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Abstract— We formulate and study the problem of ON-OFF
privacy. ON-OFF privacy algorithms enable a user to contin-
uously switch his privacy between ON and OFF. An obvious
example is the incognito mode in internet browsers. But beyond
internet browsing, ON-OFF privacy can be a desired feature
in most online applications. The challenge is that the statistical
correlation over time of a user’s online behavior can lead to
leakage of information. We consider the setting in which a
user is interested in retrieving the latest message generated
by one of N sources. The user’s privacy status can change
between ON and OFF over time. When privacy is ON the user
wants to hide his request. Moreover, since the user’s requests
depend on personal attributes such as age, gender, and political
views, they are typically correlated over time. As a consequence,
the user cannot simply ignore privacy when privacy is OFF.
We model the correlation between user’s requests by an N
state Markov chain. The goal is to design query schemes with
optimal download rate, that preserve privacy in an ON-OFF
privacy setting. In this paper, we present inner and outer bounds
on the achievable download rate for N sources. We also devise
an efficient algorithm to construct an ON-OFF privacy scheme
achieving the inner bound and prove its optimality in the case
N = 2 sources. For N > 2, finding tighter outer bounds and
efficient constructions of ON-OFF privacy schemes that would
achieve them remains an open question.

Index Terms— Information-theoretic privacy, private informa-
tion retrieval (PIR), Markov chains.

I. INTRODUCTION

PRIVACY is a major concern for online users who
can unknowingly reveal critical personal information

(age, sex, diseases, political proclivity, etc.) through daily
online activities such as watching online videos, following
people and liking posts on social media, reading news, and
searching websites. This is a well-acknowledged concern and
has lead to many interesting theoretical problems such as
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anonymity [1], differential privacy [2], private information
retrieval [3], and other privacy-preserving algorithms.

The implicit assumption that is common in existing privacy
models is that the user wants privacy all the time. We refer to
it as privacy being always ON. However, privacy-preserving
algorithms incur high costs on the service provider, and can
lead to degraded quality of service at the user’s side. One
should think of privacy as an expensive utility, which should
be turned ON only when needed (depending on geographical
location, device, network, etc.). This motivated us to introduce
and study the problem of ON-OFF privacy [10]. ON-OFF
privacy algorithms enable a user to switch his/her privacy
between ON and OFF. A current application that allows to
switch between a private and a non-private mode is internet
browsers. But beyond internet browsing, ON-OFF privacy can
be a desired feature in many online applications.

One may be tempted to propose the simple solution in which
the user has available to him two schemes, one private and
one non-private. Over time, the user simply switches between
these two schemes depending on whether privacy is turned
ON or OFF. The problem with this solution is that it guarantees
privacy only if the user’s online activities are statistically
independent over time. However, a user’s online activities
are typically personal, making them correlated over time. For
example, a bilingual English/Spanish user, who is checking the
news in Spanish now, is more likely to keep reading the news
in Spanish for a while before switching to English. At that
point English becomes more probable. Another example is
when the user is watching online videos. One may think of
a scenario where the user is more likely to watch the top
item from a list of recommended videos that depends on the
previously watched videos. Thus, due to correlation, simply
ignoring the privacy requirement when privacy is OFF may
reveal information about the activities when privacy was ON.
Location based services are another example that can benefit
from ON-OFF privacy algorithms. Imagine a user who does
not care about revealing his/her location right now, but wants
to hide it a minute ago. He/she still has to be careful not to
completely reveal his/her current location because it will leak
information about where he/she was a minute ago.

A. Example

To be more concrete and to gently introduce our setup for
ON-OFF privacy, we give the following example. Suppose
a user is watching political or news videos online. At each
time t, the user has a choice between two new videos
each of which is produced by two different news sources,
A or B. Source A is politically left-leaning and source B
is right-leaning.

0018-9448 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Rutgers University. Downloaded on March 03,2022 at 21:04:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4675-2622
https://orcid.org/0000-0002-1306-7461


YE et al.: ON-OFF PRIVACY IN PRESENCE OF CORRELATION 7439

Fig. 1. The two-state Markov chain representing the correlation of the user’s
requests Xt, t ∈ N.

Let Xt ∈ {A,B} be the source whose video the user
wants to watch at time t ∈ N. We model the correlation
among the user’s requests by assuming that Xt is the two-
state Markov chain depicted in Figure 1, where the transition
probabilities are given by α = Pr(Xt+1 = B | Xt = A) and
β = Pr(Xt+1 = A | Xt = B). For illustration, we choose
α = β = 0.2. This means that if the current video being
watched is left-leaning, there is an 80% chance that the next
video is also left-leaning, and vice versa.

For the sake of brevity, we focus on the two time instants
t = 0 and t = 1, and assume that privacy is ON at t = 0 and
is switched to OFF at t = 1. This means that the user would
like to hide whether he was watching a left-leaning or a right-
leaning video at time t = 0, but does not care about revealing
the source of the video he watched at t = 1.

The goal is to devise an ON-OFF privacy scheme that
always gives the user the video he wants, but never reveals
the choice of sources when privacy is ON, i.e., t = 0 in this
case. More precisely, the server observes queries at both times
t = 0 and t = 1, i.e., Q0 and Q1, which should be independent
of the user’s interest at time t = 0 when privacy was ON, i.e.,
X0. We are interested in schemes that minimize the download
cost, or equivalently maximize the download rate (the inverse
of the normalized download cost).

At t = 0, the problem is simple. The user achieves privacy
by downloading both videos. We say that the user’s query at
t = 0 is Q0 = AB. Therefore, the download rate at t = 0 is
R0 = 1/2.

At t = 1, the privacy is OFF. Now, the user must be careful
not to directly declare his request, because this may reveal
information about his request at t = 0 which is to remain
private. The user can again download both videos, i.e., Q1 =
AB, and achieve privacy with a rate R1 = 1/2.

Our key result is that the user can achieve a better expected
rate at t = 1, without compromising privacy, by

• choosing randomly between downloading A (Q1 =
A) or both A and B (Q1 = AB) if he wants X1 = A,

• choosing randomly between downloading B (Q1 =
B) or both A and B (Q1 = AB) if he wants X1 = B.

This random choice must also depend on the request X0

at t = 0. The different probabilities defining the scheme
are given in Table I and will be justified later when we
explain the general scheme. For now, one can check that these
probabilities lead to

Pr(Q1 = q) = Pr(Q1 = q | X0 = x0),

for any q ∈ {A,B,AB} and any x0 ∈ {A,B}. Thus, X0

and Q1 are independent and the proposed scheme in Table I
achieves perfect privacy for the request at t = 0. Moreover,

TABLE I

AN EXAMPLE OF OUR ON-OFF PRIVACY SCHEME FOR α = β = 0.2.
THE QUERY Q1 AT t = 1 IS A PROBABILISTIC FUNCTION OF X0

AND X1 , THE REQUESTS AT t = 0 AND t = 1 RESPECTIVELY.
THE ENTRIES OF THE TABLE REPRESENT THE PROBABILITIES

p(Q1 | X0, X1), WHERE Q1 = AB MEANS THAT THE
USER DOWNLOADS THE VIDEOS FROM BOTH

SOURCES A AND B

the scheme ensures that the user always obtains the video he
is requesting.

For t = 1, the rate R1 = 1/(2 − α − β) = 0.625,
which is strictly greater than 0.5, the rate of querying both
files. We later show that this rate is actually optimal. In fact,
the values in Table I were carefully chosen to achieve the
privacy at the highest download rate. Any other choice of
the probabilities p(Q1 | X0, X1) would either violate pri-
vacy or lose the optimality of the rate.

B. Related Work

The ON-OFF privacy problem for N = 2 sources was first
introduced in [10]. The similar setting was later considered in
[11], [19] with a more stringent requirement that the privacy
of both past and future requests are preserved. The concept
of ON-OFF privacy was also applied to preserve privacy of
sensitive genotypes in genomics in [20].

The special case of the ON-OFF privacy problem in which
privacy is always ON, and the user’s requests are indepen-
dent, reduces to the information-theoretic private information
retrieval (PIR) problem on a single server. In this case, the best
thing the user can do is download everything [3]. Except in
the case when the user can use side information, which was
recently studied in [4]. Recently, there has been significant
research activity on determining the maximum download rate
of PIR with multiple servers (e.g., [5]–[9]). However, the
model there requires multiple servers and, in the parlance of
this paper, privacy is assumed to be always ON.

A related problem that considers privacy with correlation,
namely location privacy, was studied in [13]–[18], where
the correlation is usually modeled by a Markov chain and
the privacy notions include k-anonymity [13], (extended)
differential privacy [14], and distortion privacy [16]. The
works of [17], [18] recently studied the information-theoretic
privacy measure in location-privacy protection mechanisms,
and their privacy metric was defined by the mutual information
between the released data and the true traces. In this paper’s
language, it can be viewed as the case when privacy is
always ON. However, in this paper, we want to prevent
the adversary from inferring a selective part of the requests
specified by an ON or OFF privacy status, and the simple time-
sharing (switching between a private and a non-private scheme
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according to the privacy status) approach is not permissible
due to the correlation.

C. Contributions

In this paper, we introduce a model to capture the ON-OFF
privacy problem when the user is downloading data from
online sources. We consider the setup in which there are N
information sources each generating a new message at each
time t. At each time t, the user randomly chooses one of the
sources and requests its latest generated message.

The privacy constraint is information theoretic: the user
wants to leak zero information about the identity of the
sources in which he is interested in at each time t when the
privacy is ON. The main challenge stems from the fact that
the user’s requests are not independent. As in the previous
example, we model the dependence between these requests by
an N -state Markov chain, and we assume that the transition
probabilities of the Markov chain are known by both the user
and the adversary, where the known transition probabilities
can be viewed as public information estimated from a large
population. The goal is to design an ON-OFF privacy scheme
with the maximum download rate that satisfies the user’s
request and guarantees the privacy of the requests made when
privacy is ON.

Our main contribution is to generalize the study of ON-OFF
privacy in [10], which focused on N = 2 sources and privacy
being switched from ON to OFF once, to any number N of
sources and any ON-OFF privacy pattern. We give general
outer and inner bounds on the download rate in Theorems 1
and 2, respectively. We also devise an efficient algorithm to
construct an ON-OFF privacy scheme achieving the inner
bound. We recover the optimality of the achievable scheme
for N = 2, which was proven in [10]. For N > 2, finding
tighter outer bounds and efficient constructions of ON-OFF
privacy schemes that would achieve them remains an open
question.

The rest of the paper is organized as follows. In Section II,
we describe the formulation of the ON-OFF privacy problem.
We present our main results in Section III. The proof of the
converse and achievability will be given in Section IV and V,
respectively. A computational perspective will be discussed in
Section VI, and the optimality for N = 2 sources will be
discussed in Section VII.

II. PROBLEM FORMULATION AND NOTATION

A. Setting

A single server stores N information sources {Wi : i ∈ N},
where N := {1, 2, . . . , N}. The system is time-varying, and
the time index t is assumed to be discrete throughout this
paper, i.e., t ∈ N. Without loss of generality, we assume
that each source Wi generates a message Wi,t consisting
of L symbols at each time t, independently and identically
according to the uniform distribution over {0, 1}L. Such that
{Wi,t : i ∈ N , t ∈ N} are mutually independent, i.e.,

H (Wi,t : i ∈ N , t ∈ N) =
∑
i,t

H (Wi,t) , (1)

and

H (Wi,t) = L ∀i ∈ N , t ∈ N. (2)

At each time t, the user is interested in retrieving the latest
message generated by a desired source, i.e., one of the mes-
sages from {Wi,t : i ∈ N}. In particular, let Xt be the source
of interest at time t, which takes values in N . In the sequel,
we will call Xt the user’s request at time t. Since the user
is always interested in the latest message generated at time t,
we slightly abuse the notation by dropping t from Wi,t when
the time index t is clear in the context, i.e., Wi,t will be written
as Wi and we may write the retrieved message as WXt .

