling approach to select a balanced number 
of tweets in each group randomly. In case of queries where 
the returned results were more than 10,000 tweets, we ran-
domly selected 10,000 tweets posted from May 2015 to May 
2020. In the case of queries, where the returned result was 
less than 10,000 tweets, we stretched the start of the time 
frame to May of 2008. The older tweets, posted before May 
2008, were not retrieved for any of the queries to avoid the 
risk of incorporating outdated data into the semantic web. 
For the 230 queries, the total number of obtained tweets 
was 1,326,488. The average number of tweets per query 
was 5,869, while the minimum number of retrieved tweets 
was one tweet for the query “pedestrian and stumbler”. One 
hundred of the queries collected 10,000 tweets, the maxi-
mum number we set. Four of the queries did not return any 
tweets, including “pedestrian and gateless”, “pedestrian and 
midfoot,” “pedestrian and stair,” “pedestrian and stalker”.

Preprocessing the acquired text data (Fig. 2(2)-(b)): 
After retrieving the raw tweets, we performed preprocessing, 
by removing hyperlinks, usernames, stop words, punctua-
tion, extra spacing, and numbers from the obtained tweets 
during this process. Before performing the topic modeling, 
we performed stemming using the NLTK python library. In 
stemming, we eliminate the prefixes and suffixes from the 
inflated terms.

Performing Topic Modeling (Fig. 2(2)-(c)): To perform 
topic modeling, we adopted the Latent Dirichlet Allocation 
(LDA) [4]. LDA is a probabilistic approach used to discover 
latent topics relevant to a set of words in a collection of 
documents. Each topic yields its own probability distribu-
tion over the words, and LDA uses maximum likelihood 
estimation to learn the best probability distributions for each 
latent topic. It also explicitly surfaces the probability distri-
bution of words for each learned topic. Because LDA looks 
to assign topics to cohesive units of text, the latent topics it 

4  https://​www.​brand​watch.​com/.

https://www.brandwatch.com/
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learns often correspond to semantically meaningful topics 
that can be named.

We used the Scikit-learn library to build topic models 
from the retrieved tweets. After experimenting with a cou-
ple of different values for parameters, the parameters we 
selected for base topic models were 30 and 25, respectively, 
for the number of topics and number of words within each 
topic. This step’s output was 30 clusters, where each cluster 
was a combination of a different set of words associated with 
each other representing a topic. Each word is associated with 
a weight that indicates the importance of that word in a clus-
ter. Table 3 shows a sample output of this step. We excluded 
the weights associated with each word for representational 
purposes. From the table, we observe that several words are 
grouped in each cluster that constitutes a particular topic. 
For instance, words such as hit, car, kill, polic, driver, away, 
elderli, injur, morn, run were grouped to form a potential 
topic, such as “car killing a person.” Similarly, other topics 
were formed, such as “planning and improving safety” and 
“collapsing bridge.”

Obtaining topics (Fig. 2(2)-(d), (e)): Through building 
the LDA model and clustering similar words together, we 
were able to manually identify a topic for each cluster so 
that most of the terms in the cluster were relevant to that 
topic. Table 3 shows some of the topics that we manually 
derived from the clustered terms. The 30 topics include “car 
killing a person”, “Uber accident’’, “planning and improv-
ing safety”, “collapsing bridge” , “bike and cyclist traffic”, 
“passing the red signal”, “detecting traffic in Portland”, 
“truck on overpass highway”, “space needed on streets of 
Times Square”, “giving access to bridge for traffic”, “call-
ing ambulance”, “people riding bike”, “malls and shops in 
subway”, “pedestrian running at night”, “drunk driver kills 
old man”, “police writing ticket to car driver”, “jaywalk-
ing on flyover”, “disabled person needing help to cross”, 
“closed lane of train causing fatal accident”, “body in 
hospital”, “tracking sidewalk, walkway and crosswalk”, 
“police arresting driver”, “restriction on vehicular move-
ment”, ‘“regularly jog and exercise”, “serious injury in 
vehicle collision”, “new bridge construction over river”, 
“parking space on street”, “criminal gangs on street”, 

“traffic signals at junctions and intersections”, “delay in 
tunnel causing traffic”.

2.3 � Extending the topics: providing a zoom‑in view 
of topics

(Fig. 1-(3)) In the previous sections, we partially specified 
the hard-to-specify concept ‘pedestrian’ by identifying a 
set of high-level topics and their associating terms relevant 
to the concept ‘pedestrian’. Here, we also provide a more 
detailed or zoom-in view of topics. For this purpose, we 
need to identify potential relationships among the “aug-
mented terms” and topics retrieved by LDA. For instance, 
we specified “wheelchair” as one of the “augmented terms”, 
closely associated with the concept ‘pedestrian’. We found 
this term within the LDA clustered terms: {wheelchair, 
user,disabl, need, push, person, barrier, help...}, which we 
labeled with the topic “disabled person needing help to 
cross”. In this step, we intend to specify a more detailed 
relationship between the “augmented term” “wheelchair” 
and the topic “disabled person”.

To achieve this, we applied Part-Of-Speech (POS) tag-
ger to the collection of the previously extracted tweets. POS 
tagger reads a sentence and tags each term with their role 
in the given sentence, such as noun, verb, and adjective. 
POS taggers generally tag terms in a sentence based on their 
definition and the context, as corresponding to a particular 
part of speech.

For the implementation, we used Stanford CoreNLP5 to 
tag parts of the tweets that we previously extracted. We wrote 
a Python wrapper script that uses the Stanford CoreNLP 
parser to parse and tag 1,326,488 tweets. We labeled the 
terms in each sentence of the retrieved tweets as triplets of 
subject, predicate, and object. Not every sentence neces-
sarily yields a set of triplets. For instance, “person killed 
in pedestrian accident near collier exit” returns “person, 
killed, exit” as the subject, predict, and object, respectively, 
whereas “contracting opp wildwood trail pedestrian bridge 

Table 3   A few of the selected 
topics for the terms returned by 
the topic modeling algorithm on 
the Twitter dataset. Weights are 
excluded

# Topic Top words in the Topic

1 Car killing a person Hit, car, kill, polic, driver, away, elderli, injur, morn, run.
2 Uber accident Drive, car, accid, kill, self, uber, fatal, vehicl, driver, hit.
3 Planning and improving safety Safeti, improv, bicycl, plan, citi, bike, transport, street, project, new.
4 Collapsing bridge Bridg, one, collaps, sign, way, person, univers, florida, peopl, traffic.
5 Bike & cyclist traffic Like, good, infrastructur, rule, know, look, traffic, cyclist, lane, bike.
6 Passing the red light Light, speed, turn, red, cross, limit, left, traffic, driver, car.
7 Traffic signals at junctions Cross, road, stop, traffic, pleas, use, crosswalk, light, signal, driver.
8 Delay in tunnel causing traffic Delay, tunnel, expect, bridg, north, traffic, caus, rush, america.

