
DIY Assistant: A Multi-Modal

End-User Programmable Virtual Assistant

Michael H. Fischer
∗

Giovanni Campagna
∗

Euirim Choi

Monica S. Lam

Computer Science Department

Stanford University

Stanford, California, United States

Visit a acouplecooks.com.

Figure 1. Creating a virtual assistant skill that returns the cost of ingredients in a list using diya (DIY Assistant). (a) A user

sees a cookie recipe on a popular food blog and wants to see how much the ingredients are. (b) They enter diya’s recording

mode using their voice and search for one of the ingredients on Walmart’s website. (c) They click on the first search result and

highlight the price, telling diya via voice that it should be returned. (d) A few days later, they are interested in the “Spaghetti

Carbonara" recipe on another food blog. They highlight the ingredients and ask diya to run the previously defined program

with them. (e) diya returns the prices of the items.

Abstract

While Alexa can perform over 100,000 skills, its capability

covers only a fraction of what is possible on the web. Indi-

viduals need and want to automate a long tail of web-based

tasks which often involve visiting different websites and re-

quire programming concepts such as function composition,

conditional, and iterative evaluation. This paper presents

diya (Do-It-Yourself Assistant), a new system that empow-

ers users to create personalized web-based virtual assistant

skills that require the full generality of composable control

constructs, without having to learn a formal programming

language.

With diya, the user demonstrates their task of interest in

the browser and issues a few simple voice commands, such as

∗
Equal contribution

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’21, June 20–25, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454046

naming the skills and adding conditions on the action. diya

turns these multi-modal specifications into voice-invocable

skills written in the ThingTalk 2.0 programming language

we designed for this purpose. diya is a prototype that works

in the Chrome browser. Our user studies show that 81% of

the proposed routines can be expressed using diya. diya is

easy to learn, and 80% of users surveyed find diya useful.

CCS Concepts: • Software and its engineering → Pro-

gramming by example; Domain specific languages; •

Human-centered computing → Natural language inter-
faces; Personal digital assistants.

Keywords: end-user programming, programming by demon-

stration, web automation, voice user interfaces, virtual assis-

tants

ACM Reference Format:

Michael H. Fischer, Giovanni Campagna, EuirimChoi, andMonica S.

Lam. 2021. DIY Assistant: A Multi-Modal End-User Programmable

Virtual Assistant. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implemen-
tation (PLDI ’21), June 20–25, 2021, Virtual Event, Canada.ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3453483.3454046

https://doi.org/10.1145/3453483.3454046
https://doi.org/10.1145/3453483.3454046


PLDI ’21, June 20–25, 2021, Virtual Event, Canada Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

1 Introduction

Many enterprises today are improving the cost efficiency of

their businesses with Robotic Process Automation (RPA), the

use of AI bots to automate routine digital tasks. Today, pro-

cess automation is performed mainly by developers in RPA

service companies. This paper explores enabling end users
to automate their own workflows, making automation af-

fordable for individuals and small companies. As established

by the trend of consumerization of IT, technology shown

to be useful for consumers may also be adopted in business

workflows.

This paper proposes diya (Do-It-Yourself Assistant), a

multi-modal system that lets end users apply conventional

programming concepts to the task of web automation, with-

out having to learn a formal language.

1.1 End-User Programmable Virtual Assistants

We look to the virtual assistant as a new software architec-

ture for end-user process automation. Today, commercial

assistants like Alexa offer 100,000 skills, which are APIs

that users can invoke using voice. Recent projects let users

create new skills by program-by-demonstration on mobile

apps, such as ordering coffee or finding the closest restau-

rant [18, 19, 22, 31] . Instead of defining primitive skills on

single apps, IFTTT supports composition of APIs in “if-this-

then-that” constructs using a graphical user interface [14].

The Almond virtual assistant generalizes the if-this-then-

that construct to “when-get-do,” and uses a semantic parser

to translate natural language into a formal language called

ThingTalk 1.0 [6]. End users can now specify simple event-

driven programs in natural language.

As our goal is to automate consumers’ repetitive work

flows, we conduct a formative user study to understand the

nature of these tasks. Of the 71 tasks suggested by the users

in our study, 99% of the skills are intended for the web. Here

are some representative examples of tasks that consumers

or workers would like to automate:

Buy these concert tickets as soon as they are available.
Send Happy Holidays to all my friends on Facebook.

Translate all non-English emails in my inbox to English.
Order food for a recurring employee lunch meeting.

Compile a weekly report of sales.
Send a personally-addressed newsletter to all people in a list.

Check the price of a list of stocks.

We find that users do not want to just replace a few clicks

with a verbal command. But rather, the tasks they wish to

automate require operating across multiple pages, where

the result of one page is used as input in another; the tasks

may be repeated periodically or applied conditionally and

to multiple elements in a data set. To accomplish such tasks,

it is insufficient to let users specify just single-statement or

straight-line programs. End users need to bring to bear all

standard programming language concepts to create tasks

of arbitrary complexity. These concepts include function

abstraction, composition of control constructs, and carrying

states across statements with variables. This paper asks if

it is possible to give the full power of programming to end-

users in web automation, without requiring them to learn a

formal language.

1.2 The Design of diya

We propose diya, short for Do-It-Yourself Assistant, a multi-

modal end-user programmable virtual assistant for web-

based tasks. A diya user can define new skills involving

GUI interactions on the web, and they can invoke the skills

by voice. Parameters are given verbally or by pointing to

them with the mouse. diya is designed to be powerful, yet

easy to use and learn.

Figure 1 shows how a user defines a skill to research the

cost of a recipe using diya
1
. They take a recipe on a website,

define a “price” function that returns the price of an ingre-

dient in Walmart, and run “price” on the list of ingredients.

This simple routine combines information from two different

websites, making it unlikely a dedicated API combining both

exists. It involves iteration and aggregation, which current

virtual assistants are unable to do.

Web-Automation Tradeoff. Virtual assistant skills today are
implemented by developers connecting voice interfaces to

APIs. Not only are APIs unavailable for most web services,

end users often do not know how to use APIs. Consumers

know their task as visiting certain pages, choosing from

available options, entering words in the appropriate input

boxes, and clicking the sequence of buttons. They cannot

even verbalize their tasks in detail without referring to the

GUI interface. Thus, the simplest way for end users to specify

new functionality is to automate their web operations. Au-

tomating operations via the GUI interface takes advantage

of the generality of the web and minimizes the learning over-

head. However, web pages are heterogeneous and dynamic

in nature. A web page is updated more often than an API,

and skills defined by web page navigation operations are

more fragile.

DIYA is like a lightweight scripting tool that lets end users

automate their repetitive, long-tail tasks. It is useful for off-

the-cuff automation of one-off tasks on the web. When faced

with repeated tasks, such as writing personally addressed

emails for a long mailing list, consumers would find diya

handy, provided we keep the automation process quick and

easy to learn. This approach complements the more robust

API-based implementations, which exist only for the most

frequently used skills. Once we capture the intent of the end

users, GUI operations can be substituted with API calls, if

they are available, by professionals in the future.

1
A video showing how diya is used on a similar example is available at

https://oval.cs.stanford.edu/papers/diya-pldi21.mp4.

https://oval.cs.stanford.edu/papers/diya-pldi21.mp4


DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant PLDI ’21, June 20–25, 2021, Virtual Event, Canada

Multi-Modal Specification. To give users the full power of a
programming language in web automation, diya introduces

a multi-modal interface that combines the advantages of

programming by demonstration (PBD) and natural-language

specification. A traditional PBD system passively observes a

user’s actions in the web browser, and then replays a straight-

line sequence of steps. More advanced systems use program

synthesis techniques to generalize the action sequences to

other data elements in iterative execution. Having the system

infer what the user wants is applicable only to simple tasks.

On the linguistic front, neural semantic parsers have been

applied to translate individual natural-language sentences

into single-statement programs [7]. Not only is it hard for

users to verbalize complex, multi-statement programs, it is

also difficult to train a sufficiently-accurate semantic parser.

In our multimodal system, programming by demonstra-

tion lets users perform multiple steps naturally, working

with specific and concrete input parameter values. Voice

commands allow users to create abstraction by naming func-

tions, and to generalize from a program trace, such as why a

certain element is chosen to enable conditional execution,

and which functions are to be applied to a data set.

ThingTalk 2.0 Design. To give end users the full power

of programming, we need a formal programming language

as the target of the multimodal specification. We cannot

simply adopt a conventional programming language. Take

the design of ThingTalk 1.0 for example. It was designed to

support natural-language specification of single-statement

programs [7]; as such it does not even have variables, as

end users do not know anything about variables. To go from

single statements to a full-blown programming language, we

introduce ThingTalk 2.0, which supports function abstrac-

tion, composability of statements, and the use of variables

to carry state across statements. The language is designed

carefully to support multimodal specification with the goal

of making it as natural as possible for the end users. For

example, we do not ask end users to indicate scoping with

conventional nested “begin” and “end” constructs.

