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We present an improved formulation of 4-dimensional Lorentzian spinfoam quantum gravity with
cosmological constant. The construction of spinfoam amplitudes uses the state-integral model of
PSL(2,C) Chern-Simons theory and the implementation of simplicity constraint. The formulation
has 2 key features: (1) spinfoam amplitudes are all finite, and (2) With suitable boundary data,
the semiclassical asymptotics of the vertex amplitude has two oscillatory terms, with phase plus
or minus the 4-dimensional Lorentzian Regge action with cosmological constant for the constant
curvature 4-simplex.
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I. INTRODUCTION

The spinfoam quantum gravity is the covariant formu-
lation of Loop Quantum Gravity (LQG) in 4 spacetime
dimensions [1, 2]. There are 2 motivations to include the
cosmological constant Λ in the spinfoam quantum gravity:
Firstly, spinfoam models without Λ are well-known to
have the infrared divergence (see e.g. [3–5]), then Λ is
expected to provide a natural infrared cut-off to make spin-
foam amplitudes finite. Secondly, the simplest consistent
explanation for the cosmological accelerating expansion
is a positive Λ, so quantum gravity should reproduce Λ in
the semiclassical regime. Based on these motivations, a
satisfactory spinfoam quantum gravity with Λ is expected
to (1) define finite spinfoam amplitudes, and (2) consis-
tently recover classical gravity with Λ in the semiclassical
limit. This work covers both positive and negative Λ.

The semiclassical limit of LQG scales the Planck length
`P → 0 while keeping the geometrical area a fixed. By
the LQG area spectrum a = γ`2P

√
j(j + 1), the semiclas-

sical limit implies the SU(2) spin j → ∞. We do not
scale the Barbero-Immirzi parameter γ. In presence of
Λ, we require in addition that Λ should not scale in the
semiclassical limit, then in 4d, the dimensionless quantity
k ∝ (|Λ|`2P )−1 scales as k → ∞ in addition to j → ∞,
whereas j/k ∝ |Λ|a is fixed. This suggests that the semi-
classical limit of the spinfoam quantum gravity with Λ
should be a double-scaling limit, i.e. j, k → ∞ while
fixing j/k. In our following discussion, k becomes the
integer Chern-Simons level.

In 3 dimensions, The Turaev-Viro (TV) model [6] with
quantum group SU(2)q (q = eπi/k, k ∈ Z) is the spinfoam
quantum gravity with Λ that satisfy both expectations
(1) and (2): It gives finite amplitudes due to the cut-off
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of spins given by SU(2)q; The vertex amplitude, the 6j
symbol of SU(2)q, recovers the Regge action of 3d gravity
with Λ > 0 in the semiclassical limit [7] 1.

In contrast, a satisfactory 4d spinfoam quantum gravity
with Λ has not been achieved to satisfy both expectations
(1) and (2) in the literature yet. There are 4d spinfoam
models based on quantum Lorentz group, as generaliza-
tions from the 3d quantum group TV model [8–10] (see
also e.g. [11, 12] for the LQG kinematics with quantum
group). These models produce finite spinfoam amplitudes
due to the spin cut-off from the quantum group. But
it is difficult to examine the semiclassical limits of these
models, due to complexity of their vertex amplitudes in
terms of quantum group symbols. More recently, there is
a more promising spinfoam model based on the SL(2,C)
Chern-Simons (CS) theory instead of quantum group [13].
The vertex amplitude A0

v of this model is defined to be
the CS evaluation of the projective SL(2,C) spin-network
function ΨΓ5

based on Γ5-graph embedded in S3 (see
FIG.1):

A0
v :=

∫
DADĀ e−iSCS(A,Ā)ΨΓ5

(A, Ā), (1)

where SCS is the unitary SL(2,C) CS action with the
complex level t = k + σ (k ∈ Z+, σ ∈ iR) that unifies Λ
and γ by k = Re(t) = 12π

|Λ|`2P γ
, σ = iIm(t) = ikγ,

SCS =
t

8π

∫
S3

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+
t̄

8π

∫
S3

Tr

(
Ā ∧ dĀ+

2

3
Ā ∧ Ā ∧ Ā

)
. (2)

ΨΓ5
reduces to the EPRL vertex amplitude [14] when

A, Ā → 0. The derivation of the model (1) from the BFΛ

theory is given in [13] and is reviewed briefly in a moment
around (3).
In the semiclassical limit (j, k → ∞, σ = ikγ → i∞,

keeping j/k fixed), and with suitable boundary condition,
A0
v reproduces the constant curvature 4-simplex geometry

and gives the asymptotics as 2 oscillatory terms, with
phase plus or minus the Regge action of 4d Lorentzian
gravity with Λ. The sign of Λ is not fixed a priori, but
rather emerges semiclassically and dynamically from equa-
tions of motion and boundary data, as shown in the
asymptotic analysis in [13]2. However the drawback of
A0
v is that the formal path integral in (1) is not mathe-

matically well-defined, thus makes the finiteness of the
spinfoam amplitude obscure.

1 The semiclassical limit in 3d is the same double-scaling limit since
a ∝ `P

√
j(j + 1) becomes the length and k2 ∝ (Λ`2P )−1.

2 Firstly, the sign of Λ of boundary tetrahedra is determined by the
boundary data, then the critical equations from the stationary
phase analysis lead the sign of Λ to propagate between tetrahedra
and 4-simplices. The critical equations has no solution if the
boundary tetrahedra fails to have a common sign of Λ, then the
spinfoam amplitude fast suppresses in the semiclassical regime.

�5

<latexit sha1_base64="Nlo45FcV/pIdTBiGlr7/j+K4pCo=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexKgh6DHvQYwTwgWULvZDYZMrO7zswKIeQnvHhQxKu/482/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TRVmDxiJW7QA1EzxiDcONYO1EMZSBYK1gdDPzW09MaR5HD2acMF/iIOIhp2is1O7eopTYq/aKJbfszkFWiZeREmSo94pf3X5MU8kiQwVq3fHcxPgTVIZTwaaFbqpZgnSEA9axNELJtD+Z3zslZ1bpkzBWtiJD5urviQlKrccysJ0SzVAvezPxP6+TmvDKn/AoSQ2L6GJRmApiYjJ7nvS5YtSIsSVIFbe3EjpEhdTYiAo2BG/55VXSvCh7lXL1vlKqXWdx5OEETuEcPLiEGtxBHRpAQcAzvMKb8+i8OO/Ox6I152Qzx/AHzucPh52PpQ==</latexit>

S3

<latexit sha1_base64="oLVnEMmjx3nehfLa5jIxIrpRqsM=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYVo0eiF48Y5JHASmaHWZgwO7uZ6TUhhE/w4kFjvPpF3vwbB9iDopV0UqnqTndXkEhh0HW/nNzK6tr6Rn6zsLW9s7tX3D9omjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGNzO/9ci1EbG6x3HC/YgOlAgFo2ilev3hvFcsuWV3DvKXeBkpQYZar/jZ7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JiVX6JIy1LYVkrv6cmNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZf/kuaZ2WvUr64q5Sq11kceTiCYzgFDy6hCrdQgwYwGMATvMCrI51n5815X7TmnGzmEH7B+fgG116NhA==</latexit>

FIG. 1. Γ5-graph embedded in S3.

In this work, we present an improved formulation of
4d spinfoam quantum gravity with cosmological constant
Λ, which gives both finite spinfoam amplitudes and the
correct semiclassical behavior. We construct a new vertex
amplitude Av, which replaces the formal CS path integral
in A0

v by finite sum and finite-dimensional integral, based
on the recent state-integral model of complex CS theory
[15–17]. The resulting Av is a bounded function of bound-
ary data. The spinfoam amplitude made by Av is finite on
any triangulation. On the other hand, we are able to ap-
ply the stationary phase analysis to the finite-dimensional
integral to show that Av indeed reproduce the constant
curvature 4-simplex and the 4d Lorentzian Regge action
with Λ (positive or negative) in the semiclassical limit.

The new vertex amplitude Av is closely related to the
partition function ZS3\Γ5

of the PSL(2,C) = SL(2,C)/Z2

CS theory on S3 \Γ5, which is the complement of an open
tubular neighborhood of Γ5-graph in S3. Γ5 ⊂ S3 is dual
to the triangulation of S3 given by the 4-simplex’s bound-
ary. This duality delivers flat connections of the CS theory
to decorate the 4-simplex. We adopt the method proposed
in [16] to explicitly construct ZS3\Γ5

as a state-integral
model with finite sum and finite-dimensional integral (see
Section II). ZS3\Γ5

quantizes the moduli space LS3\Γ5
of

PSL(2,C) flat connections on S3 \ Γ5, and is a wavefunc-
tion of flat connection data on the boundary of S3 \ Γ5.
Given a manifold M , the moduli space of flat connection
with structure group G is the space of G-connections
modulo gauge transformations with vanishing curvature,
equivalent to the character variety of representations of
π1(M) in G modulo conjugation [18].

The new vertex amplitude Av contains only finite sums
and finite dimensional integrals thus improves the earlier
formulation (1). It is also different from the state-integral
model obtained in [19] which mainly focuses on the holo-
morphic block of CS and does not specify the integration
cycle 3. Av has both holomorphic and anti-holomorphic
parts of the CS theory. As a key to prove the finiteness,
the integration cycle is specified in Av.

3 In addition, the construction here uses different symplectic coor-
dinates from [19].
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By the construction in [16], the state-integral model
converges absolutely if the underlying 3-manifold admits
a “positive angle structure”. Our construction of ZS3\Γ5

manifests that S3 \ Γ5 indeed admits a positive angle
structure (~α, ~β) ∈ Pnew where Pnew is a 30-dimensional
open convex polytope. The finiteness of ZS3\Γ5

is a pre-
requisite for the finiteness of Av and spinfoam amplitudes
on triangulations.

The simplicity constraint needs to be imposed in order
to define Av: The derivation of (1) in [13] starts from the
Holst-BFΛ theory on a 4-ball B4, which is topologically
identical to a 4-simplex

SH-BFΛ = −1

2

∫
B4

Tr

[(
?+

1

γ

)
B ∧ F(A)

]
−|Λ|

12

∫
B4

Tr

[(
?+

1

γ

)
B ∧B

]
. (3)

Considering the formal path integral of SH-BFΛ
, integrat-

ing out the so(1, 3)-valued 2-form B gives the action
3i

4|Λ|
∫
B4

Tr
[(
?+ 1

γ

)
F ∧ F

]
, which is a total derivative

and gives the CS action (2) on the boundary S3 ' ∂B4.
By the feature of Gaussian integral, integrating out B
constraints |Λ|B/3 = F(A), which encodes B in the
so(1, 3) curvature F(A). On the boundary S3, F(A) is
the so(1, 3) curvature of the CS connection A. Classically
SHΛBF reduces to the Holst action of gravity with ±|Λ|
when the simplicity constraint B = ±e ∧ e is imposed,
where e is the cotetrad 1-form. At the quantum level, the
simplicity constraint must be imposed to the CS partition
function in order to obtain the spinfoam vertex amplitude.

By the relation F(A) = |Λ|B/3, the simplicity con-
straint of B can be translated to constraining A. By
the CS symplectic structure, the resulting simplicity con-
straint can be divide into the first-class and second-class
components. The first-class components are imposed
strongly to ZS3\Γ5

and restrict certain boundary data to
a discrete set {2jab}a<b, a, b = 1, · · · , 5, where jab ∈ N0/2
and jab ≤ (k − 1)/2. {jab}a<b are analog of SU(2) spins
associated to 10 boundary faces of the 4-simplex. Interest-
ingly a consistency condition “4d area=3d area” (similar
to [20]) gives restrictions to the positive angle structure
(~α, ~β). The second-class components of the simplicity con-
straint have to be imposed weakly. We propose coherent
states Ψρ peaked at points ρ in the (subspace of) phase
space of A, and apply the simplicity constraint to restrict
ρ. The restricted ρ is equivalent to the set of 20 spinors
ξab ∈ C2 normalized by the Hermitian inner product, such
that for each a = 1, · · · , 5, {jab, ξab}b 6=a are subject to
the generalized closure condition of a constant curvature
tetrahedra [21]. In our model, all tetrahedra and triangles
are spacelike. We denote the ρ restricted by the simplicity
constraint by ρ~j,~ξ. As a result, the vertex amplitude is
defined by the inner product

Av(~j, ~ξ) = 〈Ψ̄ρ~j,~ξ
| ZS3\Γ5

〉. (4)

where the complex conjugate of Ψι is conventional. This
inner product is a finite-dimensional integral of L2-type.
We show that the integral converges absolutely and Av
is a bounded function of ~j, ~ξ. Av as an inner product (4)
resembles the idea of A0

v, but now Av is well-defined.

Given a simplicial complex K made by 4-simplices v,
tetrahedra e, and faces f , following the general scheme
of spinfoam state-sum models, the spinfoam amplitude
associated to K is defined by

A =

(k−1)/2∑
{jf}

′
∏
f

Af (jf )

∫
[dξdξ′]

∏
e

Ae

(
~j, ~ξe, ~ξ

′
e

)∏
v

Av(~j, ~ξ)

where jf associates to a face f and ~ξe = (ξ1, · · · , ξ4)e
associates to a tetrahedron e. The CS level k = 12π

|Λ|`2P γ
∈ Z

provides the cut-off to the sum over half-integer 0 ≤ jf ≤
(k − 1)/2. The face and edge amplitudes Af , Ae are not
specified here except for requiring Ae is an Gaussian-
like continuous function approaching δ(~ξe, ~ξ′e) as j →∞.
Given the boundedness of Av, the amplitude A is finite
because the sum over jf ’s is finite and the integral over
~ξ’s is compact. Here

∑ ′ indicates that some special spins
are excluded in the sum.

When K has boundary, the boundary data of A are
jf , ~ξe for boundary faces f and boundary tetrahedra e.
These data are deformations of the data of coherent in-
tertwiners in spin-network states. We conjecture that the
boundary states of A are q-deformed spin-network states
of quantum group SU(2)q with q root of unity.

After accomplishing the finiteness of spinfoam ampli-
tude with Λ, we demonstrate the correct semiclassical
behavior fo the new vertex amplitude Av in Section IV.
Av in (4) as a finite-dimensional integral can be expressed
in the form

∫
ekI where I depends on j’s only by j/k.

Therefore we use the stationary phase analysis to study
the semiclassical behavior of Av as j, k →∞ keeping j/k
fixed: The dominant contribution of Av comes from criti-
cal points, i.e. solutions of the critical equation δI = 0.
Given any boundary data {jab, ξab} corresponding to the
geometrical boundary of a nondegenerate convex constant
curvature 4-simplex, there are exactly 2 critical points,
which are 2 flat connections A, Ã ∈ LS3\Γ5

having geomet-
rical interpretations as the constant curvature 4-simplex.
A, Ã give the same 4-simplex geometry but opposite 4d
orientations. A, Ã are analogous to the 2 critical points
related by parity in the EPRL vertex amplitude [22]. As
a result, the asymptotic behavior of Av is given up to an
overall phase by

Av =
(
N+e

iSRegge+C + N−e
−iSRegge−C

)
(5)

× [1 +O (1/k)] ,

where N± are non-oscillatory and relate to the Hessian
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FIG. 2. An ideal tetrahedron.

matrix of I. In the exponents,

SRegge =
Λkγ

12π

(∑
a<b

aabΘab − Λ|V4|
)
. (6)

is the 4d Lorentzian Regge action with Λ of the constant
curvature 4-simplex reconstructed by A or Ã. The gravita-
tional coupling is effectively given by `2P = 12π

|Λ|kγ . C is an
undetermined geometry-independent integration constant.
This semiclassical result of Av is similar to the one related
to A0

v in [13, 23, 24].
Lastly, it is known that the formalism of state-integral

models that we use to construct ZS3\Γ5
excludes the con-

tributions from abelian flat connections [15, 16, 25]. This
does not cause trouble for us since abelian flat connections
only relate to degenerate tetrahedron geometries, which
we exclude in the model.

The paper is organized as follows. In Section II we
construct the state-integral model of ZS3\Γ5

, including
the discussion of ideal triangulation of S3 \ Γ5, a brief
review of PSL(2,C) CS theory on an ideal tetrahedron,
defining convenient phase space coordinates, constructing
octahedron partition function then the partition function
ZS3\Γ5

, and the discussion of coherent states. In Section
III, we impose simplicity constraint and construct Av,
then we construct the spinfoam amplitude A on simplicial
complex and prove the finiteness, we also discuss the rela-
tion between boundary data of A and LQG spin-networks,
and various choices that we make in the definition of A.
In section IV, we derive the asymptotic behavior of Av
in the semiclassical limit.

II. COMPLEX CHERN-SIMONS THEORY ON
S3 \ Γ5

The purpose of this section is to construct the complex
CS theory on the 3-manifold S3 \ Γ5. In Section IIA,
we firstly review the ideal triangulation of S3 \ Γ5 (see
also [19]). As the building block, the CS theory on the
ideal tetrahedron is reviewed in Section II B. Then as an
intermediate step, we construct the CS partition function
on the idea octahedron in Section IIC, since the ideal

triangulation of S3 \ Γ5 is made by 5 ideal octahedra.
Section IID define the phase space coordinates of the
CS theory on S3 \ Γ5 and the symplectic transformation
from the phase space coordinates of the CS theory on
the octahedra. The symplectic transformation defines
the Weil-like transformations which relate the octahedron
partition functions to the CS partition function on S3\Γ5,
as discussed in Section II E. In Section II F, we discuss
the coherent state of the CS theory, as will be useful for
the spinfoam model.

A. Ideal triangulation of S3 \ Γ5

The 3-manifold M3 = S3 \ Γ5 is the complement in
S3 of an open tubular neighborhood of Γ5-graph (see
FIG.3). M3 can be triangulated by a set of (topological)
ideal tetrahedra. An ideal tetrahedron ∆ is a tetrahedron
whose vertices are located at infinities. It is convenient
to truncate the vertices to define the ideal tetrahedron
as the “truncated tetrahedron” as in FIG.2. There are 2
types of boundary components for the ideal tetrahedron:
(a) the original boundary of the tetrahedron, and (b) the
boundaries created by truncating tetrahedron vertices.
Following e.g. [15, 26, 27], the type-(a) boundary is called
geodesic boundary, and the type-(b) boundary is called
cusp boundary.
M3 also has 2 types of boundary components: (A) the

boundaries created by removing the open ball containing
vertices of the graph, and (B) the boundaries created
by removing tubular neighborhoods of edges. Here each
type-(A) boundary component is a 4-holed sphere. Each
type-(B) boundary component is an annulus which begins
and ends at a pair of holes of two type-(A) boundaries.
The type-(A) boundary is called the geodesic boundary
of M3, and the type-(B) boundary is called the cusp
boundary. An ideal triangulation decomposes M3 into a
set of ideal tetrahedra, such that the geodesic boundary
of M3 is triangulated by geodesic boundaries of the ideal
tetrahedra, while the cusp boundary ofM3 is triangulated
by cusp boundaries of the ideal tetrahedra. This ideal
triangulation of S3 \Γ5 is not the triangulation of S3 dual
to Γ5 (the latter is given by the boundary of the 4-simplex).
It is important to distinguish this two triangulations.