As mentioned previously, we are particularly interested in
the case where the requests Xt, for t ∈ N, form a time-
invariant Markov chain, i.e., {Xt : t ∈ N} is generated by
a Markov source X . The transition matrix P of the Markov
chain is known by both the server and the user, and the
transition probability from state i to state j is denoted by
Pi,j . We also denote the initial probability distribution of the
Markov chain by π0.

The user may or may not wish to hide the identity of his
source of interest at time t. Specifically, the privacy status Ft

at time t can be either ON or OFF, where Ft is ON when
the user wishes to keep Xt private, and Ft is OFF when the
user is not concerned with privacy. Denote F = {ON,OFF}.
We assume that the privacy status {Ft : t ∈ N} is generated by
some information source F that is independent of the user’s
requests {Xt : t ∈ N}. We also assume that at time t, {Fi :
i ≤ t} is known by both the server1 and the user, for all t ∈ N.
For the ease of notation, we assume that F0 = ON.

As discussed in Section I, if the user downloads the desired
message at time t when the privacy is OFF, the privacy in
the past may be compromised. To ensure privacy, the user is
allowed to generate unlimited local randomness and we are
not interested in the amount of randomness used in this paper.
The local randomness St for t ∈ N are assumed to take values
in a common alphabet S.

In this paper, we only consider a causal system. Specifically,
at time t, the user may utilize the causal information, i.e.,
all the previous and current requests {Xi : i ≤ t}, previous
and current privacy status {Fi : i ≤ t}, and the previously
generated randomness {Si : i < t}, to construct a query Qt,
and sends to the server. In other words, the randomness St

may be generated according to {Xi : i ≤ t}, {Fi : i ≤ t} and
{Si : i < t}, i.e.,

St ∼ pX[t],F[t],S[t−1] , (3)

where [t] := {0, 1, . . . , t} and X[t] := {Xi : i = 0, 1, . . . , t}.
Note that (3) encompasses the case in which the current query
also depends on the previous queries, since they are also
functions of {Xi : i ≤ t}, {Fi : i ≤ t} and {Si : i < t}.

Upon receiving the query Qt, the server responds to the
request by producing the answer At consisting of � (Qt)
symbols, where At is a function of Qt and messages
{Wi,t : i = 1, . . . , N}, and the length of At is a function of

1It is worth noting that in our formulation we are not interested in hiding
the privacy status from the server.
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Fig. 2. Setting at time t as described in Section II-A. The server stores messages W1,t, . . . , WN,t generated by information sources W1, . . . , WN , respectively.
The user sends a query Qt, which may be a function of all previously generated requests {Xi : i ≤ t} and privacy status {Fi : i ≤ t}. Finally, the server
replies with the answer At, which is a function of W1,t, . . . , WN,t.

the query Qt received. Thus, the average length of the answer
At is given by

�t = EQt [� (Qt)]. (4)

It is worth noting that Qt should be dependent of the
initial distribution π0 of the Markov chain. However, since
the discussion in the sequel holds for any π0, we drop it here
for ease of notation. We can see that �t is well defined for
any π0 because � (Qt) is trivially bounded by N L, that is
downloading all N messages.

B. Encoding and Decoding Functions

Definition 1: An (N,X ,F ) causal ON-OFF privacy sys-
tem consists of the following encoding and decoding func-
tions:

• Query encoding function:

ρt : N t ×F t × St → Q, t = 0, 1, 2, . . . ,

where ρt maps all previous (including current) requests
and privacy status, together with the local randomness,
to the query at time t, i.e., Qt = ρt

(
X[t], F[t], S[t]

)
.

• Answer length function:

� : Q → {0, 1, . . . , NL},
i.e., the length of the answer at time t is a deterministic
function of the current query, which is independent of a
particular message and not time-varying over time t.

• Answer encoding function:

φt : Q× {0, 1}NL → {0, 1}�(Q), t = 0, 1, 2, . . . ,

where φt maps the current query and N latest mes-
sages to the answer of length �(Qt), i.e., At =
φt (Qt,W1,t, . . . ,WN,t).

• Message decoding function:

ψt : {0, 1}�(Q) ×N × S → {0, 1}L, t = 0, 1, 2, . . . ,

where ψt maps the received answer to the desired mes-
sage, i.e., ŴXt = ψt (At, Xt, St).

We would like to emphasize two points about the setup of the
model. First, for any given causal privacy status {Fi : i ≤ t}
at time t, the query Qt may be treated as a stochastic function
of all causal requests {Xi : i ≤ t} and previous queries

{Qi : i < t}. Since we are not interested in the ran-
domness {Si : i ≤ t} consumed, we may not write
the local randomness explicitly in the sequel. Second,
since messages {Wi,t : i ∈ N} are independent over time,
at time t, the answer At only depends on the latest messages
W1,t, . . . ,WN,t (a given t). Similarly, the current query Qt is
independent of previous answers {Ai : i < t} as well.

C. Privacy and Decodability

These functions need to satisfy the decodability and the
privacy constraints, defined as follows.

1) Decodability: For any time t, the user should be able
to recover the desired message from the answer with
zero-error probability, i.e.,

Pr
(
ŴXt �= WXt

)
= 0. (5)

2) Privacy: For any time t, given all past queries received
by the server, the query Qt should not reveal any
information about all the past or present requests when
the privacy is ON, that is

I
(
XBt ;Qt|Q[t−1]

)
= 0, ∀t ∈ N, (6)

where Bt := {i : i ≤ t, Fi = ON}. For notational
simplicity, F0 is assumed to be ON throughout this
paper, and hence Bt is always not empty.

The conditioning in the privacy formulation in (6) serves to
ensure causality in the proposed achievable schemes. Barring
this conditioning, privacy could be alternatively defined by

I
(
XBt ;Q[t]

)
= 0, ∀t ∈ N. (7)

However, this alternative definition implies that at any point
i < t, the user has to know and protect future requests
{Xj : j = i+ 1, . . . , t, Fj = ON}, since (7) implies that

I
(
XBt\[i];Qi

)
= 0,

which contradicts the causality of the system.
Given the definition of the privacy, we introduce the follow-

ing proposition, which is a direct but useful consequence of the
Markov assumption of the requests and the privacy definition
and whose proof can be found in Appendix A.

Proposition 1: If Xτ is independent of Qt conditioning on
Q[t−1], then XBt is independent of Qt conditioning on Q[t−1].
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By convention, at time t, the tuple �t is said to be achievable
if there exists a code satisfying the decodability and the privacy
constraint such that the average answer length is �t. The
efficiency of the code can be measured by the download rate
Rt = L

�t
, and hence we define the achievable region as follows.

Definition 2: The rate tuple (Rt : t ∈ N) is achievable if
there exists a code with message length L and average
download cost �t such that Rt ≤ L/�t for all t ∈ N.

We are interested in characterizing the achievable region
(Rt : t ∈ N). In particular, the focus of this paper is the
characterization of Rt for each t ∈ N.

D. Notation

We introduce some necessary notation which will be used
in later sections. Let τ(t) be the last time privacy was ON,
i.e.,

τ(t) := max{i : i ≤ t, Fi = ON} = max Bt. (8)

The time index t will be clear in the context in the following
sections, so we may drop t from the notation and write τ
instead of τ(t) for simplicity. It is worth noting that τ(t) is
well-defined because of the assumption that F0 = ON.

For any given x ∈ N and q[t−1], suppose that we have the
following ordering of the likelihood probabilities

p
(
Xt = x|Xτ = x(x,1)

τ , Q[t−1] = q[t−1]

)
≤ p
(
Xt = x|Xτ = x(x,2)

τ , Q[t−1] = q[t−1]

)
≤ · · · ≤ p

(
Xt = x|Xτ = x(x,N)

τ , Q[t−1] = q[t−1]

)
, (9)

where x
(x,i)
τ for i = 1, . . . , N are distinct elements in N .

Then, for i = 1, . . . , N , let

λi

(
t, q[t−1]

)
=∑

x∈N
p
(
Xt = x|Xτ = x(x,i)

τ , Q[t−1] = q[t−1]

)
, (10)

and

θi

(
t, q[t−1]

)
= min

{
1, λi

(
t, q[t−1]

)}
− min

{
1, λi−1

(
t, q[t−1]

)}
, (11)

where λ0

(
t, q[t−1]

)
is assumed to be 0. For notational sim-

plicity, we will also write λi

(
t, q[t−1]

)
by λi

(
q[t−1]

)
and

θi

(
t, q[t−1]

)
by θi

(
q[t−1]

)
when the time index t is clear in

the context.
Moreover, we will use P (N ) to denote the power set of N ,

and E[X ] to denote the expected value of a random variableX .
We summarize some definitions and nomenclature in Table II.

III. MAIN RESULTS

In this section, we present the main results of this paper, i.e.,
inner and outer bounds for the achievable region (Rt : t ∈ N).

The following theorem gives an outer bound on the achiev-
able rate, and the proof can be found in Section IV.

TABLE II

NOMENCLATURE AND DEFINITIONS

Theorem 1 (Outer Bound 1): The rate tuple (Rt : t ∈ N)
must satisfy

1
Rt

≥
∑

q[t−1]

p
(
q[t−1]

)∑
xt

max
xτ

p
(
xt|xτ , q[t−1]

)
, (12)

where τ = max{i : i ≤ t, Fi = ON}.
It is worth noting that the right-hand side of (12) encom-

passes the previous queries, where the optimal previous
queries maximizing the download rate for the current time
instance are implicit, and hence the bound in (12) is generally
hard to compute. Nevertheless, we can use the bound in (12)
to derive the following corollary, which only involves the tran-
sition probabilities of the Markov chain and not the previous
queries.

Corollary 1 (Outer Bound 2): The rate tuple (Rt : t ∈ N)
must satisfy

1
Rt

≥
∑
xt

max
xτ

p (xt|xτ ) , (13)

where τ = max{i : i ≤ t, Fi = ON}.
Proof: See Appendix B.

The following theorem gives an inner bound on the rate,
and the detailed description of the achievable scheme will be
discussed in Section V-B.

Theorem 2 (Inner Bound): The rate tuple (Rt : t ∈ N) is
achievable if

1
Rt

≥
∑

q[t−1]

p
(
q[t−1]

) N∑
i=1

i θi(q[t−1]). (14)

We give the following example to illustrate the outer
and inner bounds described in Theorem 1 and Theorem 2,
respectively.
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Fig. 3. In Figure 3a, we graphically represent the 3-state symmetric Markov chain used in Example 1, where 0 ≤ α ≤ 1. In Figure 3b, we plot the achievable
rate RI

t and the upper bound RO
t (c.f.(17)), as a function of α, when τ = 0 and t = 1.

Example 1: Consider a symmetric Markov chain with tran-
sition matrix P given by

Pi,j =

{
α, if i = j,
1−α
N−1 , if i �= j,

(15)

where 0 ≤ α ≤ 1 and Pi,j denotes the transition probability
from state i to state j.

Suppose we are given τ = 0, i.e., privacy was ON at t = 0,
and privacy is OFF at t = 1. Following a direct application
of (12) and (14) for t = 1, we have two regimes: α < 1

N and
α ≥ 1

N . This is because the ordering of probabilities (c.f.(9))
changes at α = 1

N .
For α ≥ 1

N , the bounds (12) and (14) match, i.e., the rate
at t = 1 is achievable if and only if

1
R1

≥ Nα. (16)

As for α < 1
N , we have that

1
RO

1

:=
N(1 − α)
N − 1

≤ 1
R1

≤ 2 −Nα :=
1
RI

1

. (17)

We illustrate (16) and (17) for a three state symmetric
Markov chain, i.e., N = 3, with more details in Figure 3.

