DIY Assistant: A Multi-Modal
End-User Programmable Virtual Assistant

Michael H. Fischer*
Giovanni Campagna®
Euirim Choi

Monica S. Lam
Computer Science Department
Stanford University
Stanford, California, United States

Visit a acouplecooks.com. “Start recording price.” “Return this.” “Run price on this.” Result returned to user.
. ® REC @ REC
Grandma's Chocolafe Coobies Giovansi'e Kitchen Table -l
{ Program Executed
Walmart Walmart Gaghets Carbanarain 30 mints
- Eggs
| = Cane Sugar Ingredients: Pancetta
Sugar Q 4 Egegs Fettuccine
= $5.72 Vicup Pancetta Parmigiano
)y 11b Fettuccine Reggiano
Ingredients: Yacup Parmigiano Black Pepper
BUY
e s I:l 1 10 DT salt
N B/ 2thsp Salt
|

@ (b)

(d)

()

Figure 1. Creating a virtual assistant skill that returns the cost of ingredients in a list using prva (DIY Assistant). (a) A user
sees a cookie recipe on a popular food blog and wants to see how much the ingredients are. (b) They enter p1va’s recording
mode using their voice and search for one of the ingredients on Walmart’s website. (c) They click on the first search result and
highlight the price, telling DIvA via voice that it should be returned. (d) A few days later, they are interested in the “Spaghetti
Carbonara" recipe on another food blog. They highlight the ingredients and ask DIYA to run the previously defined program

with them. (e) DIYA returns the prices of the items.

Abstract

While Alexa can perform over 100,000 skills, its capability
covers only a fraction of what is possible on the web. Indi-
viduals need and want to automate a long tail of web-based
tasks which often involve visiting different websites and re-
quire programming concepts such as function composition,
conditional, and iterative evaluation. This paper presents
pIvA (Do-It-Yourself Assistant), a new system that empow-
ers users to create personalized web-based virtual assistant
skills that require the full generality of composable control
constructs, without having to learn a formal programming
language.

With p1va, the user demonstrates their task of interest in
the browser and issues a few simple voice commands, such as

“Equal contribution

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI °21, June 20-25, 2021, Virtual Event, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454046

naming the skills and adding conditions on the action. prva
turns these multi-modal specifications into voice-invocable
skills written in the ThingTalk 2.0 programming language
we designed for this purpose. DIYA is a prototype that works
in the Chrome browser. Our user studies show that 81% of
the proposed routines can be expressed using DIYA. DIYA is
easy to learn, and 80% of users surveyed find p1va useful.

CCS Concepts: « Software and its engineering — Pro-
gramming by example; Domain specific languages; o
Human-centered computing — Natural language inter-
faces; Personal digital assistants.

Keywords: end-user programming, programming by demon-
stration, web automation, voice user interfaces, virtual assis-
tants

ACM Reference Format:

Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S.
Lam. 2021. DIY Assistant: A Multi-Modal End-User Programmable
Virtual Assistant. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implemen-
tation (PLDI "21), June 20-25, 2021, Virtual Event, Canada. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3453483.3454046

https://doi.org/10.1145/3453483.3454046
https://doi.org/10.1145/3453483.3454046

PLDI 21, June 20-25, 2021, Virtual Event, Canada

1 Introduction

Many enterprises today are improving the cost efficiency of
their businesses with Robotic Process Automation (RPA), the
use of Al bots to automate routine digital tasks. Today, pro-
cess automation is performed mainly by developers in RPA
service companies. This paper explores enabling end users
to automate their own workflows, making automation af-
fordable for individuals and small companies. As established
by the trend of consumerization of IT, technology shown
to be useful for consumers may also be adopted in business
workflows.

This paper proposes DIYA (Do-It-Yourself Assistant), a
multi-modal system that lets end users apply conventional
programming concepts to the task of web automation, with-
out having to learn a formal language.

1.1 End-User Programmable Virtual Assistants

We look to the virtual assistant as a new software architec-
ture for end-user process automation. Today, commercial
assistants like Alexa offer 100,000 skills, which are APIs
that users can invoke using voice. Recent projects let users
create new skills by program-by-demonstration on mobile
apps, such as ordering coffee or finding the closest restau-
rant [18, 19, 22, 31] . Instead of defining primitive skills on
single apps, IFTTT supports composition of APIs in “if-this-
then-that” constructs using a graphical user interface [14].
The Almond virtual assistant generalizes the if-this-then-
that construct to “when-get-do,” and uses a semantic parser
to translate natural language into a formal language called
ThingTalk 1.0 [6]. End users can now specify simple event-
driven programs in natural language.

As our goal is to automate consumers’ repetitive work
flows, we conduct a formative user study to understand the
nature of these tasks. Of the 71 tasks suggested by the users
in our study, 99% of the skills are intended for the web. Here
are some representative examples of tasks that consumers
or workers would like to automate:

Buy these concert tickets as soon as they are available.
Send Happy Holidays to all my friends on Facebook.
Translate all non-English emails in my inbox to English.
Order food for a recurring employee lunch meeting.
Compile a weekly report of sales.

Send a personally-addressed newsletter to all people in a list.

Check the price of a list of stocks.

We find that users do not want to just replace a few clicks
with a verbal command. But rather, the tasks they wish to
automate require operating across multiple pages, where
the result of one page is used as input in another; the tasks
may be repeated periodically or applied conditionally and
to multiple elements in a data set. To accomplish such tasks,
it is insufficient to let users specify just single-statement or
straight-line programs. End users need to bring to bear all
standard programming language concepts to create tasks

Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

of arbitrary complexity. These concepts include function
abstraction, composition of control constructs, and carrying
states across statements with variables. This paper asks if
it is possible to give the full power of programming to end-
users in web automation, without requiring them to learn a
formal language.

1.2 The Design of piva

We propose DIYA, short for Do-It-Yourself Assistant, a multi-
modal end-user programmable virtual assistant for web-
based tasks. A DIYA user can define new skills involving
GUI interactions on the web, and they can invoke the skills
by voice. Parameters are given verbally or by pointing to
them with the mouse. p1YA is designed to be powerful, yet
easy to use and learn.

Figure 1 shows how a user defines a skill to research the
cost of a recipe using p1va'. They take a recipe on a website,
define a “price” function that returns the price of an ingre-
dient in Walmart, and run “price” on the list of ingredients.
This simple routine combines information from two different
websites, making it unlikely a dedicated API combining both
exists. It involves iteration and aggregation, which current
virtual assistants are unable to do.

Web-Automation Tradeoff. Virtual assistant skills today are
implemented by developers connecting voice interfaces to
APIs. Not only are APIs unavailable for most web services,
end users often do not know how to use APIs. Consumers
know their task as visiting certain pages, choosing from
available options, entering words in the appropriate input
boxes, and clicking the sequence of buttons. They cannot
even verbalize their tasks in detail without referring to the
GUI interface. Thus, the simplest way for end users to specify
new functionality is to automate their web operations. Au-
tomating operations via the GUI interface takes advantage
of the generality of the web and minimizes the learning over-
head. However, web pages are heterogeneous and dynamic
in nature. A web page is updated more often than an API,
and skills defined by web page navigation operations are
more fragile.

DIYA is like a lightweight scripting tool that lets end users
automate their repetitive, long-tail tasks. It is useful for off-
the-cuff automation of one-off tasks on the web. When faced
with repeated tasks, such as writing personally addressed
emails for a long mailing list, consumers would find p1va
handy, provided we keep the automation process quick and
easy to learn. This approach complements the more robust
API-based implementations, which exist only for the most
frequently used skills. Once we capture the intent of the end
users, GUI operations can be substituted with API calls, if
they are available, by professionals in the future.

1A video showing how pIva is used on a similar example is available at
https://oval.cs.stanford.edu/papers/diya-pldi21.mp4.

https://oval.cs.stanford.edu/papers/diya-pldi21.mp4

DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant

Multi-Modal Specification. To give users the full power of a
programming language in web automation, DIYA introduces
a multi-modal interface that combines the advantages of
programming by demonstration (PBD) and natural-language
specification. A traditional PBD system passively observes a
user’s actions in the web browser, and then replays a straight-
line sequence of steps. More advanced systems use program
synthesis techniques to generalize the action sequences to
other data elements in iterative execution. Having the system
infer what the user wants is applicable only to simple tasks.
On the linguistic front, neural semantic parsers have been
applied to translate individual natural-language sentences
into single-statement programs [7]. Not only is it hard for
users to verbalize complex, multi-statement programs, it is
also difficult to train a sufficiently-accurate semantic parser.

In our multimodal system, programming by demonstra-
tion lets users perform multiple steps naturally, working
with specific and concrete input parameter values. Voice
commands allow users to create abstraction by naming func-
tions, and to generalize from a program trace, such as why a
certain element is chosen to enable conditional execution,
and which functions are to be applied to a data set.

