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Abstract. The rank of a bimatrix game is the matrix rank of the sum of the two payoff
matrices. This paper comprehensively analyzes games of rank one and shows the fol-
lowing: (1) For a game of rank r, the set of its Nash equilibria is the intersection of a
generically one-dimensional set of equilibria of parameterized games of rank r − 1 with a
hyperplane. (2) One equilibrium of a rank-1 game can be found in polynomial time. (3) All
equilibria of a rank-1 game can be found by following a piecewise linear path. In contrast,
such a path-following method finds only one equilibrium of a bimatrix game. (4) The
number of equilibria of a rank-1 game may be exponential. (5) There is a homeomorphism
between the space of bimatrix games and their equilibrium correspondence that preserves
rank. It is a variation of the homeomorphism used for the concept of strategic stability of an
equilibrium component.
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1. Introduction
Noncooperative games are basic economic models.
The main concept to analyze them is Nash equilib-
rium, which recommends to each player a (typically
randomized) strategy that is optimal for that player if
the other players follow their recommendations. In
order to give such a recommendation, a Nash equi-
librium (NE)must be foundby somemethod (including
any adjustment process). For larger games, this requires
computer algorithms. We consider bimatrix games,
which are two-player games in strategic form. The al-
gorithm by Lemke and Howson (1964) finds one
equilibrium of a bimatrix game. Finding all equilibria
is feasible only for small games because of the ex-
ponential number of mixed strategies that typically
need to be checked for the equilibrium property (Avis
et al. 2010).

Kannan and Theobald (2010) introduced a hierar-
chy of bimatrix games based on the matrix rank of the
sum of the two payoff matrices. Games of rank 0 are
zero-sum games, which can be solved by linear pro-
gramming. This paper comprehensively studies games
of rank 1. Rank-1 games are economically more inter-
esting than zero-sum games, by allowing a “multipli-
cative” interaction in addition to an arbitrary zero-
sum component (discussed further in Section 10).

We will show that, like general bimatrix games, they
can have exponentially many disjoint equilibria. On
the other hand, as our main results show, they are
computationally tractable: One equilibrium of a rank-1
game can be found fast (in polynomial time), and
finding all equilibria takes comparable time to finding
a single equilibriumof a general bimatrix game. Large
rank-1 games are therefore attractive as detailedmodels
of interaction, on a similar scale to, but more general
than, zero-sumgames. Rank-1 bimatrix games and their
computational analysis should therefore become a new
tool in economic modeling.
The computational complexity (required running

time) of computing a Nash equilibrium of a game
has received substantial interest in the last two de-
cades. A computational problem is considered trac-
table if it can be solved in polynomial time. Savani
and von Stengel (2006) showed that the algorithm by
Lemke and Howson (1964) may have exponential
running time. (Their examples require carefully con-
structed matrices, comparable to linear programs
where the simplex algorithm, which otherwise works
well in practice, has exponential running time (see
Klee and Minty 1972).) The path-following Lemke–
Howson algorithm implies that finding an equilib-
rium of a bimatrix game belongs to the complexity class
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(Polynomial Parity Argument in a Directed graph)
defined by Papadimitriou (1994, p. 502). PPAD de-
scribes certain computational problems where the
existence of a solution is known and the problem is to
find one explicit solution. (In contrast, the better known
complexity class NP applies to decision problems,
which are problems that have a “yes” or “no” answer.)
Other problems in PPAD include the computation of
an approximate Brouwer fixed point, related prob-
lems in economics such asmarket equilibria (Vazirani
and Yannakakis 2011), and the computation of an
approximate Nash equilibrium of a game with many
players. (In games with three or more players, unlike
in two-player games, themixed strategyprobabilities in
a Nash equilibrium may be irrational num-bers.
A suitable concept for such games is approximate Nash
equilibrium, and finding an exact Nash equilibrium is
an even harder computational problem (see Etessami
and Yannakakis 2010).) A celebrated result is that all
problems in PPAD can be reduced to finding a Nash
equilibrium in a bimatrix game, which makes this
problem PPAD-complete (Chen and Deng 2006, Chen
et al. 2009, Daskalakis et al. 2009). No polynomial-
time algorithm for finding a Nash equilibrium of a
general bimatrix game is known.

Kannan and Theobald (2010) describe an algorithm
to find ε-approximate Nash equilibria in games of fixed
rank, with running time that is polynomial in 1/ε and
the input length, but exponential in the rank. In the
present paper, we prove that an exact Nash equilib-
rium of a rank-1 game can be found in polynomial
time. However, we also show that a rank-1 gamemay
have exponentially many equilibria. Moreover, games
of higher fixed rank r are PPAD-hard and thus as
computationally difficult as general bimatrix games;
this has been shown by Mehta (2018) for r ≥ 3 and is
claimed to hold for r � 2 (Chen and Paparas 2019). In
the context of the “rank” hierarchy, rank-1 games are
therefore the most complex type of games that are
expected to be computationally tractable.

Section 2 states the notation and preliminary results
used in this paper and compares our approach with
the work of Theobald (2009). In Section 3, we show
that the set of equilibria of a game of rank r is the
intersection of a hyperplane with a set of equilibria of
parameterized games of rank r − 1. When r � 1, these
are parameterized zero-sum games whose equilibria
are the solutions to a parameterized linear program
(LP). In order to deal with possibly degenerate games
that are awkward to handle with pivoting methods,
we recall relevant results from Adler and Monteiro
(1992) in Section 4. The intersection with the hyper-
plane gives rise to a polynomial-time binary search
for one equilibrium of a rank-1 game, explained in
Section 5. In Section 6, we describe completely the set

of all Nash equilibria of a rank-1 game and outline a
corresponding equilibrium enumeration method.
Section 7 describes an example (which may be

useful to consult in between) that illustrates our
main results and a second example that shows that
binary search fails in general for games of rank 2 or
higher. A construction of rank-1 games with expo-
nentially many equilibria is shown in Section 8. In
Section 9, we describe a variant of the structure the-
orem of Kohlberg and Mertens (1986) (KM), which
is important for the concept of strategic stability of
an equilibrium component. We introduce a new ho-
meomorphism between the space of bimatrix games
and its equilibrium correspondence. This homeomor-
phism preserves the sum of the payoff matrices and
hence the rank of the games. In the concluding Sec-
tion 10, we present a tentative example of an eco-
nomic model based on rank-1 games and note some
open questions.
A preliminary version of our work was published

in the Symposium on Theory of Computing (Adsul et al.
2011), and the result of Section 8 in von Stengel (2012).
The mathematical development in the present paper
is almost entirely new in all parts.

2. Bimatrix Games and Best Responses
In this section, we state our notation for bimatrix
games and recall the “complementarity” character-
ization of Nash equilibria in terms of suitable poly-
hedra. We also briefly compare our approach with
Theobald (2009).
We use the following notation. The transpose of a

matrix C is writtenC�. All vectors are column vectors,
so if x ∈ Rm, then x is an m × 1 matrix and x� is the
corresponding row vector in R1×m. In matrix prod-
ucts, scalars are treated like 1 × 1matrices. Let 0 and 1
be vectors with all components equal to 0 and 1, re-
spectively, their dimension depending on the context.
Inequalities like x ≥ 0 hold for all components. The
components of a vector x ∈ Rm are x1, . . . , xm.
For c ∈ Rk and γ ∈ R, a hyperplane is of the form {z∈

Rk | c�z�γ} and a half space of the form {z∈Rk | c�z≤γ}.
A polyhedron is an intersection of finitely many half
spaces and called a polytope if it is bounded. A face of a
polyhedron P is of the form P ∩ {z ∈ Rk | c�z � γ},
where P ⊆ {z ∈ Rk | c�z ≤ γ}. It can be shown that any
face of P can be obtained by turning some of the in-
equalities that define P into equalities (Schrijver 1986,
section 8.3). If a face of P consists of a single point, it is
called a vertex of P. If S ⊆ X × Y for sets S,X,Y, then
{x ∈ X | (x, y) ∈ S for some y ∈ Y } is called the projection
of S on X, also written as {x | (x, y) ∈ S }.
A bimatrix game is a pair (A,B)ofm × nmatriceswith

rows as pure strategies of player 1 and columns as
pure strategies of player 2. The players simultaneously
choose their pure strategies, with the corresponding
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entry of A as payoff to player 1 and of B to player 2. The
sets X and Y of mixed (that is, randomized) strategies
of player 1 and player 2 are given by

X � x ∈ Rm | x ≥ 0, 1�x � 1
{ }

,

Y � y ∈ Rn | y ≥ 0, 1�y � 1
{ }

. (1)
For themixed strategy pair (x, y) ∈ X × Y, the expected
payoffs to the two players are x�Ay and x�By, re-
spectively. A best response x of player 1 against y
maximizes the player’s expected payoff x�Ay, and a
best response y of player 2 against x maximizes the
player’s expected payoff x�By. An NE is a pair of
mutual best responses.

Consider mixed strategies x ∈ X and y ∈ Y. If x is a
best response to y, then its expected payoff x�Ay is
clearly at least the payoff (Ay)i for any pure strategy i
of player 1. Moreover, x is a best response to y if and
only if any pure strategy i in the support of x (that
is, where xi > 0) is a pure best response to y (Nash
1951). The following lemma, fromMangasarian (1964),
states this best-response condition in terms of suit-
able polyhedra.

Lemma 1. Let (A,B) be an m × n bimatrix game. Consider
the polyhedra

P � x, v( ) ∈ X × R | B�x ≤ 1v
{ }

,

Q � y,u
( ) ∈ Y × R | Ay ≤ 1u
{ }

. (2)
Let (x, y) ∈ X × Y. Then x is a best response to y if and only
if (y,u) ∈ Q and for all rows i

xi � 0 or Ay
( )

i� u 1 ≤ i ≤ m( ), (3)
and y is a best response to x if and only if (x, v) ∈ P and for
all columns j

yj � 0 or B�x
( )

j� v 1 ≤ j ≤ n
( )

. (4)
If both conditions hold, then u and v are the unique payoffs
to player 1 and 2 in the Nash equilibrium (x, y).
A bimatrix game is degenerate if there is a mixed

strategy that has more pure best responses than the
size of its support (von Stengel 2002). A degenerate
game may have infinite sets of equilibria. They can be
described by suitable faces of P and Q, as explained
further in Section 6. Our analysis applies to general
games that may be degenerate.

The object of study of our paper is bimatrix games
of fixed rank, introduced by Kannan and Theobald
(2010). They generalize zero-sum games, which are
games of rank zero.

Definition 1. The rank of a bimatrix game (A,B) is the
matrix rank of A + B.

For comparisonofourapproachwithTheobald (2009),
we consider a quadratic program, from Mangasarian
and Stone (1964), that captures the NE of (A,B).

Lemma 2. The strategy pair (x, y) is a Nash equilibrium of
(A,B) if and only if it is a solution to

maximize
x,y,u,v

x� A + B( )y − u − v

subject to x, v( ) ∈ P, y,u
( ) ∈ Q. (5)

The optimum value of (5) is zero, with u � x�Ay and
v � x�By.