The special case when there are N = 2 information sources
was studied in [10]. For N = 2, the outer bound (12) and inner
bound (14), presented above, match. Therefore, the proposed
scheme achieves the optimal rate for N = 2. We restate this
result in Theorem 3, where the Markov chain has two states
and is defined by the probability transition matrix

P =
[
1 − α α
β 1 − β

]
, (18)

such that 0 ≤ α, β ≤ 1.
Theorem 3 (Optimality for N = 2): For N = 2, the rate

tuple (Rt : t ∈ N) is achievable if and only if

1
Rt

≥ 1 + |1 − α− β|t−τ , (19)

where τ = max{i : i ≤ t, Fi = ON}.

Fig. 4. The maximum rate Rt, as given in Theorem 3, as a function of t−τ
for different values of α+β. As α+β approaches 1, the correlation between
the requests decreases leading to an increase in the rate. For α + β = 1,
the requests are independent. In this case, when privacy is ON at time t, which
means t − τ = 0, the user has to download both messages, i.e., Rt = 1/2.
When privacy is OFF at time t, which means t − τ > 0, the user only
downloads the desired message, i.e., Rt = 1.

Theorem 3 reflects the fact that, when the Markov chain is
ergodic, the information carried by Xt about Xτ is decreasing
exponentially as t − τ grows, so the user can eventually
directly ask for the desired message at time t without being
concerned about leaking information about Xτ . Table III gives
an explicit scheme that achieves the rate in (19). The details
of this construction will be further discussed in Section VII-B.
Figure 4 shows the rate Rt as a function of time for different
values of α + β. As α + β approaches 1, the correlation
between the request decreases leading to an increase in the
rate.

IV. PROOF OF THE OUTER BOUND IN THEOREM 1

Recall that the inverse of the rate is expressed as

1
Rt

=
�t
L

=
1
L

E [�(Qt)] . (20)
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TABLE III

THE OPTIMAL ON-OFF PRIVACY SCHEME THAT ACHIEVES THE BOUND IN (19) FOR N = 2. THE QUERY Qt IS PROBABILISTIC AND DEPENDS ON
THE CURRENT REQUEST Xt , THE PREVIOUS QUERY Qt−1 AND THE LAST PRIVATE REQUEST Xτ . THE SCHEME CONSISTS OF THE FOLLOWING

TWO CASES: (i) IF Qt−1 = {1, 2}, i.e., THE PREVIOUS QUERY WAS FOR TWO MESSAGES, THEN THE CURRENT QUERY Qt = Xt ; (ii) IF

Qt−1 �= {1, 2}, i.e., THE PREVIOUS QUERY WAS FOR ONE MESSAGE, THEN THE CURRENT QUERY Qt IS CHOSEN BASED ON THE

PROBABILITIES p (qt|xτ , xt, qt−1) GIVEN IN THIS TABLE. FOR (a) α + β < 1, (b) AND (c) ARE FOR α + β > 1 WHERE
t − τ IS EVEN OR ODD RESPECTIVELY [10]

Hence, to obtain an upper bound on the rate Rt (a lower
bound on 1/Rt), we will derive a lower bound on the
average downloading cost E[�(Qt)] under the privacy and the
decodability constraints.

First, we define an auxiliary random variable Yt taking
values in P (N ) based on the decodability of the subset
of messages. Specifically, let Yt be a function of Qt such
that Yt = D for D ∈ P (N ) if the answer At can decode
the messages WD but not any message Wi for i ∈ N\D.
Roughly speaking, Yt represents the capability of decoding
messages from the query Qt. Note that since the query Qt

and messages WN are independent, the decodability of any
message is known by the server only through Qt, that is, Yt

is a function of Qt. In this way, the alphabet Q of the query
is partitioned into 2N classes based on the decodability of
the subset of the messages. Clearly, from the definition of Yt,
we have

�(Qt) ≥ |Yt|L, (21)

and hence (20) can be written as

1
Rt

≥ E [|Yt|] . (22)

Thus, it remains for us to give a lower bound on E [|Yt|]
under the privacy and the decodability constraints.

Now, we start to interpret the privacy and the decodability
constraints. By the definition of Yt, the decodability can be
rewritten as

p (xt, yt) = 0, ∀xt /∈ yt. (23)

Recall the privacy constraint that we require is

I
(
XBt ;Qt|Q[t−1]

)
= 0.

Since

I
(
XBt ;Qt|Q[t−1]

) ≥ I
(
Xτ ;Qt|Q[t−1]

)
≥ I
(
Xτ ;Yt|Q[t−1]

)
,

we can relax the privacy constraint by

I
(
Xτ ;Yt|Q[t−1]

)
= 0. (24)

Therefore, to obtain an upper bound on the rate Rt (a lower
bound on 1/Rt), it remains for us to give a lower bound on
E [|Yt|] such that (23) and (24) are satisfied, which relies on
the following lemma. The proof of the lemma can be found
in Appendix C.

Lemma 1: For any random variables U , X and Y , taking
values in the alphabet N , N and P (N ) respectively, if Y is
independent of U , and p(x, y) = 0 for x /∈ y, then

E [|Y |] ≥
∑
x∈N

max
u∈N

p (x|u) . (25)

For any given q[t−1], we can see that Lemma 1 immediately
gives a lower bound on E

[|Yt||q[t−1]

]
, i.e.,

E
[|Yt||q[t−1]

] ≥∑
xt

max
xτ

p
(
xt|xτ , q[t−1]

)
. (26)

Thus, by summing over all q[t−1], we can obtain that

E [|Yt|] =
∑

q[t−1]

p
(
q[t−1]

)
E
[|Yt||q[t−1]

]
≥
∑

q[t−1]

p
(
q[t−1]

)∑
xt

max
xτ

p
(
xt|xτ , q[t−1]

)
. (27)

By substituting (27) in (20), we finally get

1
Rt

≥
∑

q[t−1]

p
(
q[t−1]

)∑
xt

max
xτ

p
(
xt|xτ , q[t−1]

)
,

which completes the proof.

V. INNER BOUND IN THEOREM 2

Before we move on to describe the achievable scheme, we
present an example for N = 3 sources, which illustrates the
basic idea of the scheme that achieves the bound in (14).

A. Example of an Achievable Scheme

Suppose the transition probabilities of the Markov chain are
given by

P =

⎡
⎣0.1 0.3 0.6
0.5 0.4 0.1
0.2 0.5 0.3

⎤
⎦ , (28)

where Pi,j = Pr (Xt = j|Xt−1 = i).
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TABLE IV

THE CONSTRUCTED DISTRIBUTION p (q1, x1|x0) FOR THE GIVEN p (x1|x0) IN EXAMPLE V-A

Assume that privacy is ON at time t = 0 and privacy is OFF
at time t = 1. At time t = 0, we know the user has to send the
query Q0 = {1, 2, 3}. Our goal is to design the query Q1 at
t = 1. In particular, in this example, the query Q1 is uncoded
and is a probabilistic function of the previous request X0,
the current request X1 and the previous query Q0. As such,
we will show how to design the query encoding function
p (q1|x1, x0),2 or equivalently p (q1, x1|x0), for all x0, x1 ∈
{1, 2, 3} and q1 ∈ P ({1, 2, 3}). The distribution p (q1, x1|x0)
is represented in Table IV. Throughout this example, we will
show how to fill in the values of the cells in Table IV.

As requested, the query Q1 should satisfy the decodability
and the privacy constraints. The two constraints can be trans-
lated into the following rules for filling Table IV.

1) Satisfying the decodability constraint is straightforward.
We set p (q1, x1|x0) = 0 for all x1 /∈ q1, i.e., setting
all the gray highlighted cells in Table IV to zero.
This guarantees that the user always receives messages
containing the one he wants when the server responds
to his query.

2) The privacy constraint requires that Q1 is independent
of X0, i.e.,

p (Q1 = q1|X0 = 1) = p (Q1 = q1|X0 = 2)
= p (Q1 = q1|X0 = 3) ,

for all q1 ∈ P ({1, 2, 3}). By the law of total probabil-
ity, this can be written as∑

x1

p (q1, x1|X0 = 1) =
∑
x1

p (q1, x1|X0 = 2)

=
∑
x1

p (q1, x1|X0 = 3) . (29)

To translate this in Table IV, each column is divided
into 3 blocks (pertaining to x0 ∈ {1, 2, 3}), and the sum
of the cells in each block in a given column are to be
equal, e.g., in column {1, 3} each block sum to 0.3.

3) Since the entries are probabilities, this requires the
sum of row j in a given block i to be equal to
p (X1 = j|X0 = i), i.e., Pi,j in the matrix P . We will
refer to Pi,j as our budget for row j in block i, it is
highlighted in blue in Table IV.

2We drop q0 in p (q1|x1, x0, q0) since q0 = {1, 2, 3} is a constant.

TABLE V

USEFUL VARIABLES FOR EXAMPLE V-A

We now introduce an ordering of probabilities, such that

Pr
(
X1 = j|X0 = x

(j,1)
0

)
≤ Pr

(
X1 = j|X0 = x

(j,2)
0

)
≤ Pr

(
X1 = j|X0 = x

(j,3)
0

)
for each j ∈ {1, 2, 3}. For example, for X1 = 1, we observe
that P1,1 ≤ P1,3 ≤ P1,2, so x

(1,1)
0 = 1, x(1,2)

0 = 3, and
x

(1,3)
0 = 2. We summarize the values of the rest of the

variables in the Table V.
It is worth noting that downloading all messages is always

a feasible solution here. More precisely, setting the probability
of querying three messages to be equal to the budget, i.e.,

p (Q1 ={1, 2, 3}, X1=x1|X0 = x0)=p (X1 = x1|X0 = x0)

for all x0, x1 ∈ {1, 2, 3}, always satisfies rules one-three. Next,
we present the algorithm that better fills the table and satisfies
the aforementioned rules. The main idea is to assign values
as large as possible to Q1 with small cardinality, and this will
ultimately lower the communication cost.

• Step 1: We start with queries q1 of cardinality one, i.e.,
|q1| = 1. We adopt a greedy-like approach, which means
we try to maximize the value filled in the first three
columns. Due to the second and third rules mentioned
above, the maximum values we can choose are

p (Q1 = {x1}, X1 = x1|X0 = x0)

= min
x0

p (x1|x0) = p
(
x1|x(x1,1)

0

)

=

⎧⎪⎨
⎪⎩

0.10, x1 = 1,
0.30, x1 = 2,
0.10, x1 = 3.

(30)
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Note that in some rows the rest of the cells, e.g., row 1 in
block 1, have to be zero, because from rule 3 we know
that their budget has been consumed.

• Step 2: When |q1| = 2, the construction is more compli-
cated because each block has two cells to fill. We describe
it as follows.

◦ For X1 = 1, we know that x(1,1)
0 = 1 and x(1,2)

0 = 3.
Since, in Step 1 (30), we consumed the probabil-
ity p

(
X1 = 1|X0 = x

(1,1)
0

)
, we deduct it from the

the second minimal value p
(
X1 = 1|X0 = x

(1,2)
0

)
,

and calculate

p
(
X1 = 1|X0 = x

(1,2)
0

)
− p

(
X1 = 1|X0 = x

(1,1)
0

)
= 0.1.

Then, we may find some q̂ (to be determined), such
that |q̂| = 2 and 1 ∈ q̂ and set

p (Q1 = q̂, X1 = x1|X0 = x0)

=

⎧⎪⎨
⎪⎩

0.1, x1 = 1 ∧ x0 �= x
(1,1)
0

or x1 = q̂\{1} ∧ x0 = x
(1,1)
0 ,

0, others.

(31)

Here, we have two options for q̂, either
{1, 2} or {1, 3}. If q̂ = {1, 2}, from rule 2,
we know that the summation of each block must
be the same. However, if we inspect first block i.e.,
X0 = 1, we can find that the budget for the first
two rows of the first block is zero, which means
that we do not have enough budgets to assign
values according to (31). Therefore, if we choose
q̂ = {1, 2}, then it will violate rule 2, so that q̂ is
chosen to be {1, 3}, and fill in the table according
to (31).

◦ For X1 = 2 the procedure is the same as we did for
X1 = 1 and details are omitted.