ThingTalk 2.0 Design. To give end users the full power
of programming, we need a formal programming language
as the target of the multimodal specification. We cannot
simply adopt a conventional programming language. Take
the design of ThingTalk 1.0 for example. It was designed to
support natural-language specification of single-statement
programs [7]; as such it does not even have variables, as
end users do not know anything about variables. To go from
single statements to a full-blown programming language, we
introduce ThingTalk 2.0, which supports function abstrac-
tion, composability of statements, and the use of variables
to carry state across statements. The language is designed
carefully to support multimodal specification with the goal
of making it as natural as possible for the end users. For
example, we do not ask end users to indicate scoping with
conventional nested “begin” and “end” constructs.

Our insight in the design is to support composability just
with function definitions. As end users are accustomed to
invoking skills in virtual assistants, they are familiar with
function abstraction. By enabling users to define functions
which can themselves invoke and compose functions, we sup-
port composition of all control constructs to create programs
with arbitrarily complex functionality. Instead of teaching
users to declare function signatures formally, the user only
needs to learn the pair of “start recording” and “stop record-
ing” commands, which are obvious. The user only works
with concrete values; DIYA automatically substitutes them
with parameter references. The user does not have to think
abstractly. We infer the function signatures in a PBD as the
user says the function name and uses the mouse to indicate
the input parameter value, etc. Function composition fol-
lows naturally as the user selects the result of a function and

PLDI 21, June 20-25, 2021, Virtual Event, Canada

invokes another. Thus, the user gets the power of nesting
control constructs and function composition without having
to be taught.

1.3 Contributions

Our paper makes the following contributions:

1. Our need-finding survey shows that consumers are in-
terested in automating their tasks on the web, many of
which require control structures: iterations, conditionals,
and function composition.

2. DIYA: the first multi-modal virtual assistant that lets end
users define new web-based skills with control constructs,
without learning a formal language. DIYA supports 81% of
the tasks collected in our need-finding user survey.

3. ThingTalk 2.0: the first virtual-assistant programming lan-
guage for automating web-based tasks with a multi-modal
PBD specification. The language supports full composabil-
ity of functions, iterative and conditional statements while
providing a natural easy-to-learn specification interface.

4. We developed an end-to-end prototype of the prva design.
In a user study involving five tasks in a controlled envi-
ronment, we show that the system is easy to learn and
use. In a user study with four real-world scenarios, 80%
of the users find our prototype useful.

2 Overview of pIva

The goal of DIYA is to support users on their day-to-day
work and personal tasks. These tasks include monitoring
data and receiving alerts, generating reports with summary
statistics, and submitting repeated forms over each element
of a list such as sending emails or placing orders. The tasks
can span multiple websites and can require complex logic
and computation.

As a PBD system, p1vA allows users to perform their rou-
tine as usual, clicking on buttons and typing text into input
boxes. DIYA requires the user to add only a few commands by
voice to turn each task into a virtual assistant skill they can
invoke. A D1vA specification is thus multi-modal, consisting
of web primitives, which capture the mouse and keyboard
operations, and constructs, which are the verbal statements
to describe the control flow. DIvYA translates the specification
into a skill written in ThingTalk, which can then be invoked
either by pure voice or by combining voice and GUL

2.1 Example

We introduce how p1va works by way of the recipe pricing
example in Table 1. The first column shows what Bob, our
user, says and does; the second column shows the corre-
sponding ThingTalk statements. The @ sign denotes a call to
a function in the library; parameters are passed by keyword.
Web primitives are mapped to library calls, the constructs
are mapped to ThingTalk control constructs.

PLDI 21, June 20-25, 2021, Virtual Event, Canada

Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

prya Specification

Construct: “Start recording price”
Web primitive: Open walmart.com
Web primitive: Paste in search box
Web primitive: Click Search button

Web primitive: Select price of top result

Construct: “Return this value” return this;
Construct: “Stop recording” }

Construct: “Start recording recipe cost”

Web primitive: Open allrecipes.com

Web primitive: Type in search box
Construct: “This is a recipe”
Web primitive: Click Search button
Web primitive: ~ Click the first result

Web primitive: ~ Select all ingredients

Construct: “Run price with this”

Construct: “Calculate the sum of the result”

Construct: “Return the sum” return sum;
Construct: “Stop recording” }

ThingTalk Code
function price(param : String) {
@load(url = “https://walmart.com”);
@set_input(selector = “input#search”, value = param);
Q@click(selector = “button[type=submit]”);
let this = Q@query_selector(selector = “result:nth-child(1) .price”);

function recipe_cost(p_recipe : String) {

@load(url = “https://allrecipes.com”);

@set_input(selector = “input#search”, value = “grandma’s chocolate cookies”); (

@set_input(selector = “input#search”, value = p_recipe); (

@click(selector = “button[type=submit]”); (

Q@click(selector = “recipemth-child(1)”); (

let this = @Qquery_selector(selector = “.ingredient”); (

let result = this = price(this.text); (

let sum = sum(number of result); (
(
(

Table 1. Sum The Price of Recipe Ingredients. The user performs the actions in the left column, and the corresponding
ThingTalk program in the right column is generated. CSS selectors are simplified in the example for illustration purposes.

Bob’s first task is to build a virtual assistant skill that lets
him query the price of any ingredient. Bob copies the name
of an ingredient, opens Walmart.com, and starts recording
the “price” function. He pastes the name of the ingredient in
the search, searches the product, selects the price and returns
it. This completes the “price” function (lines 1 to 7).

With the “price” function in hand, Bob can now build a
virtual assistant skill that computes the price of a whole
recipe. Bob visits a recipe website and starts recording the
“recipe_cost” function. He types “Grandma’s chocolate cook-
ies” into the search box. He then indicates that this is a
parameter to be called “recipe” and clicks Search (lines 10
to 12). He then clicks on the first recipe (line 13) and sees
the full list of ingredients. He needs to compute the price of
each ingredient, so he selects all the ingredients in the list
and then says “run price with this” (line 15). Because he has
selected multiple elements, the selection is iterated and the
“price” function is called on each element, returning a list of
prices. Bob is shown the list of prices computed immediately.
He then says “calculate the sum of the result,” and “return the
sum.” He finishes recording the top level function by saying
“stop recording””

Subsequently, when he encounters a different cookie, such
as “white chocolate macadamia nut cookie,” he can say “run
recipe with white chocolate macadamic nut cookie,” or select
the name with his mouse and say “run recipe with this.”

This example shows that Bob is performing his task as
usual and needs to issue only a few extra verbal commands.
The user is responsible for delineating the start and end
of each function, naming the function, and identifying the
parameters. The rest of the commands, such as running the

“price” function and computing the sum, provide meaningful
functionality to the end user.

2.2 Co-Design of ThingTalk 2.0 and its Multi-Modal
Specification

Here we discuss the principles behind the design of
ThingTalk 2.0 as well as how a program in ThingTalk is
expected to be specified. Each construct in the language will
be formally covered in Sections 3 and 4.

Multi-modal end-user-programming. In DIYA, the user spec-
ifies the task step-by-step, using the most appropriate modal-
ity for each instruction: web primitive operations are pro-
vided by demonstration, while control constructs and voice
assistant skills are accessed as voice commands. Every prim-
itive or construct is converted into code directly, requiring
no sophisticated inference, generalization, or guesswork in
the implementation. The user is seeing the results of each ac-
tion, including function invocations while inside a function
definition. The results are shown in a pop-up, so the users
can continue the demonstration by reacting to the results.

Integration with virtual assistants. All the skills in the vir-
tual assistant are available to the user. The user can invoke
user-defined skills (e.g. “price”), built-in functions (e.g. sum-
mation), and standard virtual assistant skills (e.g. weather,
search). Conversely, all skills that the user defines are avail-
able in the virtual assistant to be used later in a voice-only
user interface. This allows the user to seamlessly combine
web-based tasks with existing APIs.

Functions for composability and control flow. Unlike con-
ventional programming languages, ThingTalk conditional
and iterative constructs can only be applied to a single oper-
ation or function. The conventional “begin” and “end” or “{”

DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant

and “}” notations do not transfer well to voice input. Instead,
iteration is implied when a function is applied to a set of data,
as shown in the example. Conditional operation is executed
if a variable satisfies a predicate. For example, “return this
if it is greater than 98.6.” To support arbitrary composition
of constructs we rely on function encapsulation, with the
added advantage that the user can now refer to the sequence
of operations with a meaningful name.

Conditionals do not have an “else” clause. In PBD the
user is operating with concrete values, so they can only
perform actions that follow from conditions the concrete
values satisfy. In the future, we can add “else” clauses by
letting sophisticated users refine a defined function with
additional demonstrations using alternate concrete values.