Proof. Consider any solution to (5). Then v is at least
the best-response payoff of player 2 against x because
(x, v) ∈ P, and u is at least the best-response payoff of
player 1 against y because ( y, u) ∈ Q. Hence, x�(A+
B)y − u − v ≤ 0. Furthermore, (3) and (4) imply that
x�(A + B)y − u − v is zero if and only if (x, y) is an NE,
in which case u � x�Ay and v � x�By. □

The quadratic program (5) shows the importance of
the rank of the matrix A + B. For zero-sum games, the
rank ofA + B is zero and (5) is a linear program, awell-
known fact (Dantzig 1963). For a rank-1 game (A,B)
with A + B � ab�, the bilinear term x�(A + B)y in the
objective function becomes the product (x�a)(b�y) of
two linear terms. The resulting optimization prob-
lem is called a linear multiplicative program. Solving
a general linear multiplicative program is NP-hard
(Matsui 1996).
Consider a rank-1 game (A,B), where A + B � ab�.

Similar to parametric simplex methods for solving
linear multiplicative programs (Konno et al. 1991),
Theobald (2009) describes an algorithm to enumerate
all equilibria of (A,B). For a real parameter ξ, he
considers the parameterized LP:

maximize
x,y,u,v

x�aξ − u − v

subject to x, v( ) ∈ P, y, u
( ) ∈ Q, b�y � ξ. (6)

In any solution to (6), x�aξ � x�ab�y � x�(A + B)y.
Hence, by Lemma 2, any optimal solution to (6) is an
equilibrium of (A,B) if and only its optimum is zero.
Moreover, b�y � ξ implies that ξ is a convex combi-
nation of the components b1, . . . , bn of b, so that one can
restrict ξ to the interval [min{b1, . . . ,bn}, max{b1, . . . ,bn}].
By partitioning this interval into segments, where (6)
uses the same basic variables, Theobald (2009) obtains
an enumeration of all NEs of (A,B).
Our approach is somewhat similar, with a pa-

rameter λ and the equality x�a � λ. However, we
consider a different LP that is parameterized by λ and
involves only the payoff matrix A and the vector b
used inA + B � ab�. That LP, given in (19) below, has x
as primal and y as dual variables, whereas in (6) both x
and y are primal with less closely related constraints.
We consider the hyperplane defined by x�a � λ sep-
arately from the parameterized LP. The intersection of
the hyperplane with the solutions to the parameterized
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LP defines the equilibria of the rank-1 game. This
structural insight can be used both for finding an exact
NE in polynomial time by binary search (see Section 5)
and for enumerating all equilibria (see Section 6). As a
topic for further research, it may be interesting if this
approach can be extended to more general linear
multiplicative programs.

3. Rank Reduction
The central result of this short section is Theorem 1. It
states that the set ofNash equilibria of a game of rank r
is the intersection of a set 1 of equilibria of param-
eterized games of rank r − 1 with a suitable hyper-
plane. In subsequent sections,we showhow to exploit
this property algorithmically when r � 1.

The following lemma states the well-known fact
that the equilibria of a bimatrix game are unchanged
when subtracting a separate constant bj from each
column j of the row player’s payoff matrix. Call two
games strategically equivalent if they have the same
best responses to mixed strategies.

Lemma 3. If b ∈ Rn, then the m × n game (A,B) is stra-
tegically equivalent to the game (A − 1b�,B).
Proof. This holds by Lemma 1, because the best-
response payoff u to player 1 in the game (A,B) changes
to u − b�y in (A − 1b�,B): Clearly, Ay ≤ 1u is equiva-
lent to (A − 1b�)y ≤ 1(u − b�y), and (Ay)i � u is equiva-
lent to ((A − 1b�)y)i � u − b�y. □

Lemma 4. Anm × n bimatrix game of positive rank r can be
written as (A,C + ab�) for suitable a ∈ Rm, b ∈ Rn, and a
game (A,C) of rank r − 1.

Proof. Anm × nmatrix is of rank at most r if and only if
it can be written as the sum of r rank-1 matrices, that is,
as a1b1� + · · · + arbr� for suitable aq ∈ Rm and bq ∈ Rn for
1 ≤ q ≤ r. This is easily seen by writing the jth column
of the matrix as

∑r
q�1 aqbqj and letting bq� � (bq1, . . . , bqn)

(see also Wardlaw 2005). Suppose (A,B) is of rank r,
with A+B�∑r

q�1aqbq� and therefore B�−A+∑r
q�1aqbq�.

Let C�−A+∑r−1
q�1 aqbq� and a� ar, b � br, so that B � C+

ab�; obviously, A + C is of rank r − 1. □

The following is a simple but central lemma.

Lemma 5. Let A,C ∈ Rm×n, x ∈ X, y ∈ Y, a ∈ Rm, b ∈ Rn,
λ ∈ R. The following are equivalent:

a. (x, y) is an equilibrium of (A,C + ab�),
b. (x,y) is an equilibriumof (A,C+1λb�) and x�a�λ, and
c. (x, y) is an equilibrium of (A − 1λb�,C + 1λb�) and

x�a � λ.

Proof. The equivalence of (a) and (b) holds because the
players get in both games the same expected payoffs for

their pure strategies: this is immediate for player 1; if
x�a � λ, then the column payoffs are given by

x� C + ab�
( ) � x�C + λb� � x�C + x�1λb�

� x� C + 1λb�
( )

. (7)
The games in (b) and (c) are strategically equivalent
by Lemma 3. □

Consider a game (A,B) of positive rank r, where B �
C + ab� so that (A,C) is a game of rank r − 1 according
to Lemma 4. Then the game (A − 1λb�,C + 1λb�) in
Lemma 5(c) has the same sum A + C of its payoff
matrices and hence also rank r − 1, for any choice of
the parameter λ. Let 1 be the set of Nash equilibria
together with λ of these parameterized games,

1 � λ, x, y
( ) ∈ R × X × Y | x, y

( )
is a NE of

{
A − 1λb�,C + 1λb�
( )}

, (8)
where by Lemma 5(b),

1 � λ, x, y
( ) ∈ R × X × Y | x, y

( )
is a NE of

{
A,C + 1λb�
( )}

. (9)
These considerations imply the following main result
of this section.

Theorem 1. Given a bimatrix game (A,C + ab�), its set of
Nash equilibria is exactly the projection on X × Y of the
intersection of 1 and the hyperplane H defined by

H � λ, x, y
( ) ∈ R × Rm × Rn | x�a � λ
{ }

. (10)
Theorem 1 asserts that for any rank-rgame of the form
(A,C + ab�), every Nash equilibrium of the game is
captured by the set 1 in (8) of games of rank r − 1,
which are parameterized by λ, intersected with the
hyperplane H in (10). Can this rank reduction be
leveraged to get an efficient algorithm to find a Nash
equilibrium for a game of arbitrary constant rank? As
will be discussed in Section 7, this does not work in
general. However, it does work for rank-1 games.

4. Parameterized Linear Programs
Our aim is to describe the equilibria of rank-1 games
(A,−A + ab�) using the rank reduction of the previous
section. For this, we consider the set1 in (9) for C � −A,
1 � λ, x, y

( ) ∈ R × Rm × Rn | x, y
( )

is a NE of
{
A,−A + 1λb�
( )}

, (11)
where by (8),

1 � λ, x, y
( ) ∈ R × Rm × Rn | x, y

( )
is a NE of

{
A − 1λb�,−A + 1λb�
( )}

, (12)
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which is the set of equilibria of zero-sum games pa-
rameterized by λ. These correspond to the solutions
of a parameterized LP. In this section, we review the
structure of such parameterized LPs with a particular
view toward nongeneric cases and polynomial-time
algorithms as studied by Adler and Monteiro (1992).
In essence, such parameterized LPs have finitely
many special values of the parameter λ called break-
points. These separate the set 1 into a connected se-
quence of polyhedral segments (which generically are
line segments). They are described in Theorem 3 in the
next section,wherewewill present a polynomial-time
algorithm for finding one equilibrium of a rank-1
game. In the subsequent section, we present an-
other algorithm for finding all equilibria.

We assume familiarity with notions of linear pro-
gramming, such as LP duality and complementary
slackness (see, for example, Schrijver 1986). The fol-
lowing well-known lemma (Dantzig 1963) states that
the equilibria of a zero-sum game are the primal and
dual solutions to an LP.

Lemma 6. Consider an m × n zero-sum game (M,−M). In
any equilibrium (x, y) of this game, y is a minmax strategy of
player 2, which is a solution to the LP with variables y in Rn

and u in R:

maximize
y,u

u

subject to My + 1u ≤ 0 , y ∈ Y, (13)

and x is a maxmin strategy of player 1, which is a solution
to the dual LP to (13). For the optimal value of u in (13),
the maxmin payoff to player 1 and minmax cost to player 2
and hence the value of the game is −u.
Proof. The dual LP to (13) has variables x ∈ Rm and
v ∈ R and states

minimize
x,v

v

subject to x�M + v1� ≥ 0�, x ∈ X. (14)
Both LPs are feasible (with sufficiently small u and
large v). Let ( y,u) be an optimal solution to (13) and
(x, v) to (14). Then u � v by LP duality, and (13)
and (14) state My ≤ 1(−u), that is, player 2 pays no
more than −u for any row, and x�M ≥ (−v)1�, that is,
player 1 gets at least −v in every column, where
−u � −v, which is therefore the value of the game.

With the dual constraints written as x�(−M) ≤ v1�,
the complementary slackness conditions between the
primal and the dual are exactly the Nash equilibrium
conditions (3) and (4) of Lemma 1 (except for the
changed sign of u so that we do not have to write x ∈ X
in (14) as −1�x � −1 and x ≥ 0). Hence, (x, y) is a Nash
equilibrium. □

Applied to M � A − 1λb� in (12), the LP (13) in
Lemma 6 says

maximize
y,u

u

subject to A−1λb�
( )

y+1u≤ 0 , y∈Y. (15)
In (15), the matrix A is parameterized. The substitu-
tion u � λb�y + t gives the equivalent LP, where only
the objective function is parameterized:

maximize
y,t

λb�y + t

subject to Ay + 1t ≤ 0 , y ∈ Y. (16)
This is a standard parameterized linear program-
ming problem. We stay close to the notation of Adler
and Monteiro (1992) who consider a primal LP with
minimization subject to equality constraints, variables x,
and a parameterized right-hand side, of which (16)
is the dual, a maximization problem subject to inequal-
ities, with variables y, and a parameterized objective
function. We write (16) as

Dλ: maximize
y,t

λb�y + t

subject to y, t
( ) ∈ D, (17)

with the fixed polyhedron

D � { (y, t) ∈ Rn × R | Ay + 1t ≤ 0

1�y � 1
y ≥ 0 }. (18)

The LP Dλ is the dual of the following LP Pλ with
a parameterized right-hand side, where we use
slack variables s ∈ Rn to express the inequality A�x +
1v ≥ bλ as an equality, in line with Adler and Monteiro
(1992):

Pλ: minimize
x,v,s

v

subject to A�x + 1v − s � bλ

1�x � 1
x, s ≥ 0. (19)

For optimal solutions ( y, t) to Dλ and (x, v, s) to Pλ, we
have λb�y + t � v. The next lemma (essentially a corol-
lary to Lemma 5 and Lemma 6) states that −t and v can
be interpreted as the players’ payoffs for the games
in Lemma 5 (a) and (b), and asserts that t, v, s are
uniquely determined by (λ, x, y) (that is, a point on1).