Our insight in the design is to support composability just

with function definitions. As end users are accustomed to

invoking skills in virtual assistants, they are familiar with

function abstraction. By enabling users to define functions

which can themselves invoke and compose functions, we sup-

port composition of all control constructs to create programs

with arbitrarily complex functionality. Instead of teaching

users to declare function signatures formally, the user only

needs to learn the pair of “start recording” and “stop record-

ing” commands, which are obvious. The user only works

with concrete values; DIYA automatically substitutes them

with parameter references. The user does not have to think

abstractly. We infer the function signatures in a PBD as the

user says the function name and uses the mouse to indicate

the input parameter value, etc. Function composition fol-

lows naturally as the user selects the result of a function and

invokes another. Thus, the user gets the power of nesting

control constructs and function composition without having

to be taught.

1.3 Contributions

Our paper makes the following contributions:

1. Our need-finding survey shows that consumers are in-

terested in automating their tasks on the web, many of

which require control structures: iterations, conditionals,

and function composition.

2. diya: the first multi-modal virtual assistant that lets end

users define new web-based skills with control constructs,

without learning a formal language. diya supports 81% of

the tasks collected in our need-finding user survey.

3. ThingTalk 2.0: the first virtual-assistant programming lan-

guage for automating web-based tasks with a multi-modal

PBD specification. The language supports full composabil-

ity of functions, iterative and conditional statements while

providing a natural easy-to-learn specification interface.

4. We developed an end-to-end prototype of the diya design.

In a user study involving five tasks in a controlled envi-

ronment, we show that the system is easy to learn and

use. In a user study with four real-world scenarios, 80%

of the users find our prototype useful.

2 Overview of diya

The goal of diya is to support users on their day-to-day

work and personal tasks. These tasks include monitoring

data and receiving alerts, generating reports with summary

statistics, and submitting repeated forms over each element

of a list such as sending emails or placing orders. The tasks

can span multiple websites and can require complex logic

and computation.

As a PBD system, diya allows users to perform their rou-

tine as usual, clicking on buttons and typing text into input

boxes. diya requires the user to add only a few commands by

voice to turn each task into a virtual assistant skill they can

invoke. A diya specification is thus multi-modal, consisting

of web primitives, which capture the mouse and keyboard

operations, and constructs, which are the verbal statements

to describe the control flow. diya translates the specification

into a skill written in ThingTalk, which can then be invoked

either by pure voice or by combining voice and GUI.

2.1 Example

We introduce how diya works by way of the recipe pricing

example in Table 1. The first column shows what Bob, our

user, says and does; the second column shows the corre-

sponding ThingTalk statements. The @ sign denotes a call to

a function in the library; parameters are passed by keyword.

Web primitives are mapped to library calls, the constructs

are mapped to ThingTalk control constructs.



PLDI ’21, June 20–25, 2021, Virtual Event, Canada Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

diya Specification ThingTalk Code

Construct: “Start recording price” function price(param : String) { (1)

Web primitive: Open walmart.com @load(url = “https://walmart.com”); (2)

Web primitive: Paste in search box @set_input(selector = “input#search”, value = param); (3)

Web primitive: Click Search button @click(selector = “button[type=submit]”); (4)

Web primitive: Select price of top result let this = @query_selector(selector = “.result:nth-child(1) .price”); (5)

Construct: “Return this value” return this; (6)

Construct: “Stop recording” } (7)

Construct: “Start recording recipe cost” function recipe_cost(p_recipe : String) { (8)

Web primitive: Open allrecipes.com @load(url = “https://allrecipes.com”); (9)

Web primitive: Type in search box @set_input(selector = “input#search”, value = “grandma’s chocolate cookies”); (10)

Construct: “This is a recipe” @set_input(selector = “input#search”, value = p_recipe); (11)

Web primitive: Click Search button @click(selector = “button[type=submit]”); (12)

Web primitive: Click the first result @click(selector = “.recipe:nth-child(1)”); (13)

Web primitive: Select all ingredients let this = @query_selector(selector = “.ingredient”); (14)

Construct: “Run price with this” let result = this ⇒ price(this.text); (15)

Construct: “Calculate the sum of the result” let sum = sum(number of result); (16)

Construct: “Return the sum” return sum; (17)

Construct: “Stop recording” } (18)

Table 1. Sum The Price of Recipe Ingredients. The user performs the actions in the left column, and the corresponding

ThingTalk program in the right column is generated. CSS selectors are simplified in the example for illustration purposes.

Bob’s first task is to build a virtual assistant skill that lets

him query the price of any ingredient. Bob copies the name

of an ingredient, opens Walmart.com, and starts recording

the “price” function. He pastes the name of the ingredient in

the search, searches the product, selects the price and returns

it. This completes the “price” function (lines 1 to 7).

With the “price” function in hand, Bob can now build a

virtual assistant skill that computes the price of a whole

recipe. Bob visits a recipe website and starts recording the

“recipe_cost” function. He types “Grandma’s chocolate cook-

ies” into the search box. He then indicates that this is a

parameter to be called “recipe” and clicks Search (lines 10

to 12). He then clicks on the first recipe (line 13) and sees

the full list of ingredients. He needs to compute the price of

each ingredient, so he selects all the ingredients in the list

and then says “run price with this” (line 15). Because he has

selected multiple elements, the selection is iterated and the

“price” function is called on each element, returning a list of

prices. Bob is shown the list of prices computed immediately.

He then says “calculate the sum of the result,” and “return the

sum.” He finishes recording the top level function by saying

“stop recording.”

Subsequently, when he encounters a different cookie, such

as “white chocolate macadamia nut cookie,” he can say “run

recipe with white chocolate macadamic nut cookie,” or select

the name with his mouse and say “run recipe with this.”

This example shows that Bob is performing his task as

usual and needs to issue only a few extra verbal commands.

The user is responsible for delineating the start and end

of each function, naming the function, and identifying the

parameters. The rest of the commands, such as running the

“price” function and computing the sum, provide meaningful

functionality to the end user.

2.2 Co-Design of ThingTalk 2.0 and its Multi-Modal

Specification

Here we discuss the principles behind the design of

ThingTalk 2.0 as well as how a program in ThingTalk is

expected to be specified. Each construct in the language will

be formally covered in Sections 3 and 4.

Multi-modal end-user-programming. In diya, the user spec-

ifies the task step-by-step, using the most appropriate modal-

ity for each instruction: web primitive operations are pro-

vided by demonstration, while control constructs and voice

assistant skills are accessed as voice commands. Every prim-

itive or construct is converted into code directly, requiring

no sophisticated inference, generalization, or guesswork in

the implementation. The user is seeing the results of each ac-

tion, including function invocations while inside a function

definition. The results are shown in a pop-up, so the users

can continue the demonstration by reacting to the results.

Integration with virtual assistants. All the skills in the vir-

tual assistant are available to the user. The user can invoke

user-defined skills (e.g. “price”), built-in functions (e.g. sum-

mation), and standard virtual assistant skills (e.g. weather,

search). Conversely, all skills that the user defines are avail-

able in the virtual assistant to be used later in a voice-only

user interface. This allows the user to seamlessly combine

web-based tasks with existing APIs.

Functions for composability and control flow. Unlike con-
ventional programming languages, ThingTalk conditional

and iterative constructs can only be applied to a single oper-

ation or function. The conventional “begin” and “end” or “{”



DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant PLDI ’21, June 20–25, 2021, Virtual Event, Canada

and “}” notations do not transfer well to voice input. Instead,

iteration is implied when a function is applied to a set of data,

as shown in the example. Conditional operation is executed

if a variable satisfies a predicate. For example, “return this

if it is greater than 98.6.” To support arbitrary composition

of constructs we rely on function encapsulation, with the

added advantage that the user can now refer to the sequence

of operations with a meaningful name.

Conditionals do not have an “else” clause. In PBD the

user is operating with concrete values, so they can only

perform actions that follow from conditions the concrete

values satisfy. In the future, we can add “else” clauses by

letting sophisticated users refine a defined function with

additional demonstrations using alternate concrete values.

Parametrization and variables.Many tasks require passing

parameters and carrying state across multiple statements,

for example to pass the result of one function call to the next.