5  https://​stanf​ordnlp.​github.​io/​CoreN​LP/.

https://stanfordnlp.github.io/CoreNLP/
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project” only returns “contracting” as predicate without 
yielding any subject or object. Similarly, after parsing and 
probing for triplets in 1,326,488 tweets, we observed that 
only 1,213,178 tweets yielded triplets.

We further filtered and selected only those triplets in 
which either the subject or object was among the “aug-
mented terms”, resulted in 33,230 triplets. We merged all 
the predicates, which belonged to the same subject-object 
pair, as a single list. The duplicates having interchange-
able subject-object pairs were removed. After merging and 
removing the duplicates, the final result of this process was 
333 records. Each record contained a subject, an object, 
and a list of all predicates associated with the subject and 
object. For instance, in one record, we had pedestrian as the 
subject, freeway as the object, and {killed, hit, run, closed, 
cross, identified, filmed, dies, struck, call, crossing, backed, 
injured, forcing} as a set of predicates.

In subject-object pairs with more than 20 predicates, we 
filtered the predicates based on similarity scores of the predi-
cate to both the subject and object, using Word2vec models 
and Wikipedia and Google News corpora as the reference. 
Therefore, we selected the top 10 predicates with higher 
similarity scores to the corresponding subject and object.

Finally, to connect the zoom-in and zoom-out views, 
we selected triplets with subjects or objects matching the 
“augmented terms”. This step’s result was 124 triplets to be 
included in the zoom-in view of the closely related terms 
to the concept ‘pedestrian’. For instance, in the example at 
the beginning of this section, the topic “disabled users” is 
a high-level topic associated with the concept ‘pedestrian’. 
Under this topic, the word “wheelchair” is presented as a 
term (among other sets of words) relevant to the concept and 
topic. A more detailed zoom-in view represents the Sub-
ject-Predicate-Object triplets {woman parked wheelchair} 
and {bus hit wheelchair}, where bus and women are also 
included within the “augmented terms”, closely relevant to 
the concept ‘pedestrian’. In the following section, we discuss 
how we represent these terms and relationships in the form 
of a semantic web. Further, we explain how we use the con-
structed web for the hard-to-specify concept ‘pedestrian’ to 
improve a state-of-the-art object detector’s accuracy.

2.4 � Representation

(Fig. 1-(4)) The goal of a semantic web is to make internet 
data machine-readable [13]. Controlled Natural Languages 
(CNLs), such as Web Ontology Language (OWL), are used 
to express knowledge about resources in a semantic web and 
specify relations in a human-readable way [6, 48]. The ben-
efit of CNLs is that while they are understandable by humans 
(i.e., declarative language), they can be directly translated to 
a formal language (i.e., have formal syntax).

We exploit the terms and relations that we extracted in 
the previous steps to build a semantic web for the hard-to-
specify domain concept ‘pedestrian’. In the semantic web, 
an entity was formed for each distinct term; and an edge 
was drawn between two nodes for each specified relation. 
This process resulted in 78 entities for unique terms of sub-
jects and objects, as well as 339 unique edges representing 
predicates terms in the semantic graph. Our semantic web 
benchmarks a common understanding of the concept and 
facilitates better communication over domain knowledge 
between humans and MLCs. This benchmark represents the 
shared and consensual knowledge of domain specifications, 
which is generally accepted by the public.

To visualize the selected domain concept, we used a tool 
called WebVOWL6 (Web-based Visualization of Ontolo-
gies). WebVOWL uses a Resource Description Framework 
(RDF) file as the input to visually display the terms and 
their relations. We wrote a script to automatically transform 
the subject, object, and predicate triplets into an acceptable 
format for the tool. Due to the large size of the generated 
semantic web, we only provided a snapshot of it, as shown 
in Fig. 5. The complete semantic web can be found on our 
GitHub repository7. In the following sections, we discuss 
how we exploited the established benchmark as a reference 
for augmenting the concept ‘pedestrian’ in a collected data-
set to improve the accuracy of an object detector (MLC).

3 � Augmenting the dataset

This section discusses our evaluation of the proposed 
approach. Assessing correctness of the constructed semantic 
web through conducting a qualitative study with human par-
ticipants is highly subjective to the participants’ conditions, 
experiences, and perspectives and, therefore, can be biased. 
In addition, evaluating completeness of the built semantic 
web in specifying all variances of the concept, pedestrian, is 
inconclusive. In view of the raised issues, to instead evaluate 
the usefulness of the proposed approach we (i) first, evalu-
ated the approach effectiveness in improving the accuracy 
of MLCs. For this purpose, we identified the existing gap 
in a state-of-the-art pedestrian dataset and augmented it for 
one missing entity. We then compared the accuracy of a 
state-of-the-art object detector, trained on this dataset, in 
detecting various instances of ‘pedestrian’ before and after 
the augmentation. (ii) second, we evaluated the coverage of 
the generated entities and relations of the semantic web on 
multiple commonly used datasets, which in turn, the gaps 
in these datasets.

6  http://​vowl.​visua​ldata​web.​org/​webvo​wl.​html.
7  https://​github.​com/​REJou​rnal2​021.

http://vowl.visualdataweb.org/webvowl.html
https://github.com/REJournal2021
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3.1 � Evaluating effectiveness

To evaluate the effectiveness of the established multi-level 
semantic web, we initially selected a benchmark dataset. We 
identified one common and semantically important feature, 
wheelchair, that was often associated with potential pedes-
trians with respect to the constructed web, (Fig. 1-(5)). In 
our semantic web wheelchair showed relatively high simi-
larity to the domain concept, and frequent co-appearance 
with the term pedestrian in corpora, yet it was missing from 
the images of the primary dataset. Although we selected 
wheelchair as a missing feature, this decision was not only 
due to its high semantic similarity to pedestrian, but also 
our investigations of five state-of-the-art pedestrian and per-
son datasets, which we will further introduce in Sect. 3.2.1, 
revealed the term’s absence from 80% of the datasets. There-
fore, we manually collected a balanced number (w.r.t. the 
size of other classes in the dataset) of images containing 
the instances of the concept (various-looking pedestrians) 
interacting (sitting in) with the missing feature (wheel-
chair), (Fig. 1-(6)). We augmented the training dataset and 
re-trained the ML model on the augmented dataset for a fair 
comparison of two models’ accuracy in classifying pedes-
trians (Fig. 1-(7)).