Lemma 7. Let λ ∈ R. Then (x, y) is an equilibrium of the
game (A,−A + 1λb�) if and only if ( y, t) is an optimal
solution to Dλ in (17) for some t, which is uniquely de-
termined by y, and (x, v, s) is an optimal solution to Pλ

in (19) for some v and s, which are uniquely determined
by λ and x. The equilibrium payoffs are −t to player 1 and v
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to player 2. If x�a � λ, these are also the payoffs in the game
(A,−A + ab�), and (x, y) is an equilibrium of that game.

Proof. By Lemma 5 with C � −A, the game (A,−A +
ab�) has the same equilibria (x, y) and, by (7), payoffs
as the game (A,−A + 1λb�) if x�a � λ. Consider any
optimal solutions ( y, t) to Dλ and (x, v, s) to Pλ. Then
Ay + 1t ≤ 0 states for each row i of A the inequality
(Ay)i ≤−t. Complementary slackness, equivalent to LP
optimality, states that (Ay)i � −t whenever xi > 0. This
is the equilibrium condition in (3) that states that x is a
best response to y. Because it holds for at least one i,
it uniquely determines −t, which is the equilibrium
payoff to player 1 in the above games.

Similarly, the constraint s � A�x − bλ + 1v in (19)
means that s is determined by (x, λ, v), and states sj �
(A�x − bλ)j + v ≥ 0 for all j, or equivalently ((−A�+
bλ1�)x)j ≤ v. Complementary slackness, equivalent to
LP optimality, states that this inequality is tight when-
ever yj > 0. This is the condition (4) that states that y is
a best response to x in the game (A,−A+1λb�), and it
uniquely determines v as the equilibrium payoff to
player 2. □

Primal-dual pairs Pλ,Dλ of LPs with a parameter λ
have been studied since Gass and Saaty (1955). The
next result is well known, which we show following
Jansen et al. (1997).

Lemma 8. For λ ∈ R, let φ(λ) be the optimum value of Pλ

and hence of Dλ. Then φ : R → R is the pointwise maxi-
mum of a finite number of affine functions onR and therefore
piecewise linear and convex.

Proof. The optimum ofDλ exists for any λ and is taken
at a vertex of the polyhedron D in (18). Let V be the set
of vertices of D, which is finite. Hence,

φ λ( ) � max λ b�y
( ) + t | y, t

( ) ∈ V
{ }

, (20)
where for each of the finitely many ( y, t) in V the
function λ 
→λ(b�y) + t is affine. Hence, φ is the point-
wise maximum of a finite number of affine functions as
claimed. The epigraph of φ given by E � {(λ, θ) | θ ≥
φ(λ)} is the intersection of the convex epigraphs of
these affine functions, so E is convex and φ is a convex
function. □

By (20), the functionφ(λ) is the “upper envelope” of
the affine functions λ 
→ λ(b�y) + t defined by the
vertices ( y, t) of D. A breakpoint is any λ∗ so that φ(λ)
has different left and right derivatives when λ ap-
proaches λ∗ from below or above, denoted by φ′

−(λ∗)
and φ′

+(λ∗), respectively.
For any LP L, say, let OptFace(L) be the face of the

domain of Lwhere its optimum is attained. For any λ,
we denote OptFace(Dλ) by Y(λ), that is,

Y λ( ) � y, t
( ) ∈ D | λb�y + t � φ λ( ){ }

. (21)

Then the left and right derivatives of φ at λ are
characterized as follows (obvious from (20), also
proposition 2.4 of Adler and Monteiro 1992):

φ′
− λ( ) � min b�y | y, t

( ) ∈ Y λ( ){ }
,

φ′
+ λ( ) � max b�y | y, t

( ) ∈ Y λ( ){ }
, (22)

which are the optima of the two LPs

SLmin λ( ): minimize
y,t

b�y

subject to y, t
( ) ∈ Y λ( ),

SLmax λ( ): maximize
y,t

b�y

subject to y, t
( ) ∈ Y λ( ). (23)

That is, λ∗ is a breakpoint if andonly ifφ′
−(λ∗) < φ′

+(λ∗).
Clearly, in that case there are at least two vertices ( y, t)
and ( ŷ, t̂) of D that define two different affine func-
tions λ 
→λ(b�y) + t and λ 
→λ(b�ŷ) + t̂ that meet at
λ � λ∗ to define the maximum φ(λ∗) in (20). These are
also vertices of Y(λ∗), which is then a higher-
dimensional face (such as an edge) of D. The fol-
lowing central observation shows that the breakpoints
give all the information about the optimal faces Y(λ)
of Dλ for any λ between these breakpoints.

Theorem 2 (Adler and Monteiro 1992, theorem 4.1). Let
λ1, . . . , λK be the breakpoints, in increasing order, for the
parameterized LPs Pλ and Dλ, and let λ0 � −∞ and
λK+1 � ∞. For 0 ≤ k ≤ K, consider any λ′

k ∈ (λk, λk+1).
Then Y(λ′

k) � OptFace(SLmax(λk)) for 1 ≤ k ≤ K, and
Y(λ′

k) � OptFace(SLmin(λk+1)) for 0 ≤ k ≤ K − 1.

For finding the solutions to Pλ as a function of λ, the
nondegenerate case is straightforward, where Y(λ) is a
vertex of Dλ unless λ is a breakpoint, in which case
Y(λ) is an edge of Dλ. Then these vertices uniquely
describe the pieces of the piecewise linear function
φ(λ) and can be traversed by a parameterized sim-
plex algorithm (Gass and Saaty 1955). An example is
shown in the right diagram of Figure 4 belowwith the
Constraints (44) for Ay + 1t ≤ 0 in D, with the addi-
tional constraints 0 ≤ y2 ≤ 1 to represent y ∈ Y, and
objective function λb�y + t given by λ(1 − 2y2) + t. The
three linear parts of φ(λ) are

φ λ( ) �
−λ − 1 for λ ≤ − 1

2

− 1
2 for − 1

2 ≤ λ ≤ 1
2

λ − 1 for 1
2 ≤ λ, (24)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
which correspond to the optimal vertices ( y2, t) of D
given by (1,−1), (12 ,− 1

2), and (0,−1). The two break-
points are λ1 � − 1

2 andλ2 � 1
2, which correspond to the

two edges of D.
In the degenerate case, one typically does not get

polynomial-time algorithms by considering vertices
and corresponding basic solutions to the LP Pλ as in a
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parameterized simplex algorithm. Instead of parti-
tioning the variables of Pλ into basic and nonbasic
variables, Adler and Monteiro (1992, p. 164) consider
“optimal partitions”; weuse here only the partition part
that replaces the nonbasic variables, which we denote by
M(λ) ∪N(λ) in (26) below (called N(λ) in Adler and
Monteiro 1992). This is the set of variables of the dual
LP Dλ that may be strictly positive in an optimal so-
lution, which represent the “true inequalities” of Y(λ).
Definition 2. For some A, b,C, d, suppose that the con-
straints in x

Ax ≤ b, Cx � d (25)
are feasible. Then any row i ofAx≤ b so that (b−Ax)i > 0
for some feasible x is called a true inequality of (25).

If there are solutions x and x̂ to (25) so that (b −
Ax)i > 0 and (b − Ax̂)j > 0, then both inequalities are
true for x 1

2 + x̂ 1
2, so there is a unique largest set of true

inequalities with some feasible solution where all these
strict inequalities hold simultaneously. These define the
relative interior of the polyhedron defined by (25).

Let A ∈ Rm×n and b ∈ Rn. Let M(λ) ∪N(λ) be the
set of true inequalities of the optimal face Y(λ) of Dλ

in (17), that is,
M(λ)� { i∈{1, . . . ,m} | (Ay)i + t < 0

for some ( y, t) ∈ Y(λ) } ,
N(λ)�{ j∈{1, . . . ,n} | yj > 0

for some ( y, t) ∈ Y(λ) } . (26)
Any nontrue inequality of Y(λ) is always tight, that is,
(Ay)i + t � 0 if i /∈ M(λ) and yj � 0 if j /∈ N(λ). It can be
shown that for such i and j, there are optimal solutions
(x, v, s) to Pλ, where xi > 0 and sj > 0, so these are the
true inequalities of OptFace(Pλ). This is also known as
“strict complementary slackness” (Schrijver 1986,
p. 95, condition (36)). Consider the polyhedron P of the
constraints for Pλ in (19), where λ is allowed to vary,

P � λ, x, v, s( )∈R × Rm × R × Rn | A�x + 1v − s � bλ,
{

x ∈ X, s ≥ 0
}
. (27)

The following lemma considers the face of P defined
by the equations xi � 0 for i ∈ M(λ) and sj � 0 for
j ∈ N(λ), which are necessary and sufficient for a
feasible solution to Pλ to be optimal. This is immediate
from the standard complementary slackness condition.

Lemma 9. Let A ∈ Rm×n and b ∈ Rn. For M ⊆ {1, . . . ,m}
and N ⊆ {1, . . . , n}, with xM � (xi)i∈M and sN � (sj)j∈N,
define

P M,N( ) � λ, x, v, s( ) ∈ P | xM � 0, sN � 0{ }. (28)
Then any feasible solution (x, v, s) to Pλ is optimal if and
only if (λ, x, v, s) ∈ P(M(λ),N(λ)).

Crucially, according to Theorem 2, for any λ in an
open interval (λk, λk+1) (for 0 ≤ k ≤ K), the optimal face
Y(λ) is constant in λ. Hence, for all λ ∈ (λk, λk+1), the
true inequalities (M(λ),N(λ))ofY(λ) are equal to some
fixed (M,N), and for the points (λ, x, v, s) in P(M,N) the
value of λ can be any real in the closed interval
[λk, λk+1]. Namely, with the LPs

BRmax M,N( ): maximize
λ,x,v,s

λ

subject to λ,x,v,s( ) ∈P M,N( ),
BRmin M,N( ): minimize

λ,x,v,s
λ

subject to λ,x,v,s( ) ∈P M,N( ), (29)
the following holds.

Lemma 10. Consider λ0,λ1, . . . ,λK,λK+1 and λ′
k ∈ (λk,λk+1)

for 0 ≤ k ≤ K as in Theorem 2. Let Mk � M(λ′
k) and Nk �

N(λ′
k) (which do not depend on the choice of λ′

k). Then for
1 ≤ k ≤ K,
a. the breakpoint λk is the optimum of the LP BRmax

(Mk−1,Nk−1) and of the LP BRmin(Mk,Nk); and
b. if (λ, x, v, s) ∈ P(M(λk),N(λk)), then λ � λk.