We design ThingTalk so that many programs can be created

without explicit declarations of variables and parameters. We

bind the current selection in the GUI to the implicit variable

“this”, which can be referred to naturally by voice. We bind

the “copied” value in the implicit variable “copy,” which can

be used in subsequent “paste” operations. If the user pastes

a value that is copied before the current function definition,

the user is implicitly defining input parameters. This design

works well as it mirrors the standard GUI design to have

only one clipboard value and one latest selection.

Whereas conventional programmers typically go back

to add variable declarations as needed, PBD is inherently

sequential. We let the user declare input parameters when

they are first used and they are automatically added to the

function signature being defined, as in the case of the “recipe”

parameter in the example (Table 1, line 11).

diya also supports user-defined variables, but they are

expected to be used only by expert users. Whereas conven-

tional programming languages are typically parsimonious in

feature design, diya is designed to make the common case

easy for the sake of learnability. Note that user-defined vari-

ables allow tracking multiple parameters and variables in

the same function. This increases the expressiveness of the

language beyond what is possible with pure PBD, which only

carries state implicitly in the web page or with copy-paste.

2.3 diya System Overview

The diya accepts multimodal commands to (1) apply virtual

assistant skills to information on the website and (2) specify

new skills via the programming-by-demonstration paradigm.

The system captures the specification in ThingTalk, a for-

mal language with well-defined semantics. This facilitates

building other tools, such as reading back the program to

the user and editing conversationally; these tools, however,

are outside the scope of this paper. The architecture of the

AAPL “Call stocks on 
this.”

ASRGUI Abstractor

Semantic Parser

this ⇒ stock(param=this.text);

Event Type:
select

CSS Selector:
a.company:nth-child(3)

let this := @query_selector

(“a.company:nth-child(3)”);

THINGTALK RUNTIME

ThingTalk JIT Compiler

Browser Automation API

Automated Browser

$297.56

SPECIFICATION TRANSLATOR

Figure 2. A high-level overview of the algorithm that diya

uses to convert a multi-modal specification to ThingTalk.

system is shown in Fig. 2. The system consists of (1) a trans-

lator that maps the multimodal specification into ThingTalk,

and (2) a ThingTalk runtime system that executes the code.

The specification translator consists of twomodules: aGUI
Abstractor that converts the mouse and keyboard operations

into web primitives in ThingTalk, and a natural-language
processing module that translates the natural language sen-
tences into ThingTalk constructs. The latter consists of an

automatic speech recognition (ASR) component which trans-

lates the voice input into text, and a semantic parser that

translates the text into code.

The ThingTalk runtime system consists of a JIT compiler

and a library of browser-automation APIs running on a sep-

arate browser. This allows users to issue a virtual assistant

command while not running a browser themselves. More-

over, this is necessary even in the specification of a function

that calls another function, so as to show the results to the

user for demonstration, without affecting the current page.

Details on the system are discussed in Section 5.

3 Web Primitives

As the user demonstrates the program, the GUI interactions

are translated into built-in functions in ThingTalk, as shown

in Table 2. We must record all keyboard inputs, mouse clicks

on buttons and links, as well as select, cut/copy, and paste.

We do not need to record operations such as scrolling or

moving the mouse, as those operations only affect the view

of the users. Drawing with the mouse, which involves a click

and a drag, is not currently supported.



PLDI ’21, June 20–25, 2021, Virtual Event, Canada Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

diya Web Primitives ThingTalk Web Primitives Description

Open page (url) @load(value) Navigate the browser to the given URL.

Click (element) @click(selector) Click on the element matching the CSS selector.

Cut/Copy (element) let copy = @query_selector(selector) Read the text in each element matching the CSS selector and

bind it to variable “copy”.

Select (element)
[“this is a ⟨var-name⟩”]

let var = @query_selector(selector) Read the text in each element matching the CSS selector and

bind it to variable “this” and a local variable ⟨var-name⟩ if given.
“Start selection”

[Select (element)]∗

“Stop selection”

[“this is a ⟨var-name⟩”]

let var = @query_selector(selector) While in selection mode, add the clicked elements to the CSS

selector and bind it to variable “this” and a local variable ⟨var-
name⟩ if given.

Paste (element) @set_input(selector, value) Set the input elements matching the CSS selector to the value of

the “copy” variable or the first parameter if the “copy” variable

is not defined in the function.

Type (element, value)
[“this is a ⟨var-name⟩”]

@set_input(selector, value) Set the input elements matching the CSS selector to the given

value or the parameter ⟨var-name⟩ if given.
Table 2. Web primitives that the user can perform in diya, and the corresponding ThingTalk statements. “CSS selector” refers

to the selector derived from the element used during demonstration.

3.1 Parameters and Variables

To support parameterization of skills, as well as computation

on results, diya must track and distinguish between literals

and variables. diya needs the variable names and literals to

generate the code, and the actual values to run the code and

generate results, so as to support the user’s demonstration

of the program. As each statement is generated, diya also

remembers the values of the variables in the program.

In ThingTalk, we distinguish between input parameters

and local variables. Input parameters are always scalar string

values. If the user applies a function to a list of values, the

function is called with each element individually. Local vari-

ables are used to represent the content of the user selection

on the page and contain a list of HTML elements; a scalar

variable is a degenerate list with one element. Each entry in

the list records a unique ID of the HTML element, the text
content, and the number value, if any. Applying a scalar op-

eration on a variable indicates that the operation is applied

iteratively to each element. This avoids additional terminol-

ogy for iterations.

To minimize the need for users to declare and manage

variables, the run-time system has two implicit variables:

the copy variable to save the copied or cut value and a this
variable to remember the selected variable. Users can refer to

the variable being selected as “this” in the immediate verbal

command. The copy variable is only referred to implicitly in

paste operations. The user can also define named variables,

by issuing the command “this is a ⟨variable-name⟩” after
selecting a value. Parameters and variables can be referred

to by name in ThingTalk constructs discussed in section 4.

Input parameters are also inferred by diya. Users can input

a value during a demonstration by pasting or typing in an

input box, or selecting from an HTML drop-down box. For

the first case, any time a paste operation refers to a “copy”

variable assigned outside the function, it is considered an

input parameter. For the latter two cases, the user indicates

that the value they just entered is an input parameter by

saying that “this is a ⟨variable-name⟩” (Table 1, line 11).

Otherwise the value is considered a literal (Table 1, line 10).

diyawill augment the signature of the function being defined

upon encountering a new parameter.

To allow the user to select complex lists of elements, and

elements in pages with complex layouts, in addition to the

plain browser selection, diya also supports an explicit se-
lection mode. The user enters the selection mode with the

voice command “start selection”. While in selection mode,

the page is not interactive: instead, clicks add or remove the

clicked elements to the current selection. Selection mode is

exited with “stop selection.” Once exited, selection mode is

treated equivalently to a native browser selection operation.

3.2 Selector References

ThingTalk uses CSS (Cascading Style Sheets) selectors [35] to
refer to the HTML element of interest. CSS selectors are a lan-

guage for describing a subset of HTML elements in a page,

originally designed for styling. CSS selectors use seman-

tic information to identify the elements (HTML tag name,

author-specified ID and class on each element), positional

and structural information (ordinal position in document

order, parent-child relationship), and content information.

When recording the action, diya records which element

the user is interacting with, and generates a CSS selector

that identifies that element uniquely. When available, diya

uses the ID and class information to construct the selector,

falling back to positional selectors when those identifiers

are insufficient to uniquely identify the element. As such,

the CSS selectors diya generates are robust to changes in

the content of the page and small changes in layout. diya

selectors work best with HTML pages where IDs and classes



DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant PLDI ’21, June 20–25, 2021, Virtual Event, Canada

diya Constructs ThingTalk Constructs Description

“Start recording ⟨func-name⟩” function ⟨func-name⟩(){ Begin recording a new function, with the given name.

“Stop recording” } Complete the current function definition and save it

for later invocation.

“Run ⟨func-name⟩ [with ⟨var-name⟩]
[if ⟨cond⟩]”

[let result =]
[⟨var-name⟩[, ⟨cond⟩] ⇒]
⟨func-name⟩([⟨var-name⟩.text])

Execute a previously-defined function, optionally

passing the content of the named variable (or “this” to

refer to the current selection), and optionally filtering

based on a predicate on the content of the variable.

The result, if present, is stored in the “result” variable.

“Run ⟨func-name⟩ [with ⟨var-name⟩]
at ⟨time⟩”

timer(⟨time⟩) ⇒ ⟨func-name⟩() Execute the function every day at the given time.

Optionally, the function is applied over each element

of the named variable.

“Return ⟨var-name⟩ [if ⟨cond⟩]” return ⟨var-name⟩ Use the named variable as the return value of the

current function. The variable can be “this” to refer to

the current selection. If a condition is specified, only

the elements matching the condition are returned.