Parametrization and variables. Many tasks require passing
parameters and carrying state across multiple statements,
for example to pass the result of one function call to the next.
We design ThingTalk so that many programs can be created
without explicit declarations of variables and parameters. We
bind the current selection in the GUI to the implicit variable
“this”, which can be referred to naturally by voice. We bind
the “copied” value in the implicit variable “copy,” which can
be used in subsequent “paste” operations. If the user pastes
a value that is copied before the current function definition,
the user is implicitly defining input parameters. This design
works well as it mirrors the standard GUI design to have
only one clipboard value and one latest selection.

Whereas conventional programmers typically go back
to add variable declarations as needed, PBD is inherently
sequential. We let the user declare input parameters when
they are first used and they are automatically added to the
function signature being defined, as in the case of the “recipe”
parameter in the example (Table 1, line 11).

DIYA also supports user-defined variables, but they are
expected to be used only by expert users. Whereas conven-
tional programming languages are typically parsimonious in
feature design, D1vA is designed to make the common case
easy for the sake of learnability. Note that user-defined vari-
ables allow tracking multiple parameters and variables in
the same function. This increases the expressiveness of the
language beyond what is possible with pure PBD, which only
carries state implicitly in the web page or with copy-paste.

2.3 DIYA System Overview

The p1va accepts multimodal commands to (1) apply virtual
assistant skills to information on the website and (2) specify
new skills via the programming-by-demonstration paradigm.
The system captures the specification in ThingTalk, a for-
mal language with well-defined semantics. This facilitates
building other tools, such as reading back the program to
the user and editing conversationally; these tools, however,
are outside the scope of this paper. The architecture of the

PLDI 21, June 20-25, 2021, Virtual Event, Canada

SPECIFICATION TRANSLATOR

“Call stocks on
AAPLY @ 1
i

GUI Abstractor ASR

Event Type: l

select .

CSS Selector: Semantic Parser
a.company:nth-child(3) l

let this := @query_selector

this = stock(param=this.text);

— ®

(“a.company :nth-child(3)");

]

THINGTALK RUNTIME

ThingTalk JIT Compiler
7

Browser Automation API
7

Automated Browser

Figure 2. A high-level overview of the algorithm that prva
uses to convert a multi-modal specification to ThingTalk.

system is shown in Fig. 2. The system consists of (1) a trans-
lator that maps the multimodal specification into ThingTalk,
and (2) a ThingTalk runtime system that executes the code.

The specification translator consists of two modules: a GUI
Abstractor that converts the mouse and keyboard operations
into web primitives in ThingTalk, and a natural-language
processing module that translates the natural language sen-
tences into ThingTalk constructs. The latter consists of an
automatic speech recognition (ASR) component which trans-
lates the voice input into text, and a semantic parser that
translates the text into code.

The ThingTalk runtime system consists of a JIT compiler
and a library of browser-automation APIs running on a sep-
arate browser. This allows users to issue a virtual assistant
command while not running a browser themselves. More-
over, this is necessary even in the specification of a function
that calls another function, so as to show the results to the
user for demonstration, without affecting the current page.
Details on the system are discussed in Section 5.

3 Web Primitives

As the user demonstrates the program, the GUI interactions
are translated into built-in functions in ThingTalk, as shown
in Table 2. We must record all keyboard inputs, mouse clicks
on buttons and links, as well as select, cut/copy, and paste.
We do not need to record operations such as scrolling or
moving the mouse, as those operations only affect the view
of the users. Drawing with the mouse, which involves a click
and a drag, is not currently supported.

PLDI 21, June 20-25, 2021, Virtual Event, Canada

Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

DIYA Web Primitives ThingTalk Web Primitives

Description

Open page (url) Q@load(value) Navigate the browser to the given URL.
Click (element) Qclick(selector) Click on the element matching the CSS selector.
Cut/Copy (element) let copy = Qquery_selector(selector) | Read the text in each element matching the CSS selector and

bind it to variable “copy”.

Select (element) let var = Qquery_selector(selector) Read the text in each element matching the CSS selector and
[“this is a (var-name)”] bind it to variable “this” and a local variable (var-name) if given.
“Start selection” let var = Qquery_selector(selector) | While in selection mode, add the clicked elements to the CSS

[Select (element)]*
“Stop selection”
[“this is a (var-name)”]

selector and bind it to variable “this” and a local variable (var-
name) if given.

Paste (element) @set_input(selector, value)

Set the input elements matching the CSS selector to the value of
the “copy” variable or the first parameter if the “copy” variable
is not defined in the function.

Type (element, value)
[“this is a (var-name)”]

@set_input(selector, value)

Set the input elements matching the CSS selector to the given
value or the parameter (var-name) if given.

Table 2. Web primitives that the user can perform in p1YA, and the corresponding ThingTalk statements. “CSS selector” refers
to the selector derived from the element used during demonstration.

3.1 Parameters and Variables

To support parameterization of skills, as well as computation
on results, brva must track and distinguish between literals
and variables. p1YA needs the variable names and literals to
generate the code, and the actual values to run the code and
generate results, so as to support the user’s demonstration
of the program. As each statement is generated, p1va also
remembers the values of the variables in the program.

In ThingTalk, we distinguish between input parameters
and local variables. Input parameters are always scalar string
values. If the user applies a function to a list of values, the
function is called with each element individually. Local vari-
ables are used to represent the content of the user selection
on the page and contain a list of HTML elements; a scalar
variable is a degenerate list with one element. Each entry in
the list records a unique ID of the HTML element, the text
content, and the number value, if any. Applying a scalar op-
eration on a variable indicates that the operation is applied
iteratively to each element. This avoids additional terminol-
ogy for iterations.

To minimize the need for users to declare and manage
variables, the run-time system has two implicit variables:
the copy variable to save the copied or cut value and a this
variable to remember the selected variable. Users can refer to
the variable being selected as “this” in the immediate verbal
command. The copy variable is only referred to implicitly in
paste operations. The user can also define named variables,
by issuing the command “this is a (variable-name)” after
selecting a value. Parameters and variables can be referred
to by name in ThingTalk constructs discussed in section 4.

Input parameters are also inferred by p1va. Users can input
a value during a demonstration by pasting or typing in an
input box, or selecting from an HTML drop-down box. For
the first case, any time a paste operation refers to a “copy”

variable assigned outside the function, it is considered an
input parameter. For the latter two cases, the user indicates
that the value they just entered is an input parameter by
saying that “this is a (variable-name)” (Table 1, line 11).
Otherwise the value is considered a literal (Table 1, line 10).
pIvA will augment the signature of the function being defined
upon encountering a new parameter.

To allow the user to select complex lists of elements, and
elements in pages with complex layouts, in addition to the
plain browser selection, pIva also supports an explicit se-
lection mode. The user enters the selection mode with the
voice command “start selection”. While in selection mode,
the page is not interactive: instead, clicks add or remove the
clicked elements to the current selection. Selection mode is
exited with “stop selection” Once exited, selection mode is
treated equivalently to a native browser selection operation.

3.2 Selector References

ThingTalk uses CSS (Cascading Style Sheets) selectors [35] to
refer to the HTML element of interest. CSS selectors are a lan-
guage for describing a subset of HTML elements in a page,
originally designed for styling. CSS selectors use seman-
tic information to identify the elements (HTML tag name,
author-specified ID and class on each element), positional
and structural information (ordinal position in document
order, parent-child relationship), and content information.
When recording the action, p1va records which element
the user is interacting with, and generates a CSS selector
that identifies that element uniquely. When available, prva
uses the ID and class information to construct the selector,
falling back to positional selectors when those identifiers
are insufficient to uniquely identify the element. As such,
the CSS selectors DIYA generates are robust to changes in
the content of the page and small changes in layout. p1va
selectors work best with HTML pages where IDs and classes

DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant

PLDI 21, June 20-25, 2021, Virtual Event, Canada

pIvYA Constructs

ThingTalk Constructs

Description

“Start recording (func-name)”

function (func-name)(){

Begin recording a new function, with the given name.

“Stop recording” }

Complete the current function definition and save it
for later invocation.

“Run {(func-name) [with (var-name)] [let result =]

[if {cond)]”

[(var-name) |, (cond)] =]
(func-name) ([(var-name).text])

Execute a previously-defined function, optionally
passing the content of the named variable (or “this” to
refer to the current selection), and optionally filtering
based on a predicate on the content of the variable.
The result, if present, is stored in the “result” variable.

“Run {(func-name) [with (var-name)]
at (time)”

timer({time)) = (func-name)()

Execute the function every day at the given time.
Optionally, the function is applied over each element
of the named variable.

»

“Return (var-name) [if (cond)] return (var-name)

Use the named variable as the return value of the
current function. The variable can be “this” to refer to
the current selection. If a condition is specified, only
the elements matching the condition are returned.

“Calculate the {(agg-op) of (var-name)” | let (agg-op) =

(agg-op) (number of (var-name))

Compute the given aggregation operator based on
the numeric values in the named variable, and save
it as a new variable.