Please note that we only augmented the dataset for one 
partial specification (one triplet in the semantic web) as 
the image collection, localization, and annotation for the 
missing feature, in this case, was manually performed and 
required a significant amount of labor. However, this man-
ual task needs to only occur once because when “enough” 

number of images—relative to the size of other classes—are 
collected for an underrepresented feature, then a ML model 
can be re-trained to classify the missing feature in images. 
Thus, this new model can be applied to automatically iden-
tify a set of images that contain the missing feature among 
a large collection of images. In addition, we further discuss 
an alternative method to automate this process in Sects. 3.2.2 
and 3.2.3 .

Primary Dataset: We used images from the dataset 
Microsoft Common Objects in Context (COCO) [31]. This 
dataset is a publicly available large-scale collection of com-
mon objects’ images in their natural context. Each image is 
annotated with all objects recognizable in the image through 
crowd workers’ manual collaborative work. Additionally, the 
objects’ boundaries are identified and segmented in each 
image. Image annotations and segmentations are further ana-
lyzed and evaluated by a group of expert workers. COCO 
consists of 2.5 million labeled instances in 328k images, 
labeled with 91 different object categories [31]. We selected 
this dataset because more than 35% of annotated objects are 
‘person’ with various poses, characteristics, and within dif-
ferent contexts. Moreover, the COCO dataset contains more 
categories and instances per image on average than other 
publicly available datasets, such as PASCAL and ImageNet. 
Additionally, YOLO, a state-of-the-art real-time object 
detector, is pre-trained and holds weights learned according 
to the COCO dataset.

We decided to conduct a series of experiments to evalu-
ate the application of our semantic web. Due to the large 
size of images in COCO, using the entire dataset resulted in 

Fig. 5   A snapshot of the con-
structed semantic web for the 
hard-to-specify concept ‘pedes-
trian’. Circles represent the enti-
ties, and the labeled edges show 
the relations between the pairs 
of entities
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Table 4   Statistics of the 
selected dataset from COCO 
using stratified random 
sampling

Object-no Image-no Image-percent Object-percent Obj/image

Person 27518.0 5139.0 72.62 26.15 5.35
Chair 7138.0 2243.0 31.69 6.78 3.18
Car 6604.0 1710.0 24.16 6.28 3.86
Bottle 4695.0 1693.0 23.92 4.46 2.77
Book 4225.0 916.0 12.94 4.01 4.61
Cup 4017.0 1646.0 23.26 3.82 2.44
Bowl 2440.0 1165.0 16.46 2.32 2.09
Handbag 2417.0 1329.0 18.78 2.30 1.82
Dining table 2149.0 1489.0 21.04 2.04 1.44
Backpack 1788.0 1133.0 16.01 1.70 1.58
Bench 1585.0 852.0 12.04 1.51 1.86
Knife 1572.0 674.0 9.52 1.49 2.33
Truck 1532.0 921.0 13.01 1.46 1.66
Traffic light 1481.0 484.0 6.84 1.41 3.06
Potted plant 1461.0 784.0 11.08 1.39 1.86
Umbrella 1166.0 444.0 6.27 1.11 2.63
Spoon 1152.0 613.0 8.66 1.09 1.88
Bicycle 1116.0 545.0 7.70 1.06 2.05
Wine glass 1106.0 363.0 5.13 1.05 3.05
Sink 1049.0 902.0 12.75 1.00 1.16
Tv 933.0 716.0 10.12 0.89 1.30
Fork 893.0 498.0 7.04 0.85 1.79
Suitcase 803.0 389.0 5.50 0.76 2.06
Vase 767.0 465.0 6.57 0.73 1.65
Laptop 760.0 564.0 7.97 0.72 1.35
Couch 738.0 581.0 8.21 0.70 1.27
Cell phone 702.0 573.0 8.10 0.67 1.23
Sports ball 677.0 462.0 6.53 0.64 1.47
Apple 614.0 220.0 3.11 0.58 2.79
Carrot 596.0 179.0 2.53 0.57 3.33
Oven 580.0 502.0 7.09 0.55 1.16
Orange 550.0 209.0 2.95 0.52 2.63
Boat 544.0 182.0 2.57 0.52 2.99
Motorcycle 552.0 230.0 3.25 0.52 2.40
Remote 535.0 322.0 4.55 0.51 1.66
Bus 536.0 390.0 5.51 0.51 1.37
Keyboard 527.0 374.0 5.28 0.50 1.41
Bird 521.0 166.0 2.35 0.50 3.14
Dog 487.0 371.0 5.24 0.46 1.31
Mouse 482.0 397.0 5.61 0.46 1.21
Kite 471.0 102.0 1.44 0.45 4.62
Cake 470.0 208.0 2.94 0.45 2.26
Banana 461.0 227.0 3.21 0.44 2.03
Refrigerator 456.0 434.0 6.13 0.43 1.05
Clock 453.0 402.0 5.68 0.43 1.13
Microwave 449.0 428.0 6.05 0.43 1.05
Toothbrush 443.0 238.0 3.36 0.42 1.86
Baseball bat 435.0 303.0 4.28 0.41 1.44
Horse 418.0 216.0 3.05 0.40 1.94
Donut 420.0 98.0 1.38 0.40 4.29
Cow 418.0 159.0 2.25 0.40 2.63
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excessively expensive experiments and therefore limited the 
number of experiments we were willing to perform. For this 
reason, we instead systematically selected a subset of COCO 
to perform a variety of experiments. To select our samples, 
we used a stratified random sampling technique rather than 
simple random sampling to represent the population of 
images in each category. In stratified sampling, data points 
are randomly selected from each sub-population (category) 
in proportion to its original size. Samples in each category 
(i.e., strata) are expected to share the same characteristics. 
In our case, the samples in each category share the same 
class label. As a result, more samples were selected from 
categories with a larger number of images, and similarly, a 
smaller number of images were collected from the smaller 
groups. Table 4 represents our dataset’s statistics, includ-
ing 7077 total images and total objects labels of 105,239 
selected from the COCO dataset. For ease of reference, we 
refer to this selected subset of COCO as COCO in the rest 
of this article and Table 5.

