Four-dimensional Spinfoam Quantum Gravity with Cosmological Constant: Finiteness
and Semiclassical Limit

Muxin Han*
Department of Physics, Florida Atlantic University,
777 Glades Road, Boca Raton, FL 33431, USA and
Institut fir Quantengravitation, Universitdt Erlangen-Nirnberg, Staudtstr. 7/B2, 91058 Erlangen, Germany

We present an improved formulation of 4-dimensional Lorentzian spinfoam quantum gravity with
cosmological constant. The construction of spinfoam amplitudes uses the state-integral model of
PSL(2,C) Chern-Simons theory and the implementation of simplicity constraint. The formulation
has 2 key features: (1) spinfoam amplitudes are all finite, and (2) With suitable boundary data,
the semiclassical asymptotics of the vertex amplitude has two oscillatory terms, with phase plus
or minus the 4-dimensional Lorentzian Regge action with cosmological constant for the constant

curvature 4-simplex.

CONTENTS

I. Introduction

II. Complex Chern-Simons theory on S3\ T's

III.

Iv.

A.

Ideal triangulation of S3\ T's

. Complex Chern-Simons theory on ideal

tetrahedron

B
C. Octahedron partition function
D.

E. 83\ I's partition function

F.

Phase space coordinates of Py(gs\ry)

Coherent states

Spinfoam amplitude with cosmological constant

A.

=O Qaw

Simplicity constraint and vertex amplitude
1. First-class constraints:

2. Second-class constraints

SU(2) flat connections on S, and 4-gon
Finite spinfoam amplitude on simplicial
complex

Boundary data

Ambiguities

Semiclassical analysis

A.

B.

C.

Semiclassical analysis of Chern-Simons
partition function

Critical points of vertex amplitude and
constant curvature 4-simplex
Asymptotics of vertex amplitude

Conclusion and outlook

Acknowledgements

A plot for the polytope PB(oct)

B. Darboux coordinates of Py(gs\r;)

. Symplectic transformation

* hanm(At)fau.edu

e~

—_ =
—_ O O 0o Ut

13
13
14
16

17
18
18
19
19

22
25

25

26

26

27

28

D. Proof of Lemma III.1 29
E. Determining &;’s from 6 and ¢ 30
F. Critical equations 31

References 32

I. INTRODUCTION

The spinfoam quantum gravity is the covariant formu-
lation of Loop Quantum Gravity (LQG) in 4 spacetime
dimensions [1, 2]. There are 2 motivations to include the
cosmological constant A in the spinfoam quantum gravity:
Firstly, spinfoam models without A are well-known to
have the infrared divergence (see e.g. [3-5]), then A is
expected to provide a natural infrared cut-off to make spin-
foam amplitudes finite. Secondly, the simplest consistent
explanation for the cosmological accelerating expansion
is a positive A, so quantum gravity should reproduce A in
the semiclassical regime. Based on these motivations, a
satisfactory spinfoam quantum gravity with A is expected
to (1) define finite spinfoam amplitudes, and (2) consis-
tently recover classical gravity with A in the semiclassical
limit. This work covers both positive and negative A.

The semiclassical limit of LQG scales the Planck length
f{p — 0 while keeping the geometrical area a fixed. By
the LQG area spectrum a = y£%+/5(j + 1), the semiclas-
sical limit implies the SU(2) spin j — oo. We do not
scale the Barbero-Immirzi parameter . In presence of
A, we require in addition that A should not scale in the
semiclassical limit, then in 4d, the dimensionless quantity
k o< (JA[¢%)~! scales as k — oo in addition to j — oo,
whereas j/k o< |[A]a is fixed. This suggests that the semi-
classical limit of the spinfoam quantum gravity with A
should be a double-scaling limit, i.e. j,k — oo while
fixing j/k. In our following discussion, k becomes the
integer Chern-Simons level.

In 3 dimensions, The Turaev-Viro (TV) model [6] with
quantum group SU(2)4 (q = emi/k ke 7Z) is the spinfoam
quantum gravity with A that satisfy both expectations
(1) and (2): It gives finite amplitudes due to the cut-off
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of spins given by SU(2)4; The vertex amplitude, the 6j
symbol of SU(2),, recovers the Regge action of 3d gravity
with A > 0 in the semiclassical limit [7] 1.

In contrast, a satisfactory 4d spinfoam quantum gravity
with A has not been achieved to satisfy both expectations
(1) and (2) in the literature yet. There are 4d spinfoam
models based on quantum Lorentz group, as generaliza-
tions from the 3d quantum group TV model [8-10] (see
also e.g. [11, 12] for the LQG kinematics with quantum
group). These models produce finite spinfoam amplitudes
due to the spin cut-off from the quantum group. But
it is difficult to examine the semiclassical limits of these
models, due to complexity of their vertex amplitudes in
terms of quantum group symbols. More recently, there is
a more promising spinfoam model based on the SL(2,C)
Chern-Simons (CS) theory instead of quantum group [13].
The vertex amplitude AY of this model is defined to be
the CS evaluation of the projective SL(2, C) spin-network
function Wr, based on I's-graph embedded in S3 (see
FIG.1):

Ag = /DAD.lee*iSCS(A’A)‘I/Fs(A, f{), (1)

where Scg is the unitary SL(2,C) CS action with the
complex level t = k+ o (k € Z4, 0 € iR) that unifies A
and v by k = Re(t) = 22—, o = ilm(t) = ik,

BRGR!
t 2
Scg = — TI"(.A/\d.A-‘r.A/\.A/\A)
8 S3 3
t 2
o S3Tr<A/\dA+3A/\A/\A). 2)

Ur, reduces to the EPRL vertex amplitude [14] when
A, A — 0. The derivation of the model (1) from the BF,
theory is given in [13] and is reviewed briefly in a moment
around (3).

In the semiclassical limit (j,k — oo, o = iky — ioo,
keeping j/k fixed), and with suitable boundary condition,
AY reproduces the constant curvature 4-simplex geometry
and gives the asymptotics as 2 oscillatory terms, with
phase plus or minus the Regge action of 4d Lorentzian
gravity with A. The sign of A is not fixed a priori, but
rather emerges semiclassically and dynamically from equa-
tions of motion and boundary data, as shown in the
asymptotic analysis in [13]?. However the drawback of
AY is that the formal path integral in (1) is not mathe-
matically well-defined, thus makes the finiteness of the
spinfoam amplitude obscure.

1 The semiclassical limit in 3d is the same double-scaling limit since
a o< py/j(j + 1) becomes the length and k% o< (A€%)~ 1.

2 Firstly, the sign of A of boundary tetrahedra is determined by the
boundary data, then the critical equations from the stationary
phase analysis lead the sign of A to propagate between tetrahedra
and 4-simplices. The critical equations has no solution if the
boundary tetrahedra fails to have a common sign of A, then the
spinfoam amplitude fast suppresses in the semiclassical regime.

FIG. 1. I's-graph embedded in S3.

In this work, we present an improved formulation of
4d spinfoam quantum gravity with cosmological constant
A, which gives both finite spinfoam amplitudes and the
correct semiclassical behavior. We construct a new vertex
amplitude A,, which replaces the formal CS path integral
in A9 by finite sum and finite-dimensional integral, based
on the recent state-integral model of complex CS theory
[15-17]. The resulting A, is a bounded function of bound-
ary data. The spinfoam amplitude made by A, is finite on
any triangulation. On the other hand, we are able to ap-
ply the stationary phase analysis to the finite-dimensional
integral to show that A, indeed reproduce the constant
curvature 4-simplex and the 4d Lorentzian Regge action
with A (positive or negative) in the semiclassical limit.