Table 3. Constructs that prva understands and corresponding ThingTalk statements. The user issues each construct vocally.
The table includes only the canonical form of each utterance; users can use different words to convey the same meaning.

are assigned according to the semantic meaning of each
element. Examples of selectors are shown in Table 1.

3.3 Web Primitive Statements

Each GUI interaction is directly translated into a ThingTalk
statement, as shown in Table 2. For each statement, the but-
tons, output texts, or input boxes accessed are represented
as CSS selectors. The “open page” operation is immediately
added based on the current URL when the user starts record-
ing, and also when the user navigates explicitly by typing
in the address bar. The “click” action is faithfully recorded
to be replayed. A “copy” operation binds the selected text
to the “copy” variable. The “select” operation maps to the
“query_selector” web primitive, which binds the selected
values to the “this” variable, and to a local variable if a vari-
able name is added. The “paste” operation is mapped to a
“set_input” web primitive, which may refer to either the
“copy” variable or the first parameter depending on whether
a copy operation is issued in the same function. The “type”
operation is also mapped to “set_input,” and refers to the
literal unless parameterized by the user.

4 Control Constructs

DIYA supports function composition, iteration, and condi-
tional execution. While the control constructs, as shown in
Table 3, are limited, D1vYA has rich functionality because it
can invoke and combine any of the public or custom virtual
assistant skills.

Functions in DIYA can be invoked by voice as skills outside
of the browser. Functions should only depend on the input
parameters and not the state of the browser, such as its
history or the content of any form filled before recording is

started. That is, functions are not just macros that are to be
replayed in the current calling context. The definition of a
function should start immediately after loading a webpage.
The function can depend on the persistent state (cookies,
server-side state) and can perform side effects.

The user delimits a function definition with a pair of “start
recording (func-name)” and “stop recording”. At most one
return statement can appear in the function, but the return
statement need not be the last. It can be followed by addi-
tional web primitives, which do not affect the return value.
This allows the function to perform “clean up” actions, such
as logging out, before returning the result. The returned
value can be the “this” variable, or a named variable.

Functions are run with the “run” construct. If the function
has one parameter, the user can simply say “run (func-name)”
with either “this” or a named parameter. If the function has
multiple parameters, the parameter passing convention is
based on key-value pairs. The user must name the actual
parameters with the names of the formal parameters in the
function, and the user can simply say “run (func-name).” All
functions are defined with scalar parameters. When func-
tions are applied to list variables, the functions are applied
individually to each element. If a function has a result, the
result is bound to the “result” variable. Outside of a demon-
stration, functions can be set to run at a certain time, such
as “at 9 AM”

Function invocations, return statements, and iterative
statements can be conditionally executed. The computation
is performed on each element of the current selection or a
named variable that satisfies the given predicate. For exam-
ple, the invocation “run alert with this if this is greater than

PLDI 21, June 20-25, 2021, Virtual Event, Canada

98.6”, where “this” is a list of temperatures, generates an alert
for each temperature above 98.6. The ThingTalk syntax is

this, number > 98.6 = alert(param = this.text);

number is a field of the currently selected HTML elements
(in the “this” variable) and it is computed by extracting any
numeric value in the elements.

Our current system currently only supports a single pred-
icate, which can be equality, inequality, or comparison be-
tween the current selection and a constant. As the natural
language technology improves, we expect to support arbi-
trary logical operators (and, or, not) in the future.

Finally, p1va lets users perform aggregate operations on
the current selection or a named variable. The supported
operations are those used in database engines: sum, count,
average, max, and min. The user can issue the voice command
“calculate the (operation) on (var).” The result is stored in a
named variable with the same name as the operation.

5 The prva System

In this section, we describe how DIYA transforms a multi-
modal specification into a ThingTalk function, and how a
ThingTalk function is executed. The high-level flow of the
DIYA system is shown in Fig. 2.

5.1 Translating the Specification to ThingTalk

DIYA contains a GUI abstractor component that records all
the actions the user performs on a page, and maps them to
corresponding ThingTalk statements. The GUI abstractor
uses a browser extension to inject JavaScript code that in-
tercepts the actions on each page. The browser extension
displays to the user a prominent indicator when it is record-
ing the user’s actions.

When the user starts recording a function, prva must first
record the context in which the function is recorded. prva
records the current URL, and maps it to a @load web primi-
tive. DIYA’s injected JavaScript code listens to all interaction
events (keyboard, mouse, and clipboard) from the browser on
the entire page. When an event is intercepted, the injected
JavaScript code considers the HTML element that is the tar-
get of the event, and constructs a new CSS selector that
identifies that element uniquely. The CSS selector is used to
construct the corresponding ThingTalk web primitive.

DIYA continuously listens for the user’s voice and reacts
to the commands that map to ThingTalk control constructs
(Table 3). Each utterance is passed to automatic speech recog-
nition (ASR), followed by a semantic parser that translates
it into a ThingTalk fragment. The ThingTalk code is then
passed to the ThingTalk runtime, and p1va acknowledges
the user’s command by speech.

5.2 ThingTalk Runtime

The ThingTalk runtime must support the user in (1) defining
the function by demonstration, (2) invoking a pre-defined

Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

function while browsing, (3) executing the function itself. In
the following, we describe these three run-time contexts in
reverse order: execution, browsing, and demonstration.

5.2.1 The Execution Context. Once a ThingTalk speci-
fication is complete, it is compiled to native JavaScript code
using the ThingTalk compiler. The JavaScript code is ex-
ecuted on an automated browser: a form of browser that
is driven with an automated API rather than interactively
by the user. This means that the function can be invoked
as a skill by voice, for example, on a smart speaker. Every
function invocation occurs in a new session in the browser,
starting with a @load web operation. That is, each function
executes in a separate, fresh copy of a webpage. This ensures
that the callee does not affect the calling function, except via
returned results. Nested function invocations are managed
with a stack; a new invocation pushes a new browser session
on the stack, which is popped when the function terminates.

The environment of the execution consists of all the ex-
plicitly and implicitly declared variables and parameters. The
semantics of each web primitive and construct is informally
introduced in Tables 2 and 3, respectively. For each reference
of a CSS selector, the run-time extracts the HTML elements as
specified from the page. The @load, @click, and @set_input
functions are mapped to the corresponding web automation
APIs to manipulate the webpage. @query_selector evaluates
the value of the specified selector. Note that the browser se-
lection and clipboard are not affected in an execution context.
Iteration, conditional execution, and aggregation operations
are implemented in straightforward JavaScript code.

5.2.2 The Browsing Context. A user can invoke a pre-
defined function while browsing whenever the p1va browser
extension is enabled. The browsing context keeps track of
the latest values bound to the implicit variables, “this” and
“copy,” and any other explicitly named variables. There is
a single browsing context shared by all pages in a running
browser, and all variables named in the browsing context are
global. The values are derived from the HTML elements in
the webpages visited. As an optimization, we bind the values
of the implicit variables lazily when they are used, because
their values are available as the “clipboard” and “selection” in
the browser. When running a pre-defined p1va function, the
values in the browsing context are passed into the execution
context. As discussed, the execution of any prva function
does not alter the state of the browsing context.

5.2.3 The Demonstration Context. When a user starts
recording a function, the user enters the demonstration con-
text. Here the user does the task they want recorded in the
browser, during which the code is generated.

The demonstration requires the computation to be per-
formed collaboratively between the user and the p1va run-
time. The user performs web operations directly with their

DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant

mouse and keyboard in the normal browser (not an auto-
mated one). The runtime is responsible for executing all
function calls and aggregation operations in a separate au-
tomated browser, so that the results can be returned for
the user to continue the demonstration. This requires the
run-time system to:

1. Generate the code as the user defines it, as shown in
Tables 2 and 3.

2. Track the browsing context as the user demonstrates,
as discussed in Section 5.2.2.

3. Run the functions and aggregation operations as they
are added to the function definition. Each function
and computation is run in a new browser session as
discussed in Section 5.2.1, and the result is returned to
the user in the user’s normal browser.

6 Implementation

We implemented an end-to-end prototype for prva, writ-
ten in JavaScript. The implementation consists of a Google
Chrome browser extension that injects the pI1YA recording
code in every page the user visits and a standalone Node.js
application containing the ThingTalk execution code. The
standalone application is based on the Almond assistant [6];
it spawns the automated browser and communicates with it.
To handle the user’s speech, we use the Web Speech API,
a native speech-to-text and text-to-speech API available in
Google Chrome. We use the annyang library [2] to under-
stand the user’s commands. This library uses a template-
based NLU algorithm, requiring the user to speak exactly the
supported words. At the same time, it supports open-domain
understanding of arbitrary words, which is necessary to let
the user choose their own function names. We include mul-
tiple variations of the same phrase to increase robustness.
CSS Selectors are generated using the finder library [25].
Event recording code is based off the Puppeteer Recorder
Chrome Extension [27], and event replaying uses the Pup-
peteer API [12] to automatically control Google Chrome.
The automated browser controlled by Puppeteer shares the
profile with the normal browser, including cookies, local stor-
age, certificates, saved passwords, etc. Automated actions are
executed at a reduced speed (slower than typical automation
but faster than human execution) to improve robustness to
dynamic page conditions and mitigate anti-spam measures.