Auxiliary Datasets: Moreover, we used two additional 
datasets, namely Open Images and Mobility Aids data-
sets, to retrieve images of entities that were missing from 
the primary dataset according to our semantic web. Open 
images are a dataset that has approximately 9 million varied 
images with rich annotations8. The images are very diverse 
and often contain complex scenes with several objects (8.4 
per image on average). It contains 15,851,536 boxes on 600 
categories, image-level labels annotations, object bounding 
boxes, object segmentation, visual relationships, and local-
ized narratives.

Object Detector: In our experiments, the YOLOv5 algo-
rithm was used for object detection, specifically to detect 
pedestrians (people in the context of streets) in the image 
dataset. Since the COCO dataset contains people’s images 
in the streets, we used the existing YOLO’s detectable 
label ‘person’ to be interchangeable with ‘pedestrian’. The 

Table 4   (continued) Object-no Image-no Image-percent Object-percent Obj/image

Sandwich 416.0 209.0 2.95 0.40 1.99
Skis 417.0 160.0 2.26 0.40 2.61
Elephant 406.0 187.0 2.64 0.39 2.17
Sheep 410.0 77.0 1.09 0.39 5.32
Pizza 411.0 178.0 2.52 0.39 2.31
Parking meter 409.0 230.0 3.25 0.39 1.78
Teddy bear 410.0 241.0 3.41 0.39 1.70
Skateboard 408.0 233.0 3.29 0.39 1.75
Scissors 400.0 301.0 4.25 0.38 1.33
Toilet 400.0 348.0 4.92 0.38 1.15
Broccoli 403.0 166.0 2.35 0.38 2.43
Airplane 400.0 234.0 3.31 0.38 1.71
Bed 402.0 359.0 5.07 0.38 1.12
Bear 400.0 291.0 4.11 0.38 1.37
Zebra 402.0 158.0 2.23 0.38 2.54
Giraffe 400.0 225.0 3.18 0.38 1.78
Tie 404.0 238.0 3.36 0.38 1.70
Frisbee 400.0 282.0 3.98 0.38 1.42
Snowboard 403.0 206.0 2.91 0.38 1.96
Baseball glove 403.0 282.0 3.98 0.38 1.43
Surfboard 400.0 172.0 2.43 0.38 2.33
Tennis racket 400.0 254.0 3.59 0.38 1.57
Cat 400.0 348.0 4.92 0.38 1.15
Stop sign 402.0 370.0 5.23 0.38 1.09
Fire hydrant 403.0 372.0 5.26 0.38 1.08
Hot dog 402.0 147.0 2.08 0.38 2.73
Train 403.0 337.0 4.76 0.38 1.20
Toaster 225.0 217.0 3.07 0.21 1.04
Hair drier 198.0 189.0 2.67 0.19 1.05

8  https://​stora​ge.​googl​eapis.​com/​openi​mages/​web/​index.​html.

https://storage.googleapis.com/openimages/web/index.html
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process of object detection in YOLO happens through two 
levels, involving image classification and object localiza-
tion. Image classification assigns an image to a different set 
of existing classes or categories, such as a person, car, and 
plane, whereas object localization positions the objects in the 
image. Through this process, the object detector algorithm 
identifies objects and their positions in an image by labeling 
the objects and creating a bounding box around them. The 
object detector also generates a confidence score, represent-
ing the probability that an anchor box contains an object. 
The bounding boxes are later compared to the ground-truth 
according to an evaluation metric called Intersection over 
Union (IoU). IoU score identifies the area of overlap between 
the predicted bounding box and the ground-truth bounding 
box. According to the IoU value of interest, the classification 
accuracy is computed according to standard metrics such 
as Recall, Precision, and Mean Average Percentage (mAP) 
score (with different IoU values). The algorithm considers 
a detected label to be correct if the detected class matches 
the label in the ground-truth, the confidence score is greater 
than the selected threshold, and the detected bounding box 
for the object overlaps with X% of the bounding box in the 
ground-truth, where X is the selected value for IoU. In our 
experiments, we selected X to be 50%, and in another case, 
range from 50% to 95% (Table 7).

Experiments: Here, we explain the series of experiments 
we conducted to evaluate the application of our previously 
constructed semantic web. Table 5 represents a summary of 
all our experiments, while Table 7 reports the object detec-
tor’s performance in the conducted experiments for detecting 
the label ‘Person’. To better evaluate our proposed approach 
for building the semantic web, we divided the experiments 
into two main categories (1) Before Dataset Augmentation 
and (2) After Dataset Augmentation.

In the experiments within the Before Dataset Augmen-
tation category, we recorded YOLO’s performance on our 
selected dataset, before referring to the constructed semantic 
web for dataset augmentation. These sets of experiments 
served as base cases for assessing YOLO’s improvements 
after augmenting the dataset according to the semantic web.

After Dataset Augmentation category consists of experi-
ments for evaluating YOLO’s performance after we aug-
ment the dataset with reference to our semantic web. For this 
purpose, we carefully went through the primary dataset as 
well as the set of subject-predicate-object triplets, obtained 
in section 2.3, representing entities with close relations to 
the pedestrian. We identified a set of subjects and objects 
that were not initially present in the collection of pedestrian 
images within the primary dataset. To augment the dataset, 
we chose one missing object or subject at a time and added 
a balanced number of images of the subject or object to the 
original dataset. These additional images were selected from 
our auxiliary datasets, Open Images, and Mobility Aids.

Augmented Training Datasets: In all of our experi-
ments in this article, within After Dataset Augmenta-
tion category, we considered wheelchair as a missing 
object from the primary dataset. We chose the wheelchair 
because it appeared in our semantic web subject-predicate-
object triplets, showing a strong association with the term 
‘pedestrian’ and was not initially present in the primary 
dataset. We selected 608 images of pedestrians on wheel-
chairs from the Open Image and Mobility Aids datasets 
for training purposes. For the missing term wheelchair, 
we augmented two versions of training datasets with addi-
tional images:

1.	 Merged-Labels Dataset: In this version, as shown in 
Fig. 6b, we augmented the dataset with the images of 
pedestrians on wheelchairs, where the bounding box 
is drawn around the entire boundary of the person and 
wheelchair together. We selected the wheelchair and 
the person in the wheelchair as one object, and labeled 
them as ‘Person’, and created a bounding box around 
them. We augmented the COCO dataset with this set 
of labeled images, which resulted in 117,266 and 4952 
images, respectively, for training and validation.

