
The Effect of Solar Wind Turbulence on Parallel and Oblique Firehose Instabilities

S. A. Markovskii and Bernard J. Vasquez
Space Science Center, University of New Hampshire, Durham, NH 03824, USA; sergei.markovskii@unh.edu, bernie.vasquez@unh.edu

Received 2021 September 29; revised 2021 November 5; accepted 2021 November 5; published 2022 January 18

Abstract

We consider the firehose instability coexisting with the omnipresent ambient solar wind turbulence. The
characteristic temporal and spatial scales of the turbulence are comparable to those of the instability. Therefore,
turbulence may violate the common assumption of a uniform and stationary background used to describe
instabilities and make the properties of the instabilities different. To investigate this effect, we perform three-
dimensional hybrid simulations with particle-in-cell ions and a quasi-neutralizing electron fluid. We find that the
turbulence significantly reduces the growth rates and saturation levels of both instabilities. Comparing the cases
with and without turbulence, the former results in a higher temperature anisotropy in the asymptotic marginally
stable state at large times. In the former case, the distribution function averaged over the simulation box is also
closer to the initial one.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Space plasmas (1544)

1. Introduction

The firehose instability is thought to constrain the thermal
ion temperature anisotropy in the solar wind when the
temperature in the direction parallel to the mean magnetic
field becomes larger than the one in the perpendicular direction.
At 1 au, this has been shown by Kasper et al. (2002) using the
Wind spacecraft data. Hellinger et al. (2006) further argued that
the oblique firehose instability acts more efficiently in the slow
solar wind, while the parallel one is more important in the fast
wind. Closer to the Sun, Huang et al. (2020) have found with
the help of the Parker Solar Probe data that the proton
temperature anisotropy is consistent with the limits imposed by
the firehose instability. Despite their common name, the
parallel and oblique firehose instabilities have distinctly
different properties (Hellinger & Trávníček 2006). In part-
icular, the former is resonant and the latter is nonresonant, and
the oblique modes may be growing even when the parallel ones
are marginally stable. When both instabilities are present, the
protons are isotropized mainly by the oblique mode.

In the solar wind, any instability has to operate in the
ambient turbulent environment and the relationship between
them is not clear. The turbulence is nearly omnipresent as it
transports the energy of very-large-scale fluctuations generated
by the Sun to much smaller kinetic scales (Coleman 1968;
Jokipii 1973; Matthaeus & Goldstein 1982; Tu et al. 1984;
Matthaeus et al. 1994; Goldstein et al. 1995; Tu &
Marsch 1995; Zank et al. 1996). The description of instabilities
is usually based on the assumption of a uniform and stationary
background. However, this assumption is violated by the
ambient turbulence. The nonuniform medium is an essential
factor that needs to be taken into account (Hellinger et al. 2017;
Ozak et al. 2015; Ofman et al. 2017; Markovskii et al. 2019a).
In particular, an inhomogeneity across the background
magnetic field makes the unstable waves more oblique. This
can change the character of the wave–particle interaction and
the resulting particle heating (Markovskii et al. 2019a).

The turbulent cascade also makes the medium in which the
instabilities grow time dependent (Markovskii et al. 2006). The
characteristic time, τ, can be estimated in the solar wind as the
nonlinear eddy turnover time of a strong turbulence. Based on
the rms amplitude of the magnetic field fluctuations at the
proton kinetic scales, τ is usually around 30 p

1W- at 1 au, where
Ωp is the proton gyrofrequency. If τ is comparable to or shorter
than the inverse growth rate of an instability, γ−1, then the
variation of the background over the time of the instability
growth has to be taken into account (Mikhailenko &
Stepanov 1984; Maslennikov et al. 1995; Markovskii &
Hollweg 2002).
The temperature anisotropy instability coexisting with the