7 Experimentation

To evaluate our system, we performed four experiments. (1)
We conduct a need-finding survey to learn what kind of web
tasks users would like to automate. (2) We evaluate whether
users can learn the p1va specification constructs. (3) We eval-
uate the design choice of supporting implicit variables. (4)
We collect user feedback on p1vA in user-suggested scenarios
on real-world websites.

PLDI 21, June 20-25, 2021, Virtual Event, Canada

experienced none

intermediate

some beginner

Figure 3. Programming experience of survey participants
that proposed skills for prva.

other - tech
finance

consulting
manager

retail

Figure 4. Occupation of survey participants that proposed

skills.

7.1 What Do Users Need To Automate?

Our first study is a need-finding online survey to learn what
users are interested in automating and whether the prim-
itives in DIYA are adequate. We recruit 37 participants on
Amazon Mechanical Turk (25 men and 12 women, average
age = 34), each of whom was paid $12 for approximately 60
minutes of their time. Survey participants had a mix of pro-
gramming experience (Fig. 3) and a variety of backgrounds
(Fig. 4). In the survey, respondents were first shown the func-
tionality of the system, then asked to describe 3 skills each
that they would like to automate. We collected 71 valid skills.

The proposed skills span 30 different domains, with the
most popular being food, stocks, local utilities, and bills
(Fig. 5). Representative tasks are shown in Table 4. Of these
71 skills, we found 24% do not require any programming
constructs, 28% need iteration, 24% need conditional state-
ments, and 24% need a trigger (a timer plus a condition). In
summary, 76% of the skills people want to automate require
the control constructs we introduce to PBD.

99% of the skills are intended for the web and 1% are to
be run on the local computer. 34% of skills are on websites
that need authentication, showing that users are interested
in skills that operate on their personal data. We found 81%
of the web skills can be expressed using p1va. For the re-
maining 19%, 11% require producing charts, and 8% require
understanding videos and images. These functionalities are
orthogonal to our system and can be added to the system as
pre-defined skills. This shows that despite the simplicity of
DIYA, it largely covers what people want to automate.

Privacy. When automating a task that involves personally
identifiable information, 83% of the users wanted a privacy-
preserving system that ran locally. 66% of users wanted pri-
vacy protection even for tasks that did not involve personally
identifiable information. As our system is able to run on the

PLDI 21, June 20-25, 2021, Virtual Event, Canada

P C AN L LO@NOOL TP O L O DAOS @S &0
E TS LI F 0 S S S SO T S TS
Fy e N P K%L £ Py & LE N & LN (PEE
& S F R FF S S FCARNINION @ >
RN > 3 P TS F TP« < NG
N & & 2> S & S ©

& S
& N

Figure 5. Number of skills organized by domains that users were interested in creating using DIYA.

Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

Domain ‘ Example Skill ‘ Constructs Construct Task
Communication | “Send a birthday text mes- | Iteration Basic Automate the clicking of a button.
sage to people automatically” Iteration Send an email to a list of email addresses.
Purchasing “Make a reservation for the | Aggregation Conditional ~Reserve a restaurant conditioned on rating.
highest rated restaurants in | (max), Timer Buy a stock at a certain time.
my area.” Filtering Filter Show restaurants above a certain rating.
Purchasing “Order 3 ticket to_nhne. if” it glllgler Table 5. Tasks performed by the participants in the program-
oes under a certain price. ilterin :
Purchasing §Order ingredients orﬁine for Iteratioi, ming construct study.
a recipe I want to make, but | Filtering
only the ingredients I need.” the control construct worked. They then repeated the task.
Finance “Check my investment ac- | Iteration, Lastly, they were asked to do a different task that requires
counts every morning and | Filtering the same construct. The five tasks they performed on their
get a condensed report of own are shown in Table 5. Note that because the “Iteration”
which stocks went up and task requires two parameters, the recipient name and their
ZVhiCh went down” email address, the users have to name the parameters ex-
Database Automate queries I do by | Iteration plicitly, instead of relying on the copied data as the implicit
hand every day for work for
. . parameter.
inventory levels and delivery
times” Quantitative Results. Participants successfully com-
Security “Alert me when someone | Unsupported pleted the new tasks assigned using p1va 94% of the time.
moves on the camera of my After the tasks, users were asked to complete a survey, rat-
home security system.”

Table 4. Representative tasks that users wanted to automate.
All but the last one can be automated with prva. The last
task requires computer vision to process the image and is
out of the scope of this paper.

client as a Chrome extension and as a native application, we
are able to offer users privacy.

7.2 Can Users Learn To Program In piva?

Our next study asks if users can effectively learn the pro-
gramming constructs in brva. We conducted a remote user
study with the same participants as the need-finding survey.
Each participant was asked to perform five tasks, with each
task designed to be a realistic example of each of the sys-
tem’s control constructs. The tasks were unsupervised and
performed on custom demo websites in order of increasing
complexity to emulate the learning experience on the system.
Before each task, users watched a video demonstrating how

ing a number of questions on a 5-point Likert scale from
“strongly disagree” to “strongly agree”. The results are shown
in Fig. 6 as “Exp. A” We notice that users consistently found
the system easy to learn (72%), and easy to use (75%). 91% are
satisfied with the experience of testing it. The multi-modal
interface (“MMTI” in the plot) is rated helpful by 81% of sur-
vey participants. Overall, 66% of the users agree that piva
is useful. These results confirm the need and usefulness of
DIYA, and suggest that the programming constructs in bIva
can be learned. Note that in these experiments, users only
did simple tasks on a demo website, rather than real world
scenarios, which explains the relatively low propensity to
find prvA useful.

7.3 Evaluating Implicit Variables

Instead of requiring users to define all their variables, prya
introduces the implicit “this” variable that the users can
define and use with select and paste actions. To evaluate this
design decision, we conduct a user study with 14 users (7 men
and 7 women, average age 25). The study was conducted over

DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant

I Strongly disagree [Disagree

PLDI 21, June 20-25, 2021, Virtual Event, Canada

[Neutral [Agree [Strongly Agree

60%

A A hd da ol

0%

Exp. A Exp. B Exp. A Exp. A
Satisfied MMI useful

Easy to learn Easy to use

Exp. A Exp. A Exp. B
DIYA useful

Figure 6. Results of our user studies. “Exp. A” refers to the construct learning study, while “Exp. B” refers to the real world

evaluation study.

video conferencing. We ask the users to build an example skill
using both the explicit and implicit naming methods. Overall,
88% preferred the implicit version because it had fewer steps
and was faster. We found users did not like talking to their
computer as much.

7.4 Real Scenarios Evaluation

In our final experiment, we want to get users’ feedback on
using the system in real-life tasks drawn from our first user
study, using websites they are familiar with: Walmart, a
recipe website, a stock website, and a weather website. This
test is more complicated as it uses a combination of con-
structs; it also illustrates the utility of the system because
the tasks are more realistic. This end-to-end test also demon-
strates that p1va is a fully functional system on real websites.
Each task involves the user defining a skill and invoking
it to see the result. We evaluated the following real-world
scenarios, chosen based on the need-finding experiment:

1. Calculate the average temperature. The user creates
a program that goes to weather.gov, enters their zip
code, calculates the average high temperature for the
week, and returns that value. This scenario exercises
the multi-selection and aggregation function.

2. Add items to an online shopping cart. The user has a
shopping list of items that they enter, and they need to
add them all to a shopping cart on everlane.com. This
scenario requires user input, copy-paste, and iteration.

3. Notify when stock prices dip. The user creates a skill on
zacks.com to receive a notification when a stock quote
goes under a fixed price. The skill is then triggered
every day at a certain time. This scenario tests the
conditional and timer functions of the system.

4. Add ingredients from a website to a shopping cart. This
task is similar to the task in Fig. 1. The user visits a
cooking website, acouplecooks.com, to find the price
of all the ingredients in a recipe on walmart.com. They
need to define a price function, and apply it iteratively
to ingredients in the recipe. This tests users’ under-
standing of calling functions in an iterative construct.

We conducted this study as an interactive user test (live
over video-conferencing) using the same participants as the
design decision study described above. Users first complete

a warm-up task of recording a simple function to familiarize
themselves with p1va. They are then asked to complete each
task manually and on piva following a predefined script.
Whether each user completes the task first manually or using
DIYA is randomized. All users were able to install prva on
their Chrome browser and complete the tasks successfully.