2.	 Split-Labels Dataset: In the second version of the aug-
mented dataset, as illustrated in Fig. 6c, d, using the 
same set of 608 images of pedestrians on wheelchairs, 
we created two different bounding boxes: one around 
the person and one around the wheelchair. We labeled 
the two objects with two separate labels as ‘Person’ and 
‘Wheelchair’.

The primary reason for conducting experiments with two 
training datasets is to study the impact of augmenting the 
dataset with both a new label, ‘Person-in-wheelchair’, and 
an already existing label, ‘Person’.

Testing Datasets: We evaluated the performance of 
YOLO on two testing datasets. 

1.	 Basic Dataset: In the first version, we randomly selected 
106 images containing a pedestrian in a wheelchair from 
Open Images and Mobility Aids datasets. We ensured 
that these 106 images were not included in our training 
datasets and were previously unseen by the object detec-
tor. This dataset is to evaluate YOLO’s performance on 
unseen data after the dataset augmentation.

2.	 Integrated Dataset: In the second version, we inte-
grated the same 106 images of the Basic Dataset into 
our primary dataset to evaluate the overall performance 
of YOLO on previously seen images in addition to the 
unseen ones. In three experiments, we only used the 
COCO dataset as our testing set to evaluate YOLO only 
on previously seen data.
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In all the experiments, we only report YOLO’s perfor-
mance on detecting the label ‘Person’ as our dataset aug-
mentation process is only concerned with this label and 
does not interfere with other classes’ trained weights.

3.1.1 � Before dataset augmentation (base cases)

–	 Experiment 1a: In this experiment, we chose the 
Merged-Labels dataset. We assessed YOLO’s overall 
performance in detecting the label ‘Person’ only for the 
106 unseen images of pedestrians in a wheelchair in 
addition to the seen images of COCO (Integrated data-
set). Note that the ground-truth for pedestrians’ images 

Fig. 6   Different labels for a 
sample image

Table 5   A summary of the 
conducted experiments

Exp. Training set Testing set Ground truth/added label

Before Dataset Augmentation 
(Base Case)

1a - Integrated Merged-Labels
2a - Integrated Split-Labels
3a - Basic Merged-Labels
4a - Basic Split-Labels
5a - COCO Default

After Dataset Augmentation 1b Merged-Labels Integrated Person-in-wheelchair
2b Split-Labels Integrated Person + Wheelchair
3b Merged-Labels Basic Person-in-wheelchair
4b Split-Labels Basic Person + Wheelchair
5b Merged-Labels COCO Person
5c Split-Labels COCO Person + Wheelchair
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in a wheelchair in this experiment was the Merged-
Labels dataset and, therefore, had the bounding box, 
as shown in Fig. 6b.

–	 Experiment 2a: In this experiment, similar to the pre-
vious experiment, we assessed YOLO’s overall perfor-
mance in detecting the label ‘Person’ for images in the 
Integrated dataset. The only difference is that in this 
experiment, the ground-truth was the Split-Labels data-
set. Therefore, the images of pedestrians in a wheel-
chair had the bounding box as illustrated in Fig. 6c, d.

–	 Experiment 3a: In experiment 3a, we repeated experi-
ment 1a; however, we evaluated YOLO’s performance 
only on the 106 images of pedestrians in a wheelchair 
(Basic dataset). The ground-truth in this experiment 
similarly was the Merged-Labels dataset.

–	 Experiment 4a: In experiment 4a, similar to experi-
ment 3a, we assessed YOLO’s performance in detect-
ing the label ‘Person’ on the Basic dataset. The only 
difference is that in this experiment, the ground-truth 
was the Split-Labels dataset.

–	 Experiment 5a: In this experiment, we ran the original 
pre-trained YOLO on our selected subset of COCO.

3.1.2 � After dataset augmentation

–	 Experiment 1b: In this experiment, using the Merged-
Labels dataset contained pedestrians in wheelchair 
images, we retrained YOLO with a new label ‘Person-in-
wheelchair’ for 20 epochs with pre-trained checkpoints 
as the initial model weights. We evaluated YOLO’s per-
formance on the Integrated dataset.

–	 Experiment 2b: Here, we repeated the previous experi-
ment using the Split-Labels dataset instead of retraining 
YOLO with the new label ‘Person-in-wheelchair’, we 
retrained it with the existing label ‘Person’ and a new 
label ‘Wheelchair’. In this experiment, we tested YOLO’s 
overall performance on the Integrated dataset.

–	 Experiment 3b: In this experiment, similar to experi-
ment 1b, we once again used the Merged-Labels dataset 
and re-trained YOLO with the new label ‘Person-in-
wheelchair’. We evaluated YOLO’s performance on the 
Basic dataset of pedestrians in a wheelchair.

–	 Experiment 4b: This experiment is the repetition of the 
previous experiment, except that in this experiment, we 
re-trained the model with the Split-Labels dataset.

–	 Experiment 5b: In this experiment, we applied the same 
re-trained model in experiment 3b, but we tested the 
model only on the COCO dataset.

–	 Experiment 5c: In our last experiment, we applied the 
same re-trained model in experiment 4b, but we tested 
the model only on the COCO dataset (Table 6).

3.1.3 � Comparing results and discussion

To compare results and conclusions more expressive, we 
discuss each experiment’s results by comparing it with its 
associated baseline. The association between the experi-
ments and their relevant base cases are also color-coded in 
Table 7. For instance, experiment 2a serves as the baseline 
for experiment 2b, and both demonstrated in blue. Simi-
larly, Experiment 3a serves as the baseline for experiment 
3b (in green), while experiment 4a is the base case for 
experiment 4b (in red).