The new vertex amplitude A, is closely related to the
partition function Zgs\p, of the PSL(2,C) = SL(2,C)/Z
CS theory on S3\I's, which is the complement of an open
tubular neighborhood of I's-graph in S3. I's ¢ S3 is dual
to the triangulation of S3 given by the 4-simplex’s bound-
ary. This duality delivers flat connections of the CS theory
to decorate the 4-simplex. We adopt the method proposed
in [16] to explicitly construct Zgs\p, as a state-integral
model with finite sum and finite-dimensional integral (see
Section II). Zgs\p, quantizes the moduli space Lgs\p, of
PSL(2,C) flat connections on S3 \ I's, and is a wavefunc-
tion of flat connection data on the boundary of S3 \ I's.
Given a manifold M, the moduli space of flat connection
with structure group G is the space of G-connections
modulo gauge transformations with vanishing curvature,
equivalent to the character variety of representations of
m1(M) in G modulo conjugation [18].

The new vertex amplitude A, contains only finite sums
and finite dimensional integrals thus improves the earlier
formulation (1). It is also different from the state-integral
model obtained in [19] which mainly focuses on the holo-
morphic block of CS and does not specify the integration
cycle 3. A, has both holomorphic and anti-holomorphic
parts of the CS theory. As a key to prove the finiteness,
the integration cycle is specified in A,.

3 In addition, the construction here uses different symplectic coor-
dinates from [19].



By the construction in [16], the state-integral model
converges absolutely if the underlying 3-manifold admits
a “positive angle structure”. Our construction of Zgs\r,
manifests that S \ I's indeed admits a positive angle

-,

structure (&, 5) € Pnew Where Prew is a 30-dimensional
open convex polytope. The finiteness of Zgs\r, is a pre-
requisite for the finiteness of A, and spinfoam amplitudes
on triangulations.

The simplicity constraint needs to be imposed in order
to define A,: The derivation of (1) in [13] starts from the
Holst-BF theory on a 4-ball B4, which is topologically
identical to a 4-simplex

SH.BF, = —;/64 Tr [(*+ i) B/\]-'(.A)]

,% B4Tr[(*+}y>BAB} (3)

Considering the formal path integral of Sy pr,, integrat-
ing out the so(1,3)-valued 2-form B gives the action

% fB4 Tr [(* + %) FA .7-'], which is a total derivative

and gives the CS action (2) on the boundary S® ~ 9B,.
By the feature of Gaussian integral, integrating out B
constraints |A|B/3 = F(A), which encodes B in the
s0(1,3) curvature F(A). On the boundary S3, F(A) is
the so(1, 3) curvature of the CS connection A. Classically
Suapr reduces to the Holst action of gravity with +|A|
when the simplicity constraint B = +e A e is imposed,
where e is the cotetrad 1-form. At the quantum level, the
simplicity constraint must be imposed to the CS partition
function in order to obtain the spinfoam vertex amplitude.

By the relation F(A) = |A|B/3, the simplicity con-
straint of B can be translated to constraining A. By
the CS symplectic structure, the resulting simplicity con-
straint can be divide into the first-class and second-class
components. The first-class components are imposed
strongly to Zgs\r, and restrict certain boundary data to
a discrete set {2jap fa<ps @, b =1,--+,5, where j,; € No/2
and jabp < (k—1)/2. {jabta<p are analog of SU(2) spins
associated to 10 boundary faces of the 4-simplex. Interest-
ingly a consistency condition “4d area=3d area” (similar
to [20]) gives restrictions to the positive angle structure

-,

(&, B). The second-class components of the simplicity con-
straint have to be imposed weakly. We propose coherent
states ¥, peaked at points p in the (subspace of) phase
space of A, and apply the simplicity constraint to restrict
p. The restricted p is equivalent to the set of 20 spinors
&4 € C? normalized by the Hermitian inner product, such
that for each a = 1,---,5, {jab, {ab Jo£a are subject to
the generalized closure condition of a constant curvature
tetrahedra [21]. In our model, all tetrahedra and triangles
are spacelike. We denote the p restricted by the simplicity
constraint by P3¢ As a result, the vertex amplitude is
defined by the inner product

- =

Au(j,f) = <\Ilpjjg ‘ ZS3\F5>' (4)

where the complex conjugate of ¥, is conventional. This
inner product is a finite-dimensional integral of L2-type.
We show that the integral converges absolutely and A,
is a bounded function of 7, 5 A, as an inner product (4)
resembles the idea of AY, but now A, is well-defined.

Given a simplicial complex K made by 4-simplices v,
tetrahedra e, and faces f, following the general scheme
of spinfoam state-sum models, the spinfoam amplitude
associated to K is defined by

(k—1)/2

A=Y T4 G [sag) [T 4 (7.6.8) TT4.G.9
s}y f e v
where j; associates to a face f and & = &1y, €a)e
associates to a tetrahedron e. The CS level k = | Aﬁigy e
P

provides the cut-off to the sum over half-integer 0 < j; <
(k —1)/2. The face and edge amplitudes A, A, are not
specified here except for requiring A, is an Gaussian-
like continuous function approaching 6(5_;, EZ) as j — oo.
Given the boundedness of A,, the amplitude A is finite
because the sum over j’s is finite and the integral over

{’s is compact. Here Y’ indicates that some special spins
are excluded in the sum.

When K has boundary, the boundary data of A are
j f,g; for boundary faces f and boundary tetrahedra e.
These data are deformations of the data of coherent in-
tertwiners in spin-network states. We conjecture that the
boundary states of A are g-deformed spin-network states
of quantum group SU(2)4 with g root of unity.

After accomplishing the finiteness of spinfoam ampli-
tude with A, we demonstrate the correct semiclassical
behavior fo the new vertex amplitude A, in Section IV.
A, in (4) as a finite-dimensional integral can be expressed
in the form fekz where Z depends on j’s only by j/k.
Therefore we use the stationary phase analysis to study
the semiclassical behavior of A, as j, k — oo keeping j/k
fixed: The dominant contribution of A, comes from criti-
cal points, i.e. solutions of the critical equation 6Z = 0.
Given any boundary data {jap,ab} corresponding to the
geometrical boundary of a nondegenerate convex constant
curvature 4-simplex, there are exactly 2 critical points,
which are 2 flat connections 2,2 € Lgs\r, having geomet-
rical interpretations as the constant curvature 4-simplex.
2,2 give the same 4-simplex geometry but opposite 4d
orientations. 2,2l are analogous to the 2 critical points
related by parity in the EPRL vertex amplitude [22]. As
a result, the asymptotic behavior of A, is given up to an
overall phase by

Av = (%eiSRegge+C+€/1/7€—iSRegge—C) (5)
x[1+0(1/k)],

where .44 are non-oscillatory and relate to the Hessian



FIG. 2. An ideal tetrahedron.

matrix of Z. In the exponents,

Ak~
= m (Z aab®ab — A|V4|> . (6)

a<b

SRegge

is the 4d Lorentzian Regge action with A of the constant
curvature 4-simplex reconstructed by 2 or 2. The gravita-
tional coupling is effectively given by (% = ﬁﬁ;ﬂy. C is an
undetermined geometry-independent integration constant.
This semiclassical result of A, is similar to the one related
to AY in [13, 23, 24].

Lastly, it is known that the formalism of state-integral
models that we use to construct Zgs\p; excludes the con-
tributions from abelian flat connections [15, 16, 25]. This
does not cause trouble for us since abelian flat connections
only relate to degenerate tetrahedron geometries, which
we exclude in the model.

The paper is organized as follows. In Section II we
construct the state-integral model of Zgs\r,, including
the discussion of ideal triangulation of S® \ I's, a brief
review of PSL(2,C) CS theory on an ideal tetrahedron,
defining convenient phase space coordinates, constructing
octahedron partition function then the partition function
Zgs\ry, and the discussion of coherent states. In Section
ITI, we impose simplicity constraint and construct A,,
then we construct the spinfoam amplitude A on simplicial
complex and prove the finiteness, we also discuss the rela-
tion between boundary data of A and LQG spin-networks,
and various choices that we make in the definition of A.
In section IV, we derive the asymptotic behavior of A,
in the semiclassical limit.