Here the geodesic boundary of S3 \Γ5 consists of five 4-
holed spheres {Sa}5a=1, while the cusp boundary consists
of 10 annuli {`ab}a<b. The Γ5-graph in FIG.3 motivates to
subdivides S3 \ Γ5 into 5 tetrahedron-like regions (5 grey
tetrahedra in FIG.3, whose vertices coincide with the ver-
tices of the graph). Every tetrahedron-like region should
actually be understood as an ideal octahedron (with ver-
tices truncated). The octahedron faces triangulate the
4-holed spheres, and the octahedron cusp boundaries (cre-
ated by truncating vertices) triangulate the annuli. The
way of gluing 5 ideal octahedra to form S3 \ Γ5 is shown
in FIG.3. Each ideal octahedron can be subdivided into
4 idea tetrahedra as shown in FIG.4. A specific way of
subdividing the octahedron is specified by a choice of
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octahedron equator. As a result, S3 \ Γ5 is triangulated
by 20 ideal tetrahedra.
Given M3 with both geodesic and cusp boundaries, a

framed PSL(2,C) flat connection on M3 is an PSL(2,C)
flat connection A on M3 with a choice of flat section s
(called the framing flag) in an associated CP1 bundle
over every cusp boundary (see e.g. [27–29]). The flat
section s can be viewed as a C2 vector field on a cusp
boundary, defined up a complex rescaling and satisfying
the flatness equation (d − A)s = 0 (d is the exterior
derivative). Consequently the vector s(p) at a point p of
the cusp boundary is an eigenvector of the holonomy of
A around the cusp based at p. The eigenvector fixes the

Weyl symmetry. Similarly, a framed flat connection on
∂M3 is a flat connection A on ∂M3 with the same choice
of framing flag on every cusp boundary. In addition, if
a cusp boundary component of certain 3-manifold is a
small disc, such as the boundaries created by truncating
of tetrahedron vertices, the holonomy of any framed flat
connection A around the disc is unipotent. The moduli
space of framed PSL(2,C) flat connections on ∂(S3\Γ5) is
denoted by P∂(S3\Γ5) which is a symplectic manifold with
the Atiyah-Bott symplectic form. The moduli space of
framed PSL(2,C) flat connections on S3\Γ5 is denoted by
LS3\Γ5

which is a Lagrangian submanifold in P∂(S3\Γ5).

FIG. 3. The decomposition of S3 \ Γ5 with 5 ideal octahedra (red), each of which can be decomposed into 4 ideal tetrahedra.
The truncations of octahedron vertices are not drown in the figure. The faces with green label a, b, c, d, e, f, g, h, i, j are the faces
where a pair of octahedra are glued. Two ideal octahedra are glued through a pair of faces having the same label. In each ideal
octahedron, we have chosen the edges with red label x, y, z, w to form the equator of the octahedron. This ideal triangulation
firstly appears in [19].

B. Complex Chern-Simons theory on ideal
tetrahedron

Given the ideal triangulation, the building block of the
CS theory on S3 \Γ5 is the theory on an ideal tetrahedron
∆. In this subsection, we review main results of the CS

theory on ∆, and refer to e.g. [15, 16, 27] for details.
The boundary ∂∆ of the ideal tetrahedron is a sphere
with 4 cusp discs. We denote by P∂∆ the phase space of
PSL(2,C) CS theory on ∆. P∂∆ is the moduli space of
PSL(2,C) flat connections on a 4-holed sphere, where the
holonomy around each hole is unipotent.
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FIG. 4. Chosen the equator edges with labels x, y, z, w, an
ideal octahedron can be subdivided into 4 ideal tetrahedra
by drawing a vertical line connecting the remaining 2 vertices
which doesn’t belong to the equator. Vertices are truncated,
although truncations are not shown in the figure.

The moduli space of PSL(2,C) flat connections on a
n-holed sphere can be described as the following: A 2-
sphere in which n discs are removed is a n-holed sphere.
We make a 2d ideal triangulation of the n-holed sphere
such that edges in the triangulation end at the boundary
of the holes. For example, the boundary of the ideal
tetrahedron is an ideal triangulation of the 4-holed sphere.
The 2d ideal triangulation has 3(n − 2) edges. Each
edge E associates to a coordinate xE of the moduli space.
Given a framed flat connection, xE is a cross-ratio of 4
framing flags s1, s2, s3, s4 associated to the vertices of the
quadrilateral containing E as the diagonal (see FIG.5),

xE =
〈s1 ∧ s2〉 〈s3 ∧ s4〉
〈s1 ∧ s3〉 〈s2 ∧ s4〉

(7)

where 〈si ∧ sj〉 is an SL(2,C) invariant volume on C2,
and is computed by parallel transporting s1, · · · , s4 to a
common point inside the quadrilateral by the flat con-
nection. The set of {xE}E are the Fock-Goncharov (FG)
edge coordinates of the moduli space of PSL(2,C) flat
connections on the n-holed sphere. The correspondence
between {xE}E ’s and framed PSL(2,C) flat connections
on Sa is 1-to-1 [29]. By the “snake rule” [27, 28], PSL(2,C)
holonomies on the n-holed sphere can be expressed as
2 × 2 matrices whose entries are functions of {xE}. In
particular, the eigenvalue λ of the counterclockwise holon-
omy (of the flat connection) around a single hole relates
to xE by ∏

E around hole

(−xE) = λ2. (8)

It is convenient to lift it to a logarithmic relation∑
E around hole

(χE − iπ) = 2L, (9)

where xE = eχE , λ = eL. The moduli space has a
natural Poisson structure with

{χE , χE′} = εE,E′ , (10)

where εE,E′ ∈ 0,±1,±2 counts the number of oriented
triangles shared by E,E′, εE,E′ = +1 if E′ occurs to the
left of E in a triangle. Note that the moduli space of
PSL(2,C) flat connections on any n-holed sphere is not a
symplectic manifold unless λ of all holes are fixed.

FIG. 5. The quadrilateral in the 2d ideal triangulation for
defining xE

Applying to the boundary of the ideal tetrahedron, we
denote the FG coordinates at edges around a given hole
(cusp disc) by z, z′, z′′ (see FIG.2). The trivial holonomy
around each hole gives that

zz′z′′ = −1 (11)

The similar conditions for all 4 cusps identify the FG
coordinates at opposite edges. As a result, we find

P∂∆ = {z, z′, z′′ ∈ C∗ | zz′z′′ = −1} ' (C∗)2
. (12)

P∂∆ is a symplectic manifold since the holonomy eigen-
values at all holes are fixed. The Atiyah-Bott symplectic
form is Ω = dz′′

z′′ ∧ dz
z . We also define the logarithmic phase

space coordinates Z = log(z), Z ′ = log(z′), Z ′′ = log(z′′)
with canonical lifts that satisfy

Z + Z ′ + Z ′′ = iπ, (13)
{Z,Z ′′}Ω = {Z ′′, Z ′}Ω = {Z ′, Z}Ω = 1. (14)

The PSL(2,C) CS theory at levels k ∈ Z, σ ∈ iR endows
the following symplectic form ωk,σ on P∂∆:

ωk,σ :=
1

4π
(tΩ + t̄Ω̄), t := k + σ, t̄ := k − σ (15)

k, σ relates to the cosmological constant Λ by

k =
12π

|Λ|`2P γ
, σ = ikγ (16)

where γ is The Barbero-Immirzi parameter [13]. We use
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the following parametrization to change from γ to b [16]

iγ =
1− b2
1 + b2

, b2 =
1− iγ
1 + iγ

, (17)

4πi

t
=

2πi

k

(
1 + b2

)
,

4πi

t̄
=

2πi

k

(
1 + b−2

)
. (18)

with complex b satisfying

Re(b) > 0, Im(b) 6= 0, |b| = 1. (19)

We reparametrize z, z′′ and define z̃, z̃′′ by

z = exp

[
2πi

k
(−ibµ−m)

]
, (20)

z̃ = exp

[
2πi

k

(
−ib−1µ+m

)]
, (21)

z′′ = exp

[
2πi

k
(−ibν − n)

]
, (22)

z̃′′ = exp

[
2πi

k

(
−ib−1ν + n

)]
, (23)

where (m,n) are real and periodic (m ∼ m+k, n ∼ n+k).
When (µ, ν) are real, z̃, z̃′′ are complex conjugates of z, z′′.
But in the following, (µ, ν) will be analytic continued away
from the real axis. ωk,σ written in terms of µ, ν,m, n gives

ωk,σ =
2π

k
(dν ∧ dµ− dn ∧ dm). (24)

The quantization of (P∂∆, ωk,σ) promotes µ, ν,m, n to
operators µ,m,ν,n satisfying the commutation relations

[µ,ν] = [n,m] = − k

2πi
, [ν,m] = [µ,n] = 0. (25)

The variables m,n are both canonical conjugate and pe-
riodic, so the spectra of m,n are discrete and bounded:
m,n ∈ Z/kZ. A representation of (25) is the kinematical
Hilbert space

H(k,σ)
kin = L2(R)⊗ Ck (26)

For any wave function f(µ|m) ∈ H(k,σ)
kin where µ ∈ R and

m ∈ Z/kZ, the actions of µ,m,ν,n are given by

µf(µ|m) = µf(µ|m), e−
2πi
k mf(µ|m) = e−

2πi
k mf(µ|m),

νf(µ|m) =
k

2πi
∂µf(µ|m), e−

2πi
k nf(µ|m) = f(µ|m+ 1).

(27)

We also define the operators corresponding to
z, z′′, z̃, z̃′′

z = exp

[
2πi

k
(−ibµ−m)

]
, (28)

z̃ = exp

[
2πi

k

(
−ib−1µ+ m

)]
, (29)

z′′ = exp

[
2πi

k
(−ibν − n)

]
, (30)

z̃′′ = exp

[
2πi

k

(
−ib−1ν + n

)]
, (31)

They satisfy q- and q̃-Weyl algebras

zz′′ = qz′′z, z̃z̃′′ = q̃z̃′′z̃,

zz̃′′ = z̃′′z, z̃z′′ = z′′z̃,

q = exp

(
4πi

t

)
= exp

[
2πi

k

(
1 + b2

)]
, (32)

q̃ = exp

(
4πi

t̄

)
= exp

[
2πi

k

(
1 + b−2

)]
. (33)

The above discussion focuses on flat connections on the
boundary ∂∆. Only a subset of the flat connections on the
boundary can be extend into the bulk. The moduli space
of PSL(2,C) flat connection on the ideal tetrahedron ∆,
denoted by L∆, is a holomorphic Lagrangian submanifold
in P∂∆. L∆ can be expressed as the holomorphic algebraic
curve in terms of z, z′′ (see e.g. [15, 27]):

L∆ =
{
z−1 + z′′ − 1 = 0

}
⊂ P∂∆, (34)

and similarly for the anti-holomorphic variables z̃, z̃′′. In
the quantum theory, we promote the algebraic curve to
the quantum constraints imposed on wave functions(
z−1 + z′′ − 1

)
Ψ∆(µ|m) =

(
z̃−1 + z̃′′ − 1

)
Ψ∆(µ|m) = 0.

The solution is the quantum dilogarithm function (see e.g.
[16, 30–32])

Ψ∆(µ | m) =



∞∏
j=0

1− qj+1z−1

1− q̃−j z̃−1
|q| < 1,

∞∏
j=0

1− q̃j+1z̃−1

1− q−jz−1
|q| > 1.

(35)

Ψ∆(µ|m) is the CS partition function on the ideal tetra-
hedron ∆. Ψ∆(µ|m) defines a meromorphic function of
µ ∈ C for each m ∈ Z/kZ, and is analytic in b in each
regime Im(b) > 0 and Im(b) < 0 (correspondingly |q| < 1
and |q| > 1). The poles and zeros of Ψ∆(µ|m) are

µpole/zero = ibu+ ib−1v, with u, v ∈ Z,

u− v = −m+ kZ

{
zeroes: u, v ≥ 1,

poles: u, v ≤ 0.
(36)

Poles of Ψ∆ are in the lower-half plane

Im(µpole) = Re(b)(u+ v) ≤ 0. (37)

Ψ∆(µ|m) is holomorphic in µ when Im(µ) > 0.

The asymptotic behavior of Ψ∆(µ|m) as Re(µ) → ∞
with fixed Im(µ) is

Ψ∆(µ|m) =

{
O(1) Re(µ)→ +∞
exp

[
iπ
k

(
µ− i

2Q
)2

+O(1)
]

Re(µ)→ −∞ ,

Q = b+ b−1 > 0. (38)
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The asymptotic behavior indicates that Ψ∆(µ|m) does
not belong to the Hilbert space H(k,σ)

kin but is a tempered
distribution. Ψ∆(µ|m) is analytic in the upper-half plane
Im(µ) > 0. We have the following useful observation from
the asymptotic behavior: Let α > 0, then∣∣∣e− 2π

k βµΨ∆(µ+ iα|m)
∣∣∣

∼
{

exp
[
− 2π

k βµ
]

µ→∞
exp

[
− 2π

k µ(α+ β −Q/2)
]

µ→ −∞ . (39)

Therefore e−
2π
k βµΨ∆(µ+ iα|m) is a Schwartz function of

µ if α, β is inside the open triangle P(∆):

P(∆) = {(α, β) ∈ R2|α, β > 0, α+ β < Q/2}. (40)

The Fourier transform
∫

dµ e
2πi
k νµΨ∆(µ|m) is convergent

if the integration contour is shifted away from the real axis
while α = Im(µ), β = Im(ν) belong to P(∆). α, β can
be understood as angles associated with coordinates z, z′′
in the context of hyperbolic geometry. (α, β) ∈ P(∆) is
called a “positive angle structure” of ∆ [16, 17].

C. Octahedron partition function

Four ideal tetrahedra are glued to form an ideal octa-
hedron as shown in FIG.4. The phase space P∂oct is a
symplectic reduction from 4 copies of P∂∆: The FG edge
coordinates {xE} of P∂oct a product of the tetrahedron
edge coordinates. In general for any edge on the boundary
or in the bulk, it associates [27]

xE =
∏

(z, z′, z′′ incident at E) or

χE =
∑

(Z,Z ′, Z ′′ incident at E), (41)

as product or sum over all the tetrahedron edge coordi-
nates incident at the edge E. For boundary edges, xE are
the FG coordinates of P∂oct. The lift of χE = log(xE) is
determined by the lifts of Z,Z ′, Z ′′ of ideal tetrahedra.
For the bulk edge, xE or χE is rather a constraint which
is denoted by cE = exp(CE), satisfying

cE = 1 or CE = 2πi, (42)

because the flat connection holonomy around a bulk edge
is trivial. We denotes the edge coordinates in 4 copies
of P∂∆ by X,Y, Z,W and their double primes. All the
edge coordinates of P∂oct are expressed in FIG.4, where
we have a single constraint at the bulk edge

C = X + Y + Z +W = 2πi (43)

We make a symplectic transformation in P∂∆ ×
P∂∆ × P∂∆ × P∂∆ from the tetrahedron coordinates
(X,X ′′),(Y, Y ′′),(Z,Z ′′),(W,W ′′) to a set of new symplec-
tic coordinates (X,PX), (Y, PY ), (Z,PZ), (C,Γ), where

PX = X ′′ −W ′′, PY = Y ′′ −W ′′,

PZ = Z ′′ −W ′′, Γ = W ′′ (44)

and each pair are canonical conjugate variables, Poisson
commutative with other pairs. The octahedron phase
space P∂oct is a symplectic reduction by imposing the
constraint C = 2πi and removing the “gauge orbit” vari-
able Γ. A set of symplectic coordinates of P∂oct are given
by ~φ = (X,Y, Z), ~π = (PX , PY , PZ). The Atiyah-Bott
symplectic form Ω implies

{φi, πj}Ω = δij , {φi, φj}Ω = {πi, πj}Ω = 0. (45)

The CS partition function on the ideal octahedron, Zoct,
is a product of 4 tetrahedron partition function followed
by the restriction on the quantum deformed constraint
surface eC = q, eC̃ = q̃ 4:

Zoct(µX , µY , µZ |mX ,mY ,mZ)

= Ψ∆ (µX |mX) Ψ∆ (µY |mY ) Ψ∆ (µZ |mZ)

Ψ∆ (iQ− µX − µY − µZ | −mX −mY −mZ)

The octahedron partition function gives the following
asymptotics behavior∣∣∣e− 2π

k

∑
i βiµiZoct ({µi + iαi} | {mi})

∣∣∣
∼
{
e−

2π
k µX(αX+βX+αY +αZ−Q/2) µX →∞

e−
2π
k µX(αX+βX−Q/2) µX → −∞

where i = X,Y, Z. The similar behaviors are sat-
isfied for µY → ±∞ or µZ → ±∞. Therefore
e−

2π
k

∑
i βiµiZoct ({µi + iαi} | {mi}) is a Schwartz func-

tion of µX , µY , µZ , if (αX , βX , αY , βY , αZ , βZ) ∈ R6 is
contained by the open polytope P(oct) defined by the
following inequalities

αX , αY , αZ > 0, αX + αY + αZ < Q,

αX + βX <
Q

2
, αY + βY <

Q

2
, αZ + βZ <

Q

2
,

αX + αY + αZ + βX >
Q

2
, αX + αY + αZ + βY >

Q

2
,

αX + αY + αZ + βZ >
Q

2
. (46)

To see P(oct) is not empty, Appendix A shows a plot
FIG.9 of the intersection between P(oct) and the plane
of αX = αY = αZ , βX = βY = βZ . (~α, ~β) ∈ P(oct) is a
positive angle structure of the ideal octahedron.

Following [16], we consider any 2N -dimensional phase
space (P, ω) with Darboux coordinates (µi,mi) and
(νi,mi) such that ω = 2π

k

∑n
i=1(dνi ∧ dµi − dni ∧

dmi). The phase space associates with an “angle space”
(Pangle, ωangle) whose universal cover is T ∗RN ' R2N , the

4 The quantum deformation is necessary to make the partition
function invariant under 3d Pachner move (see e.g. [15]).
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Darboux coordinates of Pangle are

αi = Im(µi), βi = Im(νi) (47)

so that ωangle =
∑N
i=1 dβi∧dαi. Given a 2N -dimensional

open convex symplectic polytope P ∈ Pangle, we define
π(P) to be the projection of P to the base of T ∗RN , with
coordinates ~α, then define

strip(P) :=
{
~µ ∈ CN | Im(~µ) ∈ π(P)

}
. (48)

We define the functional space

FP :=
{
holomorphic functions f : strip(P)→ C s.t.

∀(~α, ~β) ∈ P, the function e−
2π
k ~µ·~βf(~µ+ i~α) ∈ S

(
RN
)

is Schwartz class
}
.

We have the convergence for any f ∈ FP∫
dNµ e

2πi
k ~µ·~νf(~µ) <∞ (49)

when the integration contour is shifted away from the real
axis while ~α = Im(~µ), ~β = Im(~ν) belong to P. f ∈ FP

implies the Fourier transform of f also belongs to FP.
To accommodate partition functions of complex Chern-

Simons theory at level k, we define

F (k)
P = FP ⊗C (Vk)⊗N , Vk ' Ck. (50)

As examples, the tetrahedron partition function Ψ∆ be-
longs to F (k)

P(∆) with N = 1, and the octahedron partition

function Zoct belongs to F (k)
P(oct) with N = 3.

D. Phase space coordinates of P∂(S3\Γ5)

The geodesic boundary of S3 \ Γ5 consists of five 4-
holed spheres, denoted by Sa=1,··· ,5. In FIG.3, each Sa
are made by the triangles from the geodesic boundaries
of the octahedra. We compute all FG edge coordinates
χ

(a)
mn (a labels the 4-holed sphere and mn labels the edge
E) of flat connections on Sa=1,··· ,5 by Eq.(41), and list
them in Table I in Appendix B.