◦ For X1 = 3, we know that x(3,1)
0 = 2 and x(3,2)

0 = 3.
Also, we have

p
(
X1 = 3|X0 = x

(3,2)
0

)
− p

(
X1 = 3|X0 = x

(3,1)
0

)
= 0.2.

Then, we follow the same procedure as above
by determining q̂ = {1, 3}. However, since
we have assigned a value 0.1 to the cell
p (Q1 = {1, 3}, X1 = 3|X0 = 1) in previous steps,
we augment its value by 0.2, and finally we have

p (Q1 = {1, 3}, X1 = 3|X0 = 1) = 0.1 + 0.2 = 0.3.

• Step 3: When |q1| = 3, since this is the last column,
we just need to complete the table such that the budget
of all rows is fully consumed.

Finally, let us evaluate the achievable rate R1, equivalently
1/E[|Q1|], achieved by the constructed p (q1, x1|x0). It is easy
to see that we assign θ1 = λ1 = 0.5 to cells such that |q1| =
1, θ2 = λ2 − λ1 = 0.4 to cells such that |q1| = 2, and

θ3 = 1 − λ2 = 1 − 0.9 = 0.1 to cells such that |q1| = 3 for
each block, so that we have

E[|Q1|] =
3∑

i=1

i θi = 1.6,

where λi and θi are defined in (10) and (11) respectively. Thus,
R1 = 5/8 is achievable in this example. One may notice that
the outer bound in Corollary 1 gives

1
R1

≥
∑
x1

max
x0

p (x1|x0) = 0.5 + 0.5 + 0.6 = 1.6,

which indicates that R1 = 5/8 is optimal for this example.
However, we would like to mention that this example is special
because it shows an instance where the bounds (12) and (14)
match. In general, for a choice of transition probabilities
different from those given in (28), there might be a gap,
as illustrated in Example 1.

B. Proof of Theorem 2

We will build on the previous example to describe the
generalized scheme achieving the rate given in (14). The
proposed coding scheme retrieves messages in the uncoded
form, so we assume that Q = P (N ) in the remaining parts
of this section.

1) Answer Encoding Function: The answer encoding func-
tion φt is given by

At = φt (Qt,WN ) = WA (32)

for any Qt = A ∈ P (N ).
2) Answer Length Function: The length of the answer is

given by

� (Qt) = |Qt|L,
and the normalized average length is then given by

1
Rt

=
�t
L

= E [|Qt|] . (33)

3) Query Encoding Function: At time t, suppose that the
query Qt is a stochastic function of Xt, Xτ and Q[t−1]. Recall
that τ = max Bt, i.e., the last time privacy was ON. For any
given q[t−1], we claim that there exists an encoding function
w
(
qt|xτ , xt, q[t−1]

)
giving

E
[|Qt||q[t−1]

] ≤ N∑
i=1

i θi(q[t−1]), (34)

as well as satisfying two constraints, i.e.,

p
(
xt, qt|q[t−1]

)
= 0, ∀xt /∈ qt, (35)

and

I(Qt;Xτ |Q[t−1] = q[t−1]) = 0. (36)

Note that (35) guarantees the decodability from the answer
encoding function φt given by (32), and (36) is a relaxed pri-
vacy constraint, where we recall the original privacy constraint
I
(
Qt;XBt |Q[t−1]

)
= 0.
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The following lemma justifies the existence of such a query
encoding function.

Lemma 2: For any given random variables U,X ∈ N ,
suppose that

p
(
X = x|U = u(x,1)

)
≤ p
(
X = x|U = u(x,2)

)
≤ · · · ≤ p

(
X = x|U = u(x,N)

)
. (37)

Then, there exists a random variable Y ∈ P(N ) such that
Y is independent of U , p(x, y) = 0 for x /∈ y, and

E [|Y |] ≤
N∑

i=1

i θi, (38)

where θi = min
{

1,
∑

x∈N
p
(
X = x|U = u(x,i)

)} −

min
{

1,
∑

x∈N
p
(
X = x|U = u(x,i−1)

)}
for i = 1, . . . , N .

Proof: We prove Lemma 2 by designing a distribution
p (y, x|u) for any given distribution p (x|u) satisfying the
constraints Y ⊥ U , p(x, y) = 0 for x /∈ y, and

p (|Y | ≤ i) ≥
i∑

j=1

θj , i = 1, . . . , N.

Moreover, we show that E [|Y |] ≤ ∑N
i=1 i θi follows from

the last constraint. The proof of Lemma 2 is constructive, i.e.,
we provide an algorithm that outputs the desired distribution.
The details of the construction will be presented at the end of
this section, and the justification of the algorithm and analysis
of its complexity will be deferred to Appendix D.

Before the detailed proof, we give the following reflections
on the lemma.

1) This lemma generalizes the process we used to fill
Table IV for N = 3 in Subsection V-A. However, one
may notice that the table therein contains about N2 2N

entries, so any linear time approach such as filling them
one by one will introduce an exponential blowup in
complexity. Hence, the proof of the lemma not only
justifies the existence of an admissible p (y, x|u), but
also proposes a poly(N) time algorithm to construct a
p (y, x|u) for any given distribution p (x|u) to satisfy the
constraints.

2) If we treat each probability p (y, x|u) for x, u ∈ N and
y ∈ P (N) as a decision variable, we can see that both
the objective function E[|Y |] and two constraints, i.e.,
Y is independent of U and p(x, y) = 0 for x /∈ y, are
linear, and hence the problem can be indeed formulated
as a linear programming problem with roughly N2 2N

variables and constraints, which makes the numerical
solution impossible when N goes large. The lemma here
is aimed at finding a solution efficiently (avoid exponen-
tial overhead) and analytically (evaluate the objective
value). More interpretations on this linear programming
perspective will be discussed in Section VI.

For any given q[t−1], by letting U ∼ pXτ |q[t−1]
and

X ∼ pXt|q[t−1]
in Lemma 2, we can easily see that this

lemma justifies the existence of a query encoding function

w
(
qt|xτ , xt, q[t−1]

)
satisfying (34), (35) and (36). The remain-

ing piece to show is that the relaxed privacy constraint (36)
implies the desired privacy constraint (6) for the given scheme,
i.e., I(Qt;Xτ |Q[t−1]) = 0 implies I

(
Qt;XBt |Q[t−1]

)
= 0,

which can be justified by Proposition 1. Therefore, we finish
showing that for any given q[t−1], there exists an encoding
function w

(
qt|xτ , xt, q[t−1]

)
satisfying the decodability and

the privacy constraint. Also, we know from Lemma 2 that the
encoding function w

(
qt|xτ , xt, q[t−1]

)
yields

E
[|Qt||q[t−1]

] ≤ N∑
i=1

i θi(q[t−1]).

By averaging over all q[t−1], we have

E [|Qt|] ≤
∑

q[t−1]

p(q[t−1])
N∑

i=1

i θi(q[t−1]), (39)

which implies that Rt is achievable (c.f.(33)) if

1
Rt

≥
∑

q[t−1]

p(q[t−1])
N∑

i=1

i θi(q[t−1]). (40)

C. Constructive Proof of Lemma 2

First, let us recall some definitions and notation which will
be used frequently in this section. For a fixed x ∈ N , suppose
that

p
(
X = x|U = u(x,1)

)
≤ p
(
X = x|U = u(x,2)

)
≤ · · · ≤ p

(
X = x|U = u(x,N)

)
, (41)

where u(x,i) for i = 1, . . . , N are N distinct elements in N .
Let

λi =
∑
x∈N

p
(
X = x|U = u(x,i)

)
, (42)

and

θi = min{1, λi} − min{1, λi−1}, (43)

where λ0 is assumed to be 0. Note that
∑N

i=1 θi = 1. Also,
let

σ = max{i : λi ≤ 1}. (44)

In this section, we will prove Lemma 2 by designing
a distribution p (y, x|u) for any given distribution p (x|u)
satisfying the constraints Y ⊥ U , p(x, y) = 0 for x /∈ y,
and

p (|Y | ≤ i) ≥
i∑

j=1

θj , i = 1, . . . , N. (45)

One can check that (45) yields

E [|Y |] =
N∑

i=1

i p (|Y | = i) =
N∑

i=1

i∑
j=1

p (|Y | = i)

=
N∑

j=1

N∑
i=j

p (|Y | = i) =
N∑

j=1

p (|Y | ≥ j)
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=
N∑

j=1

(1 − p (|Y | ≤ j − 1))

≤
N∑

j=1

(
1 −

j−1∑
i=1

θi

)
=

N∑
j=1

N∑
i=j

θi

=
N∑

i=1

i∑
j=1

θi =
N∑

i=1

i θi,

i.e., (38) to be proved in Lemma 2.
In particular, let Z be a multiset (N ,m), where N is the

ground set and m is the multiplicity function. The cardinality
of the multiset Z is the summation of multiplicities of all its
element, i.e.,

|Z| =
∑
x∈N

m(x). (46)

For example, given the ground set {a, b} and the multiset
{a, a, b}, the multiplicities of a and b are m(a) = 2 and
m(b) = 1 respectively, and the cardinality of |{a, a, b}| is 3.
For ease of notation, denote

Z = {Z : Z ∈ (N ,m) , |Z| ≤ N} ,
i.e., the multiset whose elements are chosen from N and
whose cardinality is upper bounded by N .

We will prove that for any given X and U , i.e., given
any distribution p (x|u) for x, u ∈ N , there exists a random
variable Z taking values in Z such that Z ⊥ U , p(x, z) = 0
for x /∈ z, and

p (|Z| = i) = θi, ∀i = 1, . . . , σ + 1, (47)

Note that θi = 0 for i > σ + 1 from the definition (43).
By letting Y = Set(Z), i.e., Y is the corresponding set of the
multiset Z , we can easily see that if Z ⊥ U and p(x, z) = 0
for x /∈ z, then Y ⊥ U and p(x, y) = 0 for x /∈ y. Also,
one can easily check that if (47) is satisfied, then (45) holds.
Therefore, it is sufficient for us to justify the existence of such
a Z for any given X and U .

Now, we start the constructive proof, i.e., for any given
distribution p (x|u), we will give an algorithm to construct
some Z satisfying that

p (z, x) = 0, ∀x /∈ z, (48)

and

p (z|u) = p (z|u′) , ∀z ∈ Z and u, u′ ∈ N . (49)

Finally, we will show that the constructed Z gives (47), i.e.,

p (|Z| = i) = θi, ∀i = 1, . . . , σ + 1.

Input: A distribution p (x|u) for x, u ∈ N .
Pre-calculation:
1) For any given distribution p (x|u), by sorting p (x|u) for

each x ∈ N , we can easily obtain parameters{
u(x,i), λi, θi, σ : x ∈ N , i = 1, . . . , N

}
as defined in (41)-(44). We will refer to these notations
directly in the sequel.

2) Then, we randomly pick a set of real numbers {δj : j =
1, . . . , N} such that

p
(
X = j|U = u(j,σ)

)
≤ δj ≤ p

(
X = j|U = u(j,σ+1)

)
, ∀j ∈ N , (50)

and
N∑

j=1

δj = 1. (51)

The existence of such a set of {δj : j = 1, . . . , N} can
be guaranteed by the definition of σ, since

λσ =
N∑

j=1

p
(
X = j|U = u(j,σ)

)

≤
N∑

j=1

δj ≤
N∑

j=1

p
(
X = j|U = u(j,σ+1)

)
= λσ+1,

and λσ ≤ 1 < λσ+1.

Specification: Here we specify a deterministic way of picking
δj for j = 1, . . . , N . For notational simplicity, let aj =
p
(
X = j|U = u(j,σ)

)
and bj = p

(
X = j|U = u(j,σ+1)

)
for

j = 1, . . . , N . Then, provided two non-negative arrays
(a1, . . . , aN ) and (b1, . . . , bN) such that

N∑
j=1

aj ≤ 1 <
N∑

j=1

bj,

our goal is to output an array (δ1, . . . , δN ) such that

aj ≤ δj ≤ bj, ∀j = 1, . . . , N,

and
N∑

j=1

δj = 1.