To find how users would perceive p1va’s value in real-
world scenarios, users complete a Likert-scale evaluation on
the whole system. The results are shown in Fig. 6 as “Exp.
B” 73% of the users find the system easy to learn; 46% find
it easy to use, probably due to the complexity of the tested
tasks. Nonetheless, 67% are satisfied with the system. On
usefulness, 73% find the multimodal interface useful, and
80% of the users find p1va useful. When compared with the
results in Exp. A, since the tasks are more realistic but harder,
the perceived usability and satisfaction are a little bit lower,
but the perceived usefulness is higher.

We also evaluate if it is harder to define a skill in pIvA
in comparison to just executing the task once by hand. We
ask the users to complete a NASA-TLX survey [13] after
each task. NASA-TLX is a standard set of metrics to assess
the perceived workload of a task. The user is asked to rate
their mental load, temporal stress (perceived time pressure),
overall task performance (subjectively assessed by the study
participant), required effort, and frustration. Lower scores are
better in all categories of the survey, except for performance,
where higher values are better. The graph shows the median
of each category as a middle line in each box; the box shows
the second and third quartiles, and the vertical lines show
the range of the distribution, excluding outliers.

As shown in Fig. 7, the aggregated results of the survey
indicate that there is no statistically significant difference
across all five metrics between completing the tasks by hand
and programming a skill using p1vA. We also asked the users
to self-report the amount of time it took them to complete
the task by hand, and to record the prya skill. We found no
statistical difference, although we found some significant
noise in the data due to self-reporting. Note that for tasks
2 and 4, which use iteration, users only performed a small
number of iterations by hand. Overall, both NASA-TLX and
the timing comparison suggest that programming a skill is
no harder than performing the task by hand. The key benefit
is that the tasks can run automatically in the future, which

PLDI 21, June 20-25, 2021, Virtual Event, Canada

Task 1

category
[hand
4.5 [tool

404 —T
3.5

<

S 3.0 —

?

2.5

2.0 —

104 - —

T T T
performance effort frustration

metric
Task 2

5.0 category ¢ +
[hand
4.5 3 tool
404 —T - ¢
2.0 1
1549
1.04 — —

T T
mental temporal

T T
mental temporal

T T T
performance effort frustration

metric

Task 3

category
[hand
[tool

9]
o
S 3.09 ¢
@
2.5
¢

: H]T

T T
mental temporal

T T T
performance effort frustration

metric
Task 4

category
[hand
4.54 =3 tool

e
sl el il

T T
mental temporal

T T T
performance effort frustration

metric

Figure 7. Evaluating the perceived workload of completing
four real-world tasks by hand and with p1va, using NASA-
TLX scores. Lower scores are better in all categories, except
for performance, where higher values are better.

Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

can save a lot of time, especially for iterative or trigger-based
tasks like checking stock prices. This is a promising result
that shows automation can be practical for end users.

7.4.1 Qualitative Feedback. During the user test, we also
collected qualitative feedback from the participants. A user
that was not able to program before said, “when you're raised
on sci-fi movies, the thought of a system that can learn what
you need by voice is incredibly appealing” Another user
saw the system as being very helpful in repeating common
tasks to accomplish her job; “for me as a data person espe-
cially, during the COVID-19 crisis when local governments
are behind on data standards, I've found the lack of such
a tool exhausting. The level of manual data entry required
to achieve my basic analysis goals is often more than I can
make time for, and one day that I fail to check is data that
may be permanently lost. I love the idea of being able to
program that cleanly, with my voice. I love that it can intelli-
gently extract numbers from characters and perform basic
operations, and run just by speaking.

8 Discussion

This paper demonstrates that it is feasible for end users to
automate web tasks using composable control constructs.
Here we describe what our experimental results taught us
about the tradeoffs we have made, and offer some suggestions
for future work.

8.1 Web Automation

Web automation is inherently fragile; it is not possible to au-
tomate all web tasks; automated routines break as web pages
are updated. Nonetheless, web pages remain the only means
of access to most of the services on the Internet. Where
possible, web automation is useful.

Anti-Automation Measures. DIYA does not work on
websites that actively block web automation. Websites such
as Facebook or Google actively prevent bots from accessing
their pages in an attempt to guard against fraudulent use.
They can detect the use of automated browsing APIs, and can
detect input that is driven by a program as opposed to a hu-
man using a keyboard and a mouse. Various techniques have
been proposed to subvert these detection mechanisms [4] but
as the subversion improves, so does the anti-fraud detection.

Element Selection. In the p1YA implementation, web el-
ements are selected using CSS selectors. We choose CSS
selectors because they are an expressive, existing DSL for
selecting elements based on semantic and structural infor-
mation, and because they are a well-known standard already
supported by browsers and web automation libraries. We
also note that CSS selectors are already commonly used in
hand-written web automation scripts.

CSS selectors are robust to changes in the content of the
page, but not in changes in a website’s layout. They are also

DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant

incompatible with dynamic CSS modules and automatically
generated CSS classes adopted by certain popular CSS li-
braries like React. We detect some of those libraries and
ignore those CSS classes, but this is necessarily incomplete.
Empirically, we observed that web pages with numerical
information, such as weather or stocks, tend to have stable
layouts and work well with CSS selectors. We also found that
form fields are typically annotated with CSS IDs and classes,
which are sufficient to identify them robustly. Conversely,
we found that websites with a lot of free-form content, such
as blogs, are challenging because similar pages can have
vastly different hierarchies and low-level layouts. We also
found that elements in the lists shown by search engines
and shopping websites can be identified well, but sometimes
advertisements change the layout of the page unexpectedly.
Our experience with CSS selectors suggest that a higher-
level semantic representation for web elements could be
beneficial. Our exploration shows that it is possible to iden-
tify a web element given its text label, color, size, and relative
position to other objects on a page [33]. Adopting a similar
representation may improve the robustness of DIYA.

Timing Sensitivity. If allowed to run at full speed, web
automation may fail because it can refer to web elements that
have yet to be loaded. Thus, DIYA runs at a reduced speed to
allow time for the page to react to the actions performed by
the user, including any animation or external HTTP request
that the page needs. We found a 100 millisecond slow-down
for every Puppeteer API call to be generally sufficient to
replay the scripts robustly. This can be sped up by automati-
cally discovering the events in the page that signal the page
is ready for the next action [3].

8.2 Voice Input

The current p1va implementation uses the automatic speech
recognizer by Google Chrome, which we have found quite
brittle empirically. We mitigated this limitation by showing
the user the transcription generated by the APL If the tran-
scription is incorrect, most likely we do not recognize any
command and the user can issue the command again. pIva
uses a strict grammar-based NLU system, which has high
precision (recognized commands are interpreted correctly)
but low recall (not all commands are recognized). This can
be made more robust by integrating with the Genie library
for neural semantic parsing of ThingTalk commands [7].

8.3 Privacy

DIYA is designed to run locally on the user’s machine to pro-
tect the user’s privacy. We chose a fully local implementation
because pIYA must have access to the full browser profile of
the user, including their cookies, stored passwords, etc. This
information is too sensitive to be uploaded to a third-party
server. Privacy protection is confirmed by our user study to
be an important feature to keep in the future.

PLDI 21, June 20-25, 2021, Virtual Event, Canada

8.4 Skill Management and Editability

This paper focuses on how end users can define new skills.
To help users maintain their skills, b1va needs to be extended
in the future by providing an interface to view and edit skills.
The users may need to record additional traces to handle
alternative conditional execution paths, which the system
would merge. Skills may need to be updated when the web
pages they operate on change. Iterative refinement will also
be needed to create more complex skills. Since the skills are
succinctly and formally represented in ThingTalk, designed
to be translated from and into natural language, the interface
can be provided at either the natural-language or ThingTalk
level to cater to users of different levels of technical expertise.

9 Related Work

DIYA is the first system that enhances a virtual assistant
with a PBD system that supports function composition. It
translates multi-modal specifications into a fully composi-
tional programming language with functions, conditional,
trigger-based, and iterative constructs.

9.1 Virtual Assistants

Commercial virtual assistants such as Alexa and Google
Assistant let users perform actions on the web using a voice
interface. These systems rely on existing APIs that third-
party developers must integrate. Furthermore, commercial
virtual assistants only support one action at a time. They
support only limited custom skills in the form of “routines”,
which are sequences of voice commands that can be defined
once and invoked subsequently by voice or with a timer.

Almond [6, 7] was the first virtual assistant to provide lim-
ited end-user programmability. Almond supports commands
with three-clauses: "when" a condition happens, "get" some
data, and "do" some action. Natural-language sentences are
translated into ThingTalk 1.0 programs, which consist of
a single statement that connects together up to two skills.
ThingTalk 1.0 does not support user-defined functions, mul-
tiple statements, or variables. All skills are implemented with
APIs, limiting the scope considerably.