The phase space P∂(S3\Γ5) is the moduli space of framed
PSL(2,C) flat connections on the 2d boundary ∂(S3 \Γ5).
We choose the Darboux coordinates of P∂(S3\Γ5) as fol-
lows: First of all, the complex Fenchel-Nielsen (FN) length
variable λ2

ab = e2Lab are squared eigenvalues of PSL(2,C)
holonomies meridian to the 10 annuli `ab connecting 4-
holed spheres Sa and Sb. They relate edge coordinates
χ

(a)
mn by (9). Ten 2Lab are linear combinations of of

(Xa, PXa), (Ya, PYa), (Za, PZa) from 5 Oct(a) with inte-
ger coefficients. Their expressions are given in Appendix
B. The resulting Lab are mutually Poisson commutative
and commuting with all edge coordinates χ(a)

mn.
All Lab commutes with 4-holed sphere edge coordinates

χ
(a)
mn. P∂(S3\Γ5) is complex 30-dimensional. Among the

Darboux coordinates, the position variables include ten
2Lab and 5 variables Xa (a = 1, · · · , 5), one for each
4-holed sphere. We choose Xa to be one of χ(a)

mn:

X1 = χ
(1)
25 , X2 = χ

(2)
15 , X3 = χ

(3)
15 ,

X4 = χ
(4)
15 , X5 = χ

(5)
14 . (51)

We denote the conjugate momentum variables by Tab
and Ya, and denote

QI = (2Lab,Xa), PI = (Tab,Ya), I = 1, · · · , 15,

where I labels the boundary components (`ab,Sa). The
momentum variables Tab conjugate to 2Lab are called the
twist variables. On each Sa, the momentum variable Ya
conjugate to Xa turns out to be also FG edge coordinates
up to sign and 2πi.

Y1 = χ
(1)
23 . Y2 = χ

(2)
14 , Y3 = χ

(3)
45 − 2πi,

Y4 = −χ(4)
35 + 2πi, Y5 = χ

(5)
34 − 2πi. (52)

Explicit expressions of 2Lab, Tab,Xa,Ya in terms of
(Xa, PXa), (Ya, PYa), (Za, PZa) are given in Appendix B.

There exists a linear symplectic transformation from
~Φ ≡ (Xa, Ya, Za)

5
a=1 and ~Π ≡ (PXa , PYa , PZa)5

a=1 to
~Q, ~P(

~Q
~P

)
=

(
A B
−(BT )−1 0

)(
~Φ
~Π

)
+ iπ

(
~t
~0

)
, (53)

such that all entries in A,B,~t are integers. ~t is a 15-
dimensional vector. A,B are 15 × 15 blocks satisfying
that ABT is a symmetric matrice. Matrices A,B,~t are
given explicitly in Appendix C
Following from (45), the Atiyah-Bott symplectic form

Ω on P∂(S3\Γ5) is expressed as

Ω =

15∑
I=1

dPI ∧ dQI

= 2
∑
a<b

dTab ∧ dLab +

5∑
a=1

dYa ∧ dXa. (54)

The coordinates ~Q, ~P are used below for constructing the
CS partition function of S3 \ Γ5. We sometimes use the
notations Qab = 2Lab, Qa = Xa, Pab = Tab, Pa = Ya
in our following discussion.
It is remarkable that there is no additional constraint

for gluing octahedra to form S3 \ Γ5, since gluing octa-
hedra does not produce additional bulk edge. Therefore
P∂(S3\Γ5) ' ×5

a=1P∂oct(a). It is simply a symplectic trans-
formation from the octahedra Darboux coordinates ~Φ, ~Π
to PI ,QI of P∂(S3\Γ5). The moduli space of framed flat
connections on each octahedron is a Lagrangian subman-
ifold Loct(a) ⊂ P∂oct(a). Then ×5

a=1Loct(a) ' LS3\Γ5
is

a Lagrangian submanifold in ×5
a=1P∂oct(a) ' P∂(S3\Γ5).
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Given any five framed flat connections on five octahedra
respectively, they define a flat connection on S3 \ Γ5.

E. S3 \ Γ5 partition function

The symplectic matrix in (53) can be decomposed into
generators

(
A B
−(BT )−1 0

)
=

(
0 −I
I 0

)(
I 0

ABT I

)(
−
(
B−1

)T
0

0 −B

)
. (55)

We start with a product of 5 octahedron partition
functions, each of which associates to an octahedron in
the decompostion of S3 \ Γ5

Z×(~µ | ~m) =

5∏
a=1

Zoct(µXa , µYa , µZa |mXa ,mYa ,mZa)

∈ F (k)
P(oct)×5 . (56)

The generators of the symplectic transformation is repre-
sented as Weil-like action on Z× according to the order
in (55) [15, 16].

1. U-type transformation:

U =

(
−
(
B−1

)T
0

0 −B

)
, (57)

Z1(~µ | ~m) = (U � Z×)(~µ | ~m)

=
√

det(−B)Z×
(
−BT ~µ | −BT ~m

)
, (58)

where
√

det(−B) = 4i. That all entries of B are integers
guarantees that Z1 is well-defined for ~m ∈ Z/kZ. In
addition, Z× ∈ F (k)

P(oct)×5 indicates that the following

function is Schwartz class when (~α, ~β) ∈ P(oct)×5,

e−
2π
k (−BT ~µ)·~βZ×

(
−BT ~µ+ i~α | ~m

)
= e−

2π
k ~µ·(−B~β)Z×

(
−BT (~µ− i(B−1)T ~α) | ~m

)
. (59)

where µi ∈ R. Therefore Z1 belongs to F (k)
P1

where
P1 = U ◦ P(oct)×5 with U acting on the angle space
Pangle as symplectic transformation.

2. T-type transformation:

T =

(
I 0

ABT I

)
, (60)

Z2(~µ | ~m) = (T � Z1)(~µ | ~m) (61)

= (−1)~m·ABT ·~me
iπ
k (−~µ·ABT ·~µ+~m·ABT ·~m)Z1(~µ | ~m).

All entries of ABT are integers so that Z2 is well-defined
for ~m ∈ (Z/kZ)15. Z1 ∈ F (k)

P1
implies that the following

function is Schwartz class when (~α, ~β) ∈ P1,

e−
2π
k ~µ·~βZ1(~µ+ i~α | ~m)

= phase · e− 2π
k ~µ·(~β+ABT ·~α)Z2(~µ+ i~α | ~m). (62)

Therefore Z2 belongs to F (k)
P2

where P2 = T ◦P1.

3. S-type transformation:

S =

(
0 −I
I 0

)
, (63)

Z3(~µ | ~m) = (S � Z2)(~µ | ~m) (64)

=
1

k15

∑
~n∈(Z/kZ)15

∫
C

d15ν e
2πi
k (−~µ·~ν+~m·~n)Z2(~ν | ~n).

If we set αi = Im(µi) and βi = Im(νi) (i = 1, · · · , 15),

e
2πi
k (−~µ·~ν)Z2(~ν | ~n) =

[
e

2π
k ~α·Re(~ν)Z2(Re(~ν) + i~β | ~n)

]
× e 2πi

k [−Re(~µ)·Re(~ν)+~α·~β]+ 2π
k Re(~µ)·~β

is a Schwartz function in Re(~ν), when (~β,−~α) ∈ P2 (the
function in the square bracket is a Schwartz function,
e

2πi
k [−Re(~µ)·Re(~ν)] is a phase), or equivalently

(~α, ~β) ∈ P3 = S ◦P2 = S ◦ T ◦ U ◦P(oct)×5. (65)

Given any (~α, ~β) ∈ P3, let Im(µi) = αi and the
integration contour C defined such that Im(νi) = βi,
then Z3(~µ | ~m) converges absolutely, and Z3 ∈ F (k)

P3
. As

far as the contour C satisfies the condition Im(νi) = βi,
(~α, ~β) ∈ P3, Z3(~µ | ~m) is independent of choices of C, i.e.
choices of βi, due to the analyticity of Z2 and the fast
decay of the integrand at the infinity.
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4. Affine shift 5:

σ~t :

(
~X
~P

)
7→
(
~X
~P

)
+ iπ

(
~t
~0

)
, (66)

ZS3\Γ5
(~µ | ~m) = (σ~t � Z3)(~µ | ~m)

= Z3

(
~µ− iQ

2
~t | ~m

)
. (67)

We have ZS3\Γ5
∈ F (k)

Pnew
, where

Pnew = σ′~t ◦P3 = σ′~t ◦ S ◦ T ◦ U ◦P(oct)×5, (68)

σ′~t :

(
~α
~β

)
7→
(
~α′

~β′

)
:=

(
~α+ Q

2
~t

~β

)
.

The resulting ZS3\Γ5
(~µ | ~m) is the CS partition function

on S3 \ Γ5. Pnew is obviously non-empty since P(oct)

is non-empty. Every (~α, ~β) ∈ Pnew is a positive angle
structure of S3 \Γ5, and leads to the absolute convergence
of ZS3\Γ5

(~µ | ~m).
~µ, ~m relate to {QI , Q̃I}I=1,··· ,15 by

µI =
k
(
Q̃′I + Q′I

)
2π (b+ b−1)

, mI =
ik
(
Q′I − b2Q̃′I

)
2π (b2 + 1)

, (69)

Q′I = QI − iπtI , Q̃′I = Q̃I − iπtI (70)

or in terms of exponentials

(−1)tIeQI = exp

[
2πi

k
(−ibµI −mI)

]
, (71)

(−1)tIeQ̃I = exp

[
2πi

k

(
−ib−1µI +mI

)]
. (72)

Consider the shifts QI → QI + 2πipI , Q̃I → Q̃I −
2πip̃I (pI , p̃I ∈ Z) which leave eQI , eQ̃I invariant, Fixing
Im(µI) = αI implies p̃I = pI , then the shifts reduce to
the gauge freedom mI → mI + kpI in Z/kZ.

F. Coherent states

Given the 4-holed sphere Sa, we transform the corre-
sponding phase space coordinates from Xa,Ya, X̃a, Ỹa to
µa, νa,ma, na by

Xa − iπta =
2πi

k
(−ibµa −ma), (73)

5 The affine shifted classical coordinate X + iπt (t ∈ Z) has the
quantum deformation X + (iπ + ~

2
)t when entering the partition

function [15]. In terms of the exponential variables, the affine shift
is given by (−q

1
2 )teX = (−q

1
2 )tx. Here we define q

1
2 = e

~
2 where

~ = 2πi
k

(1 + b2). If we parametrize eX = exp
[

2πi
k

(−ibµ−m)
]
,

the affine shift X → X + (iπ + ~
2

)t corresponds to µ → µ +
1
2
i
(
b+ b−1

)
t, m→ m, and adding an overall (−1)t to eX .

X̃a − iπta =
2πi

k
(−ib−1µa +ma), (74)

Ya =
2πi

k
(−ibνa − na), (75)

Ỹa =
2πi

k

(
−ib−1νa + na

)
, (76)

where µa is the component in ~µ ∈ strip(Pnew). These
coordinates parametrize PSL(2,C) flat connections on Sa
with fixed e2Lab at holes. The moduli space of PSL(2,C)
flat connections on Sa is locally C6, but fixing e2Lab re-
duces the space to locally C2. Let’s fix Im(µa) = αa and
focus on degrees of freedom Re(µa),ma. In the following
discussions of this section, we use µa ∈ R to represent
Re(µa). We define the Hilbert space

HSa = L2(R)⊗C Vk, Vk ' Ck. (77)

containing functions of µa ∈ R,ma ∈ Z/kZ. Operators
µa,νa,ma,na on HSa are defined in the same way as in
(27). We suppress the a index in following discussions of
this section.

We firstly focus on L2(R) and define the “annihilation
operator” and coherent state ψz(µ) labelled by z ∈ C.
ψz(µ) satisfies

1√
2

(√
2π

k
µ+ i

√
2π

k
ν

)
ψ0
z(µ) =

√
k

2π
zψ0

z(µ).

The solution is

ψ0
z(µ) =

(
2

k

)1/4

e
−πk

(
µ− k

π
√

2
Re(z)

)2

ei
√

2µ Im(z), (78)

where ψ0
z(µ) is normalized by the standard L2-norm. The

coherent state label z relates to the classical phase space
coordinates µ0, ν0 be

z =
1√
2

2π

k
(µ0 + iν0). (79)

We can multiply to ψ0
z a prefactor that relates to the

polytope Pnew, namely, for each Sa we define

ψza(µa) = e−
√

2βaRe(za)ψ0
za(µa), (80)

where βa is the component in (~α, ~β) ∈ Pnew. The prefac-
tor does not affect the semiclassical behavior of ψz, but re-
lates to the finiteness of the amplitude. Note that {βa}5a=1

cannot be all zero, because e.g. β1 = αZ2
+ αZ3

> 0 by
(46). It is still a viable choice to work with the normalized
coherent state ψ0

za , then certain requirements should be
implemented to the spinfoam edge amplitude, we come
back to this point in Section III E.

We denote the coherent state in Vk by ξ(x,y)(m) where
(x, y) ∈ [0, 2π)× [0, 2π) and m ∈ Z/kZ [33],

ξ(x,y)(m) =

(
2

k

) 1
4

e−
ikxy
4π (81)
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×
∑
n∈Z

e−
k
4π ( 2πm

k −2πn−x)
2

e−
ik
2π y(

2πm
k −2πn−x).

(x, y) relates to the classical phase space coordinates
m0, n0 by

y =
2π

k
n0, x =

2π

k
m0, mod 2π (82)

ξ(x,y)(m) satisfy the over-completeness relation in Vk

k

4π2

∫
T2

dxdy ξ(x,y)(m)ξ̄(x,y)(m
′) = δm,m′ . (83)

We define coherent states in HSa by tensor products

ψza ⊗ ξ(pa,qa) ∈ HSa (84)

za, z̄a, xa, ya coordinatize the part of the phase space asso-
ciate to Sa, they form a coordinate system on the moduli

space of PSL(2,C) flat connections on Sa (with fixed
e2Lab). We have the following relation

ψ̄za ⊗ ξ̄(xa,ya) = ψz̄a ⊗ ξ(xa,−ya). (85)

We product the coherent states over five Sa,

Ψρ ({µa} | {ma}) =

5∏
a=1

ψza(µa)ξ(xa,ya)(ma) ∈ ⊗aHSa

ρ = {za, xa, ya}5a=1. (86)

where µa ∈ R. The partition function ZS3\Γ5
is a function

of ~µ, ~m including µa,ma. We consider the (partial) L2

inner product between ZS3\Γ5
and Ψ̄ρ (this may be under-

stood as ZS3\Γ5
acting on Ψ̄ρ since ZS3\Γ5

is a tempered
distribution),

ZS3\Γ5
(ι) = 〈Ψ̄ρ | ZS3\Γ5

〉⊗aHSa =
∑

{ma}∈(Z/kZ)5

∫
R5

5∏
a=1

dµa ZS3\Γ5
(~µ+ i~α | ~m) Ψρ ({µa} | {~ma}) , (87)

where ~µ+ i~α ∈ strip(Pnew). ZS3\Γ5
(ι) is a function of

ι =
(
{µab + iαab,mab}a<b, {za, xa, ya}5a=1, {αa, βa}5a=1

)
, µab ∈ R, mab ∈ Z/kZ, za ∈ C, (xa, ya) ∈ T2 (88)

which includes the position variables of annuli and both the position and momentum variables of 4-holed spheres.
ι determines a unique PSL(2,C) flat connection on each Sa: Given an ι and by (79) and (82), za, xa, ya determine
phase space coordinates that relate to FG coordinates by (73) - (76)). The resulting FG coordinates and e2Lab given
by µab,mab of the same ι determine a unique PSL(2,C) flat connections on Sa.
Theorem II.1. Fixing the annulus data {µab,mab}a<b, |ZS3\Γ5

(ι)| is bounded for all {za, xa, ya}5a=1.

Proof: In ZS3\Γ5
(ι), the sum over ~m′ is finite, and for any m,

ξ(x,y)(m) =
4
√

2e−
ky(y+ix)

4π ϑ3

(
1
2

(
− 2πm

k + x− iy
)
, e−

π
k

)
k3/4

is smooth in (x, y) ∈ [0, 2π)× [0, 2π) ' T2, thus |ξ(x,y)(m)| is bounded on T2 for any m. Therefore the boundedness of
ZS3\Γ5

(ι) is implied by the boundedness of the following integral for all ~m∣∣∣∣∣
∫
R5

5∏
a=1

dµ′a ZS3\Γ5
(~µ′ + i~α | ~m′)

5∏
a=1

ψza(~µ′a)

∣∣∣∣∣
=

∣∣∣∣∣e−√2
∑
a βaRe(za)

∫
R5

5∏
a=1

dµ′a ZS3\Γ5
(~µ′ + i~α | ~m′)

5∏
a=1

ψ0
za(~µ′a)

∣∣∣∣∣
≤
(

1

k

) 5
4

e−
√

2
∑
a βaRe(za)

∫
R5

∏
a

dµ′a

∣∣∣ZS3\Γ5
(~µ′ + i~α | ~m′) e− 2π

k

∑
a βaµ

′
a

∣∣∣ 5∏
a=1

∣∣∣ψ0
za(~µ′a)e

2π
k βaµ

′
a

∣∣∣
≤ C

(
1

k

) 5
4

e−
√

2
∑
a βaRe(za)

∫
R5

∏
a

dµ′a e
−πk

∑
a

(
µ′a− k

π
√

2
Re(za)

)2

e
2π
k

∑
a βaµ

′
a

= Ck
5
4 e
∑
a

πβ2
a
k (89)

In the third step we use ZS3\Γ5
∈ F (k)

Pnew
, thus as a function of µ′a (a = 1, · · · , 5), ∀ (~α, ~β) ∈ Pnew

e−
2π
k

∑
a µ
′
aβaZS3\Γ5

(~µ′ + i~α | ~m) ∈ S(R5), (90)
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C is the upper bound of |e− 2π
k

∑
a µ
′
aβaZS3\Γ5

(~µ′+i~α | ~m)|.
2

III. SPINFOAM AMPLITUDE WITH
COSMOLOGICAL CONSTANT

The purpose of this section is to impose the simplicity
constraint to ZS3\Γ5

(ι) in order to relate the CS partition
function to the spinfoam vertex amplitude in 4d. The
simplicity constraint turns out to reduce the PSL(2,C) flat
connection to PSU(2) on five Sa’s. Based on the resulting
vertex amplitude, we define the spinfoam amplitude with
Λ on any simplicial complex and prove its finiteness, as
well as discuss several related perspectives.