II. COMPLEX CHERN-SIMONS THEORY ON
S3\ T5

The purpose of this section is to construct the complex
CS theory on the 3-manifold S3 \ I's. In Section ITA,
we firstly review the ideal triangulation of S3\ I's (see
also [19]). As the building block, the CS theory on the
ideal tetrahedron is reviewed in Section IIB. Then as an
intermediate step, we construct the CS partition function
on the idea octahedron in Section IIC, since the ideal

triangulation of S® \ I's is made by 5 ideal octahedra.
Section IID define the phase space coordinates of the
CS theory on S3\ I's and the symplectic transformation
from the phase space coordinates of the CS theory on
the octahedra. The symplectic transformation defines
the Weil-like transformations which relate the octahedron
partition functions to the CS partition function on S3\I's,
as discussed in Section ITE. In Section ITF, we discuss
the coherent state of the CS theory, as will be useful for
the spinfoam model.

A. Ideal triangulation of S\ T's

The 3-manifold M3 = S\ I's is the complement in
S3 of an open tubular neighborhood of T's-graph (see
FIG.3). M3 can be triangulated by a set of (topological)
ideal tetrahedra. An ideal tetrahedron A is a tetrahedron
whose vertices are located at infinities. It is convenient
to truncate the vertices to define the ideal tetrahedron
as the “truncated tetrahedron” as in FIG.2. There are 2
types of boundary components for the ideal tetrahedron:
(a) the original boundary of the tetrahedron, and (b) the
boundaries created by truncating tetrahedron vertices.
Following e.g. [15, 26, 27], the type-(a) boundary is called
geodesic boundary, and the type-(b) boundary is called
cusp boundary.

M3 also has 2 types of boundary components: (A) the
boundaries created by removing the open ball containing
vertices of the graph, and (B) the boundaries created
by removing tubular neighborhoods of edges. Here each
type-(A) boundary component is a 4-holed sphere. Each
type-(B) boundary component is an annulus which begins
and ends at a pair of holes of two type-(A) boundaries.
The type-(A) boundary is called the geodesic boundary
of Ms, and the type-(B) boundary is called the cusp
boundary. An ideal triangulation decomposes M3 into a
set of ideal tetrahedra, such that the geodesic boundary
of Mj is triangulated by geodesic boundaries of the ideal
tetrahedra, while the cusp boundary of M3 is triangulated
by cusp boundaries of the ideal tetrahedra. This ideal
triangulation of S3\T's is not the triangulation of S* dual
to I's (the latter is given by the boundary of the 4-simplex).
It is important to distinguish this two triangulations.

Here the geodesic boundary of S3\ I's consists of five 4-
holed spheres {S,}2_;, while the cusp boundary consists
of 10 annuli {£4p }a<p. The I's-graph in FIG.3 motivates to
subdivides S® \ I's into 5 tetrahedron-like regions (5 grey
tetrahedra in FIG.3, whose vertices coincide with the ver-
tices of the graph). Every tetrahedron-like region should
actually be understood as an ideal octahedron (with ver-
tices truncated). The octahedron faces triangulate the
4-holed spheres, and the octahedron cusp boundaries (cre-
ated by truncating vertices) triangulate the annuli. The
way of gluing 5 ideal octahedra to form S\ I's is shown
in FIG.3. Each ideal octahedron can be subdivided into
4 idea tetrahedra as shown in FIG.4. A specific way of
subdividing the octahedron is specified by a choice of



octahedron equator. As a result, S3\ I's is triangulated
by 20 ideal tetrahedra.

Given M3 with both geodesic and cusp boundaries, a
framed PSL(2,C) flat connection on M3 is an PSL(2,C)
flat connection A on Ms with a choice of flat section s
(called the framing flag) in an associated CP' bundle
over every cusp boundary (see e.g. [27-29]). The flat
section s can be viewed as a C? vector field on a cusp
boundary, defined up a complex rescaling and satisfying
the flatness equation (d — A)s = 0 (d is the exterior
derivative). Consequently the vector s(p) at a point p of
the cusp boundary is an eigenvector of the holonomy of
A around the cusp based at p. The eigenvector fixes the

J

Oct(1)

Oct(3)

Weyl symmetry. Similarly, a framed flat connection on
OMj3 is a flat connection 2 on M3 with the same choice
of framing flag on every cusp boundary. In addition, if
a cusp boundary component of certain 3-manifold is a
small disc, such as the boundaries created by truncating
of tetrahedron vertices, the holonomy of any framed flat
connection 2 around the disc is unipotent. The moduli
space of framed PSL(2, C) flat connections on 9(S3\I's) is
denoted by Py(s3\r,) which is a symplectic manifold with
the Atiyah-Bott symplectic form. The moduli space of
framed PSL(2, C) flat connections on S\ T'5 is denoted by
Lgs\r, which is a Lagrangian submanifold in Py gs\ry)-

Oct(2)

Oct(4)

Oct(s)

FIG. 3. The decomposition of S* \ T's with 5 ideal octahedra (red), each of which can be decomposed into 4 ideal tetrahedra.
The truncations of octahedron vertices are not drown in the figure. The faces with green label a,b, ¢, d, e, f, g, h,1,j are the faces
where a pair of octahedra are glued. Two ideal octahedra are glued through a pair of faces having the same label. In each ideal
octahedron, we have chosen the edges with red label z,y, z, w to form the equator of the octahedron. This ideal triangulation

firstly appears in [19].

B. Complex Chern-Simons theory on ideal
tetrahedron

Given the ideal triangulation, the building block of the
CS theory on S®\T'5 is the theory on an ideal tetrahedron
A. In this subsection, we review main results of the CS

(

theory on A, and refer to e.g. [15, 16, 27| for details.
The boundary 0A of the ideal tetrahedron is a sphere
with 4 cusp discs. We denote by Pya the phase space of
PSL(2,C) CS theory on A. Pya is the moduli space of
PSL(2, C) flat connections on a 4-holed sphere, where the
holonomy around each hole is unipotent.



FIG. 4. Chosen the equator edges with labels z,y, z,w, an
ideal octahedron can be subdivided into 4 ideal tetrahedra
by drawing a vertical line connecting the remaining 2 vertices
which doesn’t belong to the equator. Vertices are truncated,
although truncations are not shown in the figure.

The moduli space of PSL(2,C) flat connections on a
n-holed sphere can be described as the following: A 2-
sphere in which n discs are removed is a n-holed sphere.
We make a 2d ideal triangulation of the n-holed sphere
such that edges in the triangulation end at the boundary
of the holes. For example, the boundary of the ideal
tetrahedron is an ideal triangulation of the 4-holed sphere.
The 2d ideal triangulation has 3(n — 2) edges. Each
edge F associates to a coordinate g of the moduli space.
Given a framed flat connection, xg is a cross-ratio of 4
framing flags s1, s2, 83, s4 associated to the vertices of the
quadrilateral containing F as the diagonal (see FIG.5),

<81 A 82> <S3 A S4>
<51 A 83> <$2 A S4>

Tp = (7)
where (s; A s;) is an SL(2,C) invariant volume on C?,
and is computed by parallel transporting sq1,--- ,s4 to a
common point inside the quadrilateral by the flat con-
nection. The set of {zg}g are the Fock-Goncharov (FG)
edge coordinates of the moduli space of PSL(2,C) flat
connections on the n-holed sphere. The correspondence
between {zg}p’s and framed PSL(2, C) flat connections
on S, is 1-to-1 [29]. By the “snake rule” [27, 28], PSL(2, C)
holonomies on the n-holed sphere can be expressed as
2 x 2 matrices whose entries are functions of {zg}. In
particular, the eigenvalue A of the counterclockwise holon-
omy (of the flat connection) around a single hole relates
to zg by

(—ap) = A2. (8)

E around hole

It is convenient to lift it to a logarithmic relation
Y (xe—im=2L, 9)
E around hole

where zp = eX#, X\ = el.
natural Poisson structure with

The moduli space has a

{xE,XE'} = €B.8, (10)

where €g g € 0,41, %2 counts the number of oriented
triangles shared by E, E’, eg g = +1 if E occurs to the
left of E in a triangle. Note that the moduli space of
PSL(2,C) flat connections on any n-holed sphere is not a
symplectic manifold unless A of all holes are fixed.

