

Improving EFX Guarantees through Rainbow Cycle Number

BHASIK RAY CHAUDHURY, Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

JUGAL GARG, University of Illinois at Urbana-Champaign, USA

KURT MEHLHORN, Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

RUTA MEHTA, University of Illinois at Urbana-Champaign, USA

PRANABENDU MISRA, Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

CCS Concepts: • Theory of computation → Algorithmic game theory.

Additional Key Words and Phrases: Discrete Fair Division, EFX Allocations, Rainbow Cycle Number

ACM Reference Format:

Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, and Pranabendu Misra. 2021. Improving EFX Guarantees through Rainbow Cycle Number. In *Proceedings of the 22nd ACM Conference on Economics and Computation (EC '21), July 18–23, 2021, Budapest, Hungary*. ACM, New York, NY, USA, 2 pages. <https://doi.org/10.1145/3465456.3467605>

We study the problem of fairly allocating a set of indivisible goods among n agents with additive valuations. Envy-freeness up to *any* good (EFX) is arguably the most compelling fairness notion in this context. However, the existence of EFX allocations has not been settled and is one of the most important problems in fair division [5]. Towards resolving this problem, many impressive results show the existence of its relaxations. In particular, [1] shows the existence of 0.618-EFX allocations, and [4] shows that EFX allocation exists if we do not allocate at most $n - 1$ goods. The latter result was recently improved for three agents in [2], in which the two unallocated goods are allocated through an involved procedure. Reducing the number of unallocated goods for an arbitrary number of agents is a systematic way to settle the big question.

In this paper, we develop a new approach, and show that for every $\varepsilon \in (0, 1/2]$, there always exists a $(1 - \varepsilon)$ -EFX allocation with *sublinear* number of unallocated goods and high Nash welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory. We define the notion of *rainbow cycle number* $R(\cdot)$ in directed graphs. For all $d \in \mathbb{N}$, $R(d)$ is the largest k such that there exists a k -partite digraph $G = (\cup_{i \in [k]} V_i, E)$, in which

- each part has at most d vertices, i.e., $|V_i| \leq d$ for all $i \in [k]$,
- for any two parts V_i and V_j , each vertex in V_i has an incoming edge from some vertex in V_j and vice-versa, and
- there exists no cycle in G that contains at most one vertex from each part.

We show that any upper bound on $R(d)$ directly translates to a sublinear bound on the number of unallocated goods. We establish a polynomial upper bound on $R(d)$, yielding our main result. Furthermore, our approach is constructive, which also gives a polynomial-time algorithm for finding such an allocation.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

EC '21, July 18–23, 2021, Budapest, Hungary

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8554-1/21/07.

<https://doi.org/10.1145/3465456.3467605>

The full version of this paper [3] can be accessed at: <https://arxiv.org/abs/2103.01628>.

ACKNOWLEDGMENTS

Jugal Garg was supported by NSF Grant CCF-1942321 (CAREER) and Ruta Mehta was supported by NSF Grant CCF-1750436 (CAREER).

REFERENCES

- [1] Georgios Amanatidis, Evangelos Markakis, and Apostolos Ntokos. 2020. Multiple birds with one stone: Beating 1/2 for EFX and GMMS via envy cycle elimination. *Theor. Comput. Sci.* 841 (2020), 94–109.
- [2] Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. 2020. EFX Exists for Three Agents. In *EC*. ACM, 1–19.
- [3] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, and Pranabendu Misra. 2021. Improving EFX Guarantees through Rainbow Cycle Number. *CoRR* abs/2103.01628 (2021).
- [4] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. 2020. A Little Charity Guarantees Almost Envy-Freeness. In *Proceedings of the 31st Symposium on Discrete Algorithms (SODA)*. 2658–2672.
- [5] Ariel D. Procaccia. 2020. Technical Perspective: An Answer to Fair Division's Most Enigmatic Question. *Commun. ACM* 63, 4 (March 2020), 118. <https://doi.org/10.1145/3382131>