Table 6   YOLO performance 
report for detecting label 
Person before and after the 
augmentation

Exp. Recall Precision mAP%50 mAP%50-to-%95
Before 1a 0.749 0.311 0.585 0.327

(Base Cases) 2a 0.935 0.162 0.300 0.163
Dataset 3a 0.872 0.153 0.249 0.116

Augmentation 4a 0.751 0.311 0.591 0.331
5a 0.745 0.324 0.630 0.354
1b 0.747 0.327 0.627 0.351

After 2b 0.957 0.485 0.898 0.626
Dataset 3b 0.943 0.764 0.934 0.707

Augmentation 4b 0.738 0.349 0.635 0.366
5b 0.747 0.329 0.630 0.352
5c 0.732 0.344 0.629 0.357

Experiments match their baseline with the same color

Table 7   Dataset statistics: object and relations are detected by USGG

Dataset #Image #Object #Distinct object #Relation #Dis-
tinct 
relation

COCO 7077 212,310 149 141,540 27
CrowdH. 15,000 450,000 148 300,000 26
WiderP. 8000 240,000 147 160,000 19
CityP. 2975 89,250 102 59,500 17
Caltech 4285 128,550 111 85,700 22
ECP 23,892 716,790 134 477,860 22
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Overall Performance:

–	 After Adding ‘Person-in-wheelchair’ Label: To 
assess the change in YOLO’s overall performance on 
seen and unseen images after re-training the model with 
the Merged-Labels dataset, we compare the accuracy 
metrics of experiments 1a and 1b. As shown in table 7, 
we observe a slight improvement in precision and mAP 
values. The mAP %50 is increased from 0.585 to 0.627 
and mAP %50-to-%95 from 0.327 to 0.351.

–	 After Adding ‘Person’ and ‘Wheelchair’ Labels: We 
observed an increase of mAP %50 value from 0.300 
in experiment 2a to 0.898 in experiment 2b, where we 
re-trained YOLO using two separate labels of ‘Person’ 
and ‘Wheelchair’. Additionally, recall is increased from 
0.935 to 0.957.

Performance on Unseen Data:

–	 After Adding ‘Person-in-wheelchair’ Label: To 
evaluate YOLO’s performance before and after being 
retrained with the new label and over a set of images 
that the model has not seen before, we compare the 
results of experiments 3a and 3b. As reflected in 
Table 7, the recall and precision are improved from 
0.872 and 0.153 to 0.943 and 0.764, respectively. Simi-
larly, mAP values for 50% and 50%-to-95% IoU are 
increased from 0.249 and 0.116 to 0.934 and 0.707.

–	 After Adding ‘Person’ and ‘Wheelchair’ Labels: 
The comparison of experiments 4a and 4b represent 
the change in YOLO performance in detecting pedes-
trians before and after the model was retrained with 
Split-Labels dataset. We observe an improvement in 
precision from 0.311 to 0.349. The mAP %50 and mAp 
%50-to-%95 values are increased from 0.591 and 0.331 
to 0.635 and 0.366, respectively.

Performance on Previously Seen Data:

–	 After Adding ‘Person’ Label: For the evaluation of 
YOLO only on the COCO dataset after retraining the 
model with the Merged-Labels dataset, we compare 
experiments 5a and 5b. As illustrated in Table 7, recall 
and precision are slightly improved from 0.745 and 
0.324 to 0.747 and 0.329.

–	 After Adding ‘Person’ and ‘Wheelchair’ Labels: We 
observed a slight decrease in recall value from 0.745 in 
experiment 5a to 0.732 in experiments 5c and a slight 
increase of precision value from 0.324 to 0.344.

To summarize, augmenting the dataset according to 
our semantic web (for the missing feature ‘wheelchair’) 
improved the precision and mAP %50 values in all the 

conducted experiments. In a few of the experiments, this 
improvement appeared to be minor. However, considering 
the safety context of the problem at hand, even slight per-
formance improvements for pedestrian detection can save 
lives. Additionally, to the best of our knowledge, our pro-
posed approach has the novelty to provide the foundation of 
a pragmatic approach for addressing the inherent ambiguity 
of domain concepts for MLCs.

3.2 � Evaluating coverage

Since evaluating the completeness of the established terms 
and relationships—within the semantic web—in specify-
ing every variance of potential pedestrians is somewhat 
inconclusive, we instead assessed the semantic web’s rela-
tive completeness with respect to several state-of-the-art 
pedestrian, human, and generic datasets. For each dataset, 
we first translated the contained images into natural lan-
guage; then we found the intersection of image descriptions 
with entities and relations established within our semantic 
graph. Evaluating the coverage of “important” features of a 
pedestrian and their relations—that the proposed approach 
identified—in commonly-used datasets, provides an empiri-
cal estimation of whether the approach returns generally use-
ful specifications for the domain concept pedestrian.

3.2.1 � Datasets

For this purpose, in addition to COCO dataset [31], pre-
viously introduced, we referred to three of the most com-
monly-used datasets of pedestrian images and video frames, 
namely Caltech [14], CityPersons [53], and EuroCity Per-
sons (ECP) [8]. The pedestrian dataset benchmarks have 
been proposed from the context of autonomous driving. 
However, these datasets are monotonous, such that they lack 
diverse scenarios. Hence, we selected two additional large-
scale human datasets, CrowdHuman [40], and WiderPerson 
[54], which unlike pedestrian datasets, are not limited to traf-
fic scenarios, and include images of people in more generic 
contexts, such as people in parks, restaurants, and selfies.

3.2.2 � Converting image datasets to natural language

Since the entities and relations in the generated semantic 
web are in natural language, to evaluate the graph cover-
age, we initially translated the image datasets to natural lan-
guage as well. As such, we were able to determine whether 
the semantic web’s partial specifications appeared in the 
image descriptions, and to identify the specifications that 
are underrepresented in benchmark datasets.

For this purpose, we carefully reviewed and experi-
mented with the existing approaches in Computer Vision 
(CV) domain. As a result, we selected the state-of-the-art 
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Unbiased Scene Graph Generation (USGG) framework 
which generates a scene graph from an image so that to 
describe the scenes in the image [44]. The model first, 
detects the objects present in an image, and second, extracts 
the existing relationships between the detected objects in 
the form of Object1-Relation-Object2 triplets. The model is 
previously trained on Genome Dataset across 75,000 object 
categories and 37,000 relations categories [29].

To the best of our knowledge USGG framework gener-
ated less biased and more accurate predictions over other 
existing approaches that we investigated, such as Iterative 
Message Passing [51], MOTIFs [43, 52], and VCTree [29]. 
USGG also provided more fine-grained relationships in 
comparison to alternative models, such as replacing near 
with behind/in front of, and on with standing on/walking on/
parking on/driving on.

Applying USGG to each of the six datasets, we extracted, 
in total, about 2 and 1.5 millions objects and relations, 
respectively. Table 7 represents these numbers in more detail 
for each dataset. As shown, the largest number of objects and 
relations belong to ECP dataset, while COCO contains the 
largest number of distinct objects and relations.