turbulence has been analyzed by Markovskii et al.
(2019b, 2020) with the opposite sense of the anisotropy,
where the perpendicular temperature is larger than the parallel
one. To some extent, this setup is similar to the case considered
here because it also produces two separate competing
instabilities, a parallel proton-cyclotron and an oblique mirror
mode. However, differences arise even before the turbulence is
taken into account. In particular, when the particle distribution
functions are bi-Maxwellian, the presence of alpha particles
and other minor ions reduces the linear growth rate of the
proton-cyclotron but not the mirror mode (Price et al. 1986;
McKean et al. 1994). At the same time, both parallel and
oblique firehose instabilities are affected by the minor ions
(Hellinger & Trávníček 2006). Furthermore, the proton-
cyclotron mode is more efficient at isotropizing the protons
than the mirror mode, whereas the protons are mostly
isotropized by the oblique, but not the parallel, firehose
fluctuations.
Adding a turbulent ambient medium results in a considerable

modification of the proton-cyclotron and mirror instabilities.
The initial growth rates of the mirror mode are close, but the
saturation level is significantly reduced when the turbulence is
present. The saturation level of the proton-cyclotron mode is
not affected as strongly. However, the turbulence extends the
spectrum of these unstable waves to higher perpendicular
wavenumbers making them more oblique, in a way similar to
what would occur in the presence of a static nonuniform
background. In the present paper, we investigate the effect of
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an approximately two-dimensional (2D) turbulence, with
wavevectors highly oblique to the mean magnetic field, on
the parallel and oblique firehose instabilities.

2. Numerical Setup

We perform three-dimensional (3D) hybrid simulations with
particle-in-cell protons and a quasi-neutralizing electron fluid.
The numerical code is described by Terasawa et al. (1986) and
Vasquez (1995, 2015). The code solves the following
equations:
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where ne= np+ 2nα. The quantities xp,α and vp,α are positions

and velocities of individual protons and alpha particles, qp,α is

the ion charge, E is the electric field, c is the speed of light, e is

the elementary charge, ne is the electron number density, and

Ve is the electron fluid velocity. The proton and alpha number

density np,α and bulk velocity Vp,α for each spatial cell are

calculated as moments of the distribution. The mean magnetic

field B0 is in the positive x direction.
Equations (1)–(5) neglect the global evolution of the solar

wind because all the characteristic spatial and temporal scales
in our study are much smaller than the global-expansion scales.
Furthermore, the instabilities that we are interested in are often
seen on the fringes of the observed parameter distribution.
Therefore, they are not necessarily caused by the quasi-static
evolution associated with the expanding wind, but rather by
some transient disturbances. To simplify the numerical model,
the electron temperature is set to zero. Equations (1)–(5) also
imply that the electron fluid is massless. The simulation grid is
256 cells in the x direction and 128 cells in the y and z
directions. The simulation box size is L∥= 256 in the x
direction and L⊥= 64 in the y and z directions in units of the
proton inertial length V .A p

1W- The time step is 0.01 in units of

the inverse proton gyrofrequency .p
1W- Here, Ωp and the Alfvén

speed, VA, and thereby the spatial and temporal scales, are
defined with the initial mean values of the magnetic field, B0,
and the proton number density, n0p. The boundary conditions
are periodic.

We initiate a turbulent cascade as follows. The magnetic
field fluctuations ΔB(t, x) at t= 0 are given by the formula
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where x is the Cartesian spatial position vector, k is the

wavevector, and f(k) is a random phase. The seed spectrum is

confined to the modes (kx= 0, ky=±2π/L⊥, kz=±2π/L⊥)

with all modes having the same amplitude. The proton and

alpha bulk velocity fluctuations ΔVp,α are defined in the same

way as ΔB in Equation (6). The components of the vectors δB

(0, k) and δVp,α(0, k) obey the polarization relations of linear

Alfvén waves in the MHD limit. This is merely a convenient

way to control the initial cross-helicity and does not mean that

such waves exist in our configuration. In the present case, the

cross-helicity is zero. The relative total rms amplitude of the

magnetic field fluctuations is set to
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The ion distribution functions are loaded as a spatially
uniform drifting bi-Maxwellian:
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where V k T m2T B= is the ion thermal speed, kB is the

Boltzmann constant, T= (T∥+ 2T⊥)/3 is the total ion temp-

erature, and the subscripts “∥” and “⊥” refer to the direction of

the background magnetic field. The initial total proton beta

βp= 1.5. The proton temperature anisotropy

T⊥p/T∥p= 0.38. The temperature of the alpha particles

Tα= 2Tp is isotropic and their number density

n0α= 0.05n0p. The initial ion number densities and tempera-

tures are uniform. The relative drift speed between the ion

species averaged over the simulation box is zero. The number

of proton and alpha particles per cell is 1500 and 500,

respectively. The system is then allowed to evolve freely.