Proof. See Adler and Monteiro (1992), p. 171, for (a)
and theorem 3.1(a) and lemma 3.1(b) for (b). □

Lemma 10(a) implies that for any λ in the open
interval (λk, λk+1), for 1 ≤ k ≤ K − 1, the endpoints of
the closed interval [λk, λk+1] are given by the mini-
mum and maximum of λ for (λ, x, v, s) ∈ P(M,N),
where M � M(λ) and N � N(λ). Lemma 10(b) and
Lemma 9 imply that if λ is itself a breakpoint, then
P(M,N) � {λ} ×OptFace(Pλ).
As we will describe in detail in the next section,

Theorem 2 and Lemma 10 lead to a description of the
set of optimal solutions to Pλ and Dλ for all λwith the
help of the breakpoints λ1, . . . , λK in the form of 2K + 1
polyhedral segments (which are lines in the nonde-
generate case). Any solution (x, v, s) to Pλ is optimal if
and only if (λ, x, v, s)belongs toP(M(λ),N(λ)), which is
a face of P, and any solution to Dλ is optimal if and
only if it belongs to Y(λ), which is a face of D. For λ
between two breakpoints, these faces do not change
(but x typically varies with λ), and their Cartesian
product definesK + 1 of the segments. If λ is equal to a
breakpoint, the set P(M(λ),N(λ)) is a subset of the two
adjoining faces P(M(λ′),N(λ′)) for λ′ near λ, whereas
Y(λ) is a superset of the adjoining faces Y(λ′), as
described in Theorem 2. This defines the other K
segments. Using this we will give a precise descrip-
tion of the set 1 in Theorem 3 below.
Adler and Monteiro (1992) describe how to gen-

erate the breakpoints of Pλ,Dλ in polynomial time per
breakpoint, with a polynomial-time algorithm ap-
plied to the LPs (17), (23), (29), which we will adapt to
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our purpose. (However, the number of breakpoints
may be exponential, see Murty (1980).) The true in-
equalities in Definition 2 can also be foundwith an LP,
according to the following lemma (proposition 4.1
of Adler and Monteiro (1992)), due to Freund et al.
(1985); for an alternative polynomial-time algorithm see
Mehrotra and Ye (1993).

Lemma 11. For A, b,C, d, and the Constraints (25), con-
sider the LP

maximize
x,u,α

1�u

subject to Ax + u − bα ≤ 0,

Cx − dα � 0,
0 ≤ u ≤ 1,

α ≥ 1. (30)
Then (25) is feasible if and only if (30) is feasible and
bounded, and any optimal solution (x∗,u∗, α∗) to (30)
satisfies u∗i � 1 (and u∗i � 0 otherwise) if and only if i is a
true inequality of (25). For such an optimal solution
(x∗, u∗, α∗) to (30), x � x∗(1/α∗) is a solution to (25),where
(b − Ax)i > 0 for all true inequalities i.

Proof. If the LP (30) is feasible, then it is also bounded
because u ≤ 1. Let I be the set of true inequalities of (25),
that is, (b − Ax)i � εi > 0 for i ∈ I for some x with
Cx � d. Choose α∗ ≥ 1 so that α∗ ≥ 1/εi for all i ∈ I.
Then (bα∗ − A(xα∗))i � (b − Ax)iα∗ � εiα∗ ≥ 1 for i ∈ I.
Hence, x∗ � xα∗ and u∗ defined by u∗i � 1 if i ∈ I, and
u∗i � 0 otherwise, give a feasible solution (x∗,u∗, α∗)
to the LP (30). This solution is also optimal because
any solution (x̂, û, α̂) to (30) where ûi > 0 would give a
solution x � x̂(1/α̂) to (25) with (b − Ax̂)i > 0 and thus
i ∈ I, so for any feasible solution (x,u, α) to (30), we have
ui � 0 whenever i /∈ I. This proves the claim. □

5. Finding One Equilibrium of a Rank-1
Game by Binary Search

We use the results of the previous section to present a
polynomial-time algorithm for finding one equilib-
rium of a rank-1 game (A,−A + ab�), using binary
search for a suitable value of the parameter λ in
Theorem 1. The search maintains a pair of succes-
sively closer parameter values and corresponding
equilibria of the game (A,−A + 1λb�) that are on
opposite sides of the hyperplane H in (10). Generi-
cally, the set 1 in (11) is a piecewise linear path that
has to intersect H between these two parameter
values. In general, the segments of that “path” are
products of certain faces of the polyhedra D in (17)
and P in (27) described in Theorem 2 and Lemma 10
using the breakpoints λ1, . . . , λK of the LPs Pλ and Dλ.

We give a complete description of 1 in terms
of these faces of P and D, which we project to R × X
(for the possible values of (λ, x)) and Y. Namely,

consider λ0, λ1, . . . , λK, λK+1 and λ′
k ∈ (λk, λk+1) for 0 ≤

k ≤ K as in Theorem 2. For 0 ≤ k ≤ K, define

X′
k � λ, x( ) | λ, x, v, s( ) ∈ P M λ′

k

( )
,N λ′

k

( )( ){ }
. (31)

Note that for any (λ, x, v, s) ∈ P(M(λ′),N(λ′)) (for any
λ′ ∈ R), the components v and s are uniquely deter-
mined by (λ, x) by Lemma 7. Similarly, let

Y′
k � y | y, t

( ) ∈ Y λ′
k

( ){ }
, (32)

where again t in ( y, t) is uniquely determined by y.
Recall that the choice of λ′

k ∈ (λk, λk+1) does not matter
for the definitions ofX′

k andY′
k. The polyhedraX

′
k × Y′

k
for 0 ≤ k ≤ K (which for k � 0 and k � K + 1 are infinite,
otherwise bounded) represent K + 1 of the segments
that constitute 1 between any two breakpoints λk
and λk+1. They are successively connected by K fur-
ther segments, which are polytopes Xk × Yk that
correspond to the breakpoints themselves. These are
for 1 ≤ k ≤ K defined by

Xk � λ, x( ) | λ, x, v, s( ) ∈ P M λk( ),N λk( )( ){ } (33)
and

Yk � y | y, t
( ) ∈ Y λk( ){ }

. (34)
Theorem 3. The set 1 in (11) is given by

1 � X′
0 × Y′

0

( ) ∪ ⋃K
k�1

Xk × Yk( ) ∪ X′
k × Y′

k

( )( )
, (35)

where for 1 ≤ k ≤ K we have

Yk ⊇ Y′
k−1 ∪ Y′

k (36)
and

Xk ⊆ X′
k−1 ∩ X′

k. (37)
Proof. This follows from Lemma 7, Lemma 9, and
Theorem 2. By Theorem 2, Y(λ′

k) is the optimal face of
SLmax(λk), which is a subset of Y(λk). Hence, Y′

k ⊆ Yk,
and similarly Y′

k−1 ⊆ Yk, which implies (36). In addi-
tion, we have M(λ′

k) ⊆ M(λk) and N(λ′
k) ⊆ N(λk) and

thus Xk ⊆ X′
k because of the additional tight con-

straints in P(M(λk),N(λk)). Similarly, Xk ⊆ X′
k−1. This

shows (37). □

The preceding characterization of 1 is used in the
following lemma.

Lemma 12. Let λ ≤ λ and x, x ∈ X and y, y ∈ Y so that for
1 in (11)

λ, x, y
( )

∈ 1 , λ ≤ x�a , λ, x, y
( ) ∈ 1 , x�a ≤ λ.

(38)
Then x�a � λ for some (λ, x, y) ∈ 1 with λ ∈ [λ, λ].
Proof. Consider the largest λ∗ so that λ∗ ∈ [λ, λ] and
there are x∗, y∗ with (λ∗, x∗, y∗) ∈ 1 and λ∗ ≤ x∗�a,
which exists since λ fulfills this property and1 is closed
by Theorem 3.
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If λ∗ � λ then both (λ∗, x) and (λ∗, x∗) belong to the
same setXk orX′

k which is convex, where since x�a ≤ λ∗
and λ∗ ≤ x∗�a we have x�a � λ∗ for a suitable convex
combination x of x and x∗, and (λ∗, x, y∗) ∈ 1, as claimed.

Hence, we can assume λ∗ < λ. Suppose λ∗ is a
breakpoint λk, so that (λ∗,x∗) ∈Xk. Consider λ′ ∈ (λk,
min{λk+1,λ}) and (λ′, x′, y′) ∈ X′

k × Y′
k where λ′ > x′�a

by maximality of λ∗. By (37), we have (λ∗, x∗) ∈ X′
k and

hence (λ∗, x∗, y′) ∈ X′
k × Y′

k. Because λ∗ ≤ x∗�a and
λ′ > x′�a, a suitable convex combination (λ, x, y′) of
(λ∗, x∗, y′) and (λ′, x′, y′) belongs to 1 and fulfills λ �
x�a as claimed (in fact, (λ, x, y′) � (λ∗, x∗, y′) does by
maximality of λ∗). If λ∗ is not a breakpoint, we directly
have (λ∗, x∗, y∗) ∈ X′

k × Y′
k for some k and can choose

(λ′, x′, y∗) ∈ X′
k × Y′

k with λ∗ < λ′ ≤ λ and apply the
same argument. □

The binary search algorithm will maintain (38) as
an invariant while halving the length of the interval
[λ, λ] in each iteration.

Lemma 12 ensures that the interval contains some λ
with (λ, x, y) ∈ 1 and x�a � λ (which is not true when
applied to games of higher rank, as shown in the example
in Figure 5 below). Let λ′ � (λ + λ)/2 and let x′ be the
strategy of player 1 in an equilibrium (x′, y′) of the game
(A,−A + 1λ′b�), which is found as a solution (x′, v′, s′)
to Pλ′ . If λ′ ≤ x′�a, it is natural to proceed with λ set
to λ′ (written as λ ← λ′), otherwise with λ ← λ′. The
binary search should terminate once λ and λ are in the
same interval [λk, λk+1] between two breakpoints,
with the desired equilibrium found in (X′

k × Y′
k) ∩H.

However, this straightforward approach has the
following problems:

i. The search may converge to an equilibrium (x, y)
with x�a � λ, whereλ is a breakpointλk, so that λ and λ
are always in different intervals (λk−1, λk] and [λk, λk+1)
and the described termination condition fails;

ii. The number of digits to describe λ and λ may
pile up, which slows down solving Pλ′ .

We address these problems as follows. First, we
identify with M � M(λ′), N � N(λ′) the face P(M,N)
of P that contains (λ′, x′, v′, s′). We then check if that
face contains some (λ, x, v, s)with x�a � λ. Depending
on whether λ′ ≤ x′�a or x′�a ≤ λ′, this is achieved by
one of the following variations of the LPs in (29) (these
variations will also be used for the enumeration of all
equilibria in Section 6):

Pmax M,N, a, λ′( ): maximize
λ,x,v,s

λ − x�a

subject to λ, x, v, s( ) ∈ P M,N( ) ,
x�a ≥ λ ≥ λ′ ,

Pmin M,N, a, λ′( ): minimize
λ,x,v,s

λ − x�a

subject to λ, x, v, s( ) ∈ P M,N( ) ,
x�a ≤ λ ≤ λ′.

(39)

Figure 1 illustrates Pmax(M,N, a, λ′) where λ′ < x′�a,
and λ′ is between two breakpoints λk−1 and λ′

k (but λ
′

could also be a breakpoint itself), so that P(M,N) is
projected to X′

k−1. Here the optimal solution x′ to Pλ′ is
not unique but always fulfills λ′ < x′�a. Moreover,
X′

k−1 × Y′
k−1 and H intersect. In the left diagram in

Figure 1, P(M,N) is not just a line segment but a higher-
dimensional polytope. It contains some (λ, x, v, s) and
(λ, x̂, v̂, ŝ) with x�a < λ < x̂�a, for example, for λ � λ̂
but not for λ � λ′ nor λ � λk. In the right diagram of
Figure 1,we always haveλ < x�a, and Pmax(M,N, a, λ′)
attains its optimum λ∗ at λ′ because for the corre-
sponding (x∗, λ∗), shown as a dot, λ∗ − x∗�a is least
negative. Here, the solution λ∗ � λk would be more
useful for proceeding because it is the next break-
point. We will introduce an extra computation step to
achieve this, as we discuss further below.
The next lemma states that the appropriate LP

in (39) identifies if there is an equilibrium (x, y) of the
game (A,−A + 1λb�) with x�a � λ for some λ be-
tween λ′ and the next breakpoint λk.