81 53

TE

59 §4

FIG. 5. The quadrilateral in the 2d ideal triangulation for
defining zg

Applying to the boundary of the ideal tetrahedron, we
denote the FG coordinates at edges around a given hole
(cusp disc) by z,2', 2" (see FIG.2). The trivial holonomy
around each hole gives that

22'2" = —1 (11)

The similar conditions for all 4 cusps identify the FG
coordinates at opposite edges. As a result, we find

Poa ={z,2,2" €C*| 22" = -1} ~ (C*)*. (12)

Psa is a symplectic manifold since the holonomy eigen-
values at all holes are fixed. The Atiyah-Bott symplectic
formis Q = dzz,j/ /\%. We also define the logarithmic phase
space coordinates Z = log(z), Z' = log(2'), Z" = log(z")
with canonical lifts that satisfy

Z+7Z'+ 27" =in, (13)
{Z, ZH}Q = {Z//v Z/}Q = {Z/v Z}Q =1L (14)

The PSL(2, C) CS theory at levels k € Z, o € iR endows
the following symplectic form wy , on Poa:

1 __
(2 +tQ),

7

Wh.o =k+o, t:=k—o(15)

k, o relates to the cosmological constant A by

_ 127
|A[63y

o =iky (16)

where 7 is The Barbero-Immirzi parameter [13]. We use



the following parametrization to change from v to b [16]

1-v 5, 1—iy
) —_ — = 17
T 1+ (17)
dmi  2mi dmi 2w
— =" (1+V), —="-(1+b"7). (18
t k ( ) ? k ( + ) ( )
with complex b satisfying
Re(b) >0, Im(b)#0, |b=1. (19)
We reparametrize z, 2" and define z,2” by
[2mi .
Z = exp T(*Zbﬂ — m)} , (20)
Z =exp 2mi (—=ib™ '+ m) (21)
L k ’
Fors
2" = exp %(—ibu — n)} , (22)
- :2 )
ZI/ = exp %Z (—’L.b_ll/ + n):| s (23)

where (m,n) are real and periodic (m ~ m+k,n ~ n+k).
When (u, v) are real, Z,z" are complex conjugates of z, 2.
But in the following, (i, v) will be analytic continued away
from the real axis. wy , written in terms of p, v, m, n gives
27

W,o = ?(du Adp —dn Adm). (24)

The quantization of (Ppa,wk,») promotes p, v, m,n to
operators wu, m, v, n satisfying the commutation relations

k
27i’
The variables m,n are both canonical conjugate and pe-
riodic, so the spectra of m, n are discrete and bounded:

m,n € Z/kZ. A representation of (25) is the kinematical
Hilbert space

[1,v] = [n,m] = [v,m] = [p,n] = 0. (25)

Hb) = 2(R) @ C* (26)

For any wave function f(u/m) € #59) where 1 € R and

kin
m € Z/kZ, the actions of p, m, v, n are given by

_ 27 _ 2mi
e F M f(ulm) = e ™ f(ulm),
27

e f(ulm) = f(ulm + 1).
(27)

pf (ulm) = pf (um),
v (plm) = 50, (ulm),

We also define the operators corresponding to
Z,Z”,z, 3"

[2ms

z = exp 7(—ibu - m)} , (28)
Z =exp @ (—ib_lu +m) (29)
L k ’
I (2w,
z" =exp T(—Zbl/ —n)|, (30)

~ 27
2" =exp |:]:-Z (—ib_ll/ + Il):l , (31)
They satisfy ¢- and g-Weyl algebras
zz// — qZ//Z, gg// — Z]vg//g7
23" — g//z7 2" — z//g7
47 211 9
g=exp| —~ | =exp 7(1+b) , (32)

= exp (ii”) = exp [2;” (1+ b‘Q)] - (33)

The above discussion focuses on flat connections on the
boundary 0A. Only a subset of the flat connections on the
boundary can be extend into the bulk. The moduli space
of PSL(2, C) flat connection on the ideal tetrahedron A,
denoted by La, is a holomorphic Lagrangian submanifold
in Poa. La can be expressed as the holomorphic algebraic
curve in terms of z, 2" (see e.g. [15, 27]):

La={z""42"-1=0} CPoa, (34)

and similarly for the anti-holomorphic variables z,z”. In
the quantum theory, we promote the algebraic curve to
the quantum constraints imposed on wave functions

(7 42" = 1) Ua(plm) = (271 + 2" — 1) Ua(u|m) = 0.

The solution is the quantum dilogarithm function (see e.g.
[16, 30-32])

> 1 _ qj+1z_1
H 1-g51 lq] <1,
=0
waGem =0 (33)
1@tz
H EpEp ey gl > 1.
PR

U (pm) is the CS partition function on the ideal tetra-
hedron A. WA (u|m) defines a meromorphic function of
u € C for each m € Z/kZ, and is analytic in b in each
regime Im(b) > 0 and Im(b) < 0 (correspondingly |¢| < 1
and |g| > 1). The poles and zeros of WA (u|m) are

Hpole/zero = 1bu + ib" v, with w,v€Z,

: >
v— v — —m 4+ kT, Zeroes u,v > 1, (36)
poles: u,v < 0.
Poles of WA are in the lower-half plane
Im(ppote) = Re(b)(u+v) < 0. (37)

U (plm) is holomorphic in g when Im(u) > 0.

The asymptotic behavior of Wa (u|m) as Re(u) — oo
with fixed Im(p) is

. - 0(1) Re(p) = 400
alulm) =9 0 [% (u—2Q)% + 0(1)} Re(p) — —00’
Q=b+b1t>0. (38)



The asymptotic behavior indicates that Ua (u|m) does

not belong to the Hilbert space ’Hg:-;f) but is a tempered
distribution. Wa (p|m) is analytic in the upper-half plane
Im(p) > 0. We have the following useful observation from
the asymptotic behavior: Let o > 0, then

'e*%ﬁ”\PA(u + ia|m)‘

N {eXp [—27Bu]

B0 (39)
1 — —00

exp [~ FFpla+ 8- Q/2)]
Therefore e~ % PHW A (1 + iam) is a Schwartz function of
w if a, B is inside the open triangle P(A):

P(A) = {(a, B) € R?|a, 8> 0, a+ < Q/2}. (40)

2mi

The Fourier transform [ due™ Y#Wa (p|m) is convergent
if the integration contour is shifted away from the real axis
while o = Im(p), = Im(v) belong to PB(A). a, can
be understood as angles associated with coordinates z, 2"
in the context of hyperbolic geometry. (o, 8) € PB(A) is
called a “positive angle structure” of A [16, 17].