3. Simulation Results

The ambient turbulent medium used in this paper has been
described by Markovskii et al. (2019b, 2020). Strictly speak-
ing, a decaying turbulence is not in a steady state. However, it
goes into a quasi-steady phase after a rapid initial relaxation.
The turbulence is then consistent with the observed properties
of the solar wind fluctuations at 1 au, in particular the rms
amplitude at the ion kinetic scale. It obeys the Kolmogorov law
and is weakly compressive at larger scales. At smaller scales,
the spectrum steepens and the fluctuations become more
compressive.
The average temperature anisotropy 〈T⊥p〉/〈T∥p〉 resulting

from the coexisting turbulence and instability is displayed by a
black line in Figure 1. Here the angle brackets denote averaging
over the simulation box. The relaxation phase manifests itself
as oscillations at early times ( t 60pW  ). The turbulence

develops and enters the quasi-steady phase around t 180 .p
1= W-

To separate the contributions from the turbulence and
instability, we ran a 2D simulation of the turbulence without
the instability. The initial parameters were the same as in the
3D setup, and the simulation plane was perpendicular to the
background magnetic field. Since the parallel wavenumbers
were cut off, the instability was suppressed. The temperature
anisotropy in this case is plotted in Figure 1 as a blue line. At
first, it follows closely the black curve describing the 3D
configuration but then the latter deviates far away.
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As the system evolves, the distribution function averaged
over the simulation box becomes non-bi-Maxwellian. How-
ever, more importantly, the turbulence makes the distribution
function inhomogeneous and time dependent. This means that
the turbulence can affect the instability not just by interacting
with the unstable waves: it also changes the environment where
the instability develops before it is even excited. As a result, a
direct comparison of the instabilities with and without
turbulence becomes impossible even if the averaged distribu-
tions are the same. This is true regardless of the structure of the
distribution in the phase space. Therefore, the instability in a
uniform and stationary background can be used only for
reference.

To have a point of reference, we ran a simulation of the
instability without turbulence. This is achieved by putting
A= 0 in Equation (7). The initial proton distribution function
was bi-Maxwellian with T⊥p/T∥p= 0.4 and βp= 1.5. For a

better match, the temperature anisotropy was set to the time
average of the rapid oscillations in the turbulent case. The same
total beta as in the turbulent case was chosen because βp does
not undergo rapid oscillations and remains almost constant
throughout the relaxation phase. It is also instructive to
evaluate the contribution of the alpha particles to the instability
and compare it to the effect of the turbulence. Therefore, we
performed a separate simulation run with n0α= 0.
The time evolution of the average temperature anisotropy is

shown by a green line in Figure 1 for A= 0 and n0α= 0.05n0p
and by a magenta line for A= 0 and n0α= 0. As can be seen
from the figure, the alpha-particle concentration does not have
a strong effect on the temperature anisotropy. At the same time,
the turbulence produces a significant difference. It is also clear
that the initial bump during the relaxation phase is due to the
turbulence because there is very little contribution from the
instability at those times.
The intensity of the magnetic field fluctuations associated

with the instability is displayed in Figure 2 as a function of
time. As will be demonstrated below, the firehose modes are

Figure 1. Temperature anisotropy averaged over the simulation box as a
function of time in the case of (a) coexisting turbulence and instability (black
line), (b) instability without turbulence in a proton-alpha plasma (green line),
(c) the instabilities without turbulence in a proton-electron plasma (magenta
line), and (d) turbulence without instability (blue line).

Figure 2. Time dependence of the total intensity, I, of the magnetic

fluctuations, normalized to B ,0
2 associated with (a) the instabilities coexisting

with the turbulence (black line), (b) the instabilities without turbulence in a
proton-alpha plasma (green line), and (c) the instabilities without turbulence in
a proton-electron plasma (magenta line). The earlier and later peaks correspond
to the parallel and oblique firehose modes, respectively.