Lemma 13. Let λk be a breakpoint of Pλ and Dλ as in
Theorem 2, 1 ≤ k ≤ K. Let λ′ ∈ R and let (x′, v′, s′) be an
optimal solution to Pλ′ , and let (M,N) � (M(λ′),N(λ′)) as
in (26).
a. Suppose λ′ ∈ (λk−1,λk] and λ′≤x′�a. Let (λ∗,x∗,v∗,s∗)

be an optimal solution to Pmax(M,N,a,λ′). Thenλ∗ ∈ [λ′,λk],
and the game (A,−A + 1λb�) has an equilibrium (x, y)
with x�a � λ for some λ ∈ [λ′, λk] if and only if this holds
for λ � λ∗ and x � x∗.
b. Suppose λ′ ∈ [λk, λk+1) and λ′ ≥ x′�a. Let (λ∗, x∗,

v∗, s∗) be an optimal solution to Pmin(M,N, a, λ′). Then
λ∗ ∈ [λk, λ′], and the game (A,−A + 1λb�) has an equi-
librium (x, y)with x�a � λ for someλ ∈ [λk, λ′] if and only
if this holds for λ � λ∗ and x � x∗.

Proof. We prove (a), where (b) is entirely analogous.
By Lemma 9, (λ′,x′,v′,s′) is feasible for Pmax(M,N,a,λ′).
Clearly λ′ ≤ λ∗, and Lemma 10 implies λ∗ ≤ λk. Be-
cause λ ≤ x�a for any feasible solution (λ, x, v, s), the
objective function λ − x�a is nonpositive and zero and

Figure 1. (Color online) Illustration of Pmax(M,N, a, λ′)
in (39) for λ′ ∈ (λk−1, λk), with M � M(λ′), N � N(λ′), and
P(M,N) as a Polytope (Left) or Line Segment (Right)
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hence optimal if and only if λ � x�a, in which case x is
part of the described equilibrium (x, y). □

Wenowdescribe theBINSEARCH algorithm in Figure 2,
where wewill return to the LPs in (39). The conditions
x�a � λand x ∈ Xmean thatλ is a convex combination
of the components a1, . . . , am of a, so that we can ini-
tializeλ andλ as theirminimumandmaximum in line
3 of the algorithm. The main loop of the algorithm is
between lines 4 and 18. The candidate value for λ
(called λ′ in the above explanations) is the midpoint
between λ and λ in line 5. Line 6 computes some
optimal solution (x, v, s) of the LP Pλ in (19), where the
dual LPDλ in (17) is typically solved alongsidePλ. The
optimum φ(λ) of Pλ and Dλ determines the optimal
face Y(λ) of Dλ in (21). The true inequalities M,N of
Y(λ) in line 7 are determined according to (26), for
example with the help of the LP in Lemma 11.

Lines 8–12, and symmetrically 13–17, use the LPs
in (39). In order to match the notation in the discussion
before Lemma 13, let λ′ �λ. Consider the caseλ′ ≤ x�a,
handled in lines 8–12. Line 9 invokes the LPPmax(M,N,
a, λ′). By Lemma 13, the optimum (λ∗, x∗, v∗, s∗) to this
LP will find the desired equilibrium with λ∗ � x∗�a if
there is one for some λ∗ up to the next breakpoint λk,
that is, for λ∗ ∈ [λ′, λk]. Suppose this is not the case,
that is,λ∗ < x∗�a and the optimumλ∗ − x∗�aofPmax(M,
N, a, λ′) is negative. By Lemma 13, in this case the next
breakpoint λk does not define an equilibrium, so that

problem (i) above does not occur. However, as shown
in the right diagram in Figure 1, this may result in
λ∗ � λ′. We could simply continue with λ ← λ∗ as in
line 12, but if λ∗ � λ′, this increases the description
size of λ, which we would like to keep bounded to
avoid problem (ii) (the description size of λ probably
increases only by one bit per main iteration, but it is
useful to keep it independent of the number of iter-
ations both for the computation and for the analysis).
In line 10, the condition λ∗ < x∗�a recognizes that the
current segment of 1 contains no equilibrium, and
then BRmax(M,N) in line 11 computes λ∗ as the next
breakpoint λk according to Lemma 10(a); the LP in
line 11 can be solved by starting from the current
solution to Pmax(M,N, a, λ′). The left diagram in Fig-
ure 1 shows that we cannot simply replace the ob-
jective function λ − x�a of Pmax(M,N, a, λ′) by λ: Al-
though this would compute the next breakpoint λk,
it may overlook that the current segment of1 defined
by P(M,N) intersects the hyperplane H; this could
possiblymiss the equilibriumaltogether, for example,
if λ � λ̂ as shown in the diagram (in particular if λ still
has its initial value, which is not checked in the al-
gorithm as to whether it produces an equilibrium).
In summary, lines 8–11 find λ∗ and x∗ so that either

(a) x∗�a � λ∗ or (b) λ∗ < x∗�a and λ∗ is a breakpoint and
(λ+λ)/2�λ≤λ∗ <λ, which implies λ−λ∗ ≤ (λ−λ)/2.
The next value of λ is set to λ∗ in line 12. In case (a), the
loop terminates in line 18. In case (b), the loop con-
tinues, and in the next iteration the difference λ − λ
has shrunk by at least one half. The analogous state-
ments hold for lines 13–17. The following theorem
states the correctness and polynomial running time of
the algorithm.

Theorem 4. Algorithm BINSEARCH (Figure 2) finds one
equilibrium of the rank-1 game (A,−A + ab�). Assume that
the entries of A, a, b are rational numbers with combined bit
length L and that LPs are solved with polynomial-time
solvers that return extreme LP solutions obtained from
linear equations derived from A, a, b. Then BINSEARCH runs
in polynomial time in L.

Proof. During the main loop, the invariant (38) is
preserved, and the length of the interval [λ, λ] shrinks
by at least a factor of two per iteration. By Lemma 12, a
solution (λ, x, y) ∈ 1 with x�a � λ and λ ∈ [λ, λ] is
guaranteed to exist. The termination condition x∗�a � λ∗
in line 18 holds once λ reaches a segment of 1 that
intersects H, which is identified with one of the LPs in
line 9 or 14 by Lemma 13. Because the length of the
search interval [λ, λ] shrinks by at least half in each
iteration, the search interval eventually contains at
most one breakpoint λk. If there is no breakpoint in
[λ, λ], then (M(λ),N(λ)) � (M(λ),N(λ)) � (M(λ),N(λ))
for λ � (λ + λ)/2. Hence, a solution (λ∗, x∗, v∗, s∗) to

Figure 2. The BINSEARCH Algorithm for Finding one Nash
Equilibrium of a Rank-1 Game (A,−A + ab�)
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P max(M(λ), N(λ), a, λ) or to Pmin(M(λ), N(λ), a, λ)
determines an equilibrium (x∗, y∗) of (A,−A + ab�) by
Lemma 13 and Lemma 5. This holds also if there is
a single breakpoint λk in [λ, λ]. Hence, as claimed,
the algorithm computes an equilibrium (x∗, y∗) of
(A,−A + ab�).

The number of overall iterations is polynomial for
the following reason. Any breakpoint λ is part of a
vertex (λ, x, v, s) of P by Lemma 10(a). This vertex is a
solution to a linear system of equations where each
component (such as λ) is a fraction with an integer
determinant obtained from A, b in the denominator
(which has a polynomial of bits) and distinct fractions
for different breakpoints λ. Hence, any two break-
points have minimum distance 1/2p(L) for some poly-
nomial p (see also Schrijver 1986, section 10.2). There-
fore, therewill be atmostO(p(L)) binary search iterations
until the search interval contains at most one breakpoint
and the search terminates.

Each iteration of the algorithm solves three or four
LPs. The first is Pλ in line 6. Using the optimum φ(λ)
of that LP, in line 7 the true inequalities in (26) of Y(λ)
in (21) are found with another LP as in Lemma 11. The
third LP is either Pmax(M,N, a, λ) in line 9 or Pmin(M,
N, a, λ) in line 14. The fourth LP is either BRmax(M,N) or
BRmin(M,N) in line 11 or 16, respectively, (which just
relaxes the extra constraints of the previous LP in (39)
and has a different objective function). In all cases, the
output λ∗ is described in terms of A, a, b and found in
polynomial time in the bit size L, and λ∗ itself has
polynomial bit size (Schrijver 1986, corollary 10.2a(iii)).
In the next iteration, λ∗ determines with the constant
arithmetic expression in line 5 the next parameter λ
for Pλ in line 6 and for (M,N) in line 7 so that the bit size
of λ remains polynomial in L. Hence, each main iter-
ation takes polynomial time, and the overall running
time is polynomial. □

In practice, as observed in Adler and Monteiro
(1992, section 5), in the nondegenerate case the seg-
ments of 1 are line segments. Then the LP in line 9 or
14 is solved starting from the current solution to Pλ in
line 6 with a single pivot, and similarly the next LP in
line 11 or 16.

6. Enumerating All Equilibria of a
Rank-1 Game

In this section, we show how to obtain a complete
description of all Nash equilibria of a rank-1 game
with the help of Theorem 1 and Theorem 3.

A degenerate bimatrix game may have infinite sets
of Nash equilibria. They can be described viamaximal
Nash subsets (Jansen 1981), called “sub-solutions” by
Nash (1951, p. 290). A Nash subset for (A,B) is a

nonempty product set S × T, where S ⊆ X and T ⊆ Y,
so that every (x, y) in S × T is an equilibrium of (A,B);
in other words, any two equilibrium strategies x ∈ S
and y ∈ T are “exchangeable.” Using the “best re-
sponse polyhedra” P andQ in (2), it can be shown that
any maximal Nash subset S × T is a polytope, with S
as a suitable face ofPprojected toX, and T as a suitable
face of Q projected to Y (Avis et al. 2010). These faces
are defined by converting some inequalities in (2) to
equations, which have to fulfill the equilibrium condi-
tions (3) and (4). The usual output for enumerating all
equilibria consists of listing all maximal Nash subsets
S × T via the vertices of S and T. These are vertices of P
andQ, respectively, (projected to X and Y) that define
the “extreme”Nash equilibria of (A,B), with maximal
Nash subsets obtained as maximally exchangeable
sets of such vertices (Avis et al. 2010, proposition 4).
Maximal Nash subsets may intersect, in which case
their vertex sets intersect. In a nondegenerate game,
all maximal Nash subsets are singletons.
For a rank-1 game (A,−A + ab�), its set of Nash

equilibria is 1 ∩H projected to X × Y by Theorem 1,
with 1 in (11) and H in (10). By (35), 1 is the union of
polyhedra, whose nonempty intersections with H
give almost directly the maximal Nash subsets.