A. Simplicity constraint and vertex amplitude

In the simplical context with Λ = 0, the simplicity
constraint (in the EPRL/FK model) imposes that for
any spacelike tetrahedron e, there exists a timelike unit
vector N I in 4d Minkowski space such that BIJf NJ = 0

where BIJf (f = 1, · · · , 4) are bivectors associated to 4
faces f . The simplicity constraint and closure condition
endow every e a convex geometrical tetrahedron in flat
space. Indeed, BIJf satisfying the constraint are equiva-
lent to 3d vectors afn

I
f = 1

2ε
IJKLNJBKL (nInI = 1) in

the plane normal to N I . Then the BF closure condition∑4
f=1B

IJ = 0 implies
∑4
f=1 afn

I
f = 0, which endows

e a convex geometrical tetrahedron (whose face areas
and normals are af and nIf ) by Minkowski’s theorem
[34]. At the quantum level, the first-class part of the sim-
plicity constraint, i.e. the diagonal simplicity constraint
εIJKLB

IJ
f BKLf = 0 are imposed strongly to the states,

whereas the second-class part of the simplicity constraint
are imposed weakly [14, 20, 35].
In presence of nonvanshing Λ, Γ5 ⊂ S3 is the dual

graph of the tiangulation of S3 given by the 4-simplex’s
boundary. Each node of Γ5, or each Sa ⊂ ∂(S3 \ Γ5), is
dual to a boundary tetrahdron ea of the 4-simplex. Each
link of Γ5, or each annulus `ab ⊂ ∂(S3 \ Γ5), is dual to
a boundary triangle fab of the 4-simplex. All tetrahe-
dra and triangles are spacelike similar to the EPRL/FK
model. Given any ea, the generalization of closure con-
dition is the defining equation of PSL(2,C) flat connec-
tions on the 4-holed sphere Sa: O4O3O2O1 = 1 where
Of=1,··· ,4 ∈ PSL(2,C) are holonomies around 4 holes
based at a common point pa ∈ Sa. By non-abelian
stokes theorem, we identify Of = e|Λ|Bf/3 ∈ SO(1, 3)+

due to the relation F(A) = |Λ|B/3 from integrating
out B in (3). Here F(A), as the curvature of CS con-
nection A on S3, is proportional to the delta function
supported on Γ5 (equivalent to that A is flat on S3 \ Γ5).
Namely F(A) = |Λ|

3 Bfδ
2(x)dx1 ∧ dx2 on the face f coor-

dinated by (x1, x2) tranverse to an edge of Γ5 at ~x = 0.
O4O3O2O1 = 1 with Of = e|Λ|Bf/3 reduces to the linear

closure condition
∑4
f=1Bf = 0 as Λ→ 0. Moreover, the

simplicity constraint BIJf NJ = 0 for all f = 1, · · · , 4 re-
strict Of=1,··· ,4 to a common PSU(2) subgroup sablizing
the timelike vector N I . The result in [21] shows that
restricting all Of to the subgroup PSU(2) endows e a
convex geometrical tetrahedron with constant curvature.
The effect of restricting Of to PSU(2) is analogous to the
simplicity constraint reviewed above. This motivates us
to define this restriction to be the simplicity constraint
in presence of nonvanishing Λ [36]:

Definition III.1. Semiclassically in presence of nonva-
nishing cosmological constant, the simplicity constraint
restricts the moduli spaces of PSL(2,C) flat connections on
4-holed spheres to the ones that can be gauge-transformed
to PSU(2) ' SO(3) flat connections.

1. First-class constraints:

Our proposal is to quantize and impose the simplicity
constraint to ZS3\Γ5

(ι). Firstly, flat connections on all Sa
are PSU(2) implies e2Lab ∈ U(1), or equivalently µab = 0
for all annulus `ab. However due to the presence of αab =
Im(µab), at the quantum level we may have to decide
whether we impose

Re(µab)ZS3\Γ5
(ι) = 0, or µabZS3\Γ5

(ι) = 0. (91)

In either case, these 10 constraint are first-class since
{µab}a<b are commutative, thus they can be imposed
strongly to ZS3\Γ5

(ι). {µab}a<b are mulitplication opera-
tors acting on ZS3\Γ5

(ι). The former choice restricts

Re(µab) = 0, ∀ `ab (92)

in ι. The latter choice restricts both Re(µab) and the
positive angle structure

Re(µab) = 0, and αab = 0, ∀ `ab. (93)

thus is much stronger than the former choice. However
the semiclassical limit of the theory is insensitive to the
choices: Consider the former (weaker) choice, e2Lab deter-
mined by ι is given by

e2Lab = (−1)tab exp

[
2πi

k
(bαab −mab)

]
= exp

[
2πi

k

(
bαab −

(
mab + tab

k

2

))]
= exp

[
2πi

k

(
bαab +

(
2jab +

εab
2

))]
(94)

where αab = Im(µab). In the last step, since −(mab +
tab

k
2 ) ∈ Z/kZ (or Z/kZ + 1/2) if k is even (or odd),

we have introduce the half-integer “spin” jab such that
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−
(
mab + tab

k
2

)
= 2jab + εab

2 mod kZ where

εab =

{
1−(−1)tab

2 k odd
0 k even

(95)

jab = 0,
1

2
, · · · , k − 1

2
. (96)

The double-scaling limit jab, k → ∞ with jab/k fixed is
the semiclassical limit for the spinfoam amplitude with
cosmological constant (see Section IV for discussion). In
this limit, e2Lab is insensitive to αab, εab since they do not
scale with k

e2Lab → exp

[
4πi

k
jab

]
∈ U(1). (97)

Both choices in (91) lead to the same semiclassical result.
At least semiclassically, each holonomy around holes on
Sa can be individually conjugated to PSU(2), while jab/k
determines the conjugacy class of the holonomy.

The stronger choice (93) is indeed viable. We can have
(~α, ~β) ∈ Pnew with ten αab = 0, because for instance all
ten αab = 0 can be given by αXa = αYa = αZa = Q/4
and βXa = βYa = βZa = 0 (a = 1, · · · , 5), which satisfy
(46). The simplicity constraint results in restrictively
e2Lab ∈ U(1) when αab = 0, whereas e2Lab 6∈ U(1) for
other αab 6= 0. αab = 0 is a preferred choice because
e2Lab ∈ U(1) implies that after imposing the simplicity
constraint, the area from the 4d bivector Bf coincides
with the face area of 3d tetrahedron at the quantum
level: Recall the discussion above Definition III.1. We
diagonalize an Of ∈ PSL(2,C) by a gauge transformation

Of = ±diag(eLab , e−Lab) = ±eRe(Lab)σ
3+iIm(Lab)σ

3

↔ e2Re(Lab)K
3−2Im(Lab)L

3

= e
|Λ|
3 Bf ∈ SO(1, 3)

+

where Im(Lab) ∈ [0, π) and K3,L3 are so(1, 3) gener-
ators. We obtain |Λ|

3 Bf = 2Re(Lab)K
3 − 2Im(Lab)L

3

for the preferred lift of Bf . Then Lab relates to the
area from the 4d bivector, |Bf | = | 12Tr(B2

f )|1/2, by
|Λ|
3 |Bf | = 2|Re(Lab)

2− Im(Lab)
2|1/2. Restricting αab = 0

and the simplicity constraint Re(µab) = 0 result in that

|Λ|
3
|Bf | = 2Im(Lab) =

4π

k
(jab + εab/4) ≡ |Λ|

3
aab, (98)

where aab is the face area of 3d tetrahedron (this is im-
plied by the generalized closure condition, see [21] or
the discussion below). Both ZS3\Γ5

, Ψι are functions of
Lab, thus both the 4d and 3d area operators, |Λ|3 |Bf | =
2|Re(Lab)

2 − Im(Lab)
2|1/2 and |Λ|3 aab = 2Im(Lab), act as

multiplications. The above shows that these two operators
coincide when αab = 0. A similar consisency constraint
“4d area = 3d area” has also been imposed to the EPRL
model [20].
However to keep discussions general, we still use the

weaker version (92) and keep αab general in the following
discussion. But we prefer αab = 0 by the above argument.

2. Second-class constraints

The first-class part of the simplicity constraint and jab
fix e2Lab on 10 annuli. Classically, fixing e2Lab reduces
the moduli space of PSL(2,C) flat connections on Sa to 2
complex dimensions whose Darboux coordinates ϑ, ϕ ∈ C
are studied in [37], with {ϑ, ϕ} = 1 (they are the com-
plexification of θ, φ in Section III B). Constraining flat
connections to PSU(2) restricts Im(ϑ) = Im(ϕ) = 0. The
restriction gives second-class constraints due to the non-
commutativity of ϑ, ϕ. By the lessons from the EPRL/FK
model, the constraints has to be imposed weakly at the
quantum level. Our strategy is to impose the constraints
to the label (za, xa, ya) where the coherent state Ψρ is
peaked. (za, xa, ya) is a point in the moduli space of
PSL(2,C) flat connections on Sa with fixed e2Lab ’s. We
restrict (za, xa, ya) to the subspace of flat connections
that can be gauge transformed to PSU(2).
Classically, our simplicity constraint is an analog of

the linear simplicity constraint in the EPRL/FK model,
as discussed at the beginning of this subsection. At the
quantum level, although all spinfoam models impose the
second-class simplicity constraint weakly, here the con-
straint is imposed to the coherent state labels, similar to
the FK model [35], but different from the EPRL model
where the constraint is imposed by a master constraint
operator.
Although the following discussion does not assume

large jab, in the following discussion before Eq.(108), we
ignore αab so that e2Lab ∈ U(1) is assumed, since only
the semiclassical simplicity constraint are concerned here.
After Eq.(108) we take into account generally αab 6= 0
and e2Lab 6∈ U(1) at the quantum level.
On the 4-holed sphere Sa, flat connections that can

be gauge-transformed to PSU(2) are described by four
PSL(2,C) holonomies O1, O2, O3, O4 that can be simulta-
neously conjugated to PSU(2). O1, O2, O3, O4 are based
at a common point p, and each of them travels around a
hole of Sa. As holonomies of flat connection, they satisfy
the generalized closure condition

O4O3O2O1 = 1. (99)

This equation is invariant under PSL(2,C) gauge trans-
formation. We apply the gauge transformation to make
all Oi ∈ PSU(2) and treat (99) as an equation of PSU(2)
holonomies. The conjugacy class of each Oi has been
fixed by (97), which specifies the squared eigenvalue of
Oi. There exists a lift from Oi to Hi ∈ SU(2) such that

Hi = M(ξi)

(
±e 2πi

k ji 0

0 ±e− 2πi
k ji

)
M(ξi)

−1, (100)

M(ξ) =

(
ξ1 −ξ̄2

ξ2 ξ̄1

)
, (101)

satisfying

H4H3H2H1 = 1 (102)
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In each Hi, we neglect εab when discussing the
parametrization of PSU(2) flat connections

ji = jab,

for `ab ends at the hole labelled by i, and similarly for ti.
ξi = (ξ1

i , ξ
2
i )T is defined up to a complex scaling by the

above formula of Hi. If we fix that det(M(ξi)) = 1,

~ni = ξ†i ~σξi, i = 1, · · · , 4, (103)
where ~σ = (σ1,σ2,σ3) are Pauli matrices

give 4 unit 3-vector in R3. The geometrical interpretation
of (99) relates the holonomies to a geometrical 3d tetrhe-
dron with constant curvature (see [13, 21] or Theorem
IV.2), in which 4π

k ji = |Λ|
3 ai is the face area and ~ni are

face normals parallel transported to a common vertex of
the tetrahedron6. {~ni}4i=1 relates to the outward point-
ing normals {ni}4i=1 of the tetrahedron by ni = sgn(Λ)~ni.
Eq.(102) with Hi = eΛ~vi·~σ reduces to the flat closure
condition

∑
i ~vi = 0 for small Λ.

To clarify our convention, consider `ab connecting the
ith hole of Sa to the jth hole of Sb. We choose the framing
flag s`ab of `ab such that on Sa, the eigenvector of the
holonomy Oi ≡ Oab, ξi ≡ ξab, coincides with s`ab parallel
transported to the common base point pa ∈ Sa of {Oi}4i=1.
If our convention is (99) on both Sa and Sb, the parallel
transport of Oi ≡ Oab of Sa gives O−1

j ≡ Oba of Sb, i.e.
G−1
ab OabGab = Oba with a holonomy Gab along `ab. s`ab

evaluated at a point pb ∈ Sb gives ξba as the eigenvector
of Oba with upper eigenvalue ±e2πiji/k. But ξba does not
equal to ξj = (ξ1

j , ξ
2
j )T on Sb but equals to (−ξ̄2

j , ξ̄
1
j )T in

the convention of (100) 7.
In case that the minus sign present in (100), we write

−e 2πi
k j = e−

2πi
k j′ where j′ = k/2− j, then Eq.(100) can

be rewritten as

Hi = M ′(ξi)

(
e

2πi
k j′i 0

0 e−
2πi
k j′i

)
M ′(ξi)

−1, (104)

M ′(ξ) =

(
−ξ̄2 −ξ1

ξ̄1 −ξ2

)
(105)

In case of plus sign in (100), we set j′ = j. Flipping +→
− in (100) correspond to j → k/2− j andM(ξ)→M ′(ξ).

Lemma III.1. The lifts Hi=1,··· ,4 ∈ SU(2) satisfy
H4H3H2H1 = 1 exist if and only if j′i=1,··· ,4 satisfy the
triangle inequality, i.e. there exists J such that

|j′1 − j′2| ≤ J ≤ min (j′1 + j′2, k − j′1 − j′2) , (106)
|j′3 − j′4| ≤ J ≤ min (j′3 + j′4, k − j′3 − j′4) . (107)

6 4π
k
ji =

|Λ|
3
ai mismatches (98) if εab 6= 0, but it is not a problem

since here we discuss coherent state labels, whereas (98) is about
operator eigenvalues.

7 The inverse of Hi in (100) can be written as H−1
i =

±M ′(ξi)diag(e
2πi
k
ji , e−

2πi
k
ji )M ′(ξi)−1 where M ′(ξ) is given by

(105).

The proof of this Lemma is given in Appendix D. (106)
and (107) agree with the spin-coupling rule of SU(2)q
with q = eπi/(k+2).

Lemma III.2. O4O3O2O1 = 1 has solution Oi ∈ PSU(2)
if ji given by (97) equals either j′i or k/2− j′i where {j′i}
satisfy the triangle inequality (106) and (107).

Proof: Given a solution Hi ∈ SU(2) to H4H3H2H1 =
1, Both ±Hi projects to Oi ∈ PSU(2) solving
O4O3O2O1 = 1. If Hi is given by (104) with j′ = k/2− j,

−Hi = M(ξi)

(
e

2πi
k (k/2−j′i) 0

0 e−
2πi
k (k/2−j′i)

)
M(ξi)

−1.

Since both ±Hi are allowed for the PSU(2) equation, ji
is given by the squared eigenvalue (97) of either Hi or
−Hi, thus can be either j′i or k/2− j′i.
2

We restrict jab to satisfy the condition in Lemma III.2
so that O4O3O2O1 = 1 has solution at every Sa. The
triangle inequality in Lemma III.1 is the analog of the
triangle inequality for SU(2) intertwiners in spinfoam
models without cosmological constant.

FIG. 6. An ideal triangulation of 4-holed sphere.

The eignvector of the holonomy Oi, ξ′i = (ξ1
i , ξ

2
i )T or

(−ξ̄2
j , ξ̄

1
j )T , is the framing flag s` (of ` connecting the hole

i) parallel transported to the base point p of Oi, i.e.

ξ′i = s`(p), p ∈ Sa, (108)

the FG coordinates on Sa can be expressed in terms of ξ′i:
Without loss of generality, we assume that p is inside the
quadrilateral shown in FIG.6, and each Oi travels around
the hole i counterclockwise. We have

xE(~j, ~ξ) =
〈ξ′1 ∧ ξ′2〉〈ξ′4 ∧ ξ′3〉
〈ξ′1 ∧ ξ′4〉〈ξ′2 ∧ ξ′3〉

,

xE′(~j, ~ξ) =
〈O4ξ

′
3 ∧ ξ′1〉〈ξ′4 ∧ ξ′2〉

〈O4ξ′3 ∧ ξ′4〉〈ξ′1 ∧ ξ′2〉
, (109)

Here O4 is given by

O4 = M(ξ′4)

(
±eLab 0

0 ±e−Lab
)
M(ξ′4)−1. (110)
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where ±eLab = ± exp
[
πi
k

(
bαab +

(
2jab + εab

2

))]
for `ab

attached to the 4th hole. xE′ is independent of ± sign.
Both xE(~j, ~ξ), xE′(~j, ~ξ) are invariant under the PSL(2,C)
gauge transformation of (99): Oi → hOih

−1, ξ′i → hξ′i.
The correspondence between {xE}E ’s and framed

PSL(2,C) flat connections on Sa is 1-to-1 [29], so xE , xE′
given by (109) and four e2Lab at the holes uniquely
determine a PSL(2,C) flat connection labelled by ~j, ~ξ.
This connection reduces to PSU(2) when αab = 0. We
choose E,E′ to be such that xE , xE′ equals eXa , eYa in
(eQI , ePI ). We lift xE , xE′ to logarithmic coordinates
χE = log(xE), χE′ = log(xE′) (the lift is uniquely given
by (41) and the lifts of ideal-tetrahedra coordinates), and
obtain Xa,Ya as functions of ~j, ~ξ. By (73) - (76), we have
µa, νa,ma, na ∈ R as functions of ~j, ~ξ. Furthermore, by
(79) and (82), we obtain uniquely the functions za(~j, ~ξ),
xa(~j, ~ξ), and ya(~j, ~ξ).
Recall (88), the implementation of the simplicity con-

straint restricts the label ι to the subspace

ι~j,~ξ =

(
{0,mab}a<b ,

{
ρ

(a)
~j,~ξ

}5

a=1

)
,

ρ
(a)
~j,~ξ

=
(
za(~j, ~ξ), xa(~j, ~ξ), ya(~j, ~ξ)

)
,

where ~j = {jab + εab/4}a<b and ~ξ = {ξab}a,b=1,··· ,5. mab

relates to jab by (94). Here ~j have to satisfy the condition
in Lemma III.2 so that the solution Oi=1,··· ,4 ∈ PSU(2) to
Eq.(99) exists. ~ξ are eigenvectors of the solution Oi=1,··· ,4.

Therefore the simplicity constraint restrict the partition
function ZS3\Γ5

(ι) in (87) to

ZS3\Γ5

(
ι~j,~ξ

)
≡ Av(~j, ~ξ), (111)

which is defined to be the spinfoam vertex amplitude with
cosmological constant.
Note that only 2 FG coordinates xE , xE′ out of 6

are used in za, xa, ya. Only these 2 coordinates are
restricted to be (109). Other four FG coordinates
xE′′ 6= xE , xE′ may not be simultaneously expressed in
terms of ~j, ~ξ′ as (109) when αab 6= 0, since otherwise
λ2 =

∏
E around hole xE would belong to U(1), whereas

generally e2Lab 6∈ U(1) for αab 6= 0. However other four
xE′′ 6= xE , xE′ are absent in the coherent label. ρ(a)

~j,~ξ
is

generally an PSL(2,C) flat connection, but reduces to
PSU(2) when αab = 0 or in the semiclassical limit.

B. SU(2) flat connections on Sa and 4-gon

A simple counting degrees of freedom shows that ~ξ’s
solving O4O3O2O1 = 1 modulo PSU(2) gauge transfor-
mations generically span real 2-dimensional space. This
2-dimensional space is denoted byM~j . xE , xE′ in (109)
are densely defined functions onM~j .
A description of M~j [37] generalizes the Kapovich-

Millson phase space description [38, 39]: We lift to the
cover space M̃~j the moduli space of SU(2) flat connection
with fixed ~j. M̃~j is the moduli space of solutions to
H4H3H2H1 = 1 with

Hi = M(ξi)

(
e

2πi
k ji 0

0 e−
2πi
k ji

)
M(ξi)

−1.

where ji = jab of annuli `ab connecting to the holes.
Given the 4-dimensional complex vector space

V = Mat2×2(C) ' C4 of complex 2 × 2 matri-
ces, we endow V with the complex metric 〈X,Y 〉 =
− 1

2 [Tr(XY )− TrX TrY ]. If we write X = x0I +∑3
a=1 x

aσa and Y = y0I +
∑3
a=1 y

aσa, 〈X,Y 〉 is the
complexified Minkowski metric on C4: 〈X,Y 〉 = x0y0 −∑3
a=1 x

aya. SU(2) is the unit 3-sphere in VR ' R4 ⊂ V
defined by

H = h0 + i
3∑
a=1

haσa, h0, ha ∈ R,

〈H,H〉 = (h0)2 +

3∑
a=1

(ha)2 = 1.

