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Abstract—We study the differentially private multi-group ag-
gregation (PMGA) problem. This setting involves a single server
and n users. Each user belongs to one of k distinct groups
and holds a discrete value representing his data. The goal is
to design schemes that allow the server to find the aggregate
(sum) of the values in each group (with high accuracy), under
communication and local differential privacy constraints. The
privacy constraint guarantees that the user’s group remains
private. This is motivated by applications where a user’s group
can reveal sensitive information, such as his religious and political
beliefs, health condition, or race.

We propose a novel scheme, dubbed Query and Aggregate
(Q&A) for PMGA. The novelty of Q&A is that it is an interactive
aggregation scheme. In Q&A, each user is assigned a random
query matrix, to which he sends the server an answer based on
his group and value. We characterize the Q&A scheme’s perfor-
mance in terms of accuracy (MSE), privacy, and communication.
Private aggregation schemes for related settings in the literature
are predominantly non-interactive and based on randomized
response. We compare Q&A to the Randomized Group (RG)
scheme, which adapts existing schemes to the PMGA setting. We
observe that typically Q&A outperforms RG, in terms of utility
vs. privacy, in the high privacy regime. Moreover, an attractive
property of Q&A is that its communication cost per user does
not depend on the number of groups.

I. INTRODUCTION

We consider the problem of distributed aggregation in which
a centralized server wishes to compute the aggregate (sum) of
the data (values) held by several participants (users). The users
can communicate with the server in both directions. Privacy
is a significant concern since participants have to share their
data, which can be personal and sensitive. This has motivated
works on private and secure distributed aggregation in many
applications such as medical studies [1] or more recently
federated learning [2]–[5].

In this work, we focus on the setting depicted in Figure 1,
in which users belong to different groups. The server wants
to find the aggregate for each group separately, instead of the
aggregate over the whole population. The users’ groups can be
based, for example, on their political views, immigration sta-
tus, health condition, location, race, to name a few. Evidently,
this raises additional privacy concerns since participating users
may be rightfully wary of revealing their group.

As an example of applications, consider medical research
on the efficacy of a new vaccine on patients with or without a
chronic illness, say diabetes. A person may want to contribute
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Fig. 1: An instance of the Private Multi-Group Aggregation
problem with n users. Each user i, for i ∈ [n], has a value, vi,
and belongs to one of the k = 3 distinct groups. The server’s
goal is to estimate the sum of the values in each of the groups.

his experiment results, but does not want to reveal his medical
condition (group). Another application is population polling.
For instance, a political organization seeks to poll voters per
group, such as race, gender, or income bracket. Participants
want to partake in these polls without disclosing their groups.

We present the problem of Private Multi-Group Aggregation
(PMGA), where local differential privacy guarantees are given
over a user’s group. We are interested in regimes with a
large number of groups since this allows the server more
refined statistics about the population. Our main objective is
to design schemes with low communication cost, as users can
have limited bandwidth. In particular, we focus on schemes
that offer communication costs that are constant or at most
logarithmic in the number of groups. Moreover, we study the
trade-offs they offer between privacy, measured using local
differential privacy, and accuracy, i.e., the aggregate estimation
accuracy for each group.

A. Related Work

The classical setup for secure and private aggregation in the
literature does not distinguish among groups, and the privacy
guarantees are on the user’s data (values). Differentially private
schemes and bounds for private aggregation were studied in
[6]–[10]. In [2] secure aggregation based on information-
theoretic (secret sharing) and cryptographic techniques was
developed for applications in federated learning (FL) [11].
Secure aggregation algorithms for FL with improved com-
munication and computation overhead were proposed in [12],
[13], and with robustness against adversarial users in [14]. The
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(a) p1(1) = 0.5 and p2(1) = 0.5.
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(b) p1(1) = 0.6 and p2(1) = 0.3.
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(c) p1(1) = 0.9 and p2(1) = 0.01.