“Calculate the ⟨agg-op⟩ of ⟨var-name⟩” let ⟨agg-op⟩ =
⟨agg-op⟩(number of ⟨var-name⟩)

Compute the given aggregation operator based on

the numeric values in the named variable, and save

it as a new variable.

Table 3. Constructs that diya understands and corresponding ThingTalk statements. The user issues each construct vocally.

The table includes only the canonical form of each utterance; users can use different words to convey the same meaning.

are assigned according to the semantic meaning of each

element. Examples of selectors are shown in Table 1.

3.3 Web Primitive Statements

Each GUI interaction is directly translated into a ThingTalk

statement, as shown in Table 2. For each statement, the but-

tons, output texts, or input boxes accessed are represented

as CSS selectors. The “open page” operation is immediately

added based on the current URL when the user starts record-

ing, and also when the user navigates explicitly by typing

in the address bar. The “click” action is faithfully recorded

to be replayed. A “copy” operation binds the selected text

to the “copy” variable. The “select” operation maps to the

“query_selector” web primitive, which binds the selected

values to the “this” variable, and to a local variable if a vari-

able name is added. The “paste” operation is mapped to a

“set_input” web primitive, which may refer to either the

“copy” variable or the first parameter depending on whether

a copy operation is issued in the same function. The “type”

operation is also mapped to “set_input,” and refers to the

literal unless parameterized by the user.

4 Control Constructs

diya supports function composition, iteration, and condi-

tional execution. While the control constructs, as shown in

Table 3, are limited, diya has rich functionality because it

can invoke and combine any of the public or custom virtual

assistant skills.

Functions in diya can be invoked by voice as skills outside

of the browser. Functions should only depend on the input

parameters and not the state of the browser, such as its

history or the content of any form filled before recording is

started. That is, functions are not just macros that are to be

replayed in the current calling context. The definition of a

function should start immediately after loading a webpage.

The function can depend on the persistent state (cookies,

server-side state) and can perform side effects.

The user delimits a function definition with a pair of “start

recording ⟨func-name⟩” and “stop recording”. At most one

return statement can appear in the function, but the return

statement need not be the last. It can be followed by addi-

tional web primitives, which do not affect the return value.

This allows the function to perform “clean up” actions, such

as logging out, before returning the result. The returned

value can be the “this” variable, or a named variable.

Functions are run with the “run” construct. If the function

has one parameter, the user can simply say “run ⟨func-name⟩”
with either “this” or a named parameter. If the function has

multiple parameters, the parameter passing convention is

based on key-value pairs. The user must name the actual

parameters with the names of the formal parameters in the

function, and the user can simply say “run ⟨func-name⟩.” All
functions are defined with scalar parameters. When func-

tions are applied to list variables, the functions are applied

individually to each element. If a function has a result, the

result is bound to the “result” variable. Outside of a demon-

stration, functions can be set to run at a certain time, such

as “at 9 AM.”

Function invocations, return statements, and iterative

statements can be conditionally executed. The computation

is performed on each element of the current selection or a

named variable that satisfies the given predicate. For exam-

ple, the invocation “run alert with this if this is greater than



PLDI ’21, June 20–25, 2021, Virtual Event, Canada Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

98.6”, where “this” is a list of temperatures, generates an alert

for each temperature above 98.6. The ThingTalk syntax is

this, number > 98.6 ⇒ alert(param = this.text);
number is a field of the currently selected HTML elements

(in the “this” variable) and it is computed by extracting any

numeric value in the elements.

Our current system currently only supports a single pred-

icate, which can be equality, inequality, or comparison be-

tween the current selection and a constant. As the natural

language technology improves, we expect to support arbi-

trary logical operators (and, or, not) in the future.

Finally, diya lets users perform aggregate operations on

the current selection or a named variable. The supported

operations are those used in database engines: sum, count,
average,max, andmin. The user can issue the voice command

“calculate the ⟨operation⟩ on ⟨var⟩.” The result is stored in a

named variable with the same name as the operation.

5 The diya System

In this section, we describe how diya transforms a multi-

modal specification into a ThingTalk function, and how a

ThingTalk function is executed. The high-level flow of the

diya system is shown in Fig. 2.

5.1 Translating the Specification to ThingTalk

diya contains a GUI abstractor component that records all

the actions the user performs on a page, and maps them to

corresponding ThingTalk statements. The GUI abstractor

uses a browser extension to inject JavaScript code that in-

tercepts the actions on each page. The browser extension

displays to the user a prominent indicator when it is record-

ing the user’s actions.

When the user starts recording a function, diya must first

record the context in which the function is recorded. diya

records the current URL, and maps it to a @load web primi-

tive. diya’s injected JavaScript code listens to all interaction

events (keyboard, mouse, and clipboard) from the browser on

the entire page. When an event is intercepted, the injected

JavaScript code considers the HTML element that is the tar-
get of the event, and constructs a new CSS selector that

identifies that element uniquely. The CSS selector is used to

construct the corresponding ThingTalk web primitive.

diya continuously listens for the user’s voice and reacts

to the commands that map to ThingTalk control constructs

(Table 3). Each utterance is passed to automatic speech recog-

nition (ASR), followed by a semantic parser that translates

it into a ThingTalk fragment. The ThingTalk code is then

passed to the ThingTalk runtime, and diya acknowledges

the user’s command by speech.

5.2 ThingTalk Runtime

The ThingTalk runtime must support the user in (1) defining

the function by demonstration, (2) invoking a pre-defined

function while browsing, (3) executing the function itself. In

the following, we describe these three run-time contexts in

reverse order: execution, browsing, and demonstration.

5.2.1 The Execution Context. Once a ThingTalk speci-

fication is complete, it is compiled to native JavaScript code

using the ThingTalk compiler. The JavaScript code is ex-

ecuted on an automated browser: a form of browser that

is driven with an automated API rather than interactively

by the user. This means that the function can be invoked

as a skill by voice, for example, on a smart speaker. Every

function invocation occurs in a new session in the browser,

starting with a @load web operation. That is, each function

executes in a separate, fresh copy of a webpage. This ensures

that the callee does not affect the calling function, except via

returned results. Nested function invocations are managed

with a stack; a new invocation pushes a new browser session

on the stack, which is popped when the function terminates.

The environment of the execution consists of all the ex-

plicitly and implicitly declared variables and parameters. The

semantics of each web primitive and construct is informally

introduced in Tables 2 and 3, respectively. For each reference

of a CSS selector, the run-time extracts theHTML elements as

specified from the page. The @load, @click, and @set_input

functions are mapped to the corresponding web automation

APIs to manipulate the webpage. @query_selector evaluates

the value of the specified selector. Note that the browser se-

lection and clipboard are not affected in an execution context.

Iteration, conditional execution, and aggregation operations

are implemented in straightforward JavaScript code.

5.2.2 The Browsing Context. A user can invoke a pre-

defined function while browsing whenever the diya browser

extension is enabled. The browsing context keeps track of

the latest values bound to the implicit variables, “this” and

“copy,” and any other explicitly named variables. There is

a single browsing context shared by all pages in a running

browser, and all variables named in the browsing context are

global. The values are derived from the HTML elements in

the webpages visited. As an optimization, we bind the values

of the implicit variables lazily when they are used, because

their values are available as the “clipboard” and “selection” in

the browser. When running a pre-defined diya function, the

values in the browsing context are passed into the execution

context. As discussed, the execution of any diya function

does not alter the state of the browsing context.

5.2.3 The Demonstration Context. When a user starts

recording a function, the user enters the demonstration con-

text. Here the user does the task they want recorded in the

browser, during which the code is generated.

The demonstration requires the computation to be per-

formed collaboratively between the user and the diya run-

time. The user performs web operations directly with their



DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant PLDI ’21, June 20–25, 2021, Virtual Event, Canada

mouse and keyboard in the normal browser (not an auto-

mated one). The runtime is responsible for executing all

function calls and aggregation operations in a separate au-

tomated browser, so that the results can be returned for

the user to continue the demonstration. This requires the

run-time system to:

1. Generate the code as the user defines it, as shown in

Tables 2 and 3.

2. Track the browsing context as the user demonstrates,

as discussed in Section 5.2.2.

3. Run the functions and aggregation operations as they

are added to the function definition. Each function

and computation is run in a new browser session as

discussed in Section 5.2.1, and the result is returned to

the user in the user’s normal browser.

6 Implementation

We implemented an end-to-end prototype for diya, writ-

ten in JavaScript. The implementation consists of a Google

Chrome browser extension that injects the diya recording

code in every page the user visits and a standalone Node.js

application containing the ThingTalk execution code. The

standalone application is based on the Almond assistant [6];

it spawns the automated browser and communicates with it.