The Brassau assistant automatically generates reusable
graphical widgets for each natural-language command [11].
Brassau widgets are limited in functionality to performing
one command at a time, and in appearance by the automatic
generation method. p1va skills, on the other hand, operate
on existing graphical web pages, which can be shown to the
user alongside the pure voice interface.

Hey Scout, a browser-based virtual assistant, let users per-
form simple web browsing tasks via a voice interface [32].
It led to Mozilla’s public release for Firefox of a similar sys-
tem [5]. Unlike our system, however, neither of these assis-
tants interact with the content of web pages.

PLDI 21, June 20-25, 2021, Virtual Event, Canada

9.2 Multi-Modal PBD

Previous work has introduced multi-modal interfaces to ex-
tend the expressive power of PBD systems [18, 19]. None of
these works support building complex tasks compositionally.
They do not support nested function calls and do not support
iteration. SUGILITE uses PBD to create new skills for virtual
assistants; it automatically recognizes parameters from the
input sentence and matches them to the demonstration [18].
DIYA instead lets the user specify parameters explicitly, which
is more precise. In APPINITE, users describe in voice the
reason for selecting each element as they perform the selec-
tion [19]. p1va subsumes this work by making predicates a
primitive usable across iterations and function invocations.
PLOW [1] and PUMICE [20, 21] use a multi-modal di-
alogue agent to learn new high-level concepts in a new
natural-language command. The user demonstrates the new
concepts on web pages in PLOW and on mobile apps in
PUMICE. In contrast, DIYA lets users build primitives from
the ground up, allowing them to be combined using voice.

9.3 PBD for Automation

In this section, we discuss mobile and web automation via
PBD, without multi-modal interaction. Without multi-modal
interaction, the user cannot specify control constructs during
the demonstration. CoScripter uses PBD to generate straight-
line programs as natural-language traces [16, 24]. The users
can later edit the traces to add parametrization. CoScripter
also supports the creation of interactive scripts that pause
and ask the user for the parameters (rather than providing
the parameters upfront). The system lacks support for con-
trol constructs and function composition. ActionShot [17]
suggests recording users’ web navigation passively and mak-
ing it available to CoScripter.

Early works [10, 15, 26, 29, 30] support iteration by auto-
matically discovering loops given a demonstration of one or
a few iterations, using program synthesis. Synthesis is less
reliable than letting the user specify the iteration in voice.
If the synthesizer makes a mistake, the user must provide
more demonstrations to correct it, which can be frustrating.
Synthesis has not been applied to nested loops, which are
more challenging due to the larger search space, whereas
DIYA supports nesting of loops using function composition.

Helena proposes a DSL that supports iteration and con-
ditional constructs for scraping web content [8]. The user
demonstrates a straight-line execution of how one data item
is to be scraped. The system uses program synthesis to gen-
erate an iterative construct in the DSL. Later, the user can
edit the script with a Scratch-like interface to add condition-
als and to correct the program synthesis. Editing the script
requires the user to understand the formal Helena language,
whereas a user need not know ThingTalk to use prva. He-
lena was intended for and thus evaluated with computer
scientists [9], whereas we target non-technical users.

Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

Whereas DIYA is intended to help the end user automate
their personal task, KITE [22] is designed to help developers
create a dialogue agent from a mobile GUI interface. The
user supplies multiple straight-line browsing traces, which
are then analyzed to create intent and slots for the agents.

Whereas DIYA uses CSS selectors to identify the web ele-
ments, VASTA uses computer vision to recognize interactive
elements [31]. Sikuli uses screenshots to refer to the GUI
elements for automation [34]. Neural networks have been
proposed to map high-level verbal descriptions of web ele-
ments (the text of the element, its graphical attributes, and
its relative position to other elements on the page) to spe-
cific graphical elements [23, 28]. Recently, we show it is more
accurate to use a neural network to first translate the natural-
language description to a formal semantic representation,
which is then used algorithmically to identify the element
of interest in the target web page [33].

Ringer [3] addresses the problem that PBD systems might
attempt actions before the page is ready, for example before
a button appears, or fail to identify a button because the
layout has changed. It uses several related PBD traces to
infer when a page is ready for the next action, and it uses
heuristic features to identify elements on the page.

10 Conclusion

Virtual assistants are changing the way we interact with
computers. Along with this, we need to empower individuals
to build programs for virtual assistants, leveraging the vast
information on the web, instead of having to rely only on
skills built by developers.

This paper proposes DIYA, a system that lets users auto-
mate their complex tasks on the web using a multi-modal
program-by-demonstration paradigm. D1vA is the first PBD
system that supports composing control constructs and func-
tions in one skill. It does so by letting users use voice to
define and call functions, and to specify control constructs
during a demonstration. The multi-modal user specification
is translated into a program in ThingTalk 2.0, a programming
language we designed for this purpose. We find p1vA to be
expressive enough to implement 81% of user-proposed skills.
The users in our study find DIYA easy to learn and useful.

In summary, DIYA is an easy-to-learn system that lets end
users create useful virtual assistant web-based skills that
require the full generality of composable control constructs.

Acknowledgments

We would like to thank the reviewer and the shepherd Dr.
Ben Zorn for their feedback. This work is supported in part
by the National Science Foundation under Grant No. 1900638
and the Alfred P. Sloan Foundation under Grant No. G-2020-
13938.

DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant PLDI 21, June 20-25, 2021, Virtual Event, Canada

References [17] Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and Allen Cypher.
[1] James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, 2010. Here’s What i Did: Sharing and Reusing Web Activity with
Hyuckchul Jung, Mary Swift, and William Taysom. 2007. Plow: A ActionShot. In Proceedings of the SIGCHI Conference on Human Factors
collaborative task learning agent. In AAAL Vol. 7. 1514-1519. in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association

for Computing Machinery, New York, NY, USA, 723-732. https://doi.

—
Do
—

Tal Ater. 2019. annyang! Speech recognition for your site. https:

//github.com/TalAter/annyang,. 0rg/10.1145/1753326.1753432

[3] Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani. [18] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE:
2016. Ringer: Web Automation by Demonstration. SIGPLAN Not. 51, Creating Multimodal Smartphone Automation by Demonstration. In
10 (Oct. 2016), 748-764. _https://doi.org/10.1145/3022671.2984020 Proceedings of the 2017 CHI Conference on Human Factors in Computing

Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing

Machinery, New York, NY, USA, 6038-6049. https://doi.org/10.1145/

—
=~
fla

berstend. 2020. puppeteer-extra-plugin-stealth. https://github.com/
berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-

plugin-stealth. 3025453.3025483

[5] Julia Cambre, Alex C Williams, Afsaneh Razi, Ian Bicking, Abraham [19] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze
Wallin, Janice Tsai, Chinmay Kulkarni, and Jofish Kaye. 2021. Firefox Shi, Wanling Dllng, Tom M Mitchell, and Brafi A Myers. 201'8- .AP -
Voice: An Open and Extensible Voice Assistant Built Upon the Web. PINITE: A Multi-Modal Interface for Specifying Data Descriptions

[6] Giovanni Campagna, Rakesh Ramesh, Silei Xu, Michael Fischer, and in Programming by Demonstration Using Natural Language Instruc-

Monica S. Lam. 2017. Almond: The Architecture of an Open, Crowd- tions. In 2018 IEEE Symposium on Visual Languages and Human-Centric

sourced, Privacy-Preserving, Programmable Virtual Assistant. In Pro- Computing (VL/HCC). IEEE, 105-114.

ceedings of the 26th International Conference on World Wide Web - (20] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah,
WWW ’17. ACM Press, New York, New York, USA, 341-350. https: Tom M. Mitchell, and Brad A. Myers. 2019. PUMICE: A Multi-Modal
//doi.org/10.1145/3038912.3052562 Agent That Learns Concepts and Conditionals from Natural Language
[7] Giovanni Campagna, Silei Xu, Mehrad Moradshahi, Richard Socher, and Demonstrations. In Proceedings of the 32nd Annual ACM Sym-

posium on User Interface Software and Technology (New Orleans, LA,

and Monica S. Lam. 2019. Genie: A Generator of Natural Language
USA) (UIST ’19). Association for Computing Machinery, New York, NY,

Semantic Parsers for Virtual Assistant Commands. In Proceedings of

the 40th ACM SIGPLAN Conference on Programming Language Design USA, 5_77_589- .https:{/doi.org/w.] 145/33_3216_5-33‘?7_899 . _
and Implementation (Phoenix, AZ, USA) (PLDI 2019). ACM, New York, [21] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah,
NY, USA, 394-410. https://doi.org/10.1145/3314221.3314594 Tom M Mitchell, and Brad A Myers. 2020. Interactive Task and Concept
[8] Sarah Chasins and Rastislav Bodik. 2017. Skip Blocks: Reusing Exe- Learning from Natural Language Instructions and GUI Demonstrations.
cution History to Accelerate Web Scripts. Proc. ACM Program. Lang. In The AAAI-20 Workshop on Intelligent Process Automation (IPA-20).
1, OOPSLA, Article 51 (Oct. 2017), 28 pages. https://doi.org/10.1145/ [22] Toby Jia-Jun Li and Oriana Riva. 2018. Kite: Building Conversational
3133875 Bots from Mobile Apps. In Proceedings of the 16th Annual International
[9] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Conference on Mobile Systems, Applications, and Services (Munich, Ger-
Scraping Distributed Hierarchical Web Data. In Proceedings of the 31st many) (MobiSys "18). Association for Computing Machinery, New York,

NY, USA, 96-109. https://doi.org/10.1145/3210240.3210339

Annual ACM Symposium on User Interface Software and Technology
[23] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge.