We may choose δj sequentially and greedily. In particular,
initialize T = 0. For j = 1, . . . , N , update T by T+(bj − aj).
If

T ≤ 1 −
N∑

j=1

aj,

then let δj = bj , otherwise let

δj = 1 −
j−1∑
k=1

bj −
N∑

k=j+1

aj

and δk = ak for k = j + 1, . . . , N to finish the process.
Let Q be an auxiliary N ×N matrix which will be updated

during the algorithm. Also, let Q−
i,j = a denote Qi,j = Qi,j −

a, i.e., subtracting a from Qi,j .
Initialization: Let

Qi,j = max {p (X = j|U = i) − δj , 0} , i, j ∈ N . (52)

Procedure:
For |Z| = � = 1, . . . , σ + 1, we consider the following

process. For x = 1, . . . , N , identify {u(x,i) : i = 1, . . . , �−1}.
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1) For each u(x,i), we randomly choose a collection of pairs

Ii × Vi = {(xi,j , vi,j) : j = 1, 2, . . .} (53)

such that

0 ≤ vi,j ≤ Qu(x,i),xi,j
, (54)

and∑
j

vi,j = min
{
δx, p

(
X = x|U = u(x,�)

)}

− p
(
X = x|U = u(x,�−1)

)
. (55)

Note that the right-hand side of (55) only depends on �
and x and is independent of u(x,i), which means that∑

j=1

v1,j = · · · =
∑
j=1

v�−1,j, (56)

though the cardinality of Vi for each i may or may not
be the same. For ease of notation, suppose that

|Ii| = |Vi| = ei ≤ N.

After that, we update the matrix Q by

Q−
u(x,i),xi,j

= vi,j . (57)

It is clear from (54) and (57) that Q is always non-
negative, so the existence of such a collection Ii × Vi

can be guaranteed if the following condition is satisfied

N∑
k=1

Qu(x,i),k ≥ min
{
δx, p

(
X = x|U = u(x,�)

)}

− p
(
X = x|U = u(x,�−1)

)
, (58)

which will be verified in Appendix D.
Specification: We specify a deterministic way of choos-
ing Ii × Vi under the assumption that (58) holds. If the
right-hand side of (55) is zero, then one can simply
choose Ii × Vi to be the empty set. If the right-hand
side of (55) is strictly positive, we initialize T = 0 and
j = 1. Then for k = 1, . . . , N such that Qu(x,i),k > 0,
if

T +Qu(x,i),k < R.H.S of (55), (59)

let vi,j = Qu(x,i),k, xi,j = k. Then increae j by one and
update T by adding Qu(x,i),k to it. Otherwise, let

vi,j = R.H.S of (55) − T

and xi,j = k to finish the process.
2) For fixed � and x, given Ii and Vi for i =

1, . . . , � − 1, we randomly pick a collection of pairs
{(ζk, νk) : k = 1, 2, . . .} such that

ζk ∈ I1 × I2 × · · · × I�−1, (60)

and ∑
k:ζk(i)=xi,j

νk = vi,j , ∀1 ≤ i ≤ �− 1 and 1 ≤ j ≤ ei,

(61)

Fig. 5. The rows represents V1, . . . , V�−1. A given row i is divided,
by boundaries, into ei parts of different sizes, corresponding to vi,1, . . . vi,ei

,
e.g., V1 is divided into v1,1, v1,2 , and v1,3. Moreover, rows are the same
size in total to satisfy (56). Then, every νk represents the number between
two consecutive boundaries.

where ζk(i) is the i-th element of ζk. The existence of
such a collection can be basically illustrated by Figure 5.
For notational simplicity, denote

| {(ζk, νk) : k = 1, 2, . . .} | = ex,�.

Specification: We specify a deterministic way to con-
struct such a collection {(ζk, νk) : k = 1, 2, . . . , e}.
Let us initially push (v1,1, v2,1, . . . , v�−1,1) and
(x1,1, x2,1, . . . , x�−1,1) into buffers Bv and Bx, respec-
tively. Let ν1 = min Bv and ζ1 = Bx. Assume that the
minimal value of Bv appears in the m-th position for
some m ∈ {1, . . . , �−1}, i.e., vm,1 is the minimal. If the
minimal is not unique, just randomly choose one. We
update Bv by subtracting vm,1 from all elements in Bv

and then push vm,2 into the buffer to replace vm,1−vm,1,
i.e.,

Bv = (v1,1 − vm,1, . . . , vm,2, . . . , v�−1,1 − vm,1) .

Also, update Bx by letting

Bx = (x1,1, . . . , xm,2, . . . , x�−1,1) .

Then, let ν2 = min Bv and ζ2 = Bx, and update Bv and
Bx by the same process as stated above. Keep doing this
repeatedly until all values vi,j for 1 ≤ i ≤ �−1 and 1 ≤
j ≤ ei have been dealt with. Note that (56) guarantees
that the process ends properly. In this process, we deal
with one vi,j every round, so we have

ex,� =
�−1∑
i=1

ei ≤ (�− 1)N. (62)

3) For each k = 1, . . . , ex,�, let zk = {ζk, x}. Then we let
Ak,x,� be a collection of tuples defined as follows:

Ak,x,� =
{

(z̄, x̄, ū) : z̄ = zk, x̄ = ζk(i),

ū = u(x,i), i = 1, . . . , �− 1
}

⋃{
(z̄, x̄, ū) : z̄ = zk, x̄ = x,

ū ∈ N \ {u(x,i) : i = 1, . . . , �− 1
}}
, (63)
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Algorithm 1
Input: A given distribution p (x|u) for x, u ∈ N
Output: The non-zero valued arguments A =

{(z, x, u) : x, u ∈ N , z ∈ Z, p (z, x|u) > 0} and
probabilities q (A) = {p (z, x|u) : (z, x, u) ∈ A} for
a distribution p (z, x|u) such that p (z|u) = p (z) and
p (z, x|u) = 0 for any x /∈ z

1: Pre-calculation
2: Initialize
3: for � = 1, . . . , σ + 1 do
4: for x ∈ N do
5: for u ∈ {u(x,i) : i = 1, . . . , �− 1} do
6: Find a collection of pairs Ii × Vi satisfying (54) and

(55)
7: end for
8: Given {Ii × Vi : i = 1, . . . , �− 1}, find a collection of

pairs {(ζk, νk) : k = 1, 2, . . . , ex,�} satisfying (60) and
(61)

9: Obtain {Ak,x,�, νk,x,� : k = 1, . . . , ex,�} from (63) and
(64)

10: end for
11: Merge {Ak,x,� : x ∈ N , k = 1, . . . , ex,�} to obtain A�

and corresponding values q (A�) from (65) and (66)
12: end for
13: OUT = {A�, q (A�) : � = 1, . . . , σ + 1}

where |Ak,x,�| = N . To avoid ambiguity in the follow-
ing discussion, denote

νk,x,� = νk. (64)

4) For a fixed �, denote

A� =
⋃

1≤x≤N

⋃
1≤k≤ex,�

Ak,x,�, (65)

and for any (z̄, x̄, ū) ∈ A�, let

q (z̄, x̄, ū) =
N∑

x=1

∑
k:(z̄,x̄,ū)∈Ak,x,�

νk,x,�, (66)

where k = 1, . . . , ex,�.

Output: The output of the algorithm is OUT =
{A�, q (A�) : � = 1, . . . , σ + 1}. Later, we will see that this
pair indeed stores the non-zero valued arguments and corre-
sponding values of p (z, x|u), i.e.,

p (z, x|u) =

{
q (z, x, u) , (z, x, u) ∈ A,
0, otherwise,

(67)

where A := ∪�A�. Note that A� are disjoint with each other
since |z| = � for any (z, x, u) ∈ A� from (60).

For the better illustration, we summarize the constructive
proof in Algorithm 1.

VI. LINEAR PROGRAMMING PERSPECTIVE

Inspired by the proposed scheme in the last section,
we restrict our discussion to uncoded queries. Then
the key step is to design a query encoding function
w
(
qt|xτ , xt, q[t−1]

)
, that minimizes the download cost E [|Qt|]

subject to two constraints, i.e., the decodability constraint (35)
and a relaxed privacy constraint (36) (protecting the last time
when privacy was ON).

For any given q[t−1], or more precisely given the input distri-
bution p

(
xt|xτ , q[t−1]

)
, the problem can then be alternatively

formulated as a linear programming (LP) instance as follows,

minimize
p(qt|xτ ,xt,q[t−1])

E
[|Qt||q[t−1]

]
=
∑
qt

p
(
qt|q[t−1]

) |qt|
subject to p

(
xt, qt|q[t−1]

)
= 0, xt /∈ qt, (decodability)

p
(
qt|xτ , q[t−1]

)
= p
(
qt|q[t−1]

)
(relaxed privacy)

(68)

This linear programming problem has N2 2N variables
and (N + 2)N 2N−1 constraints, i.e., each probability
p
(
qt, xt, xτ |q[t−1]

)
is a variable where xt, xτ ∈ N and

qt ∈ P(N ). The scale of the problem is intractable in
complexity with any generic linear programming solver, for
instance Vaidya’s algorithm [12] gives O

((
N2 2N

)2.5
)

.
One possible strategy dealing with the complexity issue is

to impose a restriction on the cardinality of qt, i.e., |qt| is
chosen from {1, 2, . . . , c,N} where c is a constant and N is
included to guarantee the problem is feasible.

minimize
p(qt|xτ ,xt,q[t−1])

E
[|Qt||q[t−1]

]
=
∑
qt

p
(
qt|q[t−1]

) |qt|
subject to p

(
xt, qt|q[t−1]

)
= 0, xt /∈ qt,

p
(
qt|xτ , q[t−1]

)
= p
(
qt|q[t−1]

)
,

|qt| ∈ {1, 2, . . . , c,N}. (69)

In this way, the number of variables drops dramatically as
the alphabet of qt is reduced from 2N to the order of N c, i.e.,
setting p

(
qt|xτ , xt, q[t−1]

)
= 0 for |qt| = {c + 1, . . . , N −

1}. Then, the LP instance roughly has N c+2 variables, which
makes solving the problem numerically possible. For instance
if we choose c = 1, i.e., the user either downloads the message
he wants or all messages on the server, we can obtain the
optimal value to (69), which is

E
[|Qt||q[t−1]

]
= θ1(q[t−1]) +N

(
1 − θ1(q[t−1])

)
, (70)

where θ1 was previously defined (c.f.(11)) to be∑
x∈N

min
xτ

p
(
Xt = x|Xτ = xτ , Q[t−1] = q[t−1]

)
.

Instead of attempting to solve the linear programming
problem numerically, Lemma 2 in the last section actually
identifies a feasible solution to the problem (68) efficiently,
and bounds the objective E

[|Qt||q[t−1]

]
analytically, i.e., a

feasible solution attains an objective such that

E
[|Qt||q[t−1]

] ≤ N∑
i=1

i θi(q[t−1]). (71)

One can easily see that (71) outperforms (70).
A helpful observation here is that any algorithmic tractable

solution should only visit a small proportion of the power set,
i.e, the support set of the query qt. Otherwise, since the power
set is exponentially large, it will introduce an exponential
overhead for configuring the probabilities p

(
qt|xτ , xt, q[t−1]

)
for xτ , xt ∈ N and qt ∈ P(N ).
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VII. PROOF OF TIGHTNESS FOR N = 2 IN THEOREM 3

In this section, we revisit the case N = 2, which was
first studied in [10]. As previously stated, we will show the
bounds obtained in Theorem 1 and Theorem 2 are tight for the
case N = 2. We will give an alternate proof to the specially
designed one for N = 2 presented in [10], which relies on the
general results presented in Theorem 1 and Theorem 2.