To handle the user’s speech, we use the Web Speech API,

a native speech-to-text and text-to-speech API available in

Google Chrome. We use the annyang library [2] to under-

stand the user’s commands. This library uses a template-

based NLU algorithm, requiring the user to speak exactly the

supported words. At the same time, it supports open-domain

understanding of arbitrary words, which is necessary to let

the user choose their own function names. We include mul-

tiple variations of the same phrase to increase robustness.

CSS Selectors are generated using the finder library [25].

Event recording code is based off the Puppeteer Recorder

Chrome Extension [27], and event replaying uses the Pup-

peteer API [12] to automatically control Google Chrome.

The automated browser controlled by Puppeteer shares the

profile with the normal browser, including cookies, local stor-

age, certificates, saved passwords, etc. Automated actions are

executed at a reduced speed (slower than typical automation

but faster than human execution) to improve robustness to

dynamic page conditions and mitigate anti-spam measures.

7 Experimentation

To evaluate our system, we performed four experiments. (1)

We conduct a need-finding survey to learn what kind of web

tasks users would like to automate. (2) We evaluate whether

users can learn the diya specification constructs. (3) We eval-

uate the design choice of supporting implicit variables. (4)

We collect user feedback on diya in user-suggested scenarios

on real-world websites.

Figure 3. Programming experience of survey participants

that proposed skills for diya.

Figure 4. Occupation of survey participants that proposed

skills.

7.1 What Do Users Need To Automate?

Our first study is a need-finding online survey to learn what

users are interested in automating and whether the prim-

itives in diya are adequate. We recruit 37 participants on

Amazon Mechanical Turk (25 men and 12 women, average

age = 34), each of whom was paid $12 for approximately 60

minutes of their time. Survey participants had a mix of pro-

gramming experience (Fig. 3) and a variety of backgrounds

(Fig. 4). In the survey, respondents were first shown the func-

tionality of the system, then asked to describe 3 skills each

that they would like to automate. We collected 71 valid skills.

The proposed skills span 30 different domains, with the

most popular being food, stocks, local utilities, and bills

(Fig. 5). Representative tasks are shown in Table 4. Of these

71 skills, we found 24% do not require any programming

constructs, 28% need iteration, 24% need conditional state-

ments, and 24% need a trigger (a timer plus a condition). In

summary, 76% of the skills people want to automate require

the control constructs we introduce to PBD.

99% of the skills are intended for the web and 1% are to

be run on the local computer. 34% of skills are on websites

that need authentication, showing that users are interested

in skills that operate on their personal data. We found 81%

of the web skills can be expressed using diya. For the re-

maining 19%, 11% require producing charts, and 8% require

understanding videos and images. These functionalities are

orthogonal to our system and can be added to the system as

pre-defined skills. This shows that despite the simplicity of

diya, it largely covers what people want to automate.

Privacy. When automating a task that involves personally

identifiable information, 83% of the users wanted a privacy-

preserving system that ran locally. 66% of users wanted pri-

vacy protection even for tasks that did not involve personally

identifiable information. As our system is able to run on the



PLDI ’21, June 20–25, 2021, Virtual Event, Canada Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

foo
d
sto

cks

uti
lity

-lo
cal bill

s
em

ail
inp

ut
ala

rm

com
mun

ica
tio

n

da
tab

ase

sho
pp

ing

fin
an

ce
sea

rch
tic

ket
s
tod

o

utl
ity

-lo
cal

ho
st

uti
lity

-web

au
cti

on
s

au
tom

ati
on
bit

coi
n

bu
sin

ess
es

cal
en

da
r

med
ica

l

pro
du

cti
vit

y

rep
ort

ing
sea

rch

sur
ve

illa
nce tv

vis
ua

liza
tio

n

wea
the

r

writi
ng

0

2

4

6

8

Figure 5. Number of skills organized by domains that users were interested in creating using diya.

Domain Example Skill Constructs

Communication “Send a birthday text mes-

sage to people automatically.”

Iteration

Purchasing “Make a reservation for the

highest rated restaurants in

my area.”

Aggregation

(max),

Filtering

Purchasing “Order a ticket online if it

goes under a certain price.”

Timer,

Filtering

Purchasing “Order ingredients online for

a recipe I want to make, but

only the ingredients I need.”

Iteration,

Filtering

Finance “Check my investment ac-

counts every morning and

get a condensed report of

which stocks went up and

which went down.”

Iteration,

Filtering

Database “Automate queries I do by

hand every day for work for

inventory levels and delivery

times.”

Iteration

Security “Alert me when someone

moves on the camera of my

home security system.”

Unsupported

Table 4. Representative tasks that users wanted to automate.

All but the last one can be automated with diya. The last

task requires computer vision to process the image and is

out of the scope of this paper.

client as a Chrome extension and as a native application, we

are able to offer users privacy.

7.2 Can Users Learn To Program In diya?

Our next study asks if users can effectively learn the pro-

gramming constructs in diya. We conducted a remote user

study with the same participants as the need-finding survey.

Each participant was asked to perform five tasks, with each

task designed to be a realistic example of each of the sys-

tem’s control constructs. The tasks were unsupervised and

performed on custom demo websites in order of increasing

complexity to emulate the learning experience on the system.

Before each task, users watched a video demonstrating how

Construct Task

Basic Automate the clicking of a button.

Iteration Send an email to a list of email addresses.

Conditional Reserve a restaurant conditioned on rating.

Timer Buy a stock at a certain time.

Filter Show restaurants above a certain rating.

Table 5. Tasks performed by the participants in the program-

ming construct study.

the control construct worked. They then repeated the task.

Lastly, they were asked to do a different task that requires

the same construct. The five tasks they performed on their

own are shown in Table 5. Note that because the “Iteration”

task requires two parameters, the recipient name and their

email address, the users have to name the parameters ex-

plicitly, instead of relying on the copied data as the implicit

parameter.

Quantitative Results. Participants successfully com-

pleted the new tasks assigned using diya 94% of the time.

After the tasks, users were asked to complete a survey, rat-

ing a number of questions on a 5-point Likert scale from

“strongly disagree” to “strongly agree”. The results are shown

in Fig. 6 as “Exp. A.” We notice that users consistently found

the system easy to learn (72%), and easy to use (75%). 91% are

satisfied with the experience of testing it. The multi-modal

interface (“MMI” in the plot) is rated helpful by 81% of sur-

vey participants. Overall, 66% of the users agree that diya

is useful. These results confirm the need and usefulness of

diya, and suggest that the programming constructs in diya

can be learned. Note that in these experiments, users only

did simple tasks on a demo website, rather than real world

scenarios, which explains the relatively low propensity to

find diya useful.

7.3 Evaluating Implicit Variables

Instead of requiring users to define all their variables, diya

introduces the implicit “this” variable that the users can

define and use with select and paste actions. To evaluate this

design decision, we conduct a user studywith 14 users (7men

and 7 women, average age 25). The study was conducted over



DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant PLDI ’21, June 20–25, 2021, Virtual Event, Canada

Exp. A Exp. B Exp. A Exp. B Exp. A Exp. B Exp. A Exp. B Exp. A Exp. B0%

20%

40%

60%

Easy to learn Easy to use Satisfied MMI useful DIYA useful

Strongly disagree Disagree Neutral Agree Strongly Agree

Figure 6. Results of our user studies. “Exp. A” refers to the construct learning study, while “Exp. B” refers to the real world

evaluation study.

video conferencing.We ask the users to build an example skill

using both the explicit and implicit naming methods. Overall,

88% preferred the implicit version because it had fewer steps

and was faster. We found users did not like talking to their

computer as much.

7.4 Real Scenarios Evaluation

In our final experiment, we want to get users’ feedback on

using the system in real-life tasks drawn from our first user

study, using websites they are familiar with: Walmart, a

recipe website, a stock website, and a weather website. This

test is more complicated as it uses a combination of con-

structs; it also illustrates the utility of the system because

the tasks are more realistic. This end-to-end test also demon-

strates that diya is a fully functional system on real websites.

Each task involves the user defining a skill and invoking

it to see the result. We evaluated the following real-world

scenarios, chosen based on the need-finding experiment:

1. Calculate the average temperature. The user creates

a program that goes to weather.gov, enters their zip

code, calculates the average high temperature for the

week, and returns that value. This scenario exercises

the multi-selection and aggregation function.

2. Add items to an online shopping cart. The user has a
shopping list of items that they enter, and they need to

add them all to a shopping cart on everlane.com. This

scenario requires user input, copy-paste, and iteration.

3. Notify when stock prices dip. The user creates a skill on
zacks.com to receive a notification when a stock quote

goes under a fixed price. The skill is then triggered

every day at a certain time. This scenario tests the

conditional and timer functions of the system.