C. Octahedron partition function

Four ideal tetrahedra are glued to form an ideal octa-
hedron as shown in FIG.4. The phase space Pgoct is a
symplectic reduction from 4 copies of Pga: The FG edge
coordinates {xg} of Pyoct a product of the tetrahedron
edge coordinates. In general for any edge on the boundary
or in the bulk, it associates [27]

TE = 1_[(,27 2, 2" incident at E) or
Xe =Y (Z,7',2Z" incident at E), (41)

as product or sum over all the tetrahedron edge coordi-
nates incident at the edge F. For boundary edges, x g are
the FG coordinates of Pgoct. The lift of xg = log(zg) is
determined by the lifts of Z, Z’, Z" of ideal tetrahedra.
For the bulk edge, g or xg is rather a constraint which
is denoted by cg = exp(Cg), satisfying

cg =1 or Cg=2mi, (42)

because the flat connection holonomy around a bulk edge
is trivial. We denotes the edge coordinates in 4 copies
of Poa by X,Y,Z W and their double primes. All the
edge coordinates of Pyo¢t are expressed in FIG.4, where
we have a single constraint at the bulk edge

C=X+Y+Z+W=2mi (43)

We make a symplectic transformation in Pya X
Paoa X Pyga X Paa from the tetrahedron coordinates
(X, XN (Y, YN, (Z,Z"),(W,W") to a set of new symplec-
tic coordinates (X, Px), (Y, Py), (Z, Pz), (C,T'), where

PX — X// _ W//, PY — Y// _ W”,

Py=7"-W' T=w" (44)

and each pair are canonical conjugate variables, Poisson
commutative with other pairs. The octahedron phase
space Paoct is a symplectic reduction by imposing the
constraint C' = 27 and removing the “gauge orbit” vari-
able I'. A set of symplectic coordinates of Py, are given

by ¢ = (X,Y,Z), # = (Px, Py, Pz). The Atiyah-Bott
symplectic form 2 implies

{pi,mj}a =6i5, {0i,di}a ={m,mj}a=0. (45)

The CS partition function on the ideal octahedron, Z,,
is a product of 4 tetrahedron partition function followed
by the restriction on the quantum deformed constraint

surface e¢ = ¢, e¢ =g *:

Zoct (x, 1y iz|mx , my ,mz)
= WA (ux|mx) Va (uy|my) Ya (pzlmz)
WA (iQ — px — py — piz] —mx —my —mz)

The octahedron partition function gives the following
asymptotics behavior

‘6—277’ 2P Zoew ({i + i} | {mi})

e—%#x(ax-i-ﬁx-i-ay-i-az—Q/?) px — 00
~ e_zTﬂ-NX(aX'f‘BX_Q/Q) Ux — —00
where ¢ = X,Y,Z. The similar behaviors are sat-

isfied for puy — Z£oo or py — =Foo. Therefore
e~ T Xibini 7, ({pi +iog} | {m;}) is a Schwartz func-
tion of ux, uy,pz, if (ax,Bx,ay, By, az,Bz) € RO is
contained by the open polytope PB(oct) defined by the
following inequalities

aXaaY7aZ>07 aX+aY+aZ<Q7

ax+5x<%, aY+6Y<%; az+ﬁz<%7

Q Q
ax+ay+az+ﬂx>§, ax+ay+az+ﬂy>§,
ax +ay +az+ Pz > % (46)

To see P(oct) is not empty, Appendix A shows a plot
FIG.9 of the intersection between B(oct) and the plane

of ax = ay = agz, fx = By = Bz. (&,F) € P(oct) is a
positive angle structure of the ideal octahedron.
Following [16], we consider any 2/N-dimensional phase
space (P,w) with Darboux coordinates (u;,m;) and
(vi,m;) such that w = 223" (dv; A dp; — dn; A
dm;). The phase space associates with an “angle space”
(Pangle; Wangle) Whose universal cover is T' *RY ~ RV the

4 The quantum deformation is necessary to make the partition
function invariant under 3d Pachner move (see e.g. [15]).



Darboux coordinates of Paygle are

so that wangle = Zfil dpB; Nda;. Given a 2N-dimensional
open convex symplectic polytope P € Paygle, we define
7(*B) to be the projection of 9P to the base of T*RY with
coordinates &, then define

= {ieCY |Im(7) en(P)}.  (48)

We define the functional space

;= Im(,ul>7

strip(‘P)

Fyp = { holomorphic functions f : strip() — C s.t.

2w =

¥(@, 5) € P, the function e~ % Bf(u +1id) € S (RV)

is Schwartz class }

We have the convergence for any f € Fip

/dN,ue

when the integration contour is shifted away from the real
axis while @ = Im(f7), 5 = Im(%) belong to B. f € Fp
implies the Fourier transform of f also belongs to Fy.

To accommodate partition functions of complex Chern-
Simons theory at level k, we define

BT F(jT) < 00 (49)

FY) = Fpoc (Vi)®Y, Vi~Ck (50)

As examples the tetrahedron partition function WA be-
longs to ]-' ( A) with V =1, and the octahedron partition

function Z,.; belongs to FB - with N = 3.

B(oct)

D. Phase space coordinates of Py gs\r;)

The geodesic boundary of S\ I's consists of five 4-
holed spheres, denoted by So—;.... 5. In FIG.3, each S,
are made by the triangles from the geodesic boundaries
of the octahedra. We compute all FG edge coordinates
XSn% (a labels the 4-holed sphere and mn labels the edge

E) of flat connections on Sy=1.... 5 by Eq.(41), and list
them in Table I in Appendix B.

The phase space Py(g3\r;) is the moduli space of framed
PSL(2,C) flat connections on the 2d boundary 9(S3\ I's).
We choose the Darboux coordinates of Py(gs\ry) as fol-
lows: First of all, the complex Fenchel-Nielsen (FN) length
variable \2, = e?Let are squared eigenvalues of PSL(2,C)
holonomies meridian to the 10 annuli ¢,, connecting 4-
holed spheres S, and S,. They relate edge coordinates
Xﬁf% by (9). Ten 2L, are linear combinations of of
(Xay Px,), Yo, Py,),(Z4, Pz,) from 5 Oct(a) with inte-
ger coeflicients. Their expressions are given in Appendix
B. The resulting L,; are mutually Poisson commutative
and commuting with all edge coordinates ng%

All L., commutes with 4-holed sphere edge coordinates

Xsr% Py(s3\rs) is complex 30-dimensional. Among the

Darboux coordinates, the position variables include ten
2L and 5 variables X, (¢ = 1,---,5), one for each

4-holed sphere. We choose X, to be one of Xs,%
=g = =,
Xi=xigh A= (51)

We denote the conjugate momentum variables by 7,
and ),, and denote

g[ = (2LabaXa)7 gzl = (%baya)a

where I labels the boundary components (£4p,S,). The
momentum variables T, conjugate to 2L, are called the
twist variables. On each S,, the momentum variable ),
conjugate to X, turns out to be also FG edge coordinates
up to sign and 27i.

I=1,--,15,

Vi=xsy Y=Y, Vs=xi - 2mi,
Vi=—xD +2mi, Vs =Y —2mi. (52)

Explicit expressions of 2Ly, Tap, Xu, V. in terms of
(Xa, Px,)s Yo, Py,), (Za, Pz,) are given in Appendix B.

There exists a linear symplectic transformation from

® = (X,,Y,,Z,)>_, and I = (Px,,Py,,Pz,)5_, to
9P
9 A B ) ai
(5)=(Yeno o) (@)= (5) o

such that all entries in A, B, are integers. t is a 15-
dimensional vector. A, B are 15 x 15 blocks satisfying
that AB” is a symmetric matrice. Matrices A, B, are
given explicitly in Appendix C

Following from (45), the Atiyah-Bott symplectic form
2 on Py(ss\r,) is expressed as

15
Q= Zd:@] ANdZ2;

I=1

5
=2 dTap AdLap + »_ dVa AdX,.  (54)

a<b a=1

The coordinates Q_: 2 are used below for constructing the
CS partition function of S3\ I's. We sometimes use the
notations 2., = 2Lap, 2o = Xay, Lot = Tavy Lo = Va
in our following discussion.

It is remarkable that there is no additional constraint
for gluing octahedra to form S3 \ T's, since gluing octa-
hedra does not produce additional bulk edge. Therefore
Pa(sa\rs) = Xi:lpaoct(a)- It is simply a symplectic trans-
formation from the octahedra Darboux coordinates Cﬁ, i
to P1,2; of Py(ss\r,)- The moduli space of framed flat
connections on each octahedron is a Lagrangian subman-
ifold Loct(a) C Pdoct(a) Then Xa 1£oct(a) ~ £S3\F5
a Lagrangian submanifold in Xazlpaoct =~ Py(s3\T's)-



Given any five framed flat connections on five octahedra
respectively, they define a flat connection on $3 \ T's.