(Berlin, Germany) (UIST ’18). Association for Computing Machinery,

New York, NY, USA, 963-975. https://doi.org/10.1145/3242587.3242661 2020. Mapping Natural Language Instructions to Mobile UI Action Se-
[10] Allen Cypher. 1995. EAGER: PROGRAMMING REPETITIVE TASKS BY quences. In Proceedings of the 58th Annual Meeting of the Association for
EXAMPLE. In Readings in Human—Computer Interaction, RONALD M. Computational Linguistics. Association for Computational Linguistics,
BAECKER, JONATHAN GRUDIN, WILLIAM A.S. BUXTON, and SAUL Online, 8198-8210. https://doi.org/10.18653/v1/2020.acl-main.729
GREENBERG (Eds.). Morgan Kaufmann, 804-810. https://doi.org/10. [24] Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and
1016/B978-0-08-051574-8.50083-2 Eser Kandogan. 2007. Koala: Capture, Share, Automate, Personalize

Business Processes on the Web. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (San Jose, California, USA)
(CHI ’07). Association for Computing Machinery, New York, NY, USA,
943-946. https://doi.org/10.1145/1240624.1240767

[25] Anton Medvedev. 2020. finder: CSS Selector Generator. https://github.

[11] Michael Fischer, Giovanni Campagna, Silei Xu, and Monica S. Lam.
2018. Brassau: Automatic Generation of Graphical User Interfaces
for Virtual Assistants. In Proceedings of the 20th International Confer-
ence on Human-Computer Interaction with Mobile Devices and Ser-
vices (Barcelona, Spain) (MobileHCI ’18). Association for Comput-

ing Machinery, New York, NY, USA, Article 33, 12 pages. https: com/antonmedv/finder.
//doi.org/10.1145/3229434.3229481 [26] Brad A. Myers, Richard G. McDaniel, and David S. Kosbie. 1993. Mar-
[12] Jack Franklin et al. 2020. Puppeteer Headless Chrome Node.js APL quise: Creating Complete User Interfaces by Demonstration. In Pro-
https://github.com/puppeteer/puppeteer. ceedings of the INTERACT ’93 and CHI *93 Conference on Human Factors
[13] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years in Computing Systems (Amsterdam, The Netherlands) (CHI *93). As-
later. In Proceedings of the human factors and ergonomics society annual sociation for Computing Machinery, New York, NY, USA, 293-300.
meeting, Vol. 50. Sage Publications Sage CA: Los Angeles, CA, 904-908. h#PS://dO]'Org/1O'] 145/169059.169225)
[14] If This Then That 2011. If This Then That. http:/ifttt.com. [27] Tim Nolet. 2020. Puppeteer Recorder. https://github.com/checkly/
[15] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. puppeteer-recorder.))))
2003. Programming by Demonstration Using Version Space Algebra. [28] Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin Guu, and Percy
Mach. Learn. 53, 1-2 (Oct. 2003), 111-156. https://doi.org/10.1023/A: Liang. 2018. Mapping natural language commands to web elements.
1025671410623 In Proceedings of the 2018 Conference on Empirical Methods in Natu-
[16] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008. ral Language Processing. Association for Computational Linguistics,
CoScripter: Automating & Sharing How-to Knowledge in the En- Brussels, Belgium, 4970-4976. https://doi.org/10.18653/v1/D18-1540
terprise. In Proceedings of the SIGCHI Conference on Human Fac- [29] Gordon W Paynter. 1999. Familiar: Automating Repetition in Common
tors in Computing Systems (Florence, Italy) (CHI ’08). Association Applications.. In New Zealand Computer Science Research Students’
for Computing Machinery, New York, NY, USA, 1719-1728. https: Conference. Citeseer, 62-69.
//doi.org/10.1145/1357054.1357323 [30] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,

R. Suzuki, and B. Hartmann. 2017. Learning Syntactic Program

https://github.com/TalAter/annyang
https://github.com/TalAter/annyang
https://doi.org/10.1145/3022671.2984020
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3133875
https://doi.org/10.1145/3133875
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1016/B978-0-08-051574-8.50083-2
https://doi.org/10.1016/B978-0-08-051574-8.50083-2
https://doi.org/10.1145/3229434.3229481
https://doi.org/10.1145/3229434.3229481
https://github.com/puppeteer/puppeteer
http://ifttt.com
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1753326.1753432
https://doi.org/10.1145/1753326.1753432
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.1145/1240624.1240767
https://github.com/antonmedv/finder
https://github.com/antonmedv/finder
https://doi.org/10.1145/169059.169225
https://github.com/checkly/puppeteer-recorder
https://github.com/checkly/puppeteer-recorder
https://doi.org/10.18653/v1/D18-1540

PLDI 21, June 20-25, 2021, Virtual Event, Canada

(31]

(32]

(33]

Transformations from Examples. In 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE). 404-415. https:
//doi.org/10.1109/ICSE.2017.44

Alborz Rezazadeh Sereshkeh, Gary Leung, Krish Perumal, Caleb
Phillips, Minfan Zhang, Afsaneh Fazly, and Iqbal Mohomed. 2020.
VASTA: A Vision and Language-Assisted Smartphone Task Automa-
tion System. In Proceedings of the 25th International Conference on
Intelligent User Interfaces (Cagliari, Italy) (IUI °20). Association for
Computing Machinery, New York, NY, USA, 22-32. https://doi.org/
10.1145/3377325.3377515

Janice Tsai and Jofish Kaye. 2018. Hey Scout: Designing a Browser-
Based Voice Assistant. (2018). https://aaai.org/ocs/index.php/SSS/
SSS18/paper/view/17543

Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck,
James Landay, and Monica S. Lam. 2021. Grounding Open-Domain

Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

[34]

[35]

Instructions to Automate Web Support Tasks. In Proceedings of the 2021
Annual Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL-HLT 2021) (To Appear). https:
//arxiv.org/abs/2103.16057

Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli:
Using GUI Screenshots for Search and Automation. In Proceedings of
the 22nd Annual ACM Symposium on User Interface Software and Tech-
nology (Victoria, BC, Canada) (UIST ’09). Association for Computing
Machinery, New York, NY, USA, 183-192. https://doi.org/10.1145/
1622176.1622213

Tantek Celik, Elika J. Etemad, Daniel Glazman, Ian Hickson, Peter Linss,
and John Williams. 2018. Selectors Level 3 (W3C Recommendation).
https://www.w3.org/TR/selectors-3/.

https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1145/3377325.3377515
https://doi.org/10.1145/3377325.3377515
https://aaai.org/ocs/index.php/SSS/SSS18/paper/view/17543
https://aaai.org/ocs/index.php/SSS/SSS18/paper/view/17543
https://arxiv.org/abs/2103.16057
https://arxiv.org/abs/2103.16057
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1145/1622176.1622213
https://www.w3.org/TR/selectors-3/

	Abstract
	1 Introduction
	1.1 End-User Programmable Virtual Assistants
	1.2 The Design of diya
	1.3 Contributions

	2 Overview of diya
	2.1 Example
	2.2 Co-Design of ThingTalk 2.0 and its Multi-Modal Specification
	2.3 diya System Overview

	3 Web Primitives
	3.1 Parameters and Variables
	3.2 Selector References
	3.3 Web Primitive Statements

	4 Control Constructs
	5 The diya System
	5.1 Translating the Specification to ThingTalk
	5.2 ThingTalk Runtime

	6 Implementation
	7 Experimentation
	7.1 What Do Users Need To Automate?
	7.2 Can Users Learn To Program In diya?
	7.3 Evaluating Implicit Variables
	7.4 Real Scenarios Evaluation

	8 Discussion
	8.1 Web Automation
	8.2 Voice Input
	8.3 Privacy
	8.4 Skill Management and Editability

	9 Related Work
	9.1 Virtual Assistants
	9.2 Multi-Modal PBD
	9.3 PBD for Automation

	10 Conclusion
	Acknowledgments
	References