4. Add ingredients from a website to a shopping cart. This
task is similar to the task in Fig. 1. The user visits a

cooking website, acouplecooks.com, to find the price

of all the ingredients in a recipe on walmart.com. They

need to define a price function, and apply it iteratively

to ingredients in the recipe. This tests users’ under-

standing of calling functions in an iterative construct.

We conducted this study as an interactive user test (live

over video-conferencing) using the same participants as the

design decision study described above. Users first complete

a warm-up task of recording a simple function to familiarize

themselves with diya. They are then asked to complete each

task manually and on diya following a predefined script.

Whether each user completes the task first manually or using

diya is randomized. All users were able to install diya on

their Chrome browser and complete the tasks successfully.

To find how users would perceive diya’s value in real-

world scenarios, users complete a Likert-scale evaluation on

the whole system. The results are shown in Fig. 6 as “Exp.

B.” 73% of the users find the system easy to learn; 46% find

it easy to use, probably due to the complexity of the tested

tasks. Nonetheless, 67% are satisfied with the system. On

usefulness, 73% find the multimodal interface useful, and

80% of the users find diya useful. When compared with the

results in Exp. A, since the tasks are more realistic but harder,

the perceived usability and satisfaction are a little bit lower,

but the perceived usefulness is higher.

We also evaluate if it is harder to define a skill in diya

in comparison to just executing the task once by hand. We

ask the users to complete a NASA-TLX survey [13] after

each task. NASA-TLX is a standard set of metrics to assess

the perceived workload of a task. The user is asked to rate

their mental load, temporal stress (perceived time pressure),

overall task performance (subjectively assessed by the study

participant), required effort, and frustration. Lower scores are

better in all categories of the survey, except for performance,

where higher values are better. The graph shows the median

of each category as a middle line in each box; the box shows

the second and third quartiles, and the vertical lines show

the range of the distribution, excluding outliers.

As shown in Fig. 7, the aggregated results of the survey

indicate that there is no statistically significant difference

across all five metrics between completing the tasks by hand

and programming a skill using diya. We also asked the users

to self-report the amount of time it took them to complete

the task by hand, and to record the diya skill. We found no

statistical difference, although we found some significant

noise in the data due to self-reporting. Note that for tasks

2 and 4, which use iteration, users only performed a small

number of iterations by hand. Overall, both NASA-TLX and

the timing comparison suggest that programming a skill is

no harder than performing the task by hand. The key benefit

is that the tasks can run automatically in the future, which



PLDI ’21, June 20–25, 2021, Virtual Event, Canada Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

mental temporal performance effort frustration
metric

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

sc
or

e

Task 1
category

hand
tool

mental temporal performance effort frustration
metric

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

sc
or

e

Task 2
category

hand
tool

mental temporal performance effort frustration
metric

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

sc
or

e

Task 3
category

hand
tool

mental temporal performance effort frustration
metric

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

sc
or

e

Task 4
category

hand
tool

Figure 7. Evaluating the perceived workload of completing

four real-world tasks by hand and with diya, using NASA-

TLX scores. Lower scores are better in all categories, except

for performance, where higher values are better.

can save a lot of time, especially for iterative or trigger-based

tasks like checking stock prices. This is a promising result

that shows automation can be practical for end users.

7.4.1 Qualitative Feedback. During the user test, we also

collected qualitative feedback from the participants. A user

that was not able to program before said, “when you’re raised

on sci-fi movies, the thought of a system that can learn what

you need by voice is incredibly appealing.” Another user

saw the system as being very helpful in repeating common

tasks to accomplish her job; “for me as a data person espe-

cially, during the COVID-19 crisis when local governments

are behind on data standards, I’ve found the lack of such

a tool exhausting. The level of manual data entry required

to achieve my basic analysis goals is often more than I can

make time for, and one day that I fail to check is data that

may be permanently lost. I love the idea of being able to

program that cleanly, with my voice. I love that it can intelli-

gently extract numbers from characters and perform basic

operations, and run just by speaking.”

8 Discussion

This paper demonstrates that it is feasible for end users to

automate web tasks using composable control constructs.

Here we describe what our experimental results taught us

about the tradeoffswe havemade, and offer some suggestions

for future work.

8.1 Web Automation

Web automation is inherently fragile; it is not possible to au-

tomate all web tasks; automated routines break as web pages

are updated. Nonetheless, web pages remain the only means

of access to most of the services on the Internet. Where

possible, web automation is useful.

Anti-Automation Measures. diya does not work on

websites that actively block web automation. Websites such

as Facebook or Google actively prevent bots from accessing

their pages in an attempt to guard against fraudulent use.

They can detect the use of automated browsing APIs, and can

detect input that is driven by a program as opposed to a hu-

man using a keyboard and a mouse. Various techniques have

been proposed to subvert these detectionmechanisms [4] but

as the subversion improves, so does the anti-fraud detection.

Element Selection. In the diya implementation, web el-

ements are selected using CSS selectors. We choose CSS

selectors because they are an expressive, existing DSL for

selecting elements based on semantic and structural infor-

mation, and because they are a well-known standard already

supported by browsers and web automation libraries. We

also note that CSS selectors are already commonly used in

hand-written web automation scripts.

CSS selectors are robust to changes in the content of the

page, but not in changes in a website’s layout. They are also



DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant PLDI ’21, June 20–25, 2021, Virtual Event, Canada

incompatible with dynamic CSS modules and automatically

generated CSS classes adopted by certain popular CSS li-

braries like React. We detect some of those libraries and

ignore those CSS classes, but this is necessarily incomplete.

Empirically, we observed that web pages with numerical

information, such as weather or stocks, tend to have stable

layouts and work well with CSS selectors. We also found that

form fields are typically annotated with CSS IDs and classes,

which are sufficient to identify them robustly. Conversely,

we found that websites with a lot of free-form content, such

as blogs, are challenging because similar pages can have

vastly different hierarchies and low-level layouts. We also

found that elements in the lists shown by search engines

and shopping websites can be identified well, but sometimes

advertisements change the layout of the page unexpectedly.

Our experience with CSS selectors suggest that a higher-

level semantic representation for web elements could be

beneficial. Our exploration shows that it is possible to iden-

tify a web element given its text label, color, size, and relative

position to other objects on a page [33]. Adopting a similar

representation may improve the robustness of diya.

Timing Sensitivity. If allowed to run at full speed, web

automationmay fail because it can refer to web elements that

have yet to be loaded. Thus, diya runs at a reduced speed to

allow time for the page to react to the actions performed by

the user, including any animation or external HTTP request

that the page needs. We found a 100 millisecond slow-down

for every Puppeteer API call to be generally sufficient to

replay the scripts robustly. This can be sped up by automati-

cally discovering the events in the page that signal the page

is ready for the next action [3].

8.2 Voice Input

The current diya implementation uses the automatic speech

recognizer by Google Chrome, which we have found quite

brittle empirically. We mitigated this limitation by showing

the user the transcription generated by the API. If the tran-

scription is incorrect, most likely we do not recognize any

command and the user can issue the command again. diya

uses a strict grammar-based NLU system, which has high

precision (recognized commands are interpreted correctly)

but low recall (not all commands are recognized). This can

be made more robust by integrating with the Genie library

for neural semantic parsing of ThingTalk commands [7].

8.3 Privacy

diya is designed to run locally on the user’s machine to pro-

tect the user’s privacy. We chose a fully local implementation

because diya must have access to the full browser profile of

the user, including their cookies, stored passwords, etc. This

information is too sensitive to be uploaded to a third-party

server. Privacy protection is confirmed by our user study to

be an important feature to keep in the future.

8.4 Skill Management and Editability

This paper focuses on how end users can define new skills.

To help users maintain their skills, diya needs to be extended

in the future by providing an interface to view and edit skills.

The users may need to record additional traces to handle

alternative conditional execution paths, which the system

would merge. Skills may need to be updated when the web

pages they operate on change. Iterative refinement will also

be needed to create more complex skills. Since the skills are

succinctly and formally represented in ThingTalk, designed

to be translated from and into natural language, the interface

can be provided at either the natural-language or ThingTalk

level to cater to users of different levels of technical expertise.

9 Related Work

DIYA is the first system that enhances a virtual assistant

with a PBD system that supports function composition. It

translates multi-modal specifications into a fully composi-

tional programming language with functions, conditional,

trigger-based, and iterative constructs.

9.1 Virtual Assistants

Commercial virtual assistants such as Alexa and Google

Assistant let users perform actions on the web using a voice

interface. These systems rely on existing APIs that third-

party developers must integrate. Furthermore, commercial

virtual assistants only support one action at a time. They

support only limited custom skills in the form of “routines”,

which are sequences of voice commands that can be defined

once and invoked subsequently by voice or with a timer.