When restricting h0 + i
∑3
a=1 h

aσa with h0, ha ∈ R, 〈·, ·〉
becomes the Euclidean metric on R4 and induces the
spherical metric of S3 on SU(2).
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FIG. 7. The 4-gon in SU(2) determined by H4H3H2H1 = 1.

Given H1,··· ,4 ∈ SU(2) satisfying H4H3H2H1 = 1, The
set of Hi determines 4 points v1, · · · , v4 in SU(2) where

v1 = 1, v2 = H1, v3 = H2H1, v4 = H3H2H1.

We firstly assume the generic situation that v1, · · · , v4 are
linearly independent in R4. Any pair (vi, vj) viewed as 2
vectors in R4 determines a 2-plane Eij = SpanR(vi, vj) ⊂
R4. The intersection between Eij and SU(2) is the
geodesic eij connecting vi, vj (SU(2) is the unit 3-sphere
in R4)

eij = Eij ∩ SU(2) = {t1vi + t2vj |
t21 + t22 + 2t1t2 〈vi, vj〉 = 1, t1, t2 ≥ 0}.

The vertices vi and edges e12, e23, e34, e14 made a 4-gon
in SU(2). The geodesic distance θij between vi and vj is
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given by

cos(θij) = 〈vi, vj〉 ≡ cij , θij ∈ (0, π).

The lengths of e12, e23, e34, e14 are ai = θi,i+1 such that

cos(ai) = Tr(Hi)/2.

We draw the diagonal geodesic connecting v1, v3. θ13 is
the length of the diagonal.

The face fijk with the vertices vi, vj , vk is the intersec-
tion of Fijk = SpanR(vi, vj , vk) and SU(2)

fijk = Fijk ∩ SU(2) = {t1vi + t2vj + t3vk | t1, t2, t3 ≥ 0,

t21 + t22 + t23 + 2t1t2cij + 2t1t3cik + 2t2t3cjk = 1
}

The unit normal nijk of Fijk is defined by 〈f, n〉 = 0,
∀ f ∈ Fijk, and 〈n, n〉 = 1. A choice of orientation of Fijk
corresponds to the sign of n. We define the bending angle
φij ∈ (0, π) by

cos(φij) = 〈nikl, njkl〉 . (112)

θ = θ13, φ = φ24 are symplectic coordinates of M̃~j [37].
Up to isometries of S3, (θ, φ) determines a unique 4-gon
in S3 ' SU(2) whose geodesic edge lengths relate to the
conjugacy classes of Hi. Indeed, geodesic edge lengths
ai, θ ∈ (0, π) uniquely determine two triangles sharing
the diagonal e13, up to isometries of S3. We break the
translational symmetry by fixing v1 = 1. The remaining
symmetry is the rotation leaving v1 = (1, 0, 0, 0) ∈ R4

invariant. We use the freedom of the rotation to fix the
position of v2, v3 of the triangle (v1, v2, v3). Fixing the
position of the triangle (v1, v2, v3) breaks the continuous
rotational symmetry. v1, v2, v3 determine the hyperplane
F123 ⊂ R4. The freedom of v4 is equivallent to choosing
the hyperplane F134, which is determined by the bending
angle φ up to a parity symmetry with respect to F123. This
parity symmetry can be fixed by choosing the orientaion
of the bending flow in addition, i.e. fixing the orientation
of n123 ∧n134 (see Appendix E). As a result, v1, · · · , v4 ∈
SU(2) are uniquely determined by (θ, φ) once we fix v1 = 1
and the rotation symmetry. v2 = H1, v3 = H2H1, v4 =
H3H2H1 determines H1,··· ,4 with H4 = (H3H2H1)−1.
By (100) and the given {ji}4i=1, we obtain all ξi as the
eigenvector of Hi whose squared eigenvalue is e4πiji/k.
We normalize ξi’s by det(M(ξi)) = 1 up to individual
phases. As a result, all ξi’s are functions of ji and θ, φ.
Appendix E provides an algorithm to determine ξi’s from
θ, φ in practise.

For any function f onM~j , f can be lifted to a function
on M̃~j and is invariant under Hi → −Hi. we define the
following integral onM~j∫

M~j

dξ f =

∫
dθ ∧ dφ f (113)

This integral on the right-hand side is over compact do-
main, thus is finite provided that |f | is bounded. The
degenerate 4-gons with θ, φ = 0 is included as bound-

aries of the integral. This integral is needed for gluing
vertex amplitudes to construct spinfoam amplitudes on
complexes.
It may happen that for certain ~j, M̃~j only contain

degenerate 4-gon (i.e. becoming a n-gon with n < 4)
where a vector vi is a linear combination of another 2
vectors vj , vk in R4. In this case the dimension of M̃~j
is less than 2, thus the above integral is ill-defined. The
degenerate 4-gon leads to at least two Hi’s belonging to
a U(1) subgroup in SU(2). It sometimes gives a pair of
collinear ξ′i’s that result in ill-defined xE , xE′ on entire
M̃~j (see (109)). We set the contribution from ~j such that
dim(M̃~j) < 2 to vanish in the spinfoam amplitude. In
particular, it set the contribution of ji = 0 to vanish.

C. Finite spinfoam amplitude on simplicial complex

Given a simplicial complex K made by a finite number
of 4-simplices, we associate each 4-simplex with a vertex
amplitude as a function on ×5

a=1M~ja
when fixing ~j

Av(~j, ~ξ) = ZS3\Γ5
(ι~j,~ξ) (114)

where ι~j,~ξ = (jab, ρ
(a)
~j,~ξ

). When gluing a pair of 4-simplices
by identifying a pair of tetrahedra, we identify 4 spins
jf (of tetrahedron face areas) for the pair of tetrahedra,
we associate ρ~j,~ξ = (z(~j, ~ξ), x(~j, ~ξ), y(~j, ~ξ)) (of the tetra-
hedron shape) to one tetrahedron and associate

Jρ~j,~ξ =
(
z(~j, ~ξ), x(~j, ~ξ), −y(~j, ~ξ)

)
(115)

to the other tetrahedron (recall (85)). We may define the
gluing of the pair of vertex amplitudes by∫

M~j

dξZS3\Γ5
(~j, ρ~j,~ξ)ZS3\Γ5

(~j, Jρ~j,~ξ), (116)

where we only focus on variables associated to the pair of
tetrahedra identified by gluing.

∫
M~j

dξ is an analog of in-
tegrating SU(2) coherent intertwiners in the EPRL model.
The gluing defined by (116) identify at the quantum level
~ξ between the pair of tetrahedra. Generally speaking it
may only be necessary to identify ~ξ semiclassically, i.e.
gluing 4-simplices by identifying 2 tetrahedra with shape-
matching only semiclassically. Thus we define the more
general gluing by∫
M~j

dξdξ′ZS3\Γ5
(~j, ρ~j,~ξ)Ae(

~j, ~ξ, ~ξ′)ZS3\Γ5
(~j, Jρ′~j,~ξ′),

(117)

where Ae is called the edge amplitude. Ae is a function
of ~j, ~ξ, ~ξ′ relating to the tetrahedron e (Ae may depend
on k, γ which is implicit in the formula). The precise
form Ae is not determined in this work, but we require
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that Ae is Gaussian-like continuous function peaked at
~ξ = ~ξ′ and suppressed elsewhere. Ae approaches to δ(~ξ, ~ξ′)
when j →∞. Choices of integration measures of ~ξ, ~ξ′ are
included in choices Ae.
Given any simplicial complex K, we associate a “spin”

jf = 0, 1
2 , · · · , k−1

2 to each (internal or boundary) face
f , and associate to each (internal or boundary) tetra-
hedron e a PSU(2) flat connection labelled by ~j, ~ξ on
the 4-holed sphere. These data enter vertex amplitudes
Av = ZS3\Γ5

(ι~j,~ξ), edge amplitudes Ae(~j, ~ξ, ~ξ′), and face
amplitudes Af (jf ). We construct the full spinfoam am-
plitude A on K by integrating over ρ~j,~ξ of all internal
tetrahedra e and summing over jf of all internal faces.

A =

(k−1)/2∑
{jf}

′
∏
f

Af (jf )

∫
[dξdξ′]

∏
e

Ae(~j, ~ξe, ~ξ
′
e)
∏
v

Av(~j, ~ξ).

(118)

We put subscript e to manifest that Ae only depend on
variables relating to e.

∫
[dξ] is a product of integrals (117)

over all internal tetrahedra e. Af (jf ) is an undetermined
face amplitude.

∏
v products over all 4-simplices.

∑ ′
{jf}

sums jf at all internal faces in K. The sum of each jf is
finite by (96). The cosmological constant relating to k
provides a cut-off to the sum over spins.

∑ ′ indicates that
we exclude jf ’s that do not satisfy the triangle inequality
or lead to M̃~j of dimension less than 2.

Theorem III.3. The amplitude A is finite for any choice
of simplicial complex.

Proof: |Av| is bounded because of Theorem II.1. |Ae|
is bounded since it is continuous on the compact space
of ~ξe, ~ξ′e. The integral in A integrates a function whose
absolute value is bounded on a compact domain, thus
is absolutely convergent. Then the finite sum over jf
implies the finiteness of A.

2

D. Boundary data

The boundary data of the spinfoam amplitude A relates
to the kinematical states of LQG up to a deformation. The
boundary of the 4d simplicial complex K is a 3d simplicial
complex ∂K. The dual complex ∂K∗ = Γ is an (oriented)
graph with links l ⊂ Γ dual to faces f ⊂ ∂K and nodes
v ∈ Γ dual to tetrahedra e ⊂ ∂K. The boundary data of
A color every link by a spin jl = 0, 1

2 , · · · , k−1
2 , and color

every node v an element ρv = M~j . There is an 1-to-1
correspondence between ρv and a convex constant cur-
vature tetrahedron (up to degenerate tetrahedra) whose
face areas are determined by jl of l adjacent to v (see [21]
or Theorem IV.1). These data are perfect analog of LQG
spin-network data on Γ: spins jl on links and coherent
intertwiners ||~j, ~ξ〉v at nodes. The coherent intertwiners
1-to-1 correspond to convex flat tetrahedra whose face

areas are proportional to jl [40–42]. The boundary data
of A is a deformation of the spin-network data due to the
cut-off k−1

2 of jl and ρv for constant curvature tetrahedra
versus ||~j, ~ξ〉v for flat tetrahedra. When k → ∞ while
fixing jl (different from the semiclassical limit j, k →∞
fixing j/k), the cut-off is removed and the constant curva-
ture Λ given by (16) reduces to be flat, then the boundary
data of A reduces to the spin-network data.
We expect that A defines transition amplitudes of

boundary states that are the eigenstates of area oper-
ators at links and coherent with respect to quantum
tetrahedra at nodes, similar to spin-network states with
coherent intertwiners. The coherent states at nodes are
expected to quantize the phase space M̃~j : the moduli
space of SU(2) flat connections on 4-holed sphere with
fixed conjugacy classes. The quantization of (M̃~j ,

k
2πΩ) is

known to give the Hilbert space of quantum group SU(2)q
intertwiners with q = eπi/(k+2) (see e.g. [43, 44]). By
these arguments, we conjecture that the boundary Hilbert
space of A are spanned by q-deformed spin-network states
|Γ, jl, iv〉 where jl, iv are unitary irreps and intertwiners
of SU(2)q respectively. The proof of this conjecture is
a research undergoing. It Involves the coherent inter-
twiner of SU(2)q and showing the relation to the curved
tetrahedron labelled by the SU(2) flat connection. Some
earlier studies of the quantum group coherent intertwiner
is given in [45]. Constructing geometrical operators for
the boundary Hilbert space is also a research in progress
(see [46] for the first step).

E. Ambiguities

The construction of the spinfoam amplitude with cos-
mological constant depends on several choices, which may
relate to ambiguities of the model. In the following we
classify and discuss these choices:
(1) The spinfoam amplitude depends on choices of

coherent states in Section II F. This dependence is a result
from the proposal of imposing the simplicity constraint on
coherent state labels. In this work we choose the coherent
states (80) and (81). But a different set of coherent states
may be chosen, as far as their are peaked semiclassically
at points in the phase space.

(2) There are freedom of choosing edge and face ampli-
tudes Ae, Af in (118). See e.g. [47, 48] for some existing
discussion about preferred choices of Ae, Af in the ab-
sence of Λ. The freedom of Ae contains the freedom
of the integration measure for ~ξ. Moreover the free-
dom of Ae has an overlap with the freedom of coherent
states discussed in (1). Namely if we make a change
of coherent state Ψρ~j,~ξ

7→ Ψ′ρ~j,~ξ =
∫

dξeK(~ξe, ~ξ
′
e)Ψρ~j,~ξ′

with certain function K of ~ξe, ~ξ′e of the tetrahedron
e, the spinfoam amplitude constructed with the new
state Ψ′ρ~j,~ξ can be written in the same form as (118)
with Av of the old state Ψρ~j,~ξ

, while Ae transforms as
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Ae(~ξe, ~ξ
′
e) 7→

∫
dζedζ

′
eK(~ζe, ~ξe)Ae(~ζe, ~ζ

′
e)K(~ζ ′e,

~ξ′e).

(3) The vertex amplitude depends on the positive an-
gle structure (~α, ~β) ∈ Pnew, since ZS3\Γ5

depends on
(~α, ~β). More precisely ZS3\Γ5

only depends on ~α but is
independent of specific ~β as far as (~α, ~β) ∈ Pnew, by
the discussion below (65). The dependence on angles
~α = ({αab}a<b, {αa}5a=1) in ZS3\Γ5

may be analogous to
the framing anomaly of CS theory with compact group
[49, 50]. For the consistency “4d area = 3d area” at the
quantum level, it is preferred to restrict all αab in Av to
vanish and still be inside Pnew, whereas there still exists
some freedom of {αa}5a=1.

The spinfoam amplitude depends on {βa}5a=1 because
they enter the vertex amplitude Av via the prefactor
e−
√

2βaRe(za) of the coherent state ψza in (80). But this
prefactor can be absorbed in Ae (or definition of integra-
tion measure of ~ξ). Thus this dependence on {βa}5a=1 is a
part of the freedom of (1) and (2). In more detail, by the
freedom of coherent states, we choose ψ0

za instead of ψza
in the definition of ZS3\Γ5

(ι). Then (89) for the bound
of |ZS3\Γ5

(ι)| is modified by∣∣∣∣∣
∫
R5

5∏
a=1

dµ′a ZS3\Γ5
(~µ′ + i~α | ~m′)

5∏
a=1

ψ0
za(~µ′a)

∣∣∣∣∣
≤ Ck5/4

∏
a

eβa(
πβa
k +
√

2 Re(za)). (119)

The bound diverges if Re(za) approaches to ∞ or −∞
depending on sgn(βa). This can happen even after impos-
ing the simplicity constraint since xE , xE′ can approach
infinity when a pair of ξ′i becomes collinear in (109), partic-
ularly when the constant curvature tetrahedron approach
to degenerate. Then we need to require in addition the
following behavior to Ae as Re(z) approaching to ∞ or
−∞ correspondingly

|Ae(~j, ~ξ, ~ξ′)| ≤ C ′e−
√

2βeRe(ze(~j,~ξ))e−
√

2β′eRe(ze(~j,~ξ
′))

where the exponential decay factors should cancel the
exponential grows in (119) of 2 vertex amplitudes sharing
the tetrahedron e. The freedom of βe becomes part of
the freedom of Ae. The integrand of

∫
[dξ] in (118) still

has bounded absolute value, then A is finite.

(4) The amplitude A generally depends on the choice
of the simplicial complex K, similar to spinfoam models
in the absence of cosmological constant.

IV. SEMICLASSICAL ANALYSIS

In this section, we examine the semiclassical behavior of
the vertex amplitude Av and show that the semiclassical
limit of Av reproduces the 4d Regge action with Λ.
The semiclassical limit of quantum gravity is `P → 0

while keeping geometrical quantities e.g. areas, shapes,
curvature, etc, fixed. Av is the LQG transition amplitude
associated to a 4-simplex whose boundary is made by 5
tetrahedra labelled by a, b = 1, · · · , 5. Av depends on
k, γ, jab, and ξab. By the result of [21] (to be reviewed
in Section IVB), ξab’s parametrize geometrical shapes of
5 boundary constant curvature tetrahedra as boundary
data of Av, while jab/k (up to εab/k) is proportional to
|Λ|aab. Here aab is the area of the face fab shared by
tetrahedra a and b. The cosmological constant Λ equals
to the constant curvature of tetrahedra. Therefore the
semiclassical limit in our context is `P → 0 while keeping
ξab’s, aab’s, and Λ fixed. The Barbero-Immirzi parameter
γ is also fixed. The relation between k and Λ in (16)
indicates that k → ∞ in the semiclassical limit. These
motivate the following definition:

Definition IV.1. The semiclassical limit of Av is the
asymptotic behavior of Av when we scale uniformly all
jab → ∞ and k → ∞ (so σ = ikγ → i∞) while keeping
jab/k fixed.

This limit generalizes the semiclassical limit of the
Turaev-Viro model in 3d gravity, and is studied in [13]
for 4d spinfoam vertex amplitude.
The semiclassical limit of spinfoam amplitude is the

same as the semiclassical limit of CS theory. Indeed,
the flat connection position variables QI depending on
jab only through the ratio jab/k (see (94)). The above
semiclassical limit send k →∞ but leaves QI finite. The
limit effectively removes the dependence of αab, εab in
e2Lab . The limit k →∞ keeping QI finite is the same as
the semiclassical limit of CS partition function. Therefore,
it is useful to firstly study the semiclassical limit of the CS
partition function ZS3\Γ5

in Section IVA, then the result
can be applied straightforwardly to the semiclassical limit
of Av in Section IVB and IVC.

A. Semiclassical analysis of Chern-Simons partition
function

Recall the construction of ZS3\Γ5
in Section II E.