Fig. 2: Comparison of the Q&A and RG schemes for k = 2 groups, binary alphabet, i.e., v ∈ {−1, 1}, and fixed total
communication cost equal to 500 bits, i.e., 500 bits communicated by all the users to the server. The Q&A scheme requires
less communication cost per user compared to the RG scheme; therefore, for fixed total communication cost, the Q&A scheme
can have more users. The subfigures (a), (b) and (c) illustrate accuracy vs. privacy of the Q&A and RG schemes for different
user’s value distributions, p1(1) and p2(1). The dashed (or dotted) curves represent the performance of the schemes with the
additional layer of privacy that hides the user’s values, i.e., λ > 0 for the Q&A scheme, and λvl > 0 for the RG scheme.

schemes in [2], [12]–[14] have a communication cost per user
that grows with the number of users.

A related problem is federated submodel learning [15]–
[17]. In this setting, one or multiple servers hold various
submodels (vectors) and each user wants to train (update) a
private subset of these submodels. The notion of submodels
here is similar to the notion of groups in our problem; however,
a user’s update depends on the submodels at the server in
addition to his data. The proposed solutions in [16], [17]
use information-theoretic private information retrieval (PIR)
to privately download and update the submodels. Thus, they
require multiple servers, and the communication cost per user
is linear in the number of submodels (groups). Moreover, in
[15] differentially private techniques were used to allow a
user to download the required submodels, and update it using
secure aggregation. The resulting scheme has a communication
cost per user that grows with the total number of users.

B. Contributions

We propose a novel scheme for PMGA that we call the
Query and Aggregate (Q&A) scheme that provides local
differential privacy guarantees on the users’ groups. The Q&A
scheme is interactive in that the user is assigned a query matrix
and sends the server an answer based on his group and value.
This allows to shift the bulk of the total communication cost
to the query stage (server-to-user) which could be done offline
since it does not depend on a user’s group and value. As a
result, the online communication cost, user-to-server, does not
depend on the number of groups and users. We characterize,
in Theorem 1, the performance of the Q&A scheme in terms
of privacy, communication cost, and accuracy.

We compare Q&A to a non-interactive scheme which we
call the Randomized Group (RG) scheme. RG is an adaptation
of standard randomized response [18] schemes from the liter-
ature and consists of each user reporting a noisy version of his

group and value to the server. For a fixed total communication
cost, we observe that in general Q&A offers better accuracy
in high privacy regimes (small ε), as illustrated in Figure 2.

C. Paper Organization

The rest of the paper is organized as follows. In Section II,
we describe the formulation of the Private Multi-Group Ag-
gregation problem. We present the details of the Q&A scheme
in Section III, and our main result in Theorem 1. In Section
IV, we describe the details of the RG scheme, compare the
two schemes and elaborate on the setup of Figure 2. A more
detailed discussion of the results, including proofs, can be
found in the full version [19].

II. PROBLEM FORMULATION

We consider the setting depicted in Figure 1 in which there
are n users, indexed from 1 to n, and a single server. The users
can communicate with the server but not among each other.
Each user i ∈ [n] := {1, . . . , n} belongs to one of k groups,
indexed from 1 to k. Moreover, user i ∈ [n] holds a value
vi ∈ V := {±1, . . . ,±m}. We assume that the server knows
each user’s index but does not know his value or group. We
assume that the users are not adversarial and will faithfully
participate in the scheme.

We denote by Gi the random variable representing the group
that user i belongs to. We assume that Gi, for all i ∈ [n], are
identical and independent random variables from the alphabet
G = {1, . . . , k}. The probability that any user i ∈ [n] belongs
to group g ∈ G is denoted by θg := Pr(Gi = g). We
assume that θ := (θ1, . . . , θk) is a realization of the random
vector Θ. Each user i in group g holds an independent random
scalar value Vi drawn from the alphabet V := {±1, . . . ,±m}
according to the distribution pg(v) := Pr(Vi = v|Gi = g).
The values of the users in the same group are i.i.d. We
summarize the users’ value distributions, pg(v), by a k × 2m
matrix p. The matrix p is unknown and is assumed to be
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the realization of a random variable P . Given their group
g ∈ G, for all v ∈ V , the users behave identically, i.e.,
pg(v) = Pr(Vi = v|Gi = g) for any i ∈ [n].