Theorem 5. Let (A,−A + ab�) be a rank-1 bimatrix game,
and let λ0, λ1, . . . , λK, λK+1, and λ′

k ∈ (λk, λk+1) for 0≤k≤K
as in Theorem 2. With (31), (32), (33), and (34), let

Sk � x | λ, x( ) ∈ Xk , x�a � λ{ } 1 ≤ k ≤ K( ) ,
Lk � λ | λ, x( ) ∈ Xk , x�a � λ{ } 1 ≤ k ≤ K( ) ,
S′k � x | λ, x( ) ∈ X′

k , x�a � λ
{ }

0 ≤ k ≤ K( ) ,
L′k � λ | λ, x( ) ∈ X′

k , x�a � λ
{ }

0 ≤ k ≤ K( ).
(40)

Then the maximal Nash subsets of (A,−A + ab�) are the
sets Sk × Yk if Sk �� �, and S′k × Y′

k if S
′
k �� � and L′k is not

equal to {λk} or {λk+1}.
Proof. Each set Sk is the projection of (Xk × Yk) ∩H
on X, and S′k is the projection of (X′

k × Y′
k) ∩H on X,

with Lk and L′k containing the corresponding set of λ’s.
Hence, by Theorem 3, if Sk �� �, then Sk × Yk is a Nash
subset, and if S′k �� �, then S′k × Y′

k is a Nash subset, and
the union of these is the set of all equilibria, which is the
projection of 1 ∩H on X × Y by Theorem 1. The only
question is which of these Nash subsets are inclusion-
maximal. By corollary 3.2 of Adler andMonteiro (1992),
Yk ∩ Yk+1 � Y′

k, where Yk and Yk+1 contain Y′
k prop-

erly, Yk ∩ Y� � � whenever |k − �| ≥ 2, and Y′
k ∩ Y′

� � �
whenever k �� �, and Lemma 10 implies Lk � {λk} �
Lk−1 ∩ Lk. So the only possible inclusions are that S′k × Y′

k
is a subset of Sk × Yk or of Sk+1 × Yk+1. Suppose x ∈ S′k,
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that is, (λ, x) ∈ X′
k and x�a � λ. If this implies λ � λk,

then L′k � {λk}. By Lemma 9, this means x is part of an
optimal solution (x, v, s) to Pλk and hence x ∈ Sk, which
shows the proper inclusion S′k × Y′

k ⊂ Sk × Yk because
Y′
k ⊂ Yk. Similarly, L′k � {λk+1} implies S′k×Y′

k⊂Sk× Yk+1.
These are the only possible inclusions because if
x ∈ S′k with (λ, x) ∈ X′

k so that x�a � λ /∈ {λk, λk+1}, we
clearly cannot have x ∈ Sk, say, where x�a � λk.

This proves the theorem. We also note that the de-
scribed sets Sk and S′k are defined in terms of the game
(A,−A+ab�) independently of the parameterλ. Namely,
the condition x�a � a�x � λ implies that the polyhedronP
in (2) for B � −A + ab� is given by

P � x, v( ) ∈ X × R | −A + ab�( )�x ≤ 1v{ }
� x, v( ) ∈ X × R | −A�x + bλ ≤ 1v{ }, (41)

so Sk and S′k are projections of certain faces of P. □

A suitable algorithm that enumerates all Nash
equilibria can be adapted from the algorithmbyAdler
and Monteiro (1992) that proceeds from breakpoint
to breakpoint using Theorem 2. The corresponding
segments of 1 can then be checked for nonempty
intersectionswithH, which are then output asmaximal
Nash subsets if they meet the conditions of Theorem 5.

We give an outline of this algorithm. Suppose λ is
equal to a breakpoint λk. Then Yk in (34) is the pro-
jection of Y(λk) � OptFace(Dλk ), and Xk in (33) is
the projection of OptFace(Pλk ) by Lemma 10(b) and
Lemma 9. If (Xk × Y) ∩H is not empty, its projection to
X × Y is a maximal Nash subset Sk × Yk. Start from
some (λ, x) ∈ Xk. If λ � x�a, then x ∈ Sk, which is a
suitable starting point for the vertex enumeration of
the polytope Sk, for example with the program lrs
(Avis 2000). If λ < x�a or λ > x�a, then the condition
(Xk × Y) ∩H �� � is checked with one of the LPs in (39)
by Lemma 13, which then have optimal value zero,
with optimum (λ∗, x∗, v∗, s∗); then λ∗ � x∗�a, and x∗ ∈ Sk
is a new starting point to enumerate the vertices of Sk.

The next segment to be tested for its intersection
with H is X′

k × Y′
k in (31) and (32). For that purpose it

is not necessary to find some λ′ ∈ (λk, λk+1), because
Y(λ′) � OptFace(SLmax(λk))by Theorem 2, and the true
inequalitiesM ∪N of that face are found by Lemma 11,
so that one obtains X′

k as the projection of P(M,N).
Moreover, we have x ∈ Xk ⊆ X′

k. If λ � x�a, then x is
also a starting point for the enumeration of the ver-
tices of S′k, which gives the Nash subset S′k × Y′

k (which
is, however, not maximal if S′k ⊆ Sk, see Theorem 5).
If λ < x�a, then we solve Pmax(M,N, a, λk) in (39) to
find out if H intersects the current segment X′

k × Y′
k,

and similarly Pmin(M,N, a, λk) if λ > x�a. Finally, the
next breakpoint λk+1 is found as the solution to
BRmax(M,N) in (29) by Lemma 10(a).
For initialization and termination of this algorithm,

we use that the possible values ofλ can be restricted to

[α, α] with α and α as minimum and maximum of
{a1, . . . , am}. The initialization is λ � α, which is de-
cided to be a breakpoint or not as described after (23).
The constraint λ ≤ α is added to the step of finding
the next breakpoint, which terminates the algorithm
when it is found to hold as equality.
This algorithm, based on Theorem 5, for enumer-

ating all Nash equilibria of a rank-1 game has the
following noteworthy features. First, it works for all
games (degenerate or not), and its characterization of
maximal Nash subsets is simpler than for general
bimatrix games (Avis et al. 2010) and could even be
adapted toeasily represent theseNash subsets in termsof
their inequalities rather than their vertices (whichwould
be of interest if they are high dimensional). Secondly, the
algorithm in effect traverses 1, which is generically a
path. Rather than by solving a succession of LPs, it can
also be implemented by a variant of the algorithm by
Lemke (1965) with the additional linear constraints λ≥
x�a or λ ≤ x�a, dependingon the current signofλ−x�a.
Here, traversing this path gives all Nash equilibria,
whereas for general bimatrix games Lemke’s algo-
rithm (as in von Stengel et al. 2002 or Govindan and
Wilson 2003) only finds one Nash equilibrium.

7. Two Examples
In this section, we illustrate the results of the previous
sections with an example of a rank-1 game. After that
wewill give an example that shows that binary search
will in general notwork for a game of rank 2 or higher,
even though Lemma 5 suggests the possibility of
finding a Nash equilibrium of such a game via a re-
cursive rank reduction.
Consider the following rank-1 game (A,B),

A� 1 0
0 1

[ ]
, B� 1 −2

−1 0

[ ]
,A+B� 2 −2

−1 1

[ ]
� ab�,

(42)
where a� � (2,−1) and b� � (1,−1). This game has the
two pure equilibria ((1, 0), (1, 0)) and ((0, 1), (0, 1)), and
the mixed equilibrium ((14 , 34), (12 , 12)). By Theorem 1(b),
these are the equilibria (x, y) of the game (A,−A+1λb�)
so that x�a � λ. For x � (1, 0), (14 , 34), (0, 1), this means
λ � 2,− 1

4 ,−1.
Figure 3 shows the set 1 in (11) where (x, y) is an

equilibrium of the parameterized game (A,−A + 1λb�),
where

−A + 1λb� � −1 0
0 −1

[ ]
+ λ −λ

λ −λ
[ ]

. (43)

These equilibria are pure except when λ ∈ [− 1
2 ,

1
2],

when the uniquemixed strategy (1 − x2, x2) of player 1
is given by equalizing the column payoffs, −(1 − x2) +
λ �−x2 − λ, that is, λ � 1

2 − x2. The white dots indicate
the intersection of 1 with the hyperplane H in (10),
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which is defined by the equation λ � x�a � 2(1 − x2) −
x2 � 2 − 3x2, and no constraints on y.

Figure 4 shows the domains of the LPs Pλ in (19) and
Dλ in (17) for λ � − 1

4. Again we show x in X as (1 −
x2, x2) and y inY as (1 − y2, y2). The constraints ofPλ are
then 1 − x2 + v ≥ λ and x2 + v ≥ −λ, which for λ � − 1

4
are v≥−5

4+x2 and v ≥ 1
4 − x2. The constraintsAy+1t≤0

of Dλ are

1 − y2 + t ≤ 0 and y2 + t ≤ 0, (44)

and the objective functionλb�y + t is λ(1 − y2 − y2) + t,
with gradient ( ∂

∂y2
, ∂∂t) � (−2λ, 1) � (12 , 1) for λ � − 1

4.
For λ > 1

2, the optimum of Dλ is attained at the vertex
(y1, y2, t) � (1, 0,−1) of D, for 1

2 > λ > − 1
2 at the vertex

(12 , 12 ,− 1
2), and for− 1

2 > λ at thevertex (0, 1,−1). Forλ2 � 1
2

and λ1 � − 1
2, the optimal face of Dλ is an edge of D.

These are the two breakpoints λ1 and λ2 in Theorem 2.
Figure 3 also demonstrates the characterization of

the path 1 in Theorem 3. The left diagram shows
(from left to right) the three piecesX′

2,X
′
1, andX′

0, each
of which happen to intersect H. In the central dia-
gram, the vertical parts of the path are Y′

2, Y
′
1, and Y′

0,
and the horizontal parts (for the breakpoints) are Y2
and Y1. This corresponds to the following, more el-
ementary game-theoretic explanation. Except when
λ � − 1

2 orλ � 1
2, player 2’s equilibrium strategy y in the

game (A,−A + 1λb�) is constant in λ, which holds
because player 1’s payoff matrix A does not change
with λ and y is chosen so as to make player 1 indif-
ferent between the pure strategies in the support of his
equilibrium strategy. When λ � − 1

2 or λ � 1
2, the game

is degenerate, and player 2’s equilibrium strategies
form a line segment, which allows the change of
support of player 2’s equilibrium strategy y.
Our second example shows that the binary search

algorithm no longer works for rank-r games with r > 1.
Consider the following game (A,B) of rank 2:

A � 1 −1
0 0

[ ]
, C � 4 0

0 0

[ ]
,

B � C + ab� � 1 0
2 0

[ ]
, (45)

where a� � (−3, 2) and b� � (1, 0). Here, (A,B) is of
rank 2 and (A,C) is of rank 1. The only equilibrium of
(A,B) is the pure equilibrium ((1, 0), (1, 0)). The pa-
rameterized game (A,C + 1λb�) has payoff matrices

A � 1 −1
0 0

[ ]
, C + 1λb� � 4 + λ 0

λ 0

[ ]
. (46)

It has the following equilibria (x, y) depending on λ,
which define the set 1 in (9), shown in Figure 5: The
pure equilibrium ((1, 0), (1, 0)) for λ ≥ −4; the pure
equilibrium ((0, 1), (0, 1)) for λ ≤ 0; the mixed equilib-
rium ((− λ

4 , 1 + λ
4), (12 , 12)) for −4 < λ < 0, and two further

components ((1, 0), (1 − y2, y2)) with y2 ∈ [0, 12] when
λ � −4 and ((0, 1), (1 − y2, y2)) with y2 ∈ [12 , 1] when
λ � 0, where the game in (46) is degenerate. These are
multipledisjointequilibriumcomponents for−4 ≤ λ ≤ 0,
which cannot happen for a parameterized zero-sum
game. As a result, λ may change nonmonotonically
along the path 1, which in general causes a binary
search to fail, as we show next.
We describe a suitably adapted binary searchmethod

for this example,where instead of solvingparameterized
LPswefind equilibria of the parameterized game (46) of