Before starting the proof we discuss some consequences of
Theorem 3. We have the following observations.

• If Ft = ON, then τ = t from the definition of τ , then
1

Rt
≥ 2. This means that it is necessary to download both

messages, which is consistent with the well-known result
for the single server PIR [3].

• If Ft = OFF, it is possible for the user to download
less than two messages since 0 ≤ α + β ≤ 2. We can
see that the rate as a function of α and β is symmetric
around α + β = 1. When α + β = 1, the Markov chain
is independent, i.e., the user’s requests are independent,
the user can directly ask for the desired message, and the
rate is Rt = 1 (maximum). When α = β = 0 or α =
β = 1, i.e., the Markov chain is not ergodic, the user is
required to ask for both messages, and then the rate is
Rt = 1/2 (minimum). Another observation is that when
the Markov chain is ergodic, the rate goes to 1 when t−τ
goes to infinity. Intuitively, as t−τ grows, the information
carried by Xt about Xτ decreases, so the user can
eventually directly ask for the desired message without
being concerned about leaking information about Xt.

A. Converse

It is sufficient to show that the right-hand side of (13) equals
to 1+ |1−α−β|t−τ . We first write the right-hand side of (13)
explicitly in terms of α and β. If α+β = 0, then α = β = 0,
and we have

P t−τ = P =
[
1 0
0 1

]
,

which yields ∑
xt∈N

max
xτ∈N

p (xt|xτ ) = 2. (72)

If α + β �= 0, p (xt|xτ ) is given by the transition matrix
P t−τ , i.e.,

P t−τ =
1

α+ β

×
[
β + α(1 − α− β)t−τ α− α(1 − α− β)t−τ

β − β(1 − α− β)t−τ α+ β(1 − α− β)t−τ

]
.

(73)

Then, we have∑
xt

max
xτ

p (xt|xτ )

=

{
1 + (1 − α− β)t−τ , (1 − α− β)t−τ ≥ 0,
1 − (1 − α− β)t−τ , (1 − α− β)t−τ < 0,

which can also be written as∑
xt

max
xτ

p (xt|xτ ) = 1 + |1 − α− β|t−τ . (74)

By combining (72) and (74), we get that∑
xt

maxxτ p (xt|xτ ) = 1 + |1 − α − β|t−τ for any
given α and β. Therefore, we have

1
Rt

≥
∑
xt

max
xτ

p (xt|xτ ) = 1 + |1 − α− β|t−τ ,

which completes the converse proof.

B. Achievability

From Theorem 2, we know that the rate Rt is achievable if

1
Rt

≥
∑

q[t−1]

p(q[t−1])
N∑

i=1

i θi(q[t−1]). (75)

Since λ1(q[t−1]) ≤ 1 and λ2(q[t−1]) ≥ 1 for N = 2, (75)
can be rewritten as

1
Rt

≥
∑

q[t−1]

p(q[t−1])

(
2 −
∑
xt

min
xτ

p
(
xt|xτ , q[t−1]

))
. (76)

In this subsection, we will express the right-hand side
of (76) explicitly in terms of α and β, and we will show
that it is exactly equal to 1 + |1 − α − β|t−τ , as given
in (19). Also, we will explicitly illustrate the encoding function
w
(
qt|xt, xτ , q[t−1]

)
, which is exactly the same as the one

presented in [10].
From the discussion in Section V, we can infer that the

query encoding function w
(
qt|xt, xτ , q[t−1]

)
is given by

w
(
qt|xt, xτ , q[t−1]

)
=

⎧⎪⎨
⎪⎩

π(xt,q[t−1])
p(xt|xτ ,q[t−1])

, |qt| = 1,

1 − π(xt,q[t−1])
p(xt|xτ ,q[t−1])

, |qt| = 2,
(77)

where π
(
xt, q[t−1]

)
is defined by

π
(
xt, q[t−1]

)
:= min

xτ∈{1,2}
p
(
xt|xτ , q[t−1]

)
.

Since qt �= x̄t is always true (c.f.(35)), where x̄t is the
complement of xt in the set {1, 2}, (77) is well-defined for
any qt ∈ {{1}, {2}, {1, 2}}. As consequences,

1) When Ft = ON, τ = t by definition, and

min
xτ

p
(
xt|xτ , q[t−1]

)
= min

x′
t

p
(
xt|x′t, q[t−1]

)
= 0.

(78)

This immediately implies that

w
(
qt|xt, xτ , q[t−1]

)
=

{
0, |qt| = 1,
1, |qt| = 2,

(79)

for any xt and q[t−1], which means that the user will
always download two messages when Ft = ON, i.e.,

p (|Qt| = 2) = 1. (80)
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2) When Ft = OFF, τ �= t by definition. Let

x̂τ (xt, q[t−1]) = argmin
xτ

p
(
xt|xτ , q[t−1]

)
(81)

for any xt and q[t−1]. For notational simplicity,
x̂τ (xt, q[t−1]) will be written as x̂τ when xt and q[t−1]

are clear from context. As such, we can see that

w
(
qt|xt, x̂τ , q[t−1]

)
=

{
1, |qt| = 1,
0, |qt| = 2.

(82)

• If x̂τ (xt, q[t−1]) is unique, since Xτ and Xt take
values in the binary alphabet, it is easy to check
that

x̂τ (xt, q[t−1]) �= x̂τ (x̄t, q[t−1]) (83)

for any given q[t−1]. This implies that xτ and xt

can be determined from each other provided that
|qt| = 2. In particular, assume that |qt−1| = 2,
which implies that Ft−1 = OFF. We know that xτ

and xt−1 can be determined by each other provided
that |qt−1| = 2, and hence we can easily obtain that∑

xt

π
(
xt, q[t−1]

)
=
∑
xt

min
xτ

p
(
xt|xτ , q[t−1]

)
=
∑
xt

min
xt−1

p (xt|xt−1) . (84)

Correspondingly, we have

p (|qt| = 1||qt−1| = 2)

=
∑

q[t−2]

∑
xτ

p
(
xτ , q[t−2]|qt−1

)∑
xt

p
(
qt, xt|xτ , q[t−1]

)
=
∑

q[t−2]

∑
xτ

p
(
xτ , q[t−2]|qt−1

)∑
xt

π
(
xt, q[t−1]

)
=
∑

q[t−2]

∑
xτ

p
(
xτ , q[t−2]|qt−1

)∑
xt

min
xt−1

p (xt|xt−1)

=
∑
xt

min
xt−1

p (xt|xt−1) . (85)

• If x̂τ (xt, q[t−1]) is not unique, i.e.,
p
(
xt|xτ , q[t−1]

)
= p

(
xt|x̄τ , q[t−1]

)
, then we

can easily see that

w
(
qt|xt, xτ , q[t−1]

)
=

{
1, |qt| = 1,
0, |qt| = 2,

(86)

for any xτ ∈ {1, 2}. In particular, if |qt−1| = 1,
implying that Ft−1 = OFF, then τ < t − 1 by
definition, and hence from the fact xt−1 = qt−1

when |qt−1| = 1, we can obtain that

x̂τ (xt, q[t−1]) = argmin
xτ

p
(
xt|xτ , q[t−1]

)
= argmin

xτ

p (xt|xt−1) , xt−1 = qt−1.

We can easily see that x̂τ (xt, q[t−1]) is not unique
in this case, which implies that∑

xt

π
(
xt, q[t−1]

)
=
∑
xt

min
xτ

p
(
xt|xτ , q[t−1]

)
=
∑
xt

p (xt|xt−1) = 1, (87)

and

p (|qt| = 1||qt−1| = 1) = 1. (88)

In summary,
1) When Ft = ON, we have

π
(
xt, q[t−1]

)
= 0,

and hence by substituting in (76), we can see that

1
Rt

≥
∑

q[t−1]

p(q[t−1])

(
2 −
∑
xt

min
xτ

p
(
xt|xτ , q[t−1]

))

= 2
∑

q[t−1]

p(q[t−1]) = 2. (89)

2) When Ft = OFF, we have from (84) and (87) that∑
xt

π
(
xt, q[t−1]

)

=

{
1, |qt−1| = 1,∑

xt
minxt−1 p (xt|xt−1) , |qt−1| = 2.

(90)

By substituting in (76), we get that

1
Rt

≥
∑

q[t−1]

p(q[t−1])

(
2 −
∑
xt

min
xτ

p
(
xt|xτ , q[t−1]

))

= p (|Qt−1| = 1) × 2 + p (|Qt−1| = 2)

×
(

2 −
∑
xt

min
xt−1

p (xt|xt−1)

)

= 2 − p (|Qt−1| = 2)

(∑
xt

min
xt−1

p (xt|xt−1)

)
. (91)

From (85) and (88), we can easily see the following
proposition.
Proposition 2: {|Qi| : τ ≤ i ≤ t} forms a Markov
chain, and the transition matrix is given by[

1 0∑
xt

min
xt−1

p (xt|xt−1) 1 −∑
xt

min
xt−1

p (xt|xt−1)

]
. (92)

From the definition of τ , we know that Fτ = ON,
and hence p (|Qτ | = 2) = 1 from (80). Then from
Proposition 2, we have

p (|Qt−1| = 2) =

(
1 −
∑
xt

min
xt−1

p (xt|xt−1)

)t−1−τ

.

Hence, (91) can be written as

1
Rt

≥ 2 − p (|Qt−1| = 2)

(∑
xt

min
xt−1

p (xt|xt−1)

)

= 2 −
(

1 −
∑
xt

min
xt−1

p (xt|xt−1)

)t−1−τ

×
(∑

xt

min
xt−1

p (xt|xt−1)

)
. (93)
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By substituting α and β in (89) and (93), we can easily
check that both inequalities can be written as

1
Rt

≥ |1 − α− β|t−τ .

Moreover, one can also check that the encoding func-
tion w

(
qt|xt, xτ , q[t−1]

)
given in (77) can be expressed as

in Table III which was first presented in [10].

APPENDIX A
PROOF OF PROPOSITION 1

It is clear that we need to show that

I
(
Xτ ;Qt|Q[t−1]

)
= 0

implies that
I
(
XBt ;Qt|Q[t−1]

)
= 0.

Consider

I
(
XBt ;Qt|Q[t−1]

)
= I
(
Xτ ;Qt|Q[t−1]

)
+ I
(
XBt\{τ};Qt|Xτ , Q[t−1]

)
(a)≤ I
(
Xτ ;Qt|Q[t−1]

)
+ I
(
XBt\{τ};Xt, St|Xτ , Q[t−1]

)
(b)= I
(
Xτ ;Qt|Q[t−1]

)
+ I
(
XBt\{τ};Xt|Xτ , Q[t−1]

)
,

where (a) follows because Qt is a function of
{Xτ , Xt, St, Q[t−1]}, and (b) follows because the local
randomness is generated according to pXt,Xτ ,Q[t−1] .

It remains to show that

I
(
XBt\{τ};Xt|Xτ , Q[t−1]

)
= 0,

which can be justified as follows:

I
(
XBt\{τ};Xt|Xτ , Q[t−1]

)
= H

(
XBt\{τ}|Xτ , Q[t−1]

)−H
(
XBt\{τ}|Xt, Xτ , Q[t−1]

)
≤ H

(
XBt\{τ}|Xτ , Q[t−1]

)
−H

(
XBt\{τ}|Xt, Xτ , Q[τ−1], X[τ :t−1], S[τ :t−1]

)
(c)=H

(
XBt\{τ}|Xτ , Q[t−1]

)
−H

(
XBt\{τ}|Xt, Xτ , Q[τ−1], X[τ :t−1]

)
= H

(
XBt\{τ}|Xτ , Q[t−1]

)
−H

(
XBt\{τ}|Xτ , Q[τ−1], X[τ+1:t]

)
(d)=H

(
XBt\{τ}|Xτ , Q[τ−1]

)−H
(
XBt\{τ}|Xτ , Q[τ−1]

)
= 0,

where (c) follows because S[τ :t−1] is independent of XBt\{τ}
given

{
X[τ :t−1], Q[t−1]

}
, and (d) follows from the markovity

of {Xt : t ∈ N}.