Almond [6, 7] was the first virtual assistant to provide lim-

ited end-user programmability. Almond supports commands

with three-clauses: "when" a condition happens, "get" some

data, and "do" some action. Natural-language sentences are

translated into ThingTalk 1.0 programs, which consist of

a single statement that connects together up to two skills.

ThingTalk 1.0 does not support user-defined functions, mul-

tiple statements, or variables. All skills are implemented with

APIs, limiting the scope considerably.

The Brassau assistant automatically generates reusable

graphical widgets for each natural-language command [11].

Brassau widgets are limited in functionality to performing

one command at a time, and in appearance by the automatic

generation method. diya skills, on the other hand, operate

on existing graphical web pages, which can be shown to the

user alongside the pure voice interface.

Hey Scout, a browser-based virtual assistant, let users per-

form simple web browsing tasks via a voice interface [32].

It led to Mozilla’s public release for Firefox of a similar sys-

tem [5]. Unlike our system, however, neither of these assis-

tants interact with the content of web pages.



PLDI ’21, June 20–25, 2021, Virtual Event, Canada Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

9.2 Multi-Modal PBD

Previous work has introduced multi-modal interfaces to ex-

tend the expressive power of PBD systems [18, 19]. None of

these works support building complex tasks compositionally.

They do not support nested function calls and do not support

iteration. SUGILITE uses PBD to create new skills for virtual

assistants; it automatically recognizes parameters from the

input sentence and matches them to the demonstration [18].

diya instead lets the user specify parameters explicitly, which

is more precise. In APPINITE, users describe in voice the

reason for selecting each element as they perform the selec-

tion [19]. diya subsumes this work by making predicates a

primitive usable across iterations and function invocations.

PLOW [1] and PUMICE [20, 21] use a multi-modal di-

alogue agent to learn new high-level concepts in a new

natural-language command. The user demonstrates the new

concepts on web pages in PLOW and on mobile apps in

PUMICE. In contrast, diya lets users build primitives from

the ground up, allowing them to be combined using voice.

9.3 PBD for Automation

In this section, we discuss mobile and web automation via

PBD, without multi-modal interaction. Without multi-modal

interaction, the user cannot specify control constructs during

the demonstration. CoScripter uses PBD to generate straight-

line programs as natural-language traces [16, 24]. The users

can later edit the traces to add parametrization. CoScripter

also supports the creation of interactive scripts that pause

and ask the user for the parameters (rather than providing

the parameters upfront). The system lacks support for con-

trol constructs and function composition. ActionShot [17]

suggests recording users’ web navigation passively and mak-

ing it available to CoScripter.

Early works [10, 15, 26, 29, 30] support iteration by auto-

matically discovering loops given a demonstration of one or

a few iterations, using program synthesis. Synthesis is less

reliable than letting the user specify the iteration in voice.

If the synthesizer makes a mistake, the user must provide

more demonstrations to correct it, which can be frustrating.

Synthesis has not been applied to nested loops, which are

more challenging due to the larger search space, whereas

diya supports nesting of loops using function composition.

Helena proposes a DSL that supports iteration and con-

ditional constructs for scraping web content [8]. The user

demonstrates a straight-line execution of how one data item

is to be scraped. The system uses program synthesis to gen-

erate an iterative construct in the DSL. Later, the user can

edit the script with a Scratch-like interface to add condition-

als and to correct the program synthesis. Editing the script

requires the user to understand the formal Helena language,

whereas a user need not know ThingTalk to use diya. He-

lena was intended for and thus evaluated with computer

scientists [9], whereas we target non-technical users.

Whereas DIYA is intended to help the end user automate

their personal task, KITE [22] is designed to help developers

create a dialogue agent from a mobile GUI interface. The

user supplies multiple straight-line browsing traces, which

are then analyzed to create intent and slots for the agents.

Whereas DIYA uses CSS selectors to identify the web ele-

ments, VASTA uses computer vision to recognize interactive

elements [31]. Sikuli uses screenshots to refer to the GUI

elements for automation [34]. Neural networks have been

proposed to map high-level verbal descriptions of web ele-

ments (the text of the element, its graphical attributes, and

its relative position to other elements on the page) to spe-

cific graphical elements [23, 28]. Recently, we show it is more

accurate to use a neural network to first translate the natural-

language description to a formal semantic representation,

which is then used algorithmically to identify the element

of interest in the target web page [33].

Ringer [3] addresses the problem that PBD systems might

attempt actions before the page is ready, for example before

a button appears, or fail to identify a button because the

layout has changed. It uses several related PBD traces to

infer when a page is ready for the next action, and it uses

heuristic features to identify elements on the page.

10 Conclusion

Virtual assistants are changing the way we interact with

computers. Along with this, we need to empower individuals

to build programs for virtual assistants, leveraging the vast

information on the web, instead of having to rely only on

skills built by developers.

This paper proposes diya, a system that lets users auto-

mate their complex tasks on the web using a multi-modal

program-by-demonstration paradigm. diya is the first PBD

system that supports composing control constructs and func-

tions in one skill. It does so by letting users use voice to

define and call functions, and to specify control constructs

during a demonstration. The multi-modal user specification

is translated into a program in ThingTalk 2.0, a programming

language we designed for this purpose. We find diya to be

expressive enough to implement 81% of user-proposed skills.

The users in our study find diya easy to learn and useful.

In summary, diya is an easy-to-learn system that lets end

users create useful virtual assistant web-based skills that

require the full generality of composable control constructs.

Acknowledgments

We would like to thank the reviewer and the shepherd Dr.

Ben Zorn for their feedback. This work is supported in part

by the National Science Foundation under Grant No. 1900638

and the Alfred P. Sloan Foundation under Grant No. G-2020-

13938.



DIY Assistant: A Multi-Modal End-User Programmable Virtual Assistant PLDI ’21, June 20–25, 2021, Virtual Event, Canada

References

[1] James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu,

Hyuckchul Jung, Mary Swift, and William Taysom. 2007. Plow: A

collaborative task learning agent. In AAAI, Vol. 7. 1514–1519.
[2] Tal Ater. 2019. annyang! Speech recognition for your site. https:

//github.com/TalAter/annyang.
[3] Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani.

2016. Ringer: Web Automation by Demonstration. SIGPLAN Not. 51,
10 (Oct. 2016), 748–764. https://doi.org/10.1145/3022671.2984020

[4] berstend. 2020. puppeteer-extra-plugin-stealth. https://github.com/
berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-
plugin-stealth.

[5] Julia Cambre, Alex C Williams, Afsaneh Razi, Ian Bicking, Abraham

Wallin, Janice Tsai, Chinmay Kulkarni, and Jofish Kaye. 2021. Firefox

Voice: An Open and Extensible Voice Assistant Built Upon the Web.

[6] Giovanni Campagna, Rakesh Ramesh, Silei Xu, Michael Fischer, and

Monica S. Lam. 2017. Almond: The Architecture of an Open, Crowd-

sourced, Privacy-Preserving, Programmable Virtual Assistant. In Pro-
ceedings of the 26th International Conference on World Wide Web -
WWW ’17. ACM Press, New York, New York, USA, 341–350. https:
//doi.org/10.1145/3038912.3052562

[7] Giovanni Campagna, Silei Xu, Mehrad Moradshahi, Richard Socher,

and Monica S. Lam. 2019. Genie: A Generator of Natural Language

Semantic Parsers for Virtual Assistant Commands. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Phoenix, AZ, USA) (PLDI 2019). ACM, New York,

NY, USA, 394–410. https://doi.org/10.1145/3314221.3314594
[8] Sarah Chasins and Rastislav Bodik. 2017. Skip Blocks: Reusing Exe-

cution History to Accelerate Web Scripts. Proc. ACM Program. Lang.
1, OOPSLA, Article 51 (Oct. 2017), 28 pages. https://doi.org/10.1145/
3133875

[9] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon:

Scraping Distributed Hierarchical Web Data. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology
(Berlin, Germany) (UIST ’18). Association for Computing Machinery,

New York, NY, USA, 963–975. https://doi.org/10.1145/3242587.3242661
[10] Allen Cypher. 1995. EAGER: PROGRAMMINGREPETITIVE TASKS BY

EXAMPLE. In Readings in Human–Computer Interaction, RONALD M.

BAECKER, JONATHANGRUDIN,WILLIAMA.S. BUXTON, and SAUL

GREENBERG (Eds.). Morgan Kaufmann, 804–810. https://doi.org/10.
1016/B978-0-08-051574-8.50083-2

[11] Michael Fischer, Giovanni Campagna, Silei Xu, and Monica S. Lam.