3.2.3 � Mapping the semantic web to image descriptions

To estimate the coverage of the established semantic web 
with respect to each dataset, we initially searched for the 
exact word-to-word matches between the object terms, 
extracted by USGG, and entities in the constructed seman-
tic web. Similarly, we looked for the exact matches between 
the established relations for each pair of entities in the web 
and USGG-extracted relation terms. Word-to-word mapping 
resulted in an average of about 10 out of 78 and 3 out of 339 
matches for entities and relations, respectively.

Further, to additionally identify the terms that were not 
necessarily word-to-word match, yet referred to the same 
feature, we also considered semantic similarity between the 
terms. For this purpose for each dataset, the cosine similar-
ity score, according to Google News Word2vec model, was 
computed for each entity in our graph with each object that 
USGG detected in the dataset; similarly between each graph 
relation and each USGG-detected relation. Later, for each 
entity and each relation in the web only the top five USGG-
detected terms with the highest similarity scores were 
selected. Among the remaining terms, there were still terms 
with relatively low similarity scores. Such dissimilar terms 
with similarity score less than � − � were further removed, 
where � is the mean of all similarity scores in the dataset; 
and � is the standard deviation of the distribution. As such, 
the remaining term(s)—the number of the terms is between 
0 and 5—, represent the most probable matches among the 
USGG-detected objects for each entity that the proposed 
approach established in the semantic web. We repeated the 

same process to semantically map the relations, we inferred 
and represented on the edges of the semantic web, to rela-
tions that USGG detected between the objects in the images.

Finally to evaluate the coverage of the established web 
in each dataset, we asked an independent PhD researcher—
with no information about or connection to the project—to 
label the remaining matched pairs as “meaningful”, “non-
meaningful”, or “I don’t know”. We asked the researcher to 
select “meaningful” if only according to her intuition both 
terms represent the same feature, “non-meaningful” if they 
do not, and “I don’t know” if she is not certain about their 
relevance. We did not limit the time of the study and allowed 
the researcher to complete the task using as much time as 
necessary. Finally, we computed precision, recall, and F1 
measure according to the final labels, considering (entity, 
object) pairs labeled “meaningful” as true positives; (entity, 
object) pairs labeled “non-meaningful” as false positives; 
and (object, entity) pairs labeled “non-meaningful” as false 
negatives, which were “important” pedestrian features erro-
neously missing from the web. There was no pair labeled as 
“I don’t know” in the study showing that the evaluator was 
certain about the labels she selected. Table 8 represents the 
results of the evaluation of the semantic web entities with 
respect to USGG-detected objects in each dataset. As shown, 
the semantic web has the highest precision with reference 
to the WiderPerson dataset, and the highest recall and F1 
scores in comparison to CityPerson dataset. We discuss the 
results more in detail in the following subsection.

We only evaluated the coverage of the semantic graph’s 
entities, representing the “important” features of the concept 
pedestrian, and not the relations. The reason for excluding 
the evaluation of relations is that considering their large 
number in the semantic web—there are multiple inferred 
and established relations between each pair of entities—, 
the cross product between the graph relations and the USGG 
relations was too large to be manually evaluated in a reason-
able time. For instance, to evaluate the coverage of the graph 
entities, a total of 78 unique terms of subject and object are 
contained in the semantic web. USGG detected 149 unique 
terms of Object1 and Object2 in the images of COCO data-
set. The cross product between them results in 11,622 pairs, 

Table 8   Coverage of the semantic web entities w.r.t. each dataset and 
USGG

Dataset Precision Recall F1

COCO 0.697 0.524 0.598
CrowdHuman 0.697 0.530 0.602
WiderPerson 0.710 0.540 0.613
CityPerson 0.697 0.630 0.662
Caltech 0.693 0.565 0.622
EuroCity Person 0.684 0.553 0.611
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which after the removal of less confident pairs this number 
is reduced to 390 to be manually evaluated. However, this 
number was 1,580 for evaluating the coverage of the graph 
relations in the same dataset.

3.2.4 � Discussion

According to the evaluation, an entity, for which none of 
the—most semantically similar—USGG-detected and 
matched terms is evaluated as “meaningfull” by our human 
evaluator, potentially represents a non-relevant feature to 
the concept pedestrian i.e., false positives of the approach. 
However, such non-matched entities do not necessarily rep-
resent a meaningless or an impractical feature, specified by 
our approach, as there are several other factors involved in 
the scenario: (1) The entity, in the best case scenario, may 
propose an underrepresented feature in the dataset. (2) There 
is also a chance that the USGG detector was not trained, and 
therefore, was unable to detect the particular object in the 
images. (3) The semantic similarity algorithm failed to cre-
ate a semantic mapping between the terms. (4) The corpora 
which was referred to for establishing the semantic mapping 
may not contain the appropriate similar terms within its con-
text. (5) The relevant terms that could establish a meaning-
ful mapping were mistakenly eliminated during the process 
of filtering the less confident terms. While it is difficult to 
draw a concrete conclusion, the results in table 8 provide an 
estimation of the semantic web’s relative completeness with 
respect to USGG and the selected datasets.

Further a review of the evaluated mapped pairs, flagged 
with both “meaningful” and “non-meaningful”, we noticed 
several interesting patterns. For instance, among those 
labeled as “meaningful” there were several pairs with simi-
lar terms referring to the same feature, such as the entities 
sidewalk, walkway, and footpath in the semantic web that 
were associated with the object sidewalk detected by USGG. 
In the same order were the entities gate and entrance with 
the detected object door; subway with train; light with lamp; 
mall with building, path with track; stop sign with sign; 
and road with street. However, we also noticed several pairs 
with similar terms that were not precisely referring to the 
same feature, yet were relevant to the same subject, such as 
the entity tunnel and rail in our web with the object train 
detected by USGG. In the same order ride and horse with 
bike; and cyclist with bike.

Another interesting pattern we identified among “non-
meaningful” pairs that potentially revealed the possible mis-
classification candidates. For instance, the entities walker 
and wheelchair in the web were semantically mapped with 
the object bike in datasets. While both pairs were evaluated 
as “non-meaningful” by the researcher, aside from possi-
bly proposing two underrepresented features (wheelchair 
and walker in the dataset), they could also suggest that the 

classifier, if not re-trained, may potentially detect wheelchair 
and walker as bike mistakenly.

Several pairs proposed a corresponding detectable object 
with perceptual concepts in the semantic web, assisting to 
explain, add, and precept a concept in an image through 
the associated object which is detectable by the classifier. 
For instance, the entities safety and injuries were mapped 
to detectable object helmet; the entity drunk was matched 
with the detected object bottle; and the entities accident and 
fatality in the semantic web were mapped to the detected 
object motorcycle.