APPENDIX B
PROOF OF COROLLARY 1

Recall that the inequality that needs to be shown is∑
q[t−1]

p
(
q[t−1]

)∑
xt

max
xτ

p
(
xt|xτ , q[t−1]

)
≥
∑
xt

max
xτ

p (xt|xτ ) . (94)

Since∑
q[τ]

p
(
q[τ ]

)∑
xt

max
xτ

p
(
xt|xτ , q[τ ]

)
=
∑
xt

max
xτ

p (xt|xτ ) ,

where the equality follows because Q[τ ] is a stochastic func-
tion of X[τ ], and hence Q[τ ] is independent of Xt given Xτ ,
i.e.,

Q[τ ] → Xτ → Xt, (95)

due to the Markovity of {Xi : i ∈ N}. Thus, we can easily
see that (94) holds for t = τ + 1.

For any i ∈ [τ + 2 : t], consider∑
q[i−1]

p
(
q[i−1]

)∑
xt

max
xτ

p
(
xt|xτ , q[i−1]

)
≥
∑

q[i−2]

p
(
q[i−2]

)
∑
xt

max
xτ

∑
qi−1

p
(
qi−1|q[i−2]

)
p
(
xt|xτ , q[i−1]

)
(a)=
∑

q[i−2]

p
(
q[i−2]

)
∑
xt

max
xτ

∑
qi−1

p
(
qi−1|q[i−2], xτ

)
p
(
xt|xτ , q[i−1]

)
=
∑

q[i−2]

p
(
q[i−2]

)∑
xt

max
xτ

p
(
xt|xτ , q[i−2]

)
, (96)

where (a) follows from the privacy at time i− 1.
Since (96) holds for any i ∈ [τ+2 : t], we can easily obtain

that∑
q[t−1]

p
(
q[t−1]

)∑
xt

max
xτ

p
(
xt|xτ , q[t−1]

)
≥
∑
q[τ]

p
(
q[τ ]

)∑
xt

max
xτ

p
(
xt|xτ , q[τ ]

)
=
∑
xt

max
xτ

p (xt|xτ ) ,

where the last step follows because of the Markov chain
Q[τ ] → Xτ → Xt, as in (95).

This completes the proof.

APPENDIX C
PROOF OF LEMMA 1

Consider

max
u∈N

p (x|u) (a)=max
u∈N

∑
y:x∈y

p (x, y|u)

= max
u∈N

∑
y:x∈y

p (y|u) p (x|y, u)

(b)= max
u∈N

∑
y:x∈y

p (y) p (x|y, u)

≤
∑

y:x∈y

p (y)max
u∈N

p (x|y, u)

≤
∑

y:x∈y

p (y) ,
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where (a) follows from p(x, y) = 0 for x /∈ y, and (b) follows
because Y is independent of U .

Thus, we obtain that∑
x∈N

max
u∈N

p (x|u) ≤
∑
x∈N

∑
y:x∈y

p (y)

=
∑

y∈P(X )

∑
x:x∈y

p (y)

=
∑

y∈P(N )

p (y)
∑

x:x∈y

1

=
∑

y∈P(N )

p(y)|y|

= E [|Y |] ,
which completes the proof.

APPENDIX D
JUSTIFICATION OF THE ALGORITHM FOR LEMMA 2

A. Verification of (58)

First, let us verify (58), i.e., for any � = 1, . . . , σ + 1 and
x ∈ N ,

N∑
k=1

Qu(x,i),k ≥ min
{
δx, p

(
X = x|U = u(x,�)

)}

− p
(
X = x|U = u(x,�−1)

)
, ∀i = 1, . . . , �− 1.

Roughly speaking, the summation of the u(x,i)-th row of
Q should be larger than or equal to the right-hand side of
(58) at any points when the algorithm update. Equivalently,
for any given � = 1, . . . , σ + 1 and x, u ∈ N , if u ∈{
u(x,i) : i = 1, . . . , �− 1

}
, we need to verify that

N∑
k=1

Qu,k ≥ min
{
δx, p

(
X = x|U = u(x,�)

)}

− p
(
X = x|U = u(x,�−1)

)
, (97)

From (55) and (57), it is clear that we subtract exactly the
same value as the right-hand side of (58) from

∑N
k=1Qu,k

during each update. Therefore, by summing over x and �, it is
sufficient to show that for any given u, we have

N∑
k=1

Qu,k ≥
σ+1∑
�=1

∑
x∈N :u∈{u(x,i):i=1,...,�−1}

min
{
δx, p

(
X = x|U = u(x,�)

)}
− p

(
X = x|U = u(x,�−1)

)
,

where Qu,k denotes the initializations in (52). To be precise,
we re-write it by

N∑
k=1

max {p (X = k|U = u) − δk, 0}

≥
σ+1∑
�=1

∑
x∈N :u∈{u(x,i):1≤i≤�−1}

min
{
δx, p

(
X = x|U = u(x,�)

)}

− p
(
X = x|U = u(x,�−1)

)
. (98)

To establish (98), for a given u ∈ N , let us suppose that

u = u(1,α1) = · · · = u(N,αN). (99)

Then, the left-hand side of (98) can be written as∑
k:αk≥σ+1

(p (X = k|U = u) − δk) ,

while the right-hand side of (98) can be written as∑
x∈N

∑
�:u∈{u(x,i):i=1,...,�−1}

min
{
δx, p

(
X = x|U = u(x,�)

)}

− p
(
X = x|U = u(x,�−1)

)

=
∑

x:αx≤σ

σ+1∑
�=αx+1

min
{
δx, p

(
X = x|U = u(x,�)

)}

− p
(
X = x|U = u(x,�−1)

)

=
∑

x:αx≤σ

σ+1∑
�=αx+1

(
δx − p

(
X = x|U = u(x,αx)

))

=
∑

x:αx≤σ

(δx − p (X = x|U = u)) .

Therefore, it remains to show that∑
k:αk≥σ+1

(p (X = k|U = u) − δk)

≥
∑

k∈N :αk≤σ

(δk − p (X = k|U = u)) ,

which can be written as∑
k∈N

(p (X = k|U = u) − δk) ≥ 0. (100)

Since ∑
k∈N

p (X = k|U = u) =
∑
k∈N

δk = 1,

we can easily see that (100) holds, which completes the proof.
One may notice that we indeed show that the equality holds

in (98), which implies that Q would be an all-zeros matrix
after iterations, i.e., for any given x̄, ū ∈ N ,

σ+1∑
�=1

N∑
x=1

∑
i,j:xi,j=x̄,u(x,i)=ū

vi,j

= max {p (X = x̄|U = ū) − δx̄, 0} . (101)

Here, we slightly abuse the notation since vi,j should be
independent of x and � as described.

B. Justification of the Algorithm

In this subsection, we will verify that the proposed algorithm
works, i.e., it ends up with producing a distribution p (z, x|u)
satisfying that

p (z, x) = 0, ∀x /∈ z, (102)

p (z|u) = p (z|u′) , ∀z ∈ Z and u, u′ ∈ N , (103)
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and

p (|Z| = i) = θi, ∀i = 1, . . . , σ + 1. (104)

As claimed, q (z, x, u) stores the non-zero valued probabil-
ity of p (z, x|u). To establish this claim, we need to verify
that ∑

z′:(z′,x,u)∈A
q (z′, x, u) = p (x|u) , ∀x, u ∈ N . (105)

Since A is the union set of Ak,x,� for all possible k, x and
�, let us focus on Ak,x,� defined in (63). Recall that

Ak,x,� =
{

(z̄, x̄, ū) : z̄ = zk, x̄ = ζk(i),

ū = u(x,i), i = 1, . . . , �− 1
}

⋃{
(z̄, x̄, ū) : z̄ = zk, x̄ = x,

ū ∈ N \ {u(x,i) : i = 1, . . . , �− 1
}}
.

Denote

A(1)
k,x,� =

{
(z̄, x̄, ū) : z̄ = zk, x̄ = ζk(i),

ū = u(x,i), i = 1, . . . , �− 1
}
,

and

A(2)
k,x,� =

{
(z̄, x̄, ū) : z̄ = zk, x̄ = x,

ū ∈ N \ {u(x,i) : i = 1, . . . , �− 1
}}
.

For any given ū, x̄ ∈ N , we have∑
z:(z,ū,x̄)∈A

q (z, x̄, ū)

(a)=
σ+1∑
�=1

∑
z:(z,ū,x̄)∈A�

q (z, x̄, ū)

(b)=
σ+1∑
�=1

N∑
x=1

∑
k:(·,x̄,ū)∈Ak,x,�

νk,x,�

=
σ+1∑
�=1

N∑
x=1

⎛
⎜⎝ ∑

k:(·,x̄,ū)∈A(1)
k,x,�

νk,x,� +
∑

k:(·,x̄,ū)∈A(2)
k,x,�

νk,x,�

⎞
⎟⎠

=
σ+1∑
�=1

N∑
x=1

∑
k:(·,x̄,ū)∈A(1)

k,x,�

νk,x,� +
σ+1∑
�=1

N∑
x=1

∑
k:(·,x̄,ū)∈A(2)

k,x,�

νk,x,�.

(106)

where (a) follows because A� are disjoint for distinct � and
(b) follows from (66).

For any given ū ∈ N , suppose that

ū = u(1,α1) = · · · = u(N,αN). (107)

Then, the first term of the right-hand side of (106) can be
written as

σ+1∑
�=1

N∑
x=1

∑
k:(·,x̄,ū)∈A(1)

k,x,�

νk,x,�

=
σ+1∑
�=1

∑
x:αx≤�−1

∑
k:x̄=ζk(αx)

νk,x,�

(a)=
σ+1∑
�=1

∑
x:αx≤�−1

vαx,x̄

(b)= max {p (X = x̄|U = ū) − δx̄, 0} , (108)

where (a) follows from (61), and (b) follows from (101). Note
that we slightly abuse the notation ζk and vαk,x̄ here since they
are independent of x and �.

The second term of the right-hand side of (106) can be
written as

σ+1∑
�=1

N∑
x=1

∑
k:(·,x̄,ū)∈A(2)

k,x,�

νk,x,�

=
σ+1∑
�=1

∑
x:x=x̄

�αx≥�

∑
k

νk,x,�

=
σ+1∑
�=1

�αx̄≥�

∑
k

νk,x̄,�

(a)=
σ+1∑
�=1

�αx̄≥�

(
min

{
δx̄, p

(
X = x̄|U = u(x̄,�)

)}

−p
(
X = x̄|U = u(x̄,�−1)

))

=
min{σ+1,αx̄}∑

�=1

(
min

{
δx̄, p

(
X = x̄|U = u(x̄,�)

)}

−p
(
X = x̄|U = u(x̄,�−1)

))
= min

{
δx̄, p

(
X = x̄|U = u(x̄,αx̄)

)}
= min {δx̄, p (X = x̄|U = ū)} , (109)

where (a) follows from (55) and (61).
Finally, it is easy to see that

σ+1∑
�=1

N∑
x=1

∑
k:(·,x̄,ū)∈Ak,x,�

νk,x,�

=
σ+1∑
�=1

N∑
x=1

∑
k:(·,x̄,ū)∈A(1)

k,x,�

νk,x,�

+
σ+1∑
�=1

N∑
x=1

∑
k:(·,x̄,ū)∈A(2)

k,x,�

νk,x,�

(a)=max {p (X = x̄|U = ū) − δx̄, 0}
+ min {δx̄, p (X = x̄|U = ū)}

= p (X = x̄|U = ū) ,

where (a) follows from (108) and (109). We finish justify-
ing (105).