User i knows the realization of the random variables Gi and
Vi representing his group and value. However, the distribution
of the random variables P and Θ, and their realizations, are
not necessarily known neither to the server nor to the user.

The goal is to design a scheme that allows the server to
compute an estimate of the sum of values per group, i.e., to
estimate the aggregate vector S ∈ Zk with

S(g) =
∑

i∈[n]:gi=g

vi, for all g ∈ G.

We consider schemes where each user i can be assigned a
query qi ∈ Q, which is also known to the server. In response
to the query, the user sends the server an answer ai ∈ A.
Upon receiving the answers from all users, the server finds an
estimate Ŝ of S. We characterize the efficiency of a scheme
according to (i) communication, (ii) accuracy, and (iii) privacy.
(i) Communication: We characterize the communication cost
by the number of bits communicated between the server and
the user. We look at the communication cost from two vantage
points: (i) user-centric, that measures the communication per
user, i.e., the number of bits communicated between a user
and the server; (ii) server-centric, that measures the total
communication the server receives from all the users.
(ii) Accuracy: We use a normalized mean square error to
measure the accuracy of a scheme π, i.e., the risk of the
estimator Ŝπ is

Eπ :=
1

n2
MSE(Ŝπ),

where MSE(Ŝπ) = E
[
||Ŝπ − S||22

∣∣P = p,Θ = θ
]
. When it

is clear from context, the conditioning on P and Θ will
be implicit. The normalization factor accounts for the true
aggregate, S, being proportional to the number of users, n.
(iii) Privacy: We focus on keeping a user’s group private but
not necessarily his value. We use local differential privacy
[20], [21] as our measure for the desired privacy level of a
user’s group. Since a user’s value and group can be correlated,
it will sometimes be necessary (depending on the required
privacy level) to also hide a user’s value in addition to his
group. To that end, a user’s answer to the server will be the
output of a randomized mechanismM : G ×V ×Q → A that
outputs a user’s answer a belonging to an alphabet A based
on his value, group, query and local randomness.
Definition 1. Let ε be a positive real number, and M be a
randomized mechanism. We say M is ε-locally differentially
private with respect to the group if for any g, g′ ∈ G, q ∈ Q,
and a ∈ A,

Pr(M(G,V,Q) = a|G = g,Q = q, P = p,Θ = θ) ≤
eε Pr(M(G,V,Q) = a|G = g′, Q = q, P = p,Θ = θ), (1)

where the probability is taken over the randomness of the
mechanism and the random variable V .

The probabilities in the local differential privacy definition
are taken given the realizations of the random variables P
and Θ. Even though the server does not necessarily know
these realizations, the privacy definition above assumes this
knowledge. This is needed because, with enough answers
collected from users, the server can infer information about
the distributions of P and Θ.

III. THE QUERY AND AGGREGATE (Q&A) SCHEME

In this section, we describe the Q&A scheme. In Section
III-A, an example illustrates the key ideas of this scheme and
gives intuition about the proof of Theorem 1. In Section III-B,
we give the description of the general (Q&A) scheme.

A. A 1-bit Example: Two groups and a binary alphabet

We focus on the special case of two groups, k = 2, and a
binary alphabet, V = {−1, 1}. In this case, the Q&A scheme
needs only a single bit of communication per user.

Scheme Description: It is composed of the following steps.
1) Queries: Each user i responds to a random query qi which

is a 2 by 2 matrix. More specifically, the query qi is chosen
uniformly at random from the set

Q =
{[−1 +1

+1 −1
]
,
[−1 +1
−1 +1

]
,
[
+1 −1
−1 +1

]
,
[
+1 −1
+1 −1

]}
.

The user’s assigned query is independent of his group and
value. Moreover, it is assumed that the server knows the
queries assigned to each user.

2) User’s answer: Each user sends the server a 1-bit answer,
ai, depending on the query he received. The user will only
look at the row of the query matrix that corresponds to his
group, i.e., row 1 if he is in group 1 and row 2 if he is
in group 2. He answers with the index of the column that
contains his value, i.e., ai = 1 or ai = 2.