Figure 3. Two-dimensional spectrum P of the magnetic field fluctuations,

normalized to B ,0
2 in the case of coexisting turbulence and instability at the

peak intensity of the parallel firehose instability (t 200 p
1= W- ). The spectrum

has been averaged over the azimuthal angle.

Figure 4. Same as Figure 6 at the peak of the oblique firehose

instability (t 500 p
1= W- ).
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well separated from the turbulence in the wavenumber space.
To eliminate the turbulence and single out the instability, we
sum the intensity of the modes over a certain fraction of the
wavenumbers defined below. We notice that the alpha-particle
concentration does affect the wave intensity somewhat, unlike
the anisotropy. It suppresses the oblique modes and boosts the
parallel ones. Nevertheless, the particle isotropization still
occurs during the oblique-mode phase, while the parallel mode
plays a minor role. Compared to the alpha-particle concentra-
tion, the effect of the turbulence is more significant. It reduces
both growth rate and the saturation level of the two instabilities.
Note that the instability in the turbulent case does not diminish
in time. Rather, it becomes weaker from the very beginning.
The reason, as pointed out above, is the distribution function
becomes spatially nonuniform.

A 2D spectrum, P, of the magnetic field fluctuations for the
instability coexisting with turbulence is plotted at the peak
intensity of the parallel and oblique firehose modes in Figures 3
and 4, respectively. The spectrum has been summed over the
azimuthal angle and normalized to B .0

2 The separation of the

instability from the turbulence in the wavenumber space is
visible in the figures, although some overlap is present for the
oblique modes. To calculate the curves in Figure 2, we summed
the modes in two regions with 0.15< |k∥|VA/Ωp< 0.27 and
|k⊥|VA/Ωp< 0.39, and 0.27< |k∥|VA/Ωp< 0.98 and
|k⊥|VA/Ωp< 1.08.
The spatial inhomogeneity associated with the turbulent

fluctuations extends the spectrum of the unstable waves to
higher perpendicular wavenumbers making them more oblique
(Markovskii et al. 2019b). However, for the oblique modes,
this effect is not as strong as for the parallel modes. To evaluate
the spectral anisotropy from the simulation results, we use a

Figure 5. Two-dimensional spectrum P of the magnetic field fluctuations,

normalized to B ,0
2 in the case of the instability without turbulence at the peak

intensity of the parallel firehose instability (t 180 p
1= W- ). The spectrum has

been averaged over the azimuthal angle.

Figure 6. Same as Figure 8 at the peak of the oblique firehose

instability (t 390 p
1= W- ).

Figure 7. Contour plots of T⊥p/T∥p in the planes x = 0, y = 0, and z = 64 at

the the peak of the parallel firehose instability (t 200 p
1= W- ) in the case of

coexisting turbulence and instability. The distance is in units of V .A p
1W-

Figure 8. Proton distribution function summed over vz in arbitrary units in the
case of coexisting turbulence and instability at the end of the simulation run

(t 800 p
1= W- ). The velocity is in units of the Alfvén speed, VA. The distribution

is symmetric with respect to the axis vy = 0.
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weighting function introduced by Shebalin et al. (1983):
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enclosing the spectral signatures in Figures 3–6. At the peak

intensity of the parallel instability, the quantity S= 0.17 in the

run with turbulence at t 200 p
1= W- is more than twice as large

as in the run without turbulence where S= 0.07 at t 180 .p
1= W-

At the peak of the oblique mode, the difference is much

smaller, S= 0.62 at t 500 p
1= W- and S= 0.52 at t 390 p

1= W- , in

the runs with and without turbulence, respectively.
The spatial 3D structure of T⊥p/T∥p is displayed in Figure 7

as contour plots in the planes x= 0, y= 0, and z= 64 at the
peak of the parallel firehose instability (t 200 p

1= W- ). Here the

distance is in units of V .A p
1W- The turbulence depends

predominantly on the y and z coordinates and produces
considerable deviations of the anisotropy from the average
value (seen in the x= 0 plane). At t= 200, only parallel-

propagating unstable modes are present and their intensity is
substantially lower than that of the turbulence (as follows from
Figure 3). Furthermore, even though the rapid oscillations of
the average anisotropy stop in the quasi-steady phase, local
time variations continue. These variations are associated with
the turbulent eddies. The turnover time, τ, of the largest eddy in
the system can be estimated as ( )L A2 93 .p