E. S%\T; partition function

The symplectic matrix in (53) can be decomposed into
generators

10

(P 6)=(03) (ame 1) (B 9). @)

We start with a product of 5 octahedron partition
functions, each of which associates to an octahedron in
the decompostion of S3\ T's

5

Z (i | m) = [ Zoet(pxos pva iz lmx, . my,,mz,)
a=1
€ }‘m(oct)xs (56)

The generators of the symplectic transformation is repre-
sented as Weil-like action on Z, according to the order
in (55) 15, 16].

1. U-type transformation:

U= (—(B_l)T 0 ) (57)

0 -B

Zi(i | m) = (U Zx)(ji | )
= \/det(—B) Z (-B"ji | -B"ni), (58)
where /det(—B) = 4i. That all entries of B are integers

guarantees that Z; is well-defined for m € Z/kZ. In
addition, Zy € ]:(k)c

function is Schwartz class when (&, 3) € B(oct)*?,

«5 indicates that the following

—%”<—BT%7>'EZX (~BT i +id | m)
FiCBO 7z, (BT (i —i(BH)T@) | 1) . (59)
where u; € R. Therefore Z; belongs to ]ﬂgl) where

P1 = U o P(oct)*® with U acting on the angle space
Pangle as symplectic transformation.

2. T-type transformation:
I o0

Zui | 1) = (T & 20)( | ) (61)
= (=1)™ - ABT i, 5 (—ji-ABT - fi+mi- ABT m)Z1(ﬁ|7ﬁ).

(

All entries of AB” are integers so that Zy is well-defined
for 7 € (Z/kZ)"S. Z; € Fy)

function is Schwartz class when (&,

implies that the following
B) € Bu,

e FIAZ(ji+ i | m)
= phase - e~ FH(F+ABT-) 7, (E+ia|m). (62)

Therefore Zs belongs to f;g? where Po =T o P;.

3. S-type transformation:

S:(‘I)_OI>, (63)

Zs(f | m) = (S Z2)(/7t ) (64)
1 2 (i) (|
=I5 > /d“ —F ) Zo(i7 | ).
Ae(Z/kL)15

If we set o; = Im(y;) and B; = Im(;) (i =1,---,15),

2mi

D) 7,7 | 7) = [e%@ReW)ZQ(Re(ﬁ)HE | ﬁ)}

is a Schwartz function in Re(7), when (§, —a@) € P, (the
function in the square bracket is a Schwartz function,
e *F [FRe(@)Re(P)] g o phase), or equivalently

(@, B) € Pz =S oPy =

Given any (@, 0) € %Bs, let Im(p) = «; and the
integration contour C defined such that Im(v;) = f;,

SoToU oP(oct) 5. (65)

then Z3(ji | m) converges absolutely, and Z3 € ]:;53’?. As
far as the contour C satisfies the condition Im(v;) = j;,
(@, 5) € Ps, Zs(ig | m) is independent of choices of C, i.e.
choices of §;, due to the analyticity of Z5 and the fast
decay of the integrand at the infinity.



4. Affine shift °:
(D) () e(i)
Zgars (1 | M) = (07> Zs)(ji | )
A <ﬁ— ?ﬂ m) 67
We have Zgs\r, € fé_;kjew, where

Prow = 00 Py = 00 S o T o U o Ploct)*?,  (68)

[ a a'N _(a+gt
UF' ﬂ—' — B», = B—» .

The resulting Zgs\p (fi | 711) is the CS partition function
on S%\ T's. Puew is obviously non-empty since P(oct)
is non-empty. Every (&, E) € Prew IS a positive angle
structure of S\ I's, and leads to the absolute convergence
of Zga\r, (i | m).

/j, m relate to {Q[, é]}[;l’... ,15 by

k(2 +2) ik (2, - 2))

=— = 69
M byt ™ S R
9} = 91 —inty, g?Zé[—iﬂ't] (70)
or in terms of exponentials
o
(e —exp | 2 it —mp)| . ()

(—1)e?r = exp [ka (=i~ pur +m1)] . (712)

Consider the shifts 2y — 25 + 2mipy, QNI — él —
2mipr (pr,p; € Z) which leave e?1, e?" invariant, Fixing
Im(pr) = oy implies py = py, then the shifts reduce to

the gauge freedom my — my + kpr in Z/kZ.

F. Coherent states

Given the 4-holed sphere §,, we transform the corre-
sponding phase space coordinates from X, V,, Xy, Ve, to
Ma» Va7 ma» na by

21

X, —imt, =
(2 2

(—ibpa —ma), (73)

5 The affine shifted classical coordinate X + it (¢t € Z) has the
quantum deformation X + (im + %)t when entering the partition
function [15]. In terms of the exponential variables, the affine shift
is given by (—q%)tex = (—q%)t:v. Here we define q% — 3 where
h= %(1 +b?). If we parametrize eX = exp[% (—ibp — m)],

the affine shift X — X + (im + %)t corresponds to p — p +

%i (b + bil) t, m — m, and adding an overall (—1)? to eX.
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~ 271
X, —imty = %(_ib_lua + ma)7 (74)
2mi, .
Vo = T(flbl/a - na)a (75)
~ 271
ya - % (_ib_lya + na) 3 (76)

where (1, is the component in [ € strip(Puew). These
coordinates parametrize PSL(2, C) flat connections on S,
with fixed e?Let at holes. The moduli space of PSL(2,C)
flat connections on S, is locally C%, but fixing et re-
duces the space to locally C2. Let’s fix Im(u,) = o, and
focus on degrees of freedom Re(pq), mq. In the following
discussions of this section, we use p, € R to represent
Re(pq). We define the Hilbert space

Hs, = L*(R) @c Vi, Vi ~CF. (77)

containing functions of u, € R,m, € Z/kZ. Operators
Ha, Vo, Mg, N, o0 Hg, are defined in the same way as in
(27). We suppress the a index in following discussions of
this section.

We firstly focus on L?(R) and define the “annihilation
operator” and coherent state 1,(u) labelled by z € C.
¥, (1) satisfies

% (\/?qui\/%V) W) = @w?(u»

The solution is
/4 , 5
wg(u) _ <2> e*z(#*%ﬁ R,e(z)) eiﬁplm(z)’ (78)

where 19(p) is normalized by the standard L2-norm. The
coherent state label z relates to the classical phase space
coordinates pg, vy be

z = %2%(/10 +ivp). (79)

We can multiply to 9 a prefactor that relates to the
polytope Brew, namely, for each S, we define

Uz, (:ua) = e_\/iﬂaRe(Za) (z)a (:ua)7 (80)

-,

where (3, is the component in (&, 3) € Prew. The prefac-
tor does not affect the semiclassical behavior of 1, but re-
lates to the finiteness of the amplitude. Note that {3,}5_;
cannot be all zero, because e.g. f; = az, +az, > 0 by
(46). It is still a viable choice to work with the normalized
coherent state ¢ga, then certain requirements should be
implemented to the spinfoam edge amplitude, we come
back to this point in Section IITE.

We denote the coherent state in Vi, by £, ,)(m) where
(xz,y) € [0,27) x [0,27) and m € Z/kZ [33],

2 ikxy

Ee () = (k)ie- S (s1)



% e—ﬁ(z"T’"—Q‘n'n—z)ze—%y(%Tm—%rn—z).

ne”Z

(z,y) relates to the classical phase space coordinates
mo, no by

o
ok

&(a,y) (m) satisfy the over-completeness relation in Vi

mg, mod 27 (82)

k _
yrs) / dedy §(a.y) (M)E(ay) (M) = Ommr- (83)
7 T2
We define coherent states in Hs, by tensor products

wza ® g(pa,qa) € HSa

Zas Zas Ta, Yo coordinatize the part of the phase space asso-
ciate to S, they form a coordinate system on the moduli

J

(84)

Zgnrs (1) = (V) | Zso\ry)@atis, =

{mq}€(Z/kZ)5

where ji +id € strip(Pnew). Zs3\r;(¢) is a function of

L= ({,uab + iy, mab}a<b> {Zm La, ya}izlv {am ﬁa}i:l) >

> [ Hdua Ego\ra i+ 16 | ) U, ({p1a} | 1))
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space of PSL(2,C) flat connections on S, (with fixed
e?Lav), We have the following relation
&za oy g(a:a,ya) = wia ® g(la,*ya)' (85)

We product the coherent states over five S,

5
= ] ¥= (a)€(on ) (Ma) € ®aMs,

a=1

P = {Z(Laxaa ya}i:l'

Uy ({pa}t | {ma})

(86)

where p1, € R. The partition function Zgs\r, is a function
of ji,m including p,,m,. We consider the (partial) L?
inner product between Zgs\r, and ¥, (this may be under-

stood as Zgs\r, acting on W, since Zgs\p, is a tempered
distribution),

(87)

thap € R, My € ZJEKZ, 24 € C, (z4,yq) € T> (88)

which includes the position variables of annuli and both the position and momentum variables of 4-holed spheres.

¢ determines a unique PSL(2

by ftab, Map of the same ¢ determine a unique PSL(2

,C) flat connection on each S,: Given an ¢ and by (79) and (82), z4, Z4, Y, determine
phase space coordinates that relate to FG coordinates by (73) -

(76)). The resulting FG coordinates and e?’=> given

,C) flat connections on S,.

Theorem II.1. Fizing the annulus data {fiab, Mabta<b, | Zs3\r; (¢)] is bounded for all {20, Tas Ya }o_q -

Proof: In Zgs\p, (1), the sum over 7' is finite, and for any m,

ky(y+iz)
am

v2e~

Vs (

3 (Fr e —iy) eTF)

g(m,y) (m) =

is smooth in (z,y) € [0,27) x [0, 27)

k3/4

~ T2, thus [£(,,)(m)| is bounded on T? for any m. Therefore the boundedness of

Zgs\r, () is implied by the boundedness of the following integral for all 17

e—\/izaﬁaRE(Za)/ Hdua Zga\r (/i
"

_f BaRe Za)
S (k) Z / Hdlj‘a

—_

=32

= Ck% eZa k

In the third step we use Zgs\p, € f%kiw , thus as a

5 5
. 1T duly Zsor, (' + id@ | 1) H -, (i)
a=1

i +aid | m

Zgonr, ([ +id | /) e F o Potte

—\fz BaRe(2q) ! —12a<#
/Sgduae k

Hw

5
| | R A G

a=1

’

c(_LRQ(ZH,))2 2z 5 3.0
L V2 e k a Fata

{
,5), ¥ (&, B) € Puew
o™ ¥ Xatale Zoy p (' +id | M) € S(RY),

function of ), (a=1,---

(90)



C'is the upper bound of |e™ % Za #afa Zga\p, ([ +id | m)|.
O

III. SPINFOAM AMPLITUDE WITH
COSMOLOGICAL CONSTANT

The purpose of this section is to impose the simplicity
constraint to Zgs\r, (¢) in order to relate the CS partition
function to the spinfoam vertex amplitude in 4d. The
simplicity constraint turns out to reduce the PSL(2, C) flat
connection to PSU(2) on five S,’s. Based on the resulting
vertex amplitude, we define the spinfoam amplitude with
A on any simplicial complex and prove its finiteness, as
well as discuss several related perspectives.

A. Simplicity constraint and vertex amplitude

In the simplical context with A = 0, the simplicity
constraint (in the EPRL/FK model) imposes that for
any spacelike tetrahedron e, there exists a timelike unit
vector N' in 4d Minkowski space such that Bf/ N; =0
where BJICJ (f =1,---,4) are bivectors associated to 4
faces f. The simplicity constraint and closure condition
endow every e a convex geometrical tetrahedron in flat
space. Indeed, BJU satisfying the constraint are equiva-
lent to 3d vectors afnfc = %EIJKLN]BKL (nfn; =1) in
the plane normal to NZ. Then the BF closure condition
ij,l B! = 0 implies Zjﬁ,l asny = 0, which endows
e a convex geometrical tetrahedron (whose face areas
and normals are ay and nﬁ) by Minkowski’s theorem
[34]. At the quantum level, the first-class part of the sim-
plicity constraint, i.e. the diagonal simplicity constraint
eUKLBJIc"B;(L = 0 are imposed strongly to the states,
whereas the second-class part of the simplicity constraint
are imposed weakly [14, 20, 35].

In presence of nonvanshing A, I's C S2 is the dual
graph of the tiangulation of S® given by the 4-simplex’s
boundary. Each node of I's, or each S, C 9(5% \ I's), is
dual to a boundary tetrahdron e, of the 4-simplex. Each
link of T's, or each annulus £,, C 9(S®\ I's), is dual to
a boundary triangle f,; of the 4-simplex. All tetrahe-
dra and triangles are spacelike similar to the EPRL/FK
model. Given any e,, the generalization of closure con-
dition is the defining equation of PSL(2,C) flat connec-
tions on the 4-holed sphere S,: 04,030,071 = 1 where
Of=1..4 € PSL(2,C) are holonomies around 4 holes
based at a common point p, € S,. By non-abelian
stokes theorem, we identify O; = elABs/3 ¢ S0(1,3)*
due to the relation F(A) = |A|B/3 from integrating
out B in (3). Here F(A), as the curvature of CS con-
nection A on S3, is proportional to the delta function
supported on I's (equivalent to that A is flat on S3\ I's).
Namely F(A) = %Bfﬁ(x)dxl A dz? on the face f coor-
dinated by (z1,2?) tranverse to an edge of I's at ¥ = 0.
04030201 = 1 with Oy = elABs/3 reduces to the linear
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closure condition Z?‘:l By =0as A — 0. Moreover, the
simplicity constraint B;JNJ =0forall f=1,---,4re-
strict Of—1.... 4 to a common PSU(2) subgroup sablizing
the timelike vector NZ. The result in [21] shows that
restricting all Of to the subgroup PSU(2) endows e a
convex geometrical tetrahedron with constant curvature.
The effect of restricting Oy to PSU(2) is analogous to the
simplicity constraint reviewed above. This motivates us
to define this restriction to be the simplicity constraint
in presence of nonvanishing A [36]:

Definition ITI.1. Semiclassically in presence of nonva-
nishing cosmological constant, the simplicity constraint
restricts the moduli spaces of PSL(2, C) flat connections on
4-holed spheres to the ones that can be gauge-transformed
to PSU(2) ~ SO(3) flat connections.

1. First-class constraints:

Our proposal is to quantize and impose the simplicity
constraint to Zgs\p (¢). Firstly, flat connections on all S,
are PSU(2) implies e?Lev € U(1), or equivalently g, = 0
for all annulus £,,. However due to the presence of oy, =
Im(pqap), at the quantum level we may have to decide
whether we impose

Re(/l,ab)zsa\ps (t)=0, or [,Labzss\FS (1) =0.(91)

In either case, these 10 constraint are first-class since
{Mab}a<p are commutative, thus they can be imposed
strongly to Zgs\r,(t). {#ab}a<s are mulitplication opera-
tors acting on Zgs\p,(¢). The former choice restricts

Re(uab) = 0, V gab (92)

in ¢. The latter choice restricts both Re(uqp) and the
positive angle structure

Re(ﬂab) = O,

thus is much stronger than the former choice. However
the semiclassical limit of the theory is insensitive to the
choices: Consider the former (weaker) choice, e?Fet deter-
mined by ¢ is given by

and ag =0, V. (93)

~
e (1) e [ )|

271 k
= €exp |:k‘ <b05ab - <mab + tabQ) >:|

= exp {2,1” (b + (240 + eg”))} (94)

where g, = Im(pgp). In the last step, since —(mgp +
tas) € ZJKZ (or Z/KZ + 1/2) if k is even (or odd),
we have introduce the half-integer “spin” j,; such that



— (Mab + tabs) = 2jap + 4> mod KZ where

ZED™ kodd
= 2 95
cab {0 k even (95)
) 1 k—1
jab_07§a"'aT' (96)

The double-scaling limit jqp, k — oo with jup/k fixed is
the semiclassical limit for the spinfoam amplitude with
cosmological constant (see Section IV for discussion). In
this limit, e« is insensitive to cap, €45 Since they do not
scale with k

e?bav 5 exp |:4]’:Z]‘ab:| € U(1). (97)
Both choices in (91) lead to the same semiclassical result.
At least semiclassically, each holonomy around holes on
S, can be individually conjugated to PSU(2), while j.p/k
determines the conjugacy class of the holonomy.

The stronger choice (93) is indeed viable. We can have

-,

(d,8) € Prew With ten ayp = 0, because for instance all
ten agp = 0 can be given by ax, = ay, = az, = Q/4
and fx, = By, = Pz, =0 (a =1,---,5), which satisfy
(46). The simplicity constraint results in restrictively
e?kav € U(1) when ag, = 0, whereas e?Fav ¢ U(1) for
other au, # 0. a4 = 0 is a preferred choice because
e?Lar ¢ U(1) implies that after imposing the simplicity
constraint, the area from the 4d bivector By coincides
with the face area of 3d tetrahedron at the quantum
level: Recall the discussion above Definition III.1. We
diagonalize an Of € PSL(2, C) by a gauge transformation

O = idiag(el/ab’ e_Lab) — ieRC(Lab)USHIm(Lab)US

o e2Re(Lap)K®—2Im(Lap) L% _ e%B‘f c SO(1,3)+

where Im(L,;) € [0,7) and K? L3 are so(1,3) gener-
ators. We obtain %Bf = 2Re(L.)K? — 2Im(Lyy,)L3
for the preferred lift of By. Then L, relates to the
area from the 4d bivector, |By| = [3Tr(B})['/2, by

2| Bf| = 2|Re(Lap)? — Tm(Lp)?|V/2. Restricting aq, = 0
and the simplicity constraint Re(ua,) = 0 result in that

) A
(oo + ca/) = e, (98)

4m
k

where ., is the face area of 3d tetrahedron (this is im-
plied by the generalized closure condition, see [21] or
the discussion below). Both Zgs\p,, ¥, are functions of
Lp, thus both the 4d and 3d area operators, %|Bf| =
2|Re(Lap)? — Im(Lap)?|'/? and %aab = 2Im(Lgp), act as
multiplications. The above shows that these two operators
coincide when ag,, = 0. A similar consisency constraint
“4d area = 3d area” has also been imposed to the EPRL
model [20].

However to keep discussions general, we still use the
weaker version (92) and keep g, general in the following
discussion. But we prefer o, = 0 by the above argument.

A
131 = 2n(Ls) =
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2. Second-class constraints

The first-class part of the simplicity constraint and ju
fix e?Fev on 10 annuli. Classically, fixing e?Fe reduces
the moduli space of PSL(2,C) flat connections on S, to 2
complex dimensions whose Darboux coordinates 1, € C
are studied in [37], with {¢, ¢} = 1 (they are the com-
plexification of 6, ¢ in Section IIIB). Constraining flat
connections to PSU(2) restricts Im(«}) = Im(p) = 0. The
restriction gives second-class constraints due to the non-
commutativity of 9, ¢. By the lessons from the EPRL/FK
model, the constraints has to be imposed weakly at the
quantum level. Our strategy is to impose the constraints
to the label (zq4, 24, ys) where the coherent state U, is
peaked. (24,%a,Ys) is a point in the moduli space of
PSL(2,C) flat connections on S, with fixed e*lav’s. We
restrict (zq,Zq,Ya) to the subspace of flat connections
that can be gauge transformed to PSU(2).

Classically, our simplicity constraint is an analog of
the linear simplicity constraint in the EPRL/FK model,
as discussed at the beginning of this subsection. At the
quantum level, although all spinfoam models impose the
second-class simplicity constraint weakly, here the con-
straint is imposed to the coherent state labels, similar to
the FK model [35], but different from the EPRL model
where the constraint is imposed by a master constraint
operator.

Although the following discussion does not assume
large jqp, in the following discussion before Eq.(108), we
ignore a,p so that e?L«v € U(1) is assumed, since only
the semiclassical simplicity constraint are concerned here.
After Eq.(108) we take into account generally aqp # 0
and e?la ¢ U(1) at the quantum level.

On the 4-holed sphere S,, flat connections that can
be gauge-transformed to PSU(2) are described by four
PSL(2, C) holonomies Oy, O3, 03,04 that can be simulta-
neously conjugated to PSU(2). Oy, 02, 03,04 are based
at a common point p, and each of them travels around a
hole of S,. As holonomies of flat connection, they satisfy
the generalized closure condition

0403050, = 1. (99)

This equation is invariant under PSL(2,C) gauge trans-
formation. We apply the gauge transformation to make
all O; € PSU(2) and treat (99) as an equation of PSU(2)
holonomies. The conjugacy class of each O; has been
fixed by (97), which specifies the squared eigenvalue of
O;. There exists a lift from O; to H; € SU(2) such that

2mi

=) (7, S ) M@ 100
me- (&3 ). (101)

satisfying
HyHsHoHy = 1 (102)



In each H;, we neglect ¢,;, when discussing the
parametrization of PSU(2) flat connections

ji = jaba

for £, ends at the hole labelled by 4, and similarly for ¢;.
& = (&1,¢H)T is defined up to a complex scaling by the
above formula of H;. If we fix that det(M(&;)) = 1,

Lt .
nz_gzafh 2_17"'747
where & = (o', 6%, o) are Pauli matrices

(103)

give 4 unit 3-vector in R®. The geometrical interpretation
of (99) relates the holonomies to a geometrical 3d tetrhe-
dron with constant curvature (see [13, 21] or Theorem

IV.2), in which %ji = %ai is the face area and 7i; are
face normals parallel transported to a common vertex of
the tetrahedronS. {ii;}? | relates to the outward point-
ing normals {n;}?_; of the tetrahedron by n; = sgn(A);.
Eq.(102) with H; = eA%% reduces to the flat closure
condition ), @; = 0 for small A.

To clarify our convention, consider ¢,; connecting the
ith hole of S, to the jth hole of S;. We choose the framing
flag sy, of ¢4 such that on S,, the eigenvector of the
holonomy O; = Ogp, & = Eap, coincides with s,,, parallel
transported to the common base point p, € S, of {Oi}?zl.
If our convention is (99) on both S, and S, the parallel
transport of O; = Oy, of S, gives O;l = Opy of Sp, i.e.
G;blOabGab = Oy, with a holonomy G, along €4p. se,,
evaluated at a point p, € Sp gives &, as the eigenvector
of Oy, with upper eigenvalue +e277:/k But &,, does not
equal to & = ( ;75?)T on S, but equals to (—?,Q)T in
the convention of (100) .

In case that the minus sign present in (100), we write
—e’F7 = ¢ %" where j' = k/2 — j, then Eq.(100) can
be rewritten as

H; = M'(&) (e 0 2 ) M'(&)71, (104)

&2 1
M/ — _75 _§ >

(5) ( gl _62
In case of plus sign in (100), we set j' = j. Flipping + —
— in (100) correspond to j — k/2—j and M (&) — M'(§).

Lemma IIL.1. The lifts Hi=1..4 € SU(2) satisfy
HyH3H H, = 1 exist if and only if jz(:l,u~,4 satisfy the
triangle inequality, i.e. there exists J such that

(105)

(106)
(107)

|j5 — jal < J < min (55 + ji, k — j5 — j4) -

6 %ji = ‘%‘ai mismatches (98) if €45 # 0, but it is not a problem
since here we discuss coherent state labels, whereas (98) is about
operator eigenvalues.

7 The inverse of H; in (100) can be written as H; ' =

27 27
+M'(¢;)diag(e ® Ji,e” Tk Ji)M'(