3) Server’s estimation: The server receives the 1-bit answer
ai from each user i. He maps the answer into the vector
qi(:, ai) := (qi(1, ai), qi(2, ai)), i.e., the ath

i column of the
query matrix qi. This is possible because he knows the
user’s assigned query. Then, the server forms the estimates
of the aggregate for each group, such that

ŜQA =

n∑
i=1

qi(:, ai).

Next we give a brief analysis of the scheme in terms of
accuracy (MSE), privacy, and communication cost.

Accuracy: We show that the normalized mean square error
goes to zero as the number of users increases, allowing the
server a better estimate of the true aggregate S.

Without loss of generality, let us consider, S(1), the aggre-
gate corresponding to group 1. Then, we have its estimate

ŜQA(1) =
∑

i∈[n]:gi=1

qi(1, ai) +
∑

i∈[n]:gi=2

qi(1, ai)

= S(1)︸︷︷︸
True Aggregate

for Group 1

+
∑

i∈[n]:gi=2

qi(1, ai)︸ ︷︷ ︸
Noise

. (2)
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Therefore, the estimate ŜQA(1) can be interpreted as the true
aggregate with an added noise term. The noise corresponds to
the contribution of the users who do not belong to group 1.
Since the queries were assigned uniformly at random, the
distribution of the answers corresponding to the noise is
uniform and independent of the true aggregate S(1). It follows
from our choice of query matrices that the contribution to the
estimate, of each user i in group 2, qi(1, ai), is a realization
of the random variable,

Qi(1, Ai) =

{
−1 with probability 1

2 ,

+1 with probability 1
2 .

(3)

Therefore, the noise is the sum of i.i.d. random variables
with bounded variance that converges to a zero mean additive
Gaussian noise. This implies that the expectation of the
norm of the noise grows as O(

√
n). And indicates that the

normalized mean square error, EQA, goes to zero as O(n−1).
Privacy: We show that the Q&A scheme is εQA locally

differentially private. From Definition 1,

eεQA = max
g,g′∈{1,2},
a∈{1,2},q∈Q

Pr(Ai = a|Gi = g,Qi = q)

Pr(Ai = a|Gi = g′, Qi = q)
. (4)

The first thing we notice is that the ratio in (4) is equal to 1
for g = g′, and the maximum is always greater than or equal
to 1 when g 6= g′. Therefore, we can limit the maximization
in (4) to g 6= g′. Moreover, a user’s value (+1 or −1) is a
deterministic function of the answer, the query, and the group.
Therefore, we can simplify (4) to

eεQA = max
g,g′∈{1,2},g 6=g′
v,v′∈{−1,1},q∈Q

Pr(Vi = v|Gi = g,Qi = q)

Pr(Vi = v′|Gi = g′, Qi = q)

= max
g,g′∈{1,2},g 6=g′
v,v′∈{−1,1}

pg(v)

pg′(v′)
, (5)

which follows from the independence of the random variables
representing the user’s value, Vi, and his assigned query, Qi,
and from the definition of pg(v) = Pr(Vi = v|Gi = g). Thus,
we obtain an expression of the privacy which only depends
on the users’ value distributions.

Notice that not all privacy levels can be guaranteed for fixed
user value distributions p1(·) and p2(·). The reason is that, in
its basic form, the Q&A scheme described above, does not
guarantee privacy over the user’s value. And since the user’s
value and group can be correlated, the user’s value can leak
information about his group. To mitigate this, in Section III-B,
we add a second layer of privacy in order to protect a user’s
value. This gives flexible privacy guarantees that do not depend
only on the user’s value distributions.

Communication: Since the user’s answer ai ∈ {1, 2}, the
scheme’s communication cost is one bit per user. Moreover, we
show in Theorem 1 that the general scheme’s communication
cost is always 1 bit per user when the alphabet is binary,
irrespective of the number of groups. This is the fundamental
limit on the zero-error communication cost if there were no
groups and no privacy requirements.

Note that the query assignment must be known to both the
server and the user. This can be accomplished without incur-
ring communication cost. For instance, it can be implemented
as the output of a public hash function that takes as input the
user’s index i ∈ [n], or simply considered part of the scheme
agreement that does not depend on a user’s group and value.