Eqs.(58), (61), (64), and (67) lead to

ZS3\Γ5
(~µ | ~m) =

4i

k15

∑
~n∈(Z/kZ)15

∫
C

d15ν eS0Z×
(
−BT~ν | −BT~n

)
(120)

S0 =
πi

k

[
−2

(
~µ− iQ

2
~t

)
· ~ν + 2~m · ~n− ~ν ·ABT · ~ν + (k + 1)~n ·ABT · ~n

]
(121)
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Z×(~µ | ~m) =

5∏
a=1

Ψ∆ (µXa | mXa) Ψ∆ (µYa | mYa) Ψ∆ (µZa | mZa) Ψ∆ (µWa | mWa) (122)

µWa
= iQ− µXa − µYa − µZa , mWa

= −mXa −mYa −mZa (123)

and Ψ∆ is given by (35).
We use (69) to change variables from µI ,mI to Q′I = QI − iπtI and Q̃′I = Q̃I − iπtI . It is intuitive to make similar

change of variables from νI , nI to PI ,P̃I for studying the semiclassical limit

νI =
bk
(
P̃I + PI

)
2π (b2 + 1)

, nI =
ik
(
PI − b2P̃I

)
2π (b2 + 1)

. (124)

Semiclassically ~P here is identical to the classical momenta conjugate to ~Q (recall (55) and the discussion there). By
the change of variables,

S0 = −1

2
~t · ( ~P +

~̃
P)− ik

4π(1 + b2)

[
~P ·
(
ABT · ~P + 2 ~Q′

)
+ b2

~̃
P ·

(
ABT · ~̃P + 2

~̃
Q′
)]

− ik2

4π(1 + b2)2

(
~P − b2 ~̃P

)
·ABT ·

(
~P − b2 ~̃P

)
. (125)

We treat the sum
∑
nI∈Z/kZ by the Poisson resummation

∑
~n∈(Z/kZ)15

f(~n) =

k−1∑
nI=0

f(~n) =
∑
~p∈Z15

k−δ∫
−δ

d15n f(~n)e2πi~p·~n

=

(
k

2π

)15 ∑
~p∈Z15

2π−δ′∫
−δ′

d15J f ′( ~J )eik~p·
~JI (126)

JI =
2πnI
k

=
i
(
PI − b2P̃I

)
b2 + 1

, f ′( ~J ) = f(~n). (127)

Here f(~n) = χ(~n)g(~n) where g(~n) is the summand in
(120) extended from ~n ∈ (Z/kZ)15 to ~n ∈ R15. χ(~n) is a
compact support function satisfying χ(~n) = 1 for ~n ∈ Z15.

χ(~n) vanishes outside [−δ, k−δ]15\U (with arbitraily small
δ > 0) where U is an open neighborhood of singularities
of g(~n) and U ∩ Z15 = ∅ 8. The result does not depend
on details of χ at ~n 6∈ Z15 because

∑
pI∈Z e

2πipInI =∑
n′I∈Z

δ(nI − n′I). By changing integration variables

dνIdJI =
k

2πiQ
dPIdP̃I . (128)

The following large-k asymptotic formula of the quan-
tum dilogarithm is useful [15, 51]

Ψ∆ = e
− ik

2π(1+b2)
Li2(e−Z)− ik

2π(1+b−2)
Li2(e−Z̃)

× [1 +O(1/k)] . (129)

The large-k asymptotic behavior of Z× is given by

Z×(~µ | ~m) = eS1+S̃1 [1 +O(1/k)] , (130)

S1 = − ik

2π(1 + b2)

5∑
a=1

[
Li2(e−Xa) + Li2(e−Ya) + Li2(e−Za) + Li2(e−Wa)

]
, (131)

S̃1 = − ik

2π(1 + b−2)

5∑
a=1

[
Li2(e−X̃a) + Li2(e−Ỹa) + Li2(e−Z̃a) + Li2(e−W̃a)

]
. (132)

8 When extend Ψ∆(µ|m) to m ∈ R, poles of Ψ∆(µ|m) are given by
e.g. µpole = ibu+ib−1v with v = −j and u = −j−m+kZ (j ∈ N0)
when Im(b) > 0. Poles with u ≥ 1 cancels with zeros when
m ∈ Z/kZ, but this cancellation does not apply for non-integer
m. At poles Im(µpole) = Re(b)(u + v) = Re(b)(−2j −m + kZ).

Here (Xa, Ya, Za)
5
a=1 ≡ −BT ~P and (X̃a, Ỹa, Z̃a)

5
a=1 ≡

There exists m’s such that Im(µpole) = α, i.e. the pole lies on
the integration contour C and may cause the integral to diverge.
Therefore open neighborhoods of these m’s should be removed.
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−BT ~̃P. Wa, W̃a are given by

Xa + Ya + Za +Wa = 2πi+
2πi

k
(1 + b2),

X̃a + Ỹa + Z̃a + W̃a = 2πi+
2πi

k
(1 + b−2) (133)

coinciding with the classical octahedron constraint (43)
up to O(1/k).

Therefore we rewrite ZS3\Γ5
for large k by

ZS3\Γ5
= N0

∑
~p∈Z15

∫
CP

d15Pd15P̃ eS~pχ [1 +O(1/k)] ,(134)

S~p = S0(P, P̃,Q, Q̃) + S1(−BTP) + S̃1(−BT P̃)

− k

b2 + 1
~p ·
(
~P − b2 ~̃P

)
. (135)

where N0 = − 4k15

(2π)30Q15 The integration domain CP is

the 30 (real) dimensional submanifold of ( ~P,
~̃
P) ∈ C30

satisfying ~ν ∈ C and ~J ∈ [−δ′, 2π − δ′]15.
The large-k asymptotics of ZS3\Γ5

can be analyzed by
the stationary phase approximation. The dominant contri-
butions of integrals in (134) come from critical points that
are solutions of the critical equations ∂PI

S~p = ∂
P̃I
S~p = 0

(see Appendix F for details).
We make the linear transformation from ~Q′, ~P to ~Φ ≡

(Xa, Ya, Za)
5
a=1 and ~Π ≡ (PXa , PYa , PZa)

5
a=1, and similar

to tilded variables

~Q′ − 2πi(~n+ ~p) = A · ~Φ + B · ~Π, (136)
~̃
Q′ + 2πi(~n+ ~p) = A · ~̃Φ + B · ~̃Π, (137)

~P = −(BT )−1~Φ,
~̃
P = −(BT )−1 ~̃Φ. (138)

In terms of ~Φ, ~Π, the critical equations reduces to

PXa = X ′′a −W ′′a , PYa = Y ′′a −W ′′a , (139)

PZa = Z ′′a −W ′′a , P̃Xa = X̃ ′′a − W̃ ′′a , (140)

P̃Ya = Ỹ ′′a − W̃ ′′a , P̃Za = Z̃ ′′a − W̃ ′′a , (141)

where

X ′′a = log
(
1− e−Xa

)
, Y ′′a = log

(
1− e−Ya

)
,

Z ′′a = log
(
1− e−Za

)
, W ′′a = log

(
1− e−Wa

)
, (142)

X̃ ′′a = log
(

1− e−X̃a
)
, Ỹ ′′a = log

(
1− e−Ỹa

)
,

Z̃ ′′a = log
(

1− e−Z̃a
)
, W̃ ′′a = log

(
1− e−W̃a

)
,(143)

Eqs.(142) and (143) reproduce e.g z−1 + z′′ − 1 = 0 with
z = eZ and z′′ = eZ

′′
, i.e. the Lagrangian submanifold

L∆ ⊂ P∂∆ of framed flat PSL(2,C) connections on the
ideal tetrahedron ∆. Wa, W̃a are given by (133). The
above logarithms are defined with the canonical lifts same
as in (13). Moreover Xa, Ya, Za, PXa , PYa , PZa satisfying
Eqs.(139) - (141) parametrizes the moduli space of framed

flat PSL(2,C) connections on the ideal octahedron oct(a)
made by gluing 4 ideal tetrahedra. Therefore any solution
of critical equations gives 5 flat connections respectively
on 5 ideal octahedra and vice versa. As a result, all
possible critical points are in LS3\Γ5

, since the set of 5 flat
connections on 5 ideal octahedra respectively is equivalent
to a flat connection on S3 \ Γ5 (see the discussion below
(54)). Given a PSL(2,C) flat connections on S3 \ Γ5,
~Q′, ~P at the critical point are determined by (136) -

(138), the same as the (53) up to 2πi(~n+ ~p).
We set nI ∈ Z in (136) and (137) as an approximation

up to O(1/k), because for large k any JI ∈ R in (127)
can be approximated by nI ∈ Z up to O(1/k) 9. Semiclas-
sically critical equations are insensitive to O(1/k). Then
(136) - (138) are the same as (53) (only up to gauge shifts
mI → mI + kZ of mI ∈ Z/kZ).

Fixing the range ofmI (e.g. fixingmI = 0, · · · , k−1) in
ZS3\Γ5

(~µ | ~m) fixes the lifts of QI , Q̃I from eQI , eQ̃I , then
uniquely fixes ~p = ~p0 ∈ Z, given the lifts of logarithms
in (142) and (143), since different pI ∈ Z change QI , Q̃I

by ∓2πipI (nI is determined by PI). Therefore only
one term with ~p = ~p0 in (134) has critical point and
contributes to the leading order, whereas other terms
with ~p 6= ~p0 have no critical point thus are suppressed
faster than O(k−N ) for all N > 0.

Given ~µ, ~m or ~Q,
~̃
Q such that there exists a PSL(2,C)

flat connection on S3 \ Γ5 satisfying (136) and (137),
ZS3\Γ5

(~µ | ~m) has a critical point thus is not suppressed
fast, or in physics terms, ZS3\Γ5

(~µ | ~m) has a semiclassical
approximation. In this case, the critical point is generally
non-unique, namely, there exists multiple critical points
corresponding to the same ~Q,

~̃
Q. Indeed different ~P thus

different ~Φ, ~Π satisfying (138) - (143) can give the same
~Q via (136) (the critical equations expressed in terms of
eQI , ePI are polynomial equations of degree higher than
1) and similar for tilded variables. The critical points 1-to-

1 correspond to the solutions of ( ~P,
~̃
P) with given ~Q,

~̃
Q,.

The solutions are denoted by (P(α)(Q), P̃(α)(Q̃)), α ∈ I
where I is a set of index labelling the solutions. α labels
the branches of LS3\Γ5

. Given any α, the coordinates ~Q
provide a local parametrization of LS3\Γ5

.
The asymptotic behavior of ZS3\Γ5

relates to the action
S~p=~p0

evaluated at critical points

S
(α)
~p0

(Q, Q̃) = S~p0

(
Q, Q̃,P(α)(Q), P̃(α)(Q̃)

)
.(144)

The derivative of S(α)
~p0

with respect to ~Q,
~̃
Q are

∂ ~QS
(α)
~p0

= − ik

2π(1 + b2)
~P(α)(Q), (145)

9 e.g. When k = 10000, JI/2π = 0.5624587 · · · can be approxi-
mated by nI = 5625, the error bound is |JI/2π − nI/k| < 1/k.
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∂ ~̃
Q
S

(α)
~p0

= − ik

2π(1 + b−2)

~̃
P(α)(Q̃). (146)

where we have used ∂PS~p0
= ∂

P̃
S~p0

= 0 since

{P(α)(Q), P̃(α)(Q̃)}α∈I satisfy the critical equations.
It implies that 10

S
(α)
~p0

(Q, Q̃) = − ik

2π(1 + b2)

∫ ~Q
~P(α)(Q′) · d ~Q′ − ik

2π(1 + b−2)

∫ ~̃
Q
~̃
P(α)(Q̃′) · d ~̃Q′ + Cα. (147)

where Cα is an integration constant. The integrals are
along certain curves embedded in LS3\Γ5

. The result is
independent of smooth deformations of the integration
contour in LS3\Γ5

, since Ω = 0 on the Lagrangian sub-
manifold LS3\Γ5

. By this result exp(S
(α)
~p0

) is expressed as
analog of WKB wave function. The large-k asymptotics
of ZS3\Γ5

is given by a finite sum over critical points

ZS3\Γ5
(~µ | ~m) =

∑
α

N (α)
0 e

S
(α)
~p0

(Q,Q̃)
[1 +O(1/k)] ,(148)

N (α)
0 =

N0√
det(−Hα/2π)

(149)

where Hα is the Hessian matrix ∂2S~p0
evaluated at the

critical point. Hα is generically nondegenerate as sup-

ported by a large number of numerical experiments.

B. Critical points of vertex amplitude and constant
curvature 4-simplex

Let’s recall ZS3\Γ5
(ι) and coherent states ψza , ξ(xa,ya)

defined in (80) and (81). Restricting ι = ι~j,~ξ to satisfy
the simplicity constraint, Av = ZS3\Γ5

(ι~j,~ξ) is the vertex
amplitude with cosmological constant.
The simplicity constraint restrict Re(µab) = 0 (the

semiclassical behavior is insensitive to αab), thus

e2Lab = exp

[
2πi

k

(
bαab + 2jab +

εab
2

)]
' e 4πi

k jab ,

e2L̃ab = exp

[
2πi

k

(
b−1αab − 2jab −

εab
2

)]
' e− 4πi

k jab

Here ' stands for the semiclassical approximation.

We make the change of variable (69) in ψza (recall Q′I = QI − iπtI , Q̃′I = Q̃I − iπtI)

ψza =

(
2

k

)1/4

eSza , Sza '
bk
(
Q̃′a + Q′a

)
2π (b2 + 1)

√2za −
b
(
Q̃′a + Q′a

)
2 (b2 + 1)

− k(z̄a + za)2

8π
. (150)

where we neglect the term −
√

2βaRe(za) since it is subleading as k → ∞. ξ(xa,ya) is simplified by k → ∞ and
restricting ma = 0, · · · , k − 1 and xa, ya ∈ (0, 2π). After neglecting exponentially small contributions,

ξ(xa,ya) '
(

2

k

) 1
4

e
ikxaya

4π e−
k
4π ( 2πma

k −xa)
2

e−iyama =

(
2

k

) 1
4

eS(xa,ya) , (151)

S(xa,ya) =
ikxaya

4π
− k

4π

 i
(
Q′a − b2Q̃′a

)
b2 + 1

− xa

2

+
k
(
Q′a − b2Q̃′a

)
2π (b2 + 1)

ya. (152)

The vertex amplitude Av is expressed as below

Av = N
∑

~m∈(Z/kZ)5

∑
~n∈(Z/kZ)15

∫
R5×C

d5µd15ν eI(P,P̃,Q,Q̃), N =
4i

k15

(
2

k

)5/2

, (153)

10 Given S(~x) function on Rn and ~∇S(~x) = ~f(~x), we choose a curve
c ⊂ Rn parametrized by t ∈ [0, 1] ends at x0. we denote by ~t the
tangent vector of c. Then d

dt
S(~x(t)) = ~t · ~∇S(~x(t)) = ~t · ~f(~x(t)).

Therefore S(~x0) =
∫ x0
c

~f(~x) · d~x+ C.
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I = S0(P, P̃,Q, Q̃) + S1

(
−BTP

)
+ S̃1

(
−BT P̃

)
+

5∑
a=1

[
Sza(Qa, Q̃a) + S(xa,ya)(Qa, Q̃a)

]
.

For finite za, the integrand is a Schwartz function of both ~µ and ~ν along the integration cycle (ψza is a Gaussian
function, and see the discussion below (64)), so interchanging ~µ-integral with ~ν-integral does not affect the result. We
apply the Poisson resummation similar to (126),

Av = N ′
∑

(~p,~s)∈Z20

∫
CQ×CP

d5Q d5Q̃ d15P d15P̃ eI~p,~s(P,P̃,Q,Q̃), N ′ =
i (k/2)

45/2

8192π40Q20
(154)

I~p,~s = I(P, P̃,Q, Q̃)− k

b2 + 1
~p ·
(
~P − b2 ~̃P

)
− k

b2 + 1

5∑
a=1

sa

(
Qa − b2Q̃a

)
, (155)

where CQ is 10-dimensional real manifold satisfying µa ∈
R and ma ∈ [0, k) (here µa,ma are understood as contin-
uous variables relating Qa, Q̃a by (69)).
We again apply the stationary phase analysis to the

integral as k → ∞. The critical equations ∂PI~p,~s =
∂

P̃
I~p,~s = 0 give the same results as (136) - (143) whose

solutions are flat connections on S3 \ Γ5. Other set of
critical equations ∂QI~p,~s = ∂Q̃I~p,~s = 0 imply

2π

k
Re(µa) =

√
2Re(za),

2π

k
Re(νa) =

√
2Im(za),

2π

k
ma = xa,

2π

k
na = ya, sa = 0. (156)

See Appendix F for derivations. At the critical point,
the 4-holed sphere data Qa, Q̃a,Pa, P̃a are determined
by the coherent state label za, xa, ya. The determined 4-
holed sphere data together with 2Lab, 2L̃ab determined by
jab provide the boundary condition to the flat connection
solving (136) - (143).
The simplicity constraint requires that za, xa, ya are

determined by the data ~j, ~ξ via (109). Then (156) deter-
mines the 4-holed sphere FG coordinates Xa,Ya. Due to
the 1-to-1 correspondence between values of FG coordi-
nates {xE}E and framed PSL(2,C) flat connections on
Sa [29], the resulting Xa,Ya together with eQab = e2Lab

(belonging to U(1) as k → ∞) determine uniquely a
PSU(2) ' SO(3) flat connection on Sa. We denote by
Mflat (Sa,PSU(2)) the moduli space of PSU(2) flat con-
nections on the 4-holed sphere Sa. Flat connections in this
moduli space have following geometrical interpretations
as constant curvature tetrahdra.

Theorem IV.1. There is a bijection between flat connec-
tions inMflat (Sa,PSU(2)) and convex constant curvature
tetrahedron geometries in 3d, excepting degenerate geome-
tries. Non-degenerate tetrahedral geometries are dense in
Mflat (Sa,PSU(2)).

The proof of this theorem is given in [21]. Both positive
and negative constant curvature tetrahedra are included
inMflat (Sa,PSU(2)).
Given the boundary condition leading to PSU(2) flat

connections on {Sa}5a=1, if there exists a PSL(2,C) flat

connections on S3 \ Γ5 satisfying the boundary condi-
tion, it is a critical point of Av = ZS3\Γ5

(ι~j,~ξ) and has
the geometrical interpretation as a constant curvature
4-simplex.

Theorem IV.2. There is a bijection between PSL(2,C)
flat connections on S3 \ Γ5 satisfying the boundary con-
dition, and nondegenerate, convex, oriented, geometrical
4-simplex with constant curvature in Lorentzian signature.

The proof of this theorem is given in [13]. Note that
not every flat connection on ×5

a=1Sa can extend to a flat
connection S3\Γ5. It is shown in [13] that there is a subset
of PSU(2) flat connections on ×5

a=1Sa that can serve as
the boundary of PSL(2,C) flat connections on S3\Γ5, and
these boundary PSU(2) flat connections correspond to 5
constant curvature tetrahedra that can be glued11 to form
the close boundary of a nondegenerate 4-simplex with
the same constant curvature Λ. Av with these boundary
data has critical points. However, any boundary PSU(2)
flat connection corresponding to 5 tetrahedra that cannot
be glued to form 4-simplex boundary cannot extend to a
PSL(2,C) flat connection on S3 \ Γ5, then results in that
Av has no critical point thus is suppressed faster than
O(k−N ) for all N > 0.
We do not discuss the possible flat connections corre-

sponding to degenerate 4-simplex or tetrahedron. We also
do not consider the boundary condition with za → ∞
which leads to critical points located at the infinity of the
integration cycle 12.
In this geometrical correspondence between flat con-

nection and 4-simplex geometry, the holonomy’s squared
eigenvalue e2Lab relates to the area aab of the 4-simplex

11 Namely, they have the same constant curvature Λ, and satisfy
triangle-shapes matching and orientation matching when they
are glued.