4 � Threats to validity

Our study has several potential threats. Concerning gen-
eralizability, we experimented with only one domain, the 
automotive domain, and one hard-to-specify domain con-
cept, ‘pedestrian’. We selected this domain because of the 
increasing application of ML in software systems being 
used in this domain. Additionally, recent extensive testing 
of Autonomous Vehicle (AV) on public roads has raised 
serious concerns [9, 10, 26–28], especially with the recent 
reported failures of autonomous driving systems [34, 46]. 
Moreover, in the automotive domain, there are significant 
safety risks that are introduced due to the lack of an explicit 
set of requirements specifications and the ambiguity of 
potential specifications. We selected this concept because 
the term pedestrian is present in many potential requirements 
specifications relevant to this domain, thus is the root of 
ambiguity in specifications. To the best of our knowledge, 
there is no other systematic method to ground hard-to-spec-
ify socially-constructed domain specifications for MLCs. 
Thus, our initiative work and our future extensions can be 
the start of a significant contribution to this problem in the 
domain. Additionally, the process we defined is general and 
fully automatable (with the exception of topic selection) and 
can be applied to specify other domain-specific concepts in 
other domains.

The creation of the semantic web is based on the infor-
mation that we extracted from the web and social media, 
namely Twitter, Wikipedia, and Google News. These plat-
forms contain accurate, true, and relevant but also inac-
curate, false, and out-dated information. Considering the 
socially-constructed nature of our concepts and the lack 
of documentation for these concepts, we found social data 
to be helpful for specifying socially-constructed concepts. 
To mitigate bias, we only extracted up-to-date informa-
tion, and we used more real-time idea-sharing platforms. 
However, further work is needed to evaluate the validity 
of the extracted information and to claim absolute com-
pleteness of the constructed semantic web. Further, using 
Natural Language Processing (NLP) techniques introduces 
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linguistic limitations, such as polysemy, to the approach that 
is required to be addressed in future work.

Finally, in terms of evaluation, we have only used one 
dataset and object detector to illustrate the application of 
our approach. Although the selected dataset and detector 
are among the state-of-the-art pedestrian datasets and object 
detectors, we plan to extend the application of our meth-
odology. However, we believe that this work is an encour-
aging initiation to ground partial domain specifications for 
MLCs instead of fully relying on their abilities to learn the 
concepts.

5 � Related work

The stochastic nature of ML methods and the lack of rec-
ognition of the developmental standard creates many chal-
lenges in specifying requirements for MLCs. In a previous 
study, the authors specified performance, robustness, reus-
ability, and interpretability as a list of desired properties 
for MLCs [2]. There is a large body of work in testing and 
verification of the robustness of MLCs, as a desired prop-
erty, by the software engineering community [19, 50]. Some 
existing work has explored the generation and identification 
of adversarial examples [18, 35]. Similarly, in our previ-
ous work, we studied multiple image transformations to 
assess the robustness of MLCs base on the Human Visual 
System (HVS) [7]. There are other attempts by different 
communities to specify requirements for MLCs in different 
types of software systems by creating (a) component-level 
specifications: to define the behavior of MLCs as a whole 
with respect to how they address the target applications 
[38]. However, in such approaches, it is unclear what is the 
implication of the high-level specification to the downstream 
MLCs development tasks, such as data collection and model 
selection (b) dataset specifications: since dataset manage-
ment is critical to the overall quality of systems with MLCs 
[24, 25]. However, studies in this area are very limited to 
specific domains (c) model specifications: which based on 
the particular ML algorithms, they normally define how the 
theoretical properties should hold during implementation 
[39], and (d) development process specifications: of MLCs 
to enable a consistent training result a set of predefined steps 
and configurations need to be carefully followed [36]. One 
common challenge remains as the lack of specifications for 
the domain-specific concepts. Within the safety domain, for 
verification purposes, it is pivotal to construct the traceable 
path to demonstrate the compliance of source code with the 
design specification and coding guidelines [36]. The trace-
able path can support building the safety case to demonstrate 
that the identified hazards are sufficiently mitigated. [16] 
also called for building the infrastructure to support trace-
ability in automotive software when integrating a V model 

for data development with the standard V model for software 
development, what they called a W model. A recent work [3] 
has demonstrated the potential of traceability by maintain-
ing and implementing the high-level software requirements 
through building confidence in training data. The confidence 
includes nine items such as that the data are sufficient, does 
not contain bias, and is self-consistent. However, the specific 
step to achieve this confidence in the training data is still 
open to question. For example, for the automated pedestrian 
collision avoidance system, what are the specific criteria of 
sufficiency for managing the dataset to recognize the concept 
of “pedestrian”? As we described earlier, the difficulty starts 
with our very limited understanding of how this concept 
should be defined even in the high-level specification, and 
how it is presented in the training data. Our work sets off to 
tackle the ambiguity in domain concept semantics and cre-
ate a framework for specifying and validating requirements 
for MLCs. Our proposed approach supports identifying the 
gaps among the high-level specification and data instances.

6 � Conclusion

In this paper, we emphasized to formally benchmark hard-
to-specify domain concepts and verify their capture in a 
collected dataset for software components built based on 
machine learning algorithms. We proposed a semi-auto-
mated approach to formally specify the domain concepts 
in the form of a semantic web. We selected the concept 
pedestrian from the automotive domain and used a series 
of machine learning algorithms to automatically create a 
semantic web for the concept. Since the selected concept 
is socially-constructed, we used social platforms, such as 
Twitter, Wikipedia, Google News, and Google books, to 
construct the semantic web. Further, as a proof-of-concept, 
we augmented a pedestrian dataset according to a feature 
in our semantic web, wheelchair, which was captured to be 
closely related to the concept pedestrian. Our experiments 
showed that the accuracy of a state-of-the-art object detec-
tor, Yolo, in detecting pedestrians has been improved after 
this augmentation.

The problem of specifying requirements for MLCs rep-
resents a pressing and challenging area of research need. 
The results presented here depict the benefit of grounding 
hard-to-specify domain concepts as part of the requirements 
specification process. While encouraging, our results are 
preliminary, and we aim to improve on them in future work. 
We plan to work on the generalizability of our approach for 
other concepts, such as traffic and other domains. Addition-
ally, we will evaluate the effectiveness of the automatically 
generated semantic webs with domain experts and with more 
datasets and algorithms.
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