B. The General Q&A Scheme

Here we describe the Q&A scheme, for any number of
groups k ≥ 2, and alphabet parameter m ∈ N. It is obtained
by generalizing the query matrices of the previous example.
1) Queries: Each user is assigned a random query matrix of
dimension k × 2m and elements in V = {±1, . . . ,±m}. The
query matrices assigned to each user are chosen independently
and uniformly at random from the set Q defined as

Q :=
{
q ∈ Vk×2m

∣∣q(g, :) ∈ Sym(V) for all g ∈ [k]
}
, (6)

where q(g, :) = (q(g, 1), . . . , q(g, k)), and [k] := {1, . . . , k}.
And Sym(V) is the set of all row vectors which are an ordered
permutation of the finite set V .1 Each row of a matrix q ∈ Q
is a permutation of all the possible 2m values. Notice that
the values cannot be repeated within a row but rows can be
repeated. We designate by qi the query assigned to user i.

The assumption is that the server also knows the query
assigned to the user. As previously mentioned, since the query
does not depend on the user’s group or value, it could be as-
signed offline as part of the scheme agreement, or implemented
as the output of a public hash function.
2) User’s Answer: Given his assigned query, user i first
privatizes his value using a randomized response [18], [22]
step parameterized by λ ∈

[
0, 1− 1

2m

)
.That is, given his true

value vi, the user chooses a randomized value v̊i such that

Pr(V̊i = v̊i|Vi = vi) =

{
1− λ for v̊i = vi
λ

2m−1 for v̊i ∈ V − {vi}.
(7)

Then, user i looks at the gth
i row (gi is the user’s group)

of the query matrix qi, and sends to the server the answer
ai, which is the index of the column that has his randomized
value v̊i. More precisely, ai is such that qi(gi, ai) = v̊i.
3) Server’s Estimation: Upon receiving user i’s answer, the
server maps it into the ath

i column of query qi, i.e.,

qi(:, ai) = (qi(1, ai), qi(2, ai), . . . , qi(k, ai))
>.

The server sums the decoded answers from all the users, and
multiplies by an unbiasing term, to find the estimate of the
true aggregate, S, i.e.,

ŜQA =
2m− 1

2m− 2mλ− 1

∑
i∈[n]

qi(:, ai). (8)

Below we give an example of a possible query and its answer.

Example. Consider the setting where there are k = 3 groups
and the alphabet of values is V = {±1,±2}. Let λ = 0, i.e.,

1An ordered permutation of a set V is a vector where each element is a
distinct element of V , e.g., Sym({±1,±2}) has 4! = 24 elements including
(−2,−1, 1, 2) and (1, 2,−2,−1).
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Vi = V̊i. Suppose user 1 has value v1 = −1 and belongs to
group g1 = 2. For instance, if he is assigned the query

q1 =
[−2 −1 +1 +2
−2 +1 −1 +2
+2 −1 −2 +1

]
,

then his answer is a1 = 3, because his value v1 = −1 is the
third element of the second row (corresponding to his group
g1 = 2) of q1. Upon receiving this answer, the server decodes
it into the third column of q1, i.e., q1(:, a1) = (+1,−1,−2)>.

We note a few characteristics of the design of the queries
and answers. The user’s value is always one of the elements of
the row corresponding to his group. And looking at the user’s
mapped answer qi(:, ai), i.e., a column vector of his assigned
query qi, his value is in row gi of qi. As for all the other
vector elements, qi(:, ai), they are uniformly distributed over
V . This follows from the queries’ design and mirrors (3).

Theorem 1 characterizes the communication cost, accuracy
and privacy of the Q&A scheme, and is proved in [19].

Theorem 1 (Q&A Scheme). Given a setting with n users, k
groups, alphabet V = {±1, . . . ,±m}, and the users’ value
distribution pg(v) for all g ∈ G, v ∈ V , the Query and
Aggregate scheme (Q&A) satisfies the following properties.

1) The Q&A scheme has a communication cost of log(2m)
bits per user.