1 1p = W^
- - Assuming

that the Kolmogorov scaling of the eddy amplitude continues to
the kinetic scales, τ at the proton inertial length becomes
20 .p

1W- As follows from the discussion in Section 1, this is
smaller than the typical value observed by Markovskii et al.
(2006) in the solar wind but not by much.
At later times, the local variations of the anisotropy

associated with the decaying turbulence subside and it is
useful to examine the asymptotic particle distribution at the end
of the simulation run (t 800 p

1= W- ). The proton distribution
summed over vz is displayed in arbitrary units in Figure 8 as a
function of vx and vy in the turbulent case. The velocity is in
units of the Alfvén speed, VA. The distortion of the initial bi-
Maxwellian distribution shows up as a flat top at |vx|≈ 0 and
“horns” at |vx|≈ 1.25. Without the turbulence, the distortion is
qualitatively the same but noticeably stronger (Figure 9),
consistent with the stronger isotropization (Figure 1). To
provide a measure of how much the distribution changes over
time, we plot an initial uniform bi-Maxwellian distribution in
Figure 10.
The asymptotic distribution and anisotropy are closer to their

unstable counterparts in the turbulent case than without
turbulence, and yet the instability is saturated. One possible
reason is that the ambient medium is still not uniform and
stationary at the end of the simulation run, so conventional
instability criteria do not apply. The spatial 3D structure of the
anisotropy at this time is displayed in Figure 11. We see that
the inhomogeneity is not as strong as it was earlier (in
Figure 7), but is present nonetheless. Without the turbulence,
the corresponding structure is much more uniform and appears
as a monochrome green color (not shown). Another explana-
tion of the different saturation efficiency is the mechanism by
which it happens. As shown by Hellinger & Matsumoto

Figure 9. Same as Figure 8 in the case of the instability without turbulence.

Figure 10. Same as Figure 9 at t = 0.

Figure 11. Same as Figure 7 at the end of the simulation run (t 800 p
1= W- ).
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(2001), the oblique firehose instability saturates by nonlinear
interactions and transformation of the unstable waves. The
turbulent fluctuations are likely to contribute to these interac-
tions and, thereby, alter the saturation level.

4. Conclusion

We have carried out 3D hybrid simulations of the parallel
and oblique firehose instabilities in a turbulent ambient plasma
with alpha particles. The instability was excited by the protons
with temperature perpendicular to the mean magnetic field
smaller than the parallel temperature. It has a complex
structure, with waves interacting and being reabsorbed by the
particles. The turbulence was initiated with wavevectors
perpendicular to the mean magnetic field and remained
approximately 2D during the simulations. Initially, the
turbulence spectrum spreads rapidly from lower to higher
wavenumbers. Later, it enters a quasi-steady phase where the
variation is much slower but the turbulence is still decaying.

We used the parameters of the turbulence close to those
observed in the solar wind. The properties of the instability
were compared to the case of a uniform and stationary
background. In this case, we also evaluated the contribution of
the typical alpha-particle concentration to the instability. We
found that the proton isotropization is caused mostly by the
oblique firehose modes regardless of the turbulence. However,
the turbulence significantly reduces the growth rates and
saturation levels of the parallel and oblique firehose instabilities
and its effect is stronger than that of the alpha particles.

The asymptotic proton distribution at large times gets
distorted from its initial bi-Maxwellian structure. The distortion
is weaker when the turbulence is present than when it is not,
consistent with the smaller change of the anisotropy. Therefore,
the instability is saturated more efficiently. In part, this may be
due to the fact that the distribution is still spatially
inhomogeneous and time dependent even at the end of our
simulation run, despite the decaying turbulence. Also, the
saturation of the oblique firehose instability occurs through
nonlinear interactions of the unstable modes with each other.
The turbulent fluctuations are likely to modify this process by
interacting with the oblique unstable modes, especially because
the two are close in the wavenumber space.
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