2018. Brassau: Automatic Generation of Graphical User Interfaces

for Virtual Assistants. In Proceedings of the 20th International Confer-
ence on Human-Computer Interaction with Mobile Devices and Ser-
vices (Barcelona, Spain) (MobileHCI ’18). Association for Comput-

ing Machinery, New York, NY, USA, Article 33, 12 pages. https:
//doi.org/10.1145/3229434.3229481

[12] Jack Franklin et al. 2020. Puppeteer Headless Chrome Node.js API.

https://github.com/puppeteer/puppeteer.
[13] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years

later. In Proceedings of the human factors and ergonomics society annual
meeting, Vol. 50. Sage Publications Sage CA: Los Angeles, CA, 904–908.

[14] If This Then That 2011. If This Then That. http://ifttt.com.

[15] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld.

2003. Programming by Demonstration Using Version Space Algebra.

Mach. Learn. 53, 1–2 (Oct. 2003), 111–156. https://doi.org/10.1023/A:
1025671410623

[16] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008.

CoScripter: Automating & Sharing How-to Knowledge in the En-

terprise. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (Florence, Italy) (CHI ’08). Association
for Computing Machinery, New York, NY, USA, 1719–1728. https:
//doi.org/10.1145/1357054.1357323

[17] Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and Allen Cypher.

2010. Here’s What i Did: Sharing and Reusing Web Activity with

ActionShot. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association
for Computing Machinery, New York, NY, USA, 723–732. https://doi.
org/10.1145/1753326.1753432

[18] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE:

Creating Multimodal Smartphone Automation by Demonstration. In

Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing

Machinery, New York, NY, USA, 6038–6049. https://doi.org/10.1145/
3025453.3025483

[19] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze

Shi, Wanling Ding, Tom M Mitchell, and Brad A Myers. 2018. AP-

PINITE: A Multi-Modal Interface for Specifying Data Descriptions

in Programming by Demonstration Using Natural Language Instruc-

tions. In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 105–114.

[20] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah,

Tom M. Mitchell, and Brad A. Myers. 2019. PUMICE: A Multi-Modal

Agent That Learns Concepts and Conditionals from Natural Language

and Demonstrations. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (New Orleans, LA,

USA) (UIST ’19). Association for Computing Machinery, New York, NY,

USA, 577–589. https://doi.org/10.1145/3332165.3347899
[21] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah,

TomMMitchell, and Brad AMyers. 2020. Interactive Task and Concept

Learning fromNatural Language Instructions andGUIDemonstrations.

In The AAAI-20 Workshop on Intelligent Process Automation (IPA-20).
[22] Toby Jia-Jun Li and Oriana Riva. 2018. Kite: Building Conversational

Bots from Mobile Apps. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services (Munich, Ger-

many) (MobiSys ’18). Association for Computing Machinery, New York,

NY, USA, 96–109. https://doi.org/10.1145/3210240.3210339
[23] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge.

2020. Mapping Natural Language Instructions to Mobile UI Action Se-

quences. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics,

Online, 8198–8210. https://doi.org/10.18653/v1/2020.acl-main.729
[24] Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and

Eser Kandogan. 2007. Koala: Capture, Share, Automate, Personalize

Business Processes on theWeb. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (San Jose, California, USA)

(CHI ’07). Association for Computing Machinery, New York, NY, USA,

943–946. https://doi.org/10.1145/1240624.1240767
[25] Anton Medvedev. 2020. finder: CSS Selector Generator. https://github.

com/antonmedv/finder.
[26] Brad A. Myers, Richard G. McDaniel, and David S. Kosbie. 1993. Mar-

quise: Creating Complete User Interfaces by Demonstration. In Pro-
ceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors
in Computing Systems (Amsterdam, The Netherlands) (CHI ’93). As-
sociation for Computing Machinery, New York, NY, USA, 293–300.

https://doi.org/10.1145/169059.169225
[27] Tim Nolet. 2020. Puppeteer Recorder. https://github.com/checkly/

puppeteer-recorder.
[28] Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin Guu, and Percy

Liang. 2018. Mapping natural language commands to web elements.

In Proceedings of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational Linguistics,

Brussels, Belgium, 4970–4976. https://doi.org/10.18653/v1/D18-1540
[29] GordonW Paynter. 1999. Familiar: Automating Repetition in Common

Applications.. In New Zealand Computer Science Research Students’
Conference. Citeseer, 62–69.

[30] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,

R. Suzuki, and B. Hartmann. 2017. Learning Syntactic Program

https://github.com/TalAter/annyang
https://github.com/TalAter/annyang
https://doi.org/10.1145/3022671.2984020
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3133875
https://doi.org/10.1145/3133875
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1016/B978-0-08-051574-8.50083-2
https://doi.org/10.1016/B978-0-08-051574-8.50083-2
https://doi.org/10.1145/3229434.3229481
https://doi.org/10.1145/3229434.3229481
https://github.com/puppeteer/puppeteer
http://ifttt.com
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1753326.1753432
https://doi.org/10.1145/1753326.1753432
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.1145/1240624.1240767
https://github.com/antonmedv/finder
https://github.com/antonmedv/finder
https://doi.org/10.1145/169059.169225
https://github.com/checkly/puppeteer-recorder
https://github.com/checkly/puppeteer-recorder
https://doi.org/10.18653/v1/D18-1540


PLDI ’21, June 20–25, 2021, Virtual Event, Canada Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam

Transformations from Examples. In 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE). 404–415. https:
//doi.org/10.1109/ICSE.2017.44

[31] Alborz Rezazadeh Sereshkeh, Gary Leung, Krish Perumal, Caleb

Phillips, Minfan Zhang, Afsaneh Fazly, and Iqbal Mohomed. 2020.

VASTA: A Vision and Language-Assisted Smartphone Task Automa-

tion System. In Proceedings of the 25th International Conference on
Intelligent User Interfaces (Cagliari, Italy) (IUI ’20). Association for

Computing Machinery, New York, NY, USA, 22–32. https://doi.org/
10.1145/3377325.3377515

[32] Janice Tsai and Jofish Kaye. 2018. Hey Scout: Designing a Browser-

Based Voice Assistant. (2018). https://aaai.org/ocs/index.php/SSS/
SSS18/paper/view/17543

[33] Nancy Xu, SamMasling, Michael Du, Giovanni Campagna, Larry Heck,

James Landay, and Monica S. Lam. 2021. Grounding Open-Domain

Instructions to AutomateWeb Support Tasks. In Proceedings of the 2021
Annual Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL-HLT 2021) (To Appear). https:
//arxiv.org/abs/2103.16057

[34] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli:

Using GUI Screenshots for Search and Automation. In Proceedings of
the 22nd Annual ACM Symposium on User Interface Software and Tech-
nology (Victoria, BC, Canada) (UIST ’09). Association for Computing

Machinery, New York, NY, USA, 183–192. https://doi.org/10.1145/
1622176.1622213

[35] Tantek Çelik, Elika J. Etemad, Daniel Glazman, IanHickson, Peter Linss,

and John Williams. 2018. Selectors Level 3 (W3C Recommendation).

https://www.w3.org/TR/selectors-3/.

https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1145/3377325.3377515
https://doi.org/10.1145/3377325.3377515
https://aaai.org/ocs/index.php/SSS/SSS18/paper/view/17543
https://aaai.org/ocs/index.php/SSS/SSS18/paper/view/17543
https://arxiv.org/abs/2103.16057
https://arxiv.org/abs/2103.16057
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1145/1622176.1622213
https://www.w3.org/TR/selectors-3/

	Abstract
	1 Introduction
	1.1 End-User Programmable Virtual Assistants
	1.2 The Design of diya
	1.3 Contributions

	2 Overview of diya
	2.1 Example
	2.2 Co-Design of ThingTalk 2.0 and its Multi-Modal Specification
	2.3 diya System Overview

	3 Web Primitives
	3.1 Parameters and Variables
	3.2 Selector References
	3.3 Web Primitive Statements

	4 Control Constructs
	5 The diya System
	5.1 Translating the Specification to ThingTalk
	5.2 ThingTalk Runtime

	6 Implementation
	7 Experimentation
	7.1 What Do Users Need To Automate?
	7.2 Can Users Learn To Program In diya?
	7.3 Evaluating Implicit Variables
	7.4 Real Scenarios Evaluation

	8 Discussion
	8.1 Web Automation
	8.2 Voice Input
	8.3 Privacy
	8.4 Skill Management and Editability

	9 Related Work
	9.1 Virtual Assistants
	9.2 Multi-Modal PBD
	9.3 PBD for Automation

	10 Conclusion
	Acknowledgments
	References