Now, let us verify the two constraints (102) and (103), i.e.,

p (z, x) = 0, ∀x /∈ z,

and

p (z|u) = p (z|u′) , ∀z ∈ Z and u, u′ ∈ N .
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As we have shown that

p (z, x|u) =

{
q (z, x, u) , (z, x, u) ∈ A,
0, (z, x, u) /∈ A,

to verify the two constraints, it is equivalent to show that

1) For any (z, x, u) ∈ A, it must have x ∈ z.
2) For any given z ∈ Z and u, u′ ∈ N , we have∑

x:(z,x,u)∈A
q (z, x, u) =

∑
x:(z,x,u′)∈A

q (z, x, u′) .

Since A is the union set of Ak,x,� for all possible k, x and
�, it is sufficient to show the following two claims:

1) For any (z, x, u) ∈ Ak,x,�, it must have x ∈ z.
2) For any given z ∈ Z and u, u′ ∈ N , we have∑

x,x̄,k:(z,x,u)∈Ak,x̄,�

νk,x̄,� =
∑

x,x̄,k:(z,x,u′)∈Ak,x̄,�

νk,x̄,�,

(110)

where � = |z|, x, x̄ = 1, . . . , N and k = 1, . . . , ex̄,�.

Recall the definition of Ak,x,� for any k, x and �, i.e.,

Ak,x,� =
{

(z̄, x̄, ū) : z̄ = zk, x̄ = ζk(i),

ū = u(x,i), i = 1, . . . , �− 1
}

⋃{
(z̄, x̄, ū) : z̄ = zk, x̄ = x,

ū ∈ N \ {u(x,i) : i = 1, . . . , �− 1
}}
.

Since zk = {ζk, x} as previously defined, we can easily see
that x̄ ∈ z̄ for any (z̄, x̄, ū) ∈ Ak,x,�, which justifies the first
claim.

For the second claim, we re-write (110) by∑
x̄,k

νk,x̄,�

∑
x:(z,x,u)∈Ak,x̄,�

1 =
∑
x̄,k

νk,x̄,�

∑
x:(z,x,u′)∈Ak,x̄,�

1.

By inspecting the definition of Ak,x,�, we can see that there
exists exactly one tuple (z, ·, u) ∈ Ak,x,� for any given u and
z, so we have ∑

x:(z,x,u)∈Ak,x̄,�

1 =
∑

x:(z,x,u′)∈Ak,x̄,�

1,

which completes proving (110).
Finally, let us justify (104), i.e.,

p (|Z| = i) = θi, ∀i = 1, . . . , σ + 1,

whose proof is given as follows:

p (|Z| = �) =
∑

z:|z|=�

∑
u

p (u) p (z|u)

(a)=
∑

z:|z|=�

p (z|ū)

=
∑

z:|z|=�

∑
x

q (z, x, ū)

=
∑

(z,x,ū):(z,x,ū)∈A�

q (z, x, ū)

(b)=
∑

(z,x,ū)∈A�

N∑
x′=1

∑
k:(z,x,ū)∈Ak,x′,�

νk,x′,�

=
N∑

x′=1

∑
k

∑
(z,x,ū):(z,x,ū)∈Ak,x′,�

νk,x′,�

(c)=
N∑

x′=1

∑
k

νk,x′,�

(d)=
N∑

x′=1

min
{
δx′ , p

(
X = x′|U = u(x′,�)

)}

− p
(
X = x′|U = u(x′,�−1)

)
= θ�,

where (a) follows from (103), (b) follows from (66), (c)
follows because there exists exactly one tuple (·, ·, ū) ∈ Ak,x,�

for given k, x and �, and (d) follows from (55) and (61).

C. Complexity Analysis of the Algorithm

In this subsection, we will discuss the complexity of
the algorithm to construct the desired output distribution
p (z|x, u). The purpose of the complexity analysis here is
to justify that the proposed algorithm is tractable, i.e., with
poly(N) complexity. By utilizing some data structures, one
may possibly reduce the complexity by one or two orders,
which is beyond the interest of this paper.

Pre-Calculation: The Pre-calculation involves two steps,
i.e., sorting p (x|u) for all x ∈ N and picking the set {δj :
j = 1, . . . , N}. The complexity of sorting is O (N2 logN

)
and picking {δj : j = 1, . . . , N} is O (N).

Initialization: The initialization of Q is O(N2).
Procedure: The main procedure is divided into the following

steps:
1) For the fixed �, x and ui, we ‘randomly’ choose a

collection of pairs Ii×Vi. We can easily see that if (58)
is satisfied, then Vi (and Ii) can be chosen by linear time
O(N), i.e., going through the ui-th row of the matrix
Q. Hence, we can obtain {Ii, Vi : i = 1, . . . , �− 1} for
a fixed � and x with O((�− 1)N).

2) For a fixed � and x, we need to get a collection of pairs
{(ζk, νk) : k = 1, 2, . . . , e} given {Ii, Vi : i = 1, . . . , �−
1}. Each νk is obtained by finding the minimal value of
Bv, which is a set of length � − 1, so finding each νk

(and ζk) takes O(�− 1). For each zk, the set Ak can be
characterized by traversing zk with linear time O(�−1).
As each ei is bounded by N − 1, e is bounded by

e ≤
�−1∑
i=1

ei = (�− 1)(N − 1),

and hence determining all {Ak, νk : k = 1, 2, . . . , e}
takes O((� − 1)2(N − 1)). Therefore, obtaining
{Ak,x,�, νk,x,� : 1 ≤ � ≤ σ + 1, 1 ≤ x ≤ N, 1 ≤ k ≤
ex,�} at most takes O(σ3 N2).

3) At the end, we need to finish the probability assignment
(c.f.(66)). However, since the size of the alphabet of Z
is exponential, p (z, x|u) has an exponential number of
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elements. To avoid the exponential overhead, we may
take advantage of the sparsity of p (z, x|u) to output
non-zero positions and values (all others are assumed
to be zero) instead of pushing out the distribution
p (z, x|u) entirely and directly. Indeed, Ak,x,� contains
the non-zero positions and the corresponding value is
νk,x,�. However, since some positions may appear in
∪k,x,�Ak,x,� multiple times, we may need to merge
them, this can be done by simply checking all {Ak,x,� :
1 ≤ � ≤ σ + 1, 1 ≤ x ≤ N, 1 ≤ k ≤ ex,�} which is
O(σ3 N3).

In summary, the worst case complexity of the algorithm is
O(N6).

REFERENCES

[1] L. Sweeney, “K-anonymity: A model for protecting privacy,” Int. J.
Uncertainty, Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570,
2002.

[2] C. Dwork, “Differential privacy: A survey of results,” in Proc. Int.
Conf. Theory Appl. Models Comput. Berlin, Germany: Springer, 2008,
pp. 1–19.

[3] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in Proc. IEEE 36th Annu. Found. Comput. Sci., Oct. 1995,
pp. 41–50.

[4] S. Kadhe, B. Garcia, A. Heidarzadeh, S. E. Rouayheb, and A. Sprintson,
“Private information retrieval with side information,” IEEE Trans. Inf.
Theory, vol. 66, no. 4, pp. 2032–2043, Apr. 2020.

[5] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of
download ensures perfectly private information retrieval,” in Proc. IEEE
Int. Symp. Inf. Theory, Jun. 2014, pp. 856–860.

[6] R. Tajeddine, O. W. Gnilke, and S. E. Rouayheb, “Private information
retrieval from MDS coded data in distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 64, no. 11, pp. 7081–7093, Nov. 2020.

[7] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private
information retrieval from coded databases with colluding servers,”
SIAM J. Appl. Algebra Geometry, vol. 1, no. 1, pp. 647–664, 2017.

[8] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[9] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945–1956, Mar. 2018.

[10] C. Naim, F. Ye, and S. E. Rouayheb, “ON-OFF privacy with correlated
requests,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019,
pp. 817–821.

[11] F. Ye, C. Naim, and S. E. Rouayheb, “Preserving ON-OFF privacy for
past and future requests,” in Proc. IEEE Inf. Theory Workshop (ITW),
Aug. 2019, pp. 1–5.

[12] P. M. Vaidya, “Speeding-up linear programming using fast matrix
multiplication,” in Proc. 30th Annu. Symp. Found. Comput. Sci.,
Triangle Park, NC, USA, 1989, pp. 332–337.

[13] R. Shokri, C. Troncoso, C. Diaz, J. Freudiger, and J.-P. Hubaux,
“Unraveling an old cloak: K-anonymity for location privacy,” in Proc.
9th Annu. ACM Workshop Privacy Electron. Soc. (WPES), Chicago, IL,
USA, 2010, pp. 115–118.

[14] J. Hua, W. Tong, F. Xu, and S. Zhong, “A geo-indistinguishable
location perturbation mechanism for location-based services supporting
frequent queries,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 5,
pp. 1155–1168, May 2018.

[15] R. Shokri, G. Theodorakopoulos, J.-Y. L. Boudec, and J.-P. Hubaux,
“Quantifying location privacy,” in Proc. IEEE Symp. Secur. Privacy,
Berkeley, CA, USA, May 2011, pp. 247–262.

[16] R. Shokri, G. Theodorakopoulos, and C. Troncoso, “Privacy games along
location traces,” ACM Trans. Privacy Secur., vol. 19, no. 4, pp. 1–31,
Feb. 2017.

[17] E. Erdemir, P. L. Dragotti, and D. Gunduz, “Privacy-aware time-
series data sharing with deep reinforcement learning,” IEEE Trans. Inf.
Forensics Security, vol. 16, pp. 389–401, 2021.

[18] W. Zhang, M. Li, R. Tandon, and H. Li, “Online location trace privacy:
An information theoretic approach,” IEEE Trans. Inf. Forensics Security,
vol. 14, no. 1, pp. 235–250, Jan. 2019.

[19] F. Ye, C. Naim, and S. E. Rouayheb, “ON-OFF privacy against corre-
lation over time,” IEEE Trans. Inf. Forensics Security, vol. 16, no. 1,
pp. 2104–2117, Jan. 2021.

[20] F. Ye, H. Cho, and S. E. Rouayheb, “Mechanisms for hiding sensitive
genotypes with information-theoretic privacy,” 2020, arXiv:2007.05139.
[Online]. Available: http://arxiv.org/abs/2007.05139

Fangwei Ye (Member, IEEE) received the B.Eng. degree in information
engineering from Southeast University in 2013 and the Ph.D. degree from
the Department of Information Engineering, The Chinese University of
Hong Kong, in 2018. From 2018 to 2020, he was a Post-Doctoral Asso-
ciate with the Department of Electrical and Computer Engineering, Rutgers
University. He is currently with the Broad Institute of MIT and Harvard. His
research interests include information theory and its applications to privacy,
bioinformatics, and coding opportunities in learning.

Carolina Naim (Graduate Student Member, IEEE) received the B.S. degree
in communication and computer engineering from American University of
Science and Technology, Beirut, in 2017. She is currently pursuing the
Ph.D. degree with the Department of Electrical and Computer Engineering,
Rutgers University. Her research interests include privacy and security with
applications in information retrieval, distributed computing, and machine
learning.

Salim El Rouayheb (Senior Member, IEEE) received the Diploma degree in
electrical engineering from the Faculty of Engineering, Lebanese University,
Roumieh, Lebanon, in 2002, the M.S. degree from American University of
Beirut, Lebanon, in 2004, and the Ph.D. degree in electrical engineering
from Texas A&M University, College Station, TX, USA, in 2009. He was
a Post-Doctoral Research Fellow with UC Berkeley from 2010 to 2011,
and a Research Scholar with Princeton University from 2012 to 2013. He
was an Assistant Professor with the ECE Department, Illinois Institute of
Technology, from 2013 to 2017. He is currently an Associate Professor with
the Department of Electrical and Computer Engineering, Rutgers University,
New Brunswick, NJ, USA. His research interests include information theory
and coding theory with applications to reliability, security, and privacy in
distributed systems. He was a recipient of the NSF Career Award.

Authorized licensed use limited to: Rutgers University. Downloaded on March 03,2022 at 21:04:05 UTC from IEEE Xplore.  Restrictions apply. 