Figure 4. (Color online) The LP Pλ in (19) and the
Polyhedron D in (18) with the Objective Function of the
LP Dλ in (17) for λ � − 1

4, for the Game (43)

Figure 3. (Color online) The Path 1 in (11) for the
Game (43), for x � (1 − x2, x2) ∈ X and y � (1 − y2, y2) ∈ Y,
and the Hyperplane H in (10)
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lower rank. The smallest and largest components of a
as in line 3 of the BINSEARCH algorithm are λ � −3 and
λ � 2. For λ � λ, the only equilibrium of the game
in (46) is (x, y) � ((1, 0), (1, 0)); but for λ � λ, there are
multiple equilibria, where we choose (x,y) � ((0,1),
(0,1)). Then λ � −3 < x�a � 2 and x�a � −3 < λ � 2, so
we next consider the midpoint λ � (λ + λ)/2 � −1/2 as
in line 5 of BINSEARCH and compute a new equilibrium
of this parameterized game. Suppose this is again
(x, y) � ((0, 1), (0, 1)), so that because λ < x�a the as-
signment (λ,x,y)← (λ,x,y) takes place for the binary
search to continue. This is the situation shown in
Figure 5. At this point, the method will no longer
succeed in finding a suitable value of λ because the
search interval [λ, λ] � [− 1

2 , 2] no longer contains the
only possible value for λ, namely, −3. The problem is
that in that interval, the set 1 consists of two dis-
connected parts where λ < x�a and λ > x�a are on
opposite sides of the hyperplane H, so that 1 no
longer intersects with H. Hence, even though the
values of λ converge, the corresponding equilibria
(x, y) on the two sides of H will not converge.

This example shows that because of the nonmono-
tonicity of λ along the path 1, there is no equivalent
statement to Lemma 12 that would guarantee that a
binary search will succeed.

8. Rank-1 Games with Exponentially
Many Equilibria

Kannan and Theobald (2010, open problem 9) asked if
the number of Nash equilibria of a nondegenerate
rank-1 game is polynomially bounded. This is not the
case, because our next result shows that this number
may be exponential.

Theorem 6. Let p > 2 and let (A,B) be the n × n bimatrix
game with entries of A

aij �
2pi+j if j > i
p2i if j � i
0 if j < i

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (47)
for 1 ≤ i, j ≤ n, and B � A�. Then A + B is of rank 1, and
(A,B) is a nondegenerate bimatrix game with 2n − 1many
Nash equilibria.

Proof. By (47), A + B � ab� with the n components of a
and b defined by ai � pi and bj � 2pj for 1 ≤ i, j ≤ n, so
A + B is of rank 1.
Let y ∈ Y with support S. Consider a row i and let

T � {j ∈ S | j > i}. Because A is upper triangular, the
expected payoff against y in row i is

Ay
( )

i� aiiyi +
∑
j∈T

aijyj. (48)

Suppose i /∈ S. If T is empty, then (Ay)i � 0 < (Ay)1,
otherwise let t � minT and note that for j ∈ T, we have
aij � 2pi+j < p1+i+j ≤ pt+j ≤ atj, so (Ay)i < (Ay)t. Hence,
no row i outside S is a best response to y. Similarly,
because the game is symmetric, any column that is a
best response to x inX belongs to the support of x. This
shows that the game is nondegenerate. Moreover, if
(x, y) is an equilibrium of (A,B), then x and y have
equal supports.
For any nonempty subset S of {1, . . . ,n}, we construct

a mixed strategy y with support S so that (y, y) is an
equilibrium of (A,B). This implies that the game has
2n − 1 many equilibria, one for each support set S. The
equilibrium condition holds if (Ay)i � u for i ∈ S with
equilibrium payoff u, because then (Ay)i < u for i /∈ S as
shown above. We start with s � max S, where (Ay)s �
assys � u, by fixing u as some positive constant (e.g.,
u � 1),which determines ys. Once yi is known for all i ∈ S
(and yi � 0 for i /∈ S), we scale y and u by multiplication
with 1/1�y so that y becomes a mixed strategy. Assume
that i ∈ S and T � {j ∈ S | j > i} �� � and assume that yk
has been found for all k in T so that (Ay)k � u for all k
in T, which is true for T � {s}. Then, as shown above,∑

j∈T aijyj <
∑

j∈T atjyj � (Ay)t � u for t � minT, so yi is
determined by (Ay)i � u in (48), and yi > 0. By induction,
this determines yi for all i in S and after rescaling gives
the desired equilibrium strategy y. □

By Theorem 1, the equilibria (x, y) of a rank-1 game
are the intersection of the path 1 in (11) with the
hyperplane H in (10). The exponential number of
Nash equilibria of the game in Theorem 6 shows
that 1 has exponentially many line segments. Murty
(1980) describes a parameterized LP with such an
exponentially long path of length 2n. The payoffs for
the game in Theorem 6 have been inspired byMurty’s
example but are not systematically constructed from
it, which would be interesting. See von Stengel (2012)

Figure 5. (Color online) The Path 1 of Equilibria of the
Games in (46) Where the Binary Search Method Fails
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for further discussions and relatedwork on themaximal
number of Nash equilibria in bimatrix games, such as
von Stengel (1999).

9. A Rank-Preserving Structure Theorem
Nash equilibria of games are in general not unique,
which has led to a large literature on equilibrium
refinements (van Damme 1991) that impose additional
conditions on equilibria, such as stability against small
changes in the game parameters, as proposed in the
seminal paper by Kohlberg and Mertens (1986). The
authors showed that stability has to apply to equi-
librium components, that is, maximal sets of equilibria
that are topologically connected (which for bimatrix
games are unions of intersectingmaximalNash subsets,
see Section 6). That is, an equilibrium component is
stable if every perturbed game has an equilibrium
near that component (although possibly in different
positions depending on the perturbation, which is
why any single equilibrium may fail to be stable).
KM proved the existence of stable equilibrium com-
ponents with the help of a structure theorem (Kohlberg
and Mertens 1986, theorem 1), which states that
the equilibrium correspondence E over the set Γ of
strategic-form games with a given number of players
and numbers of strategies is homeomorphic to Γ itself.

In this section, we present in Theorem 7 a similar
structure theorem with a new homeomorphism for
bimatrix games that preserves rank. In analogy to
Kohlberg and Mertens (1986, appendix B), one con-
sequence of this new structure theorem is the exis-
tence of an equilibrium component in a game (A,B)
that is stable with respect to small perturbations that
preserve the sum A + B of the payoff matrices. This is
not interesting for zero-sum games, which always
have only one component, but it is for games of higher
rank and applies, for example, to perturbations of the
matrix A in a rank-1 game given as (A,−A + ab�).
Furthermore, a number of equilibrium-finding algo-
rithms can be interpreted as following a path on the
equilibrium correspondence E via the KM homeo-
morphism and suitable projections (Wilson 1992,
Govindan and Wilson 2003). As a topic for further
research, it may be interesting to study our new ho-
meomorphism in this context or, similar to Jansen and
Vermeulen (2001), the computation of equilibrium
components that are stable with respect to small
perturbations that preserve the sum A + B of the
payoff matrices.

We first recall the KM homeomorphism. Let Γ be
the set ofm×nbimatrix games (A,B) and E ⊆ Γ × X × Y
be its equilibrium correspondence,

E � A,B, x, y
( ) | A,B( ) ∈ Γ, x, y

( )
is a NE of A,B( ){ }

.

(49)

To distinguish the dimensions of the all-zero and all-
one vectors we write them as 0, 1 ∈ Rm and 0,1 ∈ Rn.
Let a and b be the vectors of row and column averages
of A and B,

a � A1 1
n , b � B�1 1

m . (50)
Then A and B correspond uniquely to pairs (Ã, a) and
(B̃, b) with

A � Ã + a1�, B � B̃ + 1b�, Ã1 � 0, 1�B̃ � 0�,
(51)

with a and b as in (50). That is, (A,B) is parameterized
by a “base game” (Ã, B̃), where each row of player 1
and each column of player 2 gets payoff zerowhen the
other player randomizes uniformly (as in Ã1 1

n � 0,
where the factor 1

n does not matter), and a pair of
vectors a inRm and b�with b inRn that are added to the
rows of Ã and columns of B̃, respectively, to obtain the
correct payoffs.
The KM homeomorphism φ : Γ → E only changes a

and b. It is most easily described by its inverse φ−1 :
E → Γ defined by φ−1(A,B, x, y) � (C,D),

C � Ã + Ay + x
( )

1�, D � B̃ + 1 x�B + y�
( )

. (52)
That is, (C,D) has the same base game (Ã, B̃) as (A,B)
butdifferentparameters (Ay+x)∈Rm and (B�x+y) ∈Rn.
The fact that (x, y) is an equilibrium of (A,B) implies
that φ−1 is injective (and therefore φwell defined), by
the following intuition. Because x is a best response
to y, each row of the vector Ay of expected payoffs in
the support of xhasmaximal and equal value u among
all components of Ay, by (3). This condition allows
us to reconstruct x from the sum c � Ay + x, which is
used in the definition of C in (52) and which can be
obtained from C. Suppose the components ci of c are
heights of m “poles in the water” of which a certain
amount xi is “above the waterline” depending on the
“water level” w, where

xi � max ci − w, 0( ), (53)
so xi ≥ 0 and if ci < w, then xi � 0. For any c ∈ Rm, there
is a unique choice of w ∈ R in (53) so that

∑m
i�1 xi � 1

and therefore x ∈ X. Let p � c − x, that is, c � x + p.
Then all components pi of the vector p fulfill (a) w �
maxk pk, and (b) xi > 0 implies pi � w, as when p � Ay
and x is a best response to y. In a similar way, y is
a best response to x, and the sum x�B + y� used to
define D in (52) is special because it allows us first to
obtain a vector d ∈ Rn from D and second to obtain
the original y ∈ Y and q ∈ Rn so that d � q + y and
q� � x�B. The following lemma states this construc-
tion, which we apply afterward to define the KM
homeomorphism and will later use again for our
new homeomorphism.
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Lemma 14. Given c ∈ Rm and d ∈ Rn, there are unique
x ∈ X, y ∈ Y, p ∈ Rm and q ∈ Rn so that

c � p + x , d � q + y ,

xi � 0 or pi � u � max
1≤k≤m

pk (1 ≤ i ≤ m),
yj � 0 or qj � v � max

1≤l≤n
ql (1 ≤ j ≤ n). (54)

Proof. For t ∈ R, let t+ � max(t, 0), and

u � min w ∈ R | ∑m
i�1

ci − w( )+≤ 1

{ }
,

v � min w ∈ R | ∑n
j�1

dj − w
( )+≤ 1

{ }
, (55)

where u (and similarly v) is the unique lowest “water
level”w so that the “heights” of the components ci of c
that are “above the waterline” sum up to (at most)
one. Then

xi � ci − u( )+ 1 ≤ i ≤ m( ), yj � dj − v
( )+ 1 ≤ j ≤ n

( )
,

(56)
and p � c − x and q � d − y fulfill (54), and x, y, p, q are
uniquely determined by the conditions x ∈ X, y ∈ Y,
and (54). □

The KM homeomorphism φ : (C,D)
→(A,B, x, y) is
then defined as follows.

a. Let c�C1 1
n, d�D�1 1

m, Ã�C− c1�, and B̃ �
D − 1d�.

b. Apply Lemma14 to get x, y, p, q so that (54) holds.
c. Let a � c − x − Ãy and b � d − y − B̃�x, and define

A and B by (51).
Then φ is continuous because it is defined by

continuous linear mappings and (55) and (56) for (b).
We show that (A,B,x,y) ∈E. We haveAy� (Ã+ a1�)y �
Ãy+ a� Ãy+ c−x− Ãy� p and similarly x�B� x�B̃ +
b� � d� −y� � q�. Then the conditions (54) are equiva-
lent to the best-response conditions (3) and (4), that is,
(x, y) is indeed an equilibrium of (A,B). Moreover, c �
p + x � Ay + x and d � B�x + y, which shows that the
(continuous) function (A,B, x, y) 
→ (C,D) in (52) is
indeed the inverse of φ (so φ is injective) and also
that φ is surjective, because we can start in (52) from
any (A,B, x, y) ∈ E.