12 Critical points at infinity give z, z′ or z′′ → ∞ of certain ∆ ⊂
S3 \ Γ5. They either correspond to degenerate 4-simplex or
correspond to special 4-simplices which become close to degenerate
if |Λa| � 1, i.e. scales of 4-simplices are small (see [19] and
Appendix E therein).
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boundary triangle fab shared by the pair of tetrahedra
a, b (corresponding to Sa,Sb), i.e. semiclassically

e2Lab ' ei |Λ|3 aab , aab ∈ [0, 6π/|Λ|]. (157)

The framing flag s`ab evaluated at pa ∈ Sa, s`ab(pa) = ξab,
relates to the unit normal ~nab (located at a vertex of the
curved tetrahedron) of the face fab viewed in the frame
of tetrahedra a by ~nab = ξ†ab~σξab. Note that ξab is not
alway the same as ξi in (100), see the discussion in the
paragraph above (104). Given the tetrahedra a, if we
denote by ~ni the geometrical outward pointing face-normal
of the tetrahedron, we have ~nab = sgn(Λ)~ni if ξab = ξi =
(ξ1
i , ξ

2
i )T , and ~nab = −sgn(Λ)~ni if ξab = (−ξ̄2

i , ξ̄
1
i )T [24].

In order to obtain the geometrical interpretation of the
conjugate Tab, we review the definition of the complex
FN twist variable: Let’s consider the annulus cusps `
connecting a pair of 4-holed spheres S0,Sn. Let s be the
framing flag for `, and s0,n, s

′
0,n be the framing flags for

a pair of other cusps connecting S0,n. Then the complex
FN twist is defined by (see e.g. [27])

τ` = − 〈s0 ∧ s′0〉
〈s0 ∧ s〉 〈s′0 ∧ s〉

〈sn ∧ s〉 〈s′n ∧ s〉
〈sn ∧ s′n〉

. (158)

where 〈s ∧ s′〉 are evaluated at a common point after paral-
lel transportation. Without loss of generality, we evaluate
the first ratio with factors 〈s0 ∧ s′0〉, 〈s0 ∧ s〉 , 〈s′0 ∧ s〉 at
a point p0 ∈ S0, and evaluate the second ratio with fac-
tors 〈sn ∧ s〉 , 〈s′n ∧ s〉, 〈sn ∧ s′n〉 at a point pn ∈ Sn. The
evaluation involves both s(p0) and s(pn) at two ends of
`, while the parallel transportation between s(p0) and
s(pn) depends on a choice of contour γτ connecting p0, pn
(FIG.8). Different γτ may transform s(pn)→ λ`s(pn) but
keep s(p0) invariant. Moreover by definition, τ` also de-
pend on the choice of two other auxiliary cusps for each of
S0,Sn. The choices of γτ and the auxiliary cusps are part
of the definition for τ`. The choices in defining τ` doesn’t
affect our later result. The Atiyah-Bott symplectic form
implies log(τ`) is the conjugate variable of the FN length
variable L` = log(λ`) associated to the same annulus `:

{L`, log(τ`′)}Ω = δ`,`′ . (159)

FIG. 8. The contour γτ used to define the complex FN twist
τ`, and the meridian cycle γλ used to define the complex FN
length λ`.

Applying the above definition to S3\Γ5, we set S0 = Sb,
p0 ≡ pb and Sn = Sa, pn ≡ pa. Framing flags associated
to holes in Sa (or Sb) evaluated at pa (or pb) are {ξac}c6=a
(or {ξbc}c 6=b). In particular, s(pa) = ξab and s(pb) = ξba.
We denote by Gab the flat connection holonomy along γτ
staring at pa and ending at pb. Gab satisfies [13, 19, 24]

Gabξab = e−
1
2ν sgn(V4)Θab+iθabξba, ν = sgn(Λ).(160)

By the geometrical correspondence of the flat connection,
Θab is the hyper-dihedral (boost) angle hinged by the
face fab shared by the tetrahedra a, b on the boundary
of the 4-simplex. sgn (V4) = ±1 is the orientation of the
4-simplex. θab ∈ [0, 2π) is an angle relating to the phase
convention of ξ’s. Inserting (160) in the definition of τ`
we obtain

τ`ab ≡ τab = e−ν sgn(V4)Θab+2iθabχab(ξ), (161)

χab(ξ) =
〈ξbd ∧ ξbh〉

〈ξbd ∧ ξba〉 〈ξbh ∧ ξba〉
〈ξac ∧ ξab〉 〈ξae ∧ ξab〉

〈ξac ∧ ξae〉
where we have set s0(pb) = ξbd, s

′
0(pb) = ξbh and sn(pa) =

ξac, s
′
n(pa) = ξae. χ(ξ) is a function only depending on

the boundary condition on {Sa}5a=1.

Theorem IV.3. Given a PSL(2,C) flat connection A on
S3 \Γ5 corresponding to a nondegenerate convex constant
curvature 4-simplex, there exists a unique flat connection
Ã 6= A sharing the same boundary condition. A, Ã corre-
spond to the same constant curvature 4-simplex geometry,
but opposite orientations: sgn (V4) |A = −sgn (V4) |Ã.

The detailed proof is again given in [13]. The boundary
condition corresponding to the boundary tetrahedra of
nondegenerate 4-simplex gives exactly 2 critical points
A, Ã which are called the parity pair, as an analog of
the similar siutation in the EPRL amplitude [22]. That
A, Ã correspond to the same geometry means that they
endow the same edge-lengths, areas, angles, etc to the
4-simplex. Implied by this result, e2Lab , eXa , eYa have
the same value at A, Ã since they are determined by the
geometry, whereas τab are different

τab|A = e−νΘab+2iθabχab(ξ), τab|Ã = eνΘab+2iθabχab(ξ),

since τab relates to the orientation. Here θab, χab(ξ) are
the same at A, Ã since they are determined only by the
boundary condition.

Lemma IV.4. At each annulus `ab, τab = τ`ab relates to
Tab by Tab = 1

2 log(τab) + f({Lab}, {Xa,Ya}), where f is
a linear function of {Lab}, {Xa,Ya}.

Proof: Each τab is a product of z±1, z′±1, z′′±1 of
some ideal tetrahedra in the triangulation of S3 \ Γ5 (see
Appendix A.3.3 in [27]). When expressing in terms of
octahedron phase space coordinates, Each log(τab) is a
linear function of Xa, PXa , Ya, PYa , Za, PZa (a = 1, · · · , 5)
when we impose Ca = 2πi, see [19] for explicit examples
of log(τab). By the symplectic transformation (53), we
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express log(τab) =
∑
c<d(α(ab),(cd)Tcd + β(ab),(cd)Lcd) +∑5

c=1(ρcXc + σcYc) + iπZ. By {L`, log(τ`′)}Ω = δ`,`′ ,
we determine α(ab),(cd) = 2δ(ab),(cd) and define f =

− 1
2 [
∑
c<d β(ab),(cd)Lcd +

∑5
c=1(ρcXc + σcYc) + iπZ].

2

As a result, Tab are given by

Tab|A = −1

2
νΘab + iθab +

1

2
logχab(ξ)

+f({Lab}, {Xa,Ya}) + πiN
(A)
ab (162)

Tab|Ã =
1

2
νΘab + iθab +

1

2
logχab(ξ)

+f({Lab}, {Xa,Ya}) + πiN
(Ã)
ab (163)

where N (A)
ab , N

(Ã)
ab ∈ Z label the lifts of logarithms.

C. Asymptotics of vertex amplitude

The vertex amplitude Av has precisely 2 critical points
A, Ã when the boundary condition corresponds to 5 tetra-
hedra that can be glued to form the close boundary of a
nondegenerate constant curvature 4-simplex. By (148),
the vertex amplitude has the following large-k asymptotics

Av(~j, ~ξ) =

[
Nαe

S
(α)
~p0

(Q,Q̃)
+ Nα̃e

S
(α̃)
~p0

(Q,Q̃)

]
, (164)

× [1 +O (1/k)]

Nα =
N ′e ik4π

∑5
a=1[4Re(za)Im(za)−xaya]√
det(−Hα/2π)

, (165)

where S(α)
~p0

is given in (147). The nondegeneracy of the
Hessian matrix Hα = ∂2I~p0,~0

is supported by many nu-
merical experiments. QI , Q̃I are the same at the critical
points A, Ã. α, α̃ are branches of the Lagrangian submani-
fold LS3\Γ5

containing A, Ã respectively. The asymptotics
(164) of Av reduces to the same form as the one studied
in [23, 24]. In the following we sketch the computation of
(164) and refer the details to [23, 24].

We rewrite (164) in Av ' eiη(N+e
S + N−e−S) where

we factor out the overall phase eiη, and we are interested
in the phase difference e2S bewteen 2 exponentials in
(164). To extract the phase difference, we consider a
small variation δQI , δQ̃I . The consequent variation of
δS is given by

2δS = − ik

2π(1 + b2)

(
~P(α) − ~P(α̃)

)
· δ ~Q − c.c.

= − kΛ

6π(1 + b2)

∑
a<b

(Θab + 2πiNab) δaab − c.c.

= − iΛ
6π

Im(t)
∑
a<b

Θabδaab −
iΛ

3
Re(t)

∑
a<b

Nabδaab,

where Nab = sgn(Λ)(N
(A)
ab − N

(Ã)
ab ) ∈ Z. Only Θab and

N
(A)
ab , N

(Ã)
ab in Tab give nonvanishing contribution to 2δS

because each of {Lab,Xa,Ya, χab(ξ), θab} gives the same
value at A and Ã (see [23, 24] for details). By the Schläfli
identity

∑
a<b δΘabaab = Λ|V4| of constant curvature 4-

simplex [52], δS can be integrated

2S = − iΛkγ
6π

(∑
a<b

aabΘab − Λ|V4|
)

− iΛk
3

∑
a<b

Nabaab + 2C, (166)

where |V4| is the 4-simplex volume. 2C is a geometry-
independent integration constant. Eqs.(157) and (97)
implies |Λ|3 aab = 4π

k jab, thus iΛk
3

∑
a<bNabaab ∈ 2πiZ

is negligible in e2S . As a result, we obtain the leading
asymptotics of Av as

Av = eiη
(
N+e

iSRegge+C + N−e
−iSRegge−C

)
(167)

× [1 +O (1/k)] ,

N+,− =
N ′√

det(−Hα,α̃/2π)
(168)

where in the exponents

SRegge =
Λkγ

12π

(∑
a<b

aabΘab − Λ|V4|
)
. (169)

is the Regge action of the constant curvature 4-simplex.
The coefficient |Λ|kγ12π is identified to be the inverse gravi-
tational coupling 1/`2P . This identification is consistent
with (16).

V. CONCLUSION AND OUTLOOK

In this work, we propose an improved formulation of
4d spinfoam quantum gravity with cosmological constant
Λ. This formulation is featured with the finite spinfoam
amplitudes on simplicial complexes and the correct semi-
classical behavior of the vertex amplitude.
Despite the above promising aspects, this formulation

still has several open issues, which are expected to be
addressed in the future research: Firstly, it is conjectured
in Section IIID that the boundary Hilbert space of the
spinfoam amplitude A is the Hilbert space of q-deformed
spin-network states with q root of unity. To prove this
conjecture, we need to define and study coherent inter-
twiners of q-deformed spin-networks, and clarify if there is
a canonical bijection between these coherent intertwiners
and the boundary data of A. The expected coherent inter-
twiner should be a q-deformation of the Livine-Speciale
coherent intertwiner [40].
We need to construct geometrical operator on the

boundary Hilbert space to understand quantum geomet-
rical interpretaion of boundary states. The construction
may be based on the combinatorial quantization of SU(2)
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CS theory [53, 54]. It is interesting to define coherent
states that are coherent in both spins (areas) and inter-
twiners (shapes of curved tetrahedra). The coherent state
may be a q-deformation of the complexifier coherent states
in [55]. In addition, we need to direct sum over all graphs
to defind the entire q-deformed LQG kinematical Hilbert
space and check the cylindrical consistency of operators.
This should generalize the work [12] from real q to q root
of unity.

It is discussed in Section III E that the spinfoam ampli-
tude A has ambiguities in which the freedom of choosing
coherent states is due to imposing semiclassical simplicity
constraint to coherent state labels. It may be useful to
develop an operator formalism or other ways to impose
the simplicity constraint (such as the master constraint,
Gupta-Bleuler, etc) at the quantum level, for reducing the
freedom of the ampltiude. Another possible drawback of
our implementation of simplicity constraint is that spins
such that dim(M̃~j) < 2 (M̃~j only contains degenerate
4-gons) have to be excluded from our formalism.

The present work only study the semiclassical behavior
of the vertex amplitude. The semiclassical analysis should
generalizes to the spinfoam amplitude with Λ on arbitrary
simplicial complex, as well as taking into account the sum

over j.
Λ in this spinfoam model should be understood as the

value of cosmological constant at ultraviolet. It would be
interesting to apply the Wilson renormalization to the
spinfoam model with Λ (see e.g. [56] for some earlier
results). The spinfoam renormalization is expected to
result in a flow of Λ from the ultraviolet to infrared, where
the infrared value of Λ should relate to the observation.
It should also be interesting to develop a group field

theory (GFT) based on the spinfoam formulation with Λ.
The notion of group fields might be suitably generalized
to include Λ. The “group fields” might actually be fields
on the moduli space of flat connections. The GFT is
expected to reproduce spinfoam amplitudes A, which are
finite order by order in the perturbative expansion.
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Appendix A: A plot for the polytope P(oct)

The open polytope P(oct) is defined by the following inequalities

αX , αY , , αZ > 0, αX + αY + αZ < Q,

αX + βX <
Q

2
, αY + βY <

Q

2
, αZ + βZ <

Q

2
,

αX + αY + αZ + βX >
Q

2
, αX + αY + αZ + βY >

Q

2
,

αX + αY + αZ + βZ >
Q

2
.

FIG.9 plots the intersection between P(oct) and the plane of αX = αY = αZ , βX = βY = βZ
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Q/2 � ↵

<latexit sha1_base64="6f/LOd+bdsLXBuo2L+SraJAmWMI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgxZqUih6LXjy2YD+wDWWy3bRLN5uwuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPz/JgzpR3n28qtrW9sbuW3Czu7e/sHxcOjlooSSWiTRDySHR8V5UzQpmaa004sKYY+p21/fDfz209UKhaJBz2JqRfiULCAEdRGemxcVi56yOMR9oslp+zMYa8SNyMlyFDvF796g4gkIRWacFSq6zqx9lKUmhFOp4VeomiMZIxD2jVUYEiVl84vntpnRhnYQSRNCW3P1d8TKYZKTULfdIaoR2rZm4n/ed1EBzdeykScaCrIYlGQcFtH9ux9e8AkJZpPDEEimbnVJiOUSLQJqWBCcJdfXiWtStmtlq8a1VLtNosjDydwCufgwjXU4B7q0AQCAp7hFd4sZb1Y79bHojVnZTPH8AfW5w96tJAn</latexit>

Q/2�
3↵

<latexit sha1_base64="tQiiwvWa5Jr0O3mul2vQ5vhL3wk=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgxbpbK3osevHYgv2A7VKyabYNzSZLMiuU0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhYngBlz328mtrW9sbuW3Czu7e/sHxcOjllGppqxJlVC6ExLDBJesCRwE6ySakTgUrB2O7md++4lpw5V8hHHCgpgMJI84JWAlv3FZubjqEpEMSa9YcsvuHHiVeBkpoQz1XvGr21c0jZkEKogxvucmEEyIBk4Fmxa6qWEJoSMyYL6lksTMBJP5yVN8ZpU+jpS2JQHP1d8TExIbM45D2xkTGJplbyb+5/kpRLfBhMskBSbpYlGUCgwKz/7Hfa4ZBTG2hFDN7a2YDokmFGxKBRuCt/zyKmlVyl61fN2olmp3WRx5dIJO0Tny0A2qoQdUR01EkULP6BW9OeC8OO/Ox6I152Qzx+gPnM8f7weQZA==</latexit>

↵ = Q/3

<latexit sha1_base64="Bw+5FJw//dcQdf63O4BZGk1J3u4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSZa0YtQ9OKxBfuBbSiT7aZdutmE3Y1QQv+FFw+KePXfePPfuG1z0NYHA4/3ZpiZ58ecKe0431ZuZXVtfSO/Wdja3tndK+4fNFWUSEIbJOKRbPuoKGeCNjTTnLZjSTH0OW35o7up33qiUrFIPOhxTL0QB4IFjKA20mMXeTzEm/rZRa9YcsrODPYycTNSggy1XvGr249IElKhCUelOq4Tay9FqRnhdFLoJorGSEY4oB1DBYZUeens4ol9YpS+HUTSlND2TP09kWKo1Dj0TWeIeqgWvan4n9dJdHDtpUzEiaaCzBcFCbd1ZE/ft/tMUqL52BAkkplbbTJEiUSbkAomBHfx5WXSPC+7lfJlvVKq3mZx5OEIjuEUXLiCKtxDDRpAQMAzvMKbpawX6936mLfmrGzmEP7A+vwBmMuQOA==</latexit>

FIG. 9. Setting αX = αY = αZ = α, βX = βY = βZ = β, and Q = 1/2, P(oct) is restricted to the grey open triangle in the plot.
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Appendix B: Darboux coordinates of P∂(S3\Γ5)

S1: h′2 ∩ h′3 : χ
(1)
23 = Z2 + Z3 h′3 ∩ e′4 : χ

(1)
34 = Y ′′3 + Z ′3 + Z ′′4 +W ′4

h′2 ∩ e′4 : χ
(1)
24 = Z ′′2 +W ′2 + Z4 h′3 ∩ c′5 : χ

(1)
35 = Z ′′3 +W ′3 + Y ′′5 + Z ′5

h′2 ∩ c′5 : χ
(1)
25 = Y ′′2 + Z ′2 + Z5 e′4 ∩ c′5 : χ

(1)
45 = Y ′′4 + Z ′4 + Z ′′5 +W ′5

S2: f ′1 ∩ i′3 : χ
(2)
13 = X ′′1 + Y ′1 +X3 i′3 ∩ f ′4 : χ

(2)
34 = X ′′3 + Y ′3 +W ′′4 +X ′4

f ′1 ∩ f ′4 : χ
(2)
14 = X1 +X4 i′3 ∩ b′5 : χ

(2)
35 = W ′′3 +X ′3 +X ′′5 + Y ′5

f ′1 ∩ b′5 : χ
(2)
15 = W ′′1 +X ′1 +X5 f ′4 ∩ b′5 : χ

(2)
45 = X ′′4 + Y ′4 +W ′′5 +X ′5

S3: b′1 ∩ a′2 : χ
(3)
12 = Z ′1 +W ′′1 +X2 a′2 ∩ d′4 : χ

(3)
24 = W ′′2 +X ′2 + Y ′4 + Z ′′4

b′1 ∩ d′4 : χ
(3)
14 = W ′1 +X ′′1 +X ′4 + Y ′′4 a′2 ∩ d′5 : χ

(3)
25 = X ′′2 + Y ′2 + Z ′5 +W ′′5

b′1 ∩ d′5 : χ
(3)
15 = W1 +W ′5 +X ′′5 d′4 ∩ d′5 : χ

(3)
45 = Y4 +W5

S4: a′1 ∩ c′2 : χ
(4)
12 = Z1 +X ′2 + Y ′′2 c′2 ∩ j′3 : χ

(4)
23 = Y ′2 + Z ′′2 + Z ′3 +W ′′3

a′1 ∩ j′3 : χ
(4)
13 = Y ′′1 + Z ′1 +W ′3 +X ′′3 c′2 ∩ j′5 : χ

(4)
25 = Y2 + Y ′5 + Z ′′5

a′1 ∩ j′5 : χ
(4)
15 = Z ′′1 +W ′1 +X ′5 + Y ′′5 j′3 ∩ j′5 : χ

(4)
35 = W3 + Y5

S5: i′1 ∩ e′2 : χ
(5)
12 = Y ′1 + Z ′′1 +W ′2 +X ′′2 e′2 ∩ g′3 : χ

(5)
23 = Z ′2 +W ′′2 + Y ′3 + Z ′′3

i′1 ∩ g′3 : χ
(5)
13 = Y1 +X ′3 + Y ′′3 e′2 ∩ g′4 : χ

(5)
24 = W2 + Z ′4 +W ′′4

i′1 ∩ g′4 : χ
(5)
14 = X ′1 + Y ′′1 +W ′4 +X ′′4 g′3 ∩ g′4 : χ

(5)
34 = Y3 +W4

TABLE I. Edge coordinates χ(a)
mn of 4-holed spheres. Recall in FIG.3 that the octahedra are glued through the triangles labelled

by a, b, c, d, e, f, g, h, i, j. For example a′2 labels the triangles symmetric to the triangle a with respect to the equator of Oct(2).
The “primed triangles” with the primed labels triangulate the geodesic boundary of S3 \ Γ5. Here Xa, Ya, Za,Wa (a = 1, · · · , 5)
are the tetrahedron edge coordinates from the 4 tetrahedra triangulating Oct(a).