2) The Q&A scheme is εQA-LDP with

eεQA = max
v,v′∈V,

g,g′∈G,g′ 6=g

{
(2m(1− λ)− 1)pg(v) + λ

(2m(1− λ)− 1)pg′(v′) + λ

}
, (9)

where the randomization parameter λ ∈
[
0, 2m−12m

)
.

3) The estimator of the Q&A scheme is unbiased and has
normalized mean square error

EQA = αn−1,

where α=
2mλE[V 2

i ]
2m−2mλ−1+ (4m2−1)(m+1)[(2m−1)(k−1)+2mλ]

6(2m−2mλ−1)2 .

The normalized mean square error is O
(
km4

n

)
.

Remark (The choice of λ). Given a required privacy param-
eter ε, the parameter λ that can guarantee this given ε is
determined using (9). However, this requires the knowledge
of the value distributions, pg(·) for all g ∈ G. Nevertheless,
one can still use (9) to find a bound on λ that is independent
of the users’ value distributions such that

λ ≥ 2m− 1

2m+ eε − 1
.

This bound can be tightened if some side information
is known about the users’ value distributions. For instance,
suppose that cmin < pg(v) < cmax for all g ∈ G and v ∈ V ,
for some constants cmax, cmin ∈ [0, 1], cmax > cmin. In this
case, the following tighter bound can be shown

λ ≥ (2m− 1)cmax − cmine
ε

2m(cmax − cmineε) + eε − 1
.

Evidently, smaller values of λ are better for accuracy because
the mean square error is increasing in λ.

IV. THE RANDOMIZED GROUP SCHEME

To better gauge the performance of the Q&A scheme we
compare it to the Randomized Group (RG) scheme which
directly privatizes a user’s group by adding noise to it through
a randomized response step. In RG, each user i sends the
server the answer ai = (̊gi, v̊i) of his privatized group and
value respectively. More precisely, g̊i is chosen randomly
according to the distribution

Pr(G̊i = g̊i|Gi = gi) =

{
1− λgr for g̊i = gi
λgr
k−1 for g̊i ∈ [k]− {gi},

where gi is user i’s group and the parameter λgr ∈ (0, 1). As
for the value v̊i, there are two cases:
1) g̊i 6= gi: In this case, the user chooses v̊i, uniformly at

random, i.e., Pr(V̊i = v̊i |̊gi 6= gi) = 1
2m for all v̊i ∈ V .

This choice ensures that when users lie about their groups,
the aggregate of their contribution has a zero mean.

2) g̊i = gi: In this case, the user lies about his true value
with probability λvl ∈

[
0, 1− 1

2m

)
. That is, he randomly

chooses a value, v̊i, according to the distribution

Pr(V̊i = v̊i|Vi = vi ,̊gi = gi)=

{
1− λvl for v̊i = vi,
λvl

2m−1 for v̊i ∈ V − {vi}.

The server aggregates the received answers and re-scales
the aggregate to unbias the estimator, such that, for all g ∈ [k]
the estimate of the true aggregate of group g, S(g), is

ŜRG(g) :=
2m− 1

(1− λgr)(2m(1− λvl)− 1)

∑
i:ai(1)=g

ai(2).

Note that there are no queries assigned to users in this scheme.

Comparison of the RG and Q&A Schemes

The Q&A scheme has a communication cost (log(2m) bits
per user) that does not depend on the number of groups k and
beats the RG scheme (log(2km) bits per user).

To compare the two schemes on all fronts, we fix the total
communication cost, i.e., the number of bits communicated by
all the users to the server, and compare the privacy vs. accuracy
trade-offs. Figure 2 illustrates this comparison and the typical
observation in our experiments, of varying alphabet sizes and
number of groups, is the following two privacy regimes
(i) High Privacy Regime: for small values of the privacy
parameter, ε, the Q&A scheme outperforms the RG scheme.
(ii) Low Privacy Regime: for large enough privacy parameter,
ε, the RG scheme outperforms the Q&A scheme. This is
because, as ε goes to infinity, the error of the Q&A scheme
converges to a constant strictly greater than zero as we cannot
further tune the parameters of the scheme. On the other hand,
the error of the RG scheme converges to zero.

The performance of the RG scheme, and missing proofs and
details can be found in [19].
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