The KMhomeomorphismdoes not operatewithin a
subset of games of fixed rank (for example, the zero-
sum games). Our new homeomorphismψ : Γ → Ehas
this property. Consider a fixed matrix M ∈ Rm×n, the
set ΓM bimatrix games (A,B) with A + B � M, and EM

as the equilibrium correspondence E in (49) restricted
to these games,

ΓM � A,B( ) ∈ Γ | A + B � M{ },
EM � A,B, x, y

( ) ∈ E | A,B( ) ∈ ΓM
{ }

. (57)

The following theorem states we can restrict ψ to a
homeomorphism ΓM → EM for any M (for example,
the all-zero matrix M). Also, ψ is continuous in M
and therefore a homeomorphism Γ → E like the KM
homeomorphism.

Theorem 7. Let M ∈ Rm×n. There is a homeomorphism
ψ : ΓM → EM, (C,D) 
→ (A,B, x, y), that is, A + B � M for
all (C,D) ∈ ΓM.

Proof. We will use a new parameterization of any
matrix A in Rm×n, which corresponds uniquely to a
quadruple (Â, γ, a, b)with Â ∈ Rm×n, γ ∈ R, a ∈ Rm, and
b ∈ Rn according to

A � Â + 1γ1� + a1� + 1b� (58)
so that

1�Â � 0�, Â1 � 0, 1�a � 0, b�1 � 0. (59)
It is easy to see that Â, γ, a, and b are uniquely given
by A, (58), and

γ � 1
m 1

�A1 1
n , a � A1 1

n − 1γ, b� � 1
m 1

�A − γ1�. (60)
The homeomorphism ψ : ΓM →EM, (C,D) 
→ (A,B,x,y)
uses this parameterization of C and only changes the
vectors a and b andmaintains the sumM of the payoff
matrices, that is, A + B � C +D � M. Like for the KM
homeomorphism, we first describe its inverse ψ−1,
which maps (A,B, x, y) in EM to (C,D) in ΓM. Let A +
B � M and (x, y) be an equilibrium of (A,B). Let A be
represented as in (58) so that (59) holds, and let

C � Â + 1γ1� + c1� + 1d�, (61)
with c and d given by

c � ρ Ay + x
( )

, d � σ B�x + y
( )

, (62)
where ρ : Rm → Rm and σ : Rn → Rn are the linear
projections on the hyperplane through the originwith
normal vector 1, respectively 1,

ρ x( ) � x − 1 1
m 1

�x
( )

, σ y
( ) � y − 1 1

n1
�y

( )
, (63)

which achieves 1�ρ(x) � 0 and 1�σ(y) � 0 for any
x ∈ Rm and y ∈ Rn, as required for a parameteriza-
tion of the payoff matrix C like it is done for A in (59).
With C thus encoded, we let D � M − C.
The homeomorphism ψ : (C,D) 
→ (A,B, x, y) itself is

obtained as follows. Let (C,D) ∈ ΓM. Similar to (58), we
represent C by (61), whereas in (60)

γ � 1
m 1

�C1 1
n , c � C1 1

n − 1γ , d� � 1
m 1

�C − γ1�, (64)
which implies

1�Â � 0�, Â1 � 0 , 1�c � 0 , d�1 � 0. (65)
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Given c and d, we determine x ∈ X, y ∈ Y, p ∈ Rm, and
q ∈ Rn by Lemma 14 so that (54) holds. Then, let

a � c − ρ Ây + x
( )

, b � σ M − Â
( )�x + y
( ) − d, (66)

so that a and b fulfill (59), define A by (58), and let
B � M − A. Like φ before, ψ is defined by linear maps
and the continuous operations in (55) and (56) and is
therefore continuous.

We show that ψ(C,D) � (A,B, x, y) ∈ EM. Because
A + B � M, we only need to show the equilibrium
property. Using (58), 1�y � 1, (66), c � p + x, and the
definition of ρ in (63),

Ay� Ây+1γ1�y+a1�y+1b�y

� Ây+1γ+ a+1b�y

� Ây+1γ+ c−ρ(Ây+x)+1b�y

� Ây+1γ+p+x−(Ây+x)+1
1
m
1� Ây+x

( )( )
+1b�y

� p+1 γ+ 1
m
1� Ây+x

( )
+b�y

( )
� p+1α (67)

for some α ∈ R, whichmeans that (Ay)i � pi + α for 1 ≤
i ≤ m and therefore by (54) the best-response condi-
tion (3) holds (which is unaffected by a constant shift),
that is, x is a best response to y. Similarly, using
1�x � 1, (66), the definition of σ in (63), and d � q + y,

B�x� (M−A)�x
� (M− Â−1γ1� − a1� −1b�)�x
� (M− Â)�x−1γ1�x−1a�x−b1�x

� (M− Â)�x−1γ−1a�x−b

� (M− Â)�x−1γ−1a�x−σ((M−Â)�x+y) +d

�−1γ−1a�x−y+11
n1

�((M−Â)�x+y) +q+y

� 1β+q (68)
for some β ∈ R, which means that (B�x)j � qj + β for
1 ≤ j ≤ n and therefore by (54) the best-response con-
dition (4) holds, that is, y is a best response to x. Hence,
(x, y) is indeed an equilibrium of (A,B).

To show that ψ has the inverse described in (61)
and (62), note that ρ and σ in (63) are linear and ρ(1) � 0
and σ(1) � 0. Therefore, forψ(C,D) � (A,B, x, y)with C
as in (61), we have by (67) and (68) and because 1�c � 0
and 1�d � 0,

ρ Ay + x
( ) � ρ p + 1α + x

( )� ρ p + x
( ) � ρ c( ) � c,

σ B�x + y
( ) � σ 1β + q + y

( ) � σ q + y
( ) � σ d( ) � d, (69)

that is, ψ has indeed the (continuous) inverse de-
scribed in (62) and ψ is both injective and surjective.

This shows that ψ is indeed a homeomorphsim from
ΓM to EM. □

10. Conclusions
We conclude with some open questions. Our analysis
shows that rank-1 games are computationally easy
to analyze: One Nash equilibrium can be found in
polynomial time, and enumerating all equilibria can be
performed by following a piecewise linear path, similar
to finding a single Nash equilibrium of a bimatrix game
(which is in general a PPAD-hard problem).
As described in Section 6, the path of solutions to

the parameterized LP consists in general of polyhe-
dral segments whose intersections with the hyper-
planeH define the sets of Nash equilibria of the rank-1
game. This setup suggests the application of smoothed
analysis as pioneered by Spielman and Teng (2004)
for the “shadowvertexalgorithm” forparameterizedLPs.
This analysis has been subsequently improved and sim-
plified; for recent developments, see Dadush and
Huiberts (2018). In smoothed analysis, the LP data
are perturbed by some moderate Gaussian noise
which cancels “pathological” cases that lead to ex-
ponential worst-case examples, like the game con-
structed in Section 8. Applied to our parameterized LP,
it would imply that in expectation there is a polynomial
number of segments in Theorem 3. If this holds, the
number of Nash equilibria is similarly polynomially
boundedbyTheorem 5 (the Nash subsets are all single
equilibria because the perturbed game is generic
and therefore nondegenerate with probability one).
However, the standard framework of smoothed
analysis (as in, e.g., Dadush and Huiberts 2018) as-
sumes that the LP constraints are of the form Ax ≤ 1,
which is not the case for the LP (16) that we consider,
so combining this with our approach requires a careful
study that we leave for future work. For a general
bimatrix game, finding one equilibrium is PPAD-hard
even under smoothed analysis (Chen et al. 2009). How-
ever, it is not known if a perturbed game may have
exponentially long Lemke–Howson paths; the long
paths in Savani and von Stengel (2006) do not persist
because of exponential size differences in the payoffs.
In Section 8, we described rank-1 games with ex-

ponentially many equilibria (also with exponential
size differences in the payoffs). This raises the fol-
lowing question: Can all equilibria of a rank-1 game
be computed in running time that is polynomial in
the size of the input and output? Such an algorithm
is called “output efficient.” For example, the algo-
rithm by Adler andMonteiro (1992) that computes all
segments of a parameterized LP is output efficient.
We have extended this algorithm in Section 6. For
general bimatrix games, an output-efficient algorithm
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that finds all Nash equilibria would imply P � NP
because it is NP-hard to decide if a game has more
than one Nash equilibrium (Gilboa and Zemel 1989).
Our binary search algorithm gives no information
about the existence of a second equilibrium, so it is
conceivable that finding a secondNash equilibrium of
a rank-1 game is also NP-hard. The existence of an
output-efficient algorithm to find all Nash equilibria
of a rank-1 game is an open question.

General bimatrix games are computationally dif-
ficult, but rank-1 games are computationally easy.
One should therefore investigate economic applications
of large rank-1 games, also as approximate economic
models that can serve as fast-solvable benchmarks. As
a possible starting point, we describe here a simple
“trade game,” which suggests that rank-1 games are
much more versatile and economically interesting
than zero-sum games. Let player 1 be a seller of a
product who can choose possible quality levels ai
for i � 1, . . . ,m, and let player 2 be a buyer who can
decide on possible quantity levels bj for j � 1, . . . ,n
that the buyer buys from the seller. A price pij that
is paid from buyer to seller can be chosen arbi-
trarily for each i and j. Suppose there are further
parameters α, β, γj, and δi so that the payoffs to the
players are

payoff to player 1 : pij − αaibj + γj
payoff to player 2 : −pij + βaibj + δi. (70)

We further assume that β > α > 0, which reflects that
high quality is costly to produce for player 1 and
beneficial for player 2, with β − α representing the
benefits from trade. The additional parameter γj

(increasing with bj) is an additional benefit to player 1
for higher amounts of sold quantities and similarly δi
to player 2 for higher quality. Neither γj nor δi affect
the players’ best responses and can therefore be as-
sumed to be zero. This gives a strategically equiva-
lent game whose sums of payoffs are (β − α)aibj and
therefore of rank one. Because rank-1 games can be
analyzed very fast, this “trade game” can be studied
for large values of m and n, and in particular for its
possibly many price levels. The concrete economic
interpretation of such games and their equilibria re-
mains to be investigated. Bulow and Levin (2006,
p. 654) consider a “multiplication game,” which is
a matching game between n workers and n firms
where the suitability of a worker for a firm is de-
scribed by a matrix of rank one. However, it is a game
with 2n players, not two players.
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