Darboux coordinates QI = (2Lab,Xa), PI = (Tab,Ya) expressed in terms of (Xa, PXa),(Ya, PYa),(Za, PZa),(Ca,Γa)
are listed below

2L12 = −C3 − C4 − C5 + PY3 + PY4 + PY5 +X3 +X4 +X5 + Y3 + Y4 + Y5 + 3iπ, (B1)
2L13 = −C2 − C5 + PY2

+ PY4
− PZ4

+ PZ5
+X2 +X5 + Y2 + Y5 + 2Z5 + iπ, (B2)

2L14 = −C3 + PY2
+ PY5

− PZ2
+ PZ3

− PZ5
+X3 + Y3 + 2Z3, (B3)

2L15 = −C2 − C4 + PY3
+ PZ2

− PZ3
+ PZ4

+X2 +X4 + Y2 + Y4 + 2Z2 + 2Z4, (B4)
2L23 = −PX1

+ PX4
− PX5

− PY4
+X4 − Y4, (B5)

2L24 = −PX3 + PX5 − PY1 − PY5 −X1 +X5 − Y1 − Y5 + iπ, (B6)
2L25 = PX1 + PX3 − PX4 − PY1 − PY3 +X1 +X3 − Y1 − Y3, (B7)
2L34 = C1 − C5 + PX2

+ PX5
− PY2

− PZ1
− PZ5

−X1 +X2 +X5 − Y1 − Y2 + Y5 − 2Z1 + iπ, (B8)
2L35 = −C1 + PX1

− PX2
− PX4

− PZ1
+ PZ4

+X1 −X4 + Y1 − Y4 + 2iπ, (B9)
2L45 = −C3 − PX2

+ PX3 + PY1
− PZ1

+ PZ2
− PZ3

−X2 +X3 − Y2 + Y3 + 2iπ. (B10)

X1 = χ
(1)
25 = PY2 − PZ2 − Z2 + Z5 + iπ, (B11)

X2 = χ
(2)
15 = −PX1

−X1 +X5 + iπ, (B12)

X3 = χ
(3)
15 = C1 − C5 + PX5

−X1 +X5 − Y1 + Y5 − Z1 + Z5 + iπ, (B13)

X4 = χ
(4)
15 = −C1 − PX5

+ PY5
+ PZ1

+X1 −X5 + Y1 + Z1 + 2iπ, (B14)

X5 = χ
(5)
14 = −C4 − PX1

+ PX4
+ PY1

−X1 +X4 + Y4 + Z4 + 2iπ. (B15)

T12 =
1

2
(X2 −X3 −X4 + Y1 + Y2 − Y3 − Y4 + Z2) , (B16)

T13 =
1

2
(−X2 +X3 − Y2 + Y3 − Y5 + Z1 − Z2 − Z5) , (B17)
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T14 =
1

2
(−Y2 − Z2 − Z3 + Z5) , (B18)

T15 =
1

2
(−X2 − Y2 − Z2 − Z4) , (B19)

T23 =
1

2
(−X4 + Y1 + Y4 − Y5 + Z1 − Z5) , (B20)

T24 =
1

2
(X2 +X3 −X4 + Y1 + Y3 − Y4 + Z3 + Z5) , (B21)

T25 =
1

2
(−X3 −X4 + Y1 + Y3 − Y4 − Z4) , (B22)

T34 =
1

2
(−X2 +X3 + Y3 − Y5 + Z1 + Z3) , (B23)

T35 =
1

2
(X3 + Y3 − Y5 + Z1 − Z4 − Z5) , (B24)

T45 =
1

2
(X2 + Z3 + Z4 + Z5) . (B25)

Y1 = χ
(1)
23 = Z2 + Z3, (B26)

Y2 = χ
(2)
14 = X1 +X4, (B27)

Y3 = χ
(3)
45 − 2πi = −X5 + Y4 − Y5 − Z5, (B28)

Y4 = −χ(4)
35 + 2πi = X3 + Y3 − Y5 + Z3, (B29)

Y5 = χ
(5)
34 − 2πi = −X4 + Y3 − Y4 − Z4. (B30)

We impose Ca = 2πi to all 2Lab and Xa. We check that (45) implies

{QI ,PJ}Ω = δIJ , {QI ,QJ}Ω = {PI ,PJ}Ω = 0. I, J = (`ab,Sa). (B31)

Appendix C: Symplectic transformation

The linear symplectic transformation from ~Φ ≡ (Xa, Ya, Za)5
a=1 and ~Π ≡ (PXa , PYa , PZa)5

a=1 to ~Q, ~P is given by(
~Q
~P

)
=

(
A B
−(BT )−1 0

)(
~Φ
~Π

)
+ iπ

(
~t
~0

)
, (C1)

Explicitly, A,B,~t are given below

A =



0 0 0 0 0 0 1 1 0 1 1 0 1 1 0
0 0 0 1 1 0 0 0 0 0 0 0 1 1 2
0 0 0 0 0 0 1 1 2 0 0 0 0 0 0
0 0 0 1 1 2 0 0 0 1 1 2 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
−1 −1 0 0 0 0 0 0 0 0 0 0 1 −1 0
1 −1 0 0 0 0 1 −1 0 0 0 0 0 0 0
−1 −1 −2 1 −1 0 0 0 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 0 −1 −1 0 0 0 0
0 0 0 −1 −1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
−1 −1 −1 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 −1 0 0
−1 0 0 0 0 0 0 0 0 1 1 1 0 0 0



, (C2)
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B =



0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 1 −1 0 0 1
0 0 0 0 1 −1 0 0 1 0 0 0 0 1 −1
0 0 0 0 0 1 0 1 −1 0 0 1 0 0 0
−1 0 0 0 0 0 0 0 0 1 −1 0 −1 0 0
0 −1 0 0 0 0 −1 0 0 0 0 0 1 −1 0
1 −1 0 0 0 0 1 −1 0 −1 0 0 0 0 0
0 0 −1 1 −1 0 0 0 0 0 0 0 1 0 −1
1 0 −1 −1 0 0 0 0 0 −1 0 1 0 0 0
0 1 −1 −1 0 1 1 0 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 −1 1 0
−1 1 0 0 0 0 0 0 0 1 0 0 0 0 0



, (C3)

~t = (−3,−3,−2,−4, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0)T . (C4)

Appendix D: Proof of Lemma III.1

Lemma D.1. Hi=1,··· ,4 ∈ SU(2) satisfying H4H3H2H1 = 1 exist if and only if j′i=1,··· ,4 satisfy the triangle inequality,
i.e. there exists J such that

|j′1 − j′2| ≤ J ≤ min (j′1 + j′2, k − j′1 − j′2) , (D1)
|j′3 − j′4| ≤ J ≤ min (j′3 + j′4, k − j′3 − j′4) . (D2)

Proof: We denote by 4π
k j
′
i = ri ∈ [0, 2π). Hi = cos(ri/2) + i~n′i · ~σ sin(ri/2) where ~n′ is a unit vector in R3. ~n′ = −~n

in case of minus sign in (100) and ~n′ = ~n in case of plus sign. We denote by H2H1 = cos(R/2) + i ~N · ~σ sin(R/2) with
R = 4π

k J ∈ [0, 2π) then H4H3 = cos(R/2)− i ~N · ~σ sin(R/2). Taking the trace gives

cos

(
R

2

)
= cos

(r1

2

)
cos
(r2

2

)
− ~n′1 · ~n′2 sin

(r1

2

)
sin
(r2

2

)
, (D3)

cos

(
R

2

)
= cos

(r3

2

)
cos
(r4

2

)
− ~n′3 · ~n′4 sin

(r3

2

)
sin
(r4

2

)
(D4)

Since sin
(
ri
2

)
≥ 0, unit vectors ~n′i=1,··· ,4 exists if and only if

cos

(
r1 + r2

2

)
≤ cos

(
R

2

)
≤ cos

(
r1 − r2

2

)
, (D5)

cos

(
r3 + r4

2

)
≤ cos

(
R

2

)
≤ cos

(
r3 − r4

2

)
, (D6)

which is equivalent to

|r1 − r2| ≤ R ≤ min (r1 + r2, 4π − r1 − r2) , (D7)
|r3 − r4| ≤ R ≤ min (r3 + r4, 4π − r3 − r4) . (D8)

Conversely, (D5),(D6) or (D7),(D8) imply the existence of 2 spherical triangles in S3 sharing a common edge. The
spherical triangles form a 4-gon whose edges are geodesics in S3 with length ri/2 (i = 1, · · · , 4). The diagonal of
the 4-gon is a geodesic whose length is R/2. The 4-gon in S3 implies the existence of Hi=1,··· ,4 ∈ SU(2) satisfy
H4H3H2H1 = 1 by the argument in Section III B.

2
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Appendix E: Determining ξi’s from θ and φ

It is useful to consider cos(θ24) = − 1
2 [Tr

(
H1H

−1
4

)
− Tr(H1) Tr(H4)] = 1

2 Tr(H4H1) = 1
2 Tr(H2H3). The following

relation holds between φ and θ24 [37]

2 cos(θ24) =

(
eiφ + e−iφ

)√
c12(A)c34(A)− 2 (m2m3 +m1m4) +A (m1m3 +m2m4)

A2 − 4
, (E1)

where mi = Tr(Hi) and

A = eiθ + e−iθ, cij(A) = A2 +m2
i +m2

j −Amimj − 4. (E2)

For SU(2) flat connections satsifying H4H3H2H1 = 1, we make a partial gauge fixing that H4 = diag(eia4 , e−ia4),
a4 ∈ [0, π) 13. Thus as a unit vector in Euclidean R4, vj = (v0

j , v
1
j , v

2
j , v

3
j ),

v4 = (cos (a4) , 0, 0,− sin (a4)) (E3)

representing H−1
4 . For the triangle (v1, v3, v4), we v1 = (1, 0, 0, 0), 〈v1, v3〉 = cos(θ13) (θ13 = θ), 〈v3, v4〉 = cos(a3), and

〈v4, v4〉 = 1 to determine v3

v3 =
(
cos (θ13) , 0, v2

3 , v
3
3

)
(E4)

v2
3 =

√
− (csc2 (a4) (cos2 (a3) + cos2 (θ13))) + 2 cos (a3) cot (a4) csc (a4) cos (θ13) + 1

v3
3 = csc (a4) (cos (a4) cos (θ13)− cos (a3)) ,

where we have used the remaining rotational summetry (of 1-2 plane) to fix v1
3 = 0 and v2

3 > 0. Then we use
〈v1, v2〉 = cos(a1), 〈v2, v3〉 = cos(a2), 〈v2, v4〉 = cos(θ24), and 〈v2, v2〉 = 1 to determine v2

v2 =
(
cos (a1) , v1

2 , v
2
2 , csc (a4) (cos (a1) cos (a4)− cos (θ24))

)
(E5)

v1
2 = ±

(
2 cos (a2) csc (a4) (cot (a4) (cos (a1) cos (a3) + cos (θ13) cos (θ24))− csc (a4) (cos (a1) cos (θ13)

+ cos (a3) cos (θ24))) + csc (a4)
(
−2 cos (a1) cot (a4) cos (θ24) + csc (a4)

(
cos2 (θ13) + sin2 (θ13) cos2 (θ24)

)
−2 cos (a3) cos (θ13) (cot (a4)− cos (a1) csc (a4) cos (θ24)) + cos2 (a3) csc (a4) + sin2 (a3) cos2 (a1) csc (a4)

)
+ cos2 (a2)− 1

) 1
2
(

csc2 (a4)
(
cos2 (a3) + cos2 (θ13)

)
− 2 cos (a3) cot (a4) csc (a4) cos (θ13)− 1

)− 1
2

v2
2 = 2

(
cos (a1) (cos (θ13)− cos (a3) cos (a4)) + cos (θ24) (cos (a3)− cos (a4) cos (θ13)) + sin2 (a4) (− cos (a2))

)
×
√
− (csc2 (a4) (cos2 (a3) + cos2 (θ13))) + 2 cos (a3) cot (a4) csc (a4) cos (θ13) + 1

× (−4 cos (a3) cos (a4) cos (θ13) + cos (2a3) + cos (2a4) + cos (2θ13) + 1)
−1
,

where ± of v1
2 corresponds to the parity symmetry with respect to the plane of F134 (spanned by the x0, x2, x3-directions

in R4) where v1, v3, v4 leave. Choosing + or − of v1
2 is equivalent to fixing the orientation of n123∧n134 since v1

2 → −v1
2

transforms

n123 ∧ n134 → −n123 ∧ n134, where ndijk‖nijk‖ = εabcdv
a
i v
b
jv
c
k. (E6)

Now all {Hi}4i=1 are fixed by

H1 = v2, H4 = v−1
4 , H3 = v4v

−1
3 , H2 = v3v

−1
2 , (E7)

where vj = v0
j I + i

3∑
a=1

vajσa. (E8)

Every Hi is uniquely determined by (ai, θ13, θ24), where θ24 relates to φ by (E1), then ξi is determined up to scaling
as the eigenvector of Hi for the eigenvalue whose square is e2Lab .

13 We use the conjugation ε diag(λ, λ−1) ε−1 = diag(λ−1, λ), where εαβ = −εβα and det(ε) = 1, to fix a4 ∈ [0, π) in λ = eia4 .
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Appendix F: Critical equations

Derivatives of S~p are given by

−2π(1 + b2)

ik
∂ ~PS0 = ABT · ~P + ~Q +

k

(1 + b2)
ABT ·

(
~P − b2 ~̃P

)
, (F1)

−2π(1 + b−2)

ik
∂ ~̃

P
S0 = ABT · ~̃P +

~̃
Q − k

(1 + b2)
ABT ·

(
~P − b2 ~̃P

)
, (F2)

−2π(1 + b2)

ik
∂ ~PS1 = −B · (PXa=1,··· ,5 , PYa=1,··· ,5 , PZa=1,··· ,5)T , (F3)

e.g. PZa ≡ log
(
1− e−Za

)
− log

(
1− eXa+Ya+Za

)
, (F4)

−2π(1 + b−2)

ik
∂ ~̃

P
S̃1 = −B · (P̃Xa=1,··· ,5 , P̃Ya=1,··· ,5 , P̃Za=1,··· ,5)T , (F5)

e.g. P̃Xa = log
(

1− e−Z̃a
)
− log

(
1− eX̃a+Ỹa+Z̃a

)
, (F6)

~P = −(BT )−1 · (Xa=1,··· ,5, Ya=1,··· ,5, Za=1,··· ,5)T , (F7)
~̃
P = −(BT )−1 · (X̃a=1,··· ,5, Ỹa=1,··· ,5, Z̃a=1,··· ,5)T , (F8)

where the branches of the logarithms are the same as the canonical lift in (13).
We define

X ′′a := log
(
1− e−Xa

)
, Y ′′a := log

(
1− e−Ya

)
,

Z ′′a := log
(
1− e−Za

)
, W ′′a := log

(
1− e−Wa

)
, (F9)

X̃ ′′a := log
(

1− e−X̃a
)
, Ỹ ′′a := log

(
1− e−Ỹa

)
,

Z̃ ′′a := log
(

1− e−Z̃a
)
, W̃ ′′a := log

(
1− e−W̃a

)
, (F10)

such that e.g. z = eZ and z′′ = eZ
′′
reproduce z−1 + z′′ − 1 = 0 i.e. the Lagrangian submanifold L∆ ⊂ P∂∆ of framed

flat PSL(2,C) connections on the ideal tetrahedron ∆. Wa, W̃a are given by (133). The above logarithms are defined
with the canonical lifts same as in (13). We define PXa , PYa , PZa and P̃Xa , P̃Ya , P̃Za (a = 1, · · · , 5) in the same way as
(44). Xa, Ya, Za, PXa , PYa , PZa with Eqs.(F9), (F10), and (133) parametrizes the moduli space of framed flat PSL(2,C)
connections on the ideal octahedron oct(a) made by gluing 4 ideal tetrahedra.

The critical equations ∂XIS~p = ∂X̃IS~p = 0 can be written in terms of ~Φ ≡ (Xa, Ya, Za)
5
a=1 and ~Π ≡

(PXa , PYa , PZa)
5
a=1:

~Q′ = A · ~Φ + B · ~Π + 2πi(~n+ ~p), (F11)
~̃
Q
′

= A · ~̃Φ + B · ~̃Π− 2πi(~n+ ~p). (F12)

where ~p ∈ Z15. Up to 2πi(~n+ ~p), the critical equations (136) and (137) reproduces the Q-part of (53), whereas here ~Φ
and ~Π are related by (F9) (F10), and (44). Note that the P-part of (53) has been reproduced by the relation between
(Xa, Ya, Za)

5
a=1 and ~P (see above (133)).

For the vertex amplitude Av, the critical equations ∂QI~p,~s = ∂Q̃I~p,~s = 0 give

2π
(
1 + b2

)
k

∂Qa
I~p,~s = −iPa +

√
2bza −

b2
(
Q′a + Q̃′a

)
1 + b2

+
Q′a − b2Q̃′a

1 + b2
+ ya + ixa − 2πsa = 0 (F13)

= −iPa +
√

2bza −
2πb

k
µa −

2πi

k
ma + ya + ixa − 2πsa = 0, (F14)

2π
(
1 + b−2

)
k

∂Q̃a
I~p,~s = −iP̃a +

√
2b−1za −

(
Q′a + Q̃′a

)
1 + b2

− Q′a − b2Q̃′a
1 + b2

− ya − ixa + 2πsa = 0 (F15)

= −iP̃a +
√

2b−1za −
2πb−1

k
µa +

2πi

k
ma − ya − ixa + 2πsa = 0. (F16)



32

where µa and ma relate to Q′a and Q̃′a by (69). The above equations is solved by

2π

k
µa =

√
2Re(za),

2π

k
νa =

√
2Im(za),

2π

k
ma = xa,

2π

k
na = ya − 2πsa, (F17)

where νa and na relate to Xa and X̃a by (69). Although µa, νa have nonzero imaginary parts, αa = Im(µa), βa = Im(νa)
are fixed and do not scale as k →∞ (whereas Re(µa),Re(νa) are not fixed and need to be determined by the critical
equations), thus we can view µa, νa to be real in (F17) as far as the semiclassical limit is concerned. The domain of
na has been restricted to the single period na ∈ [−δ, k − δ] by (126) (δ > 0 is arbitrarily small), so the last equation
implies

sa = 0. (F18)

when ya ∈ [0, 2π) and ya is not infinitesimally close to 0 or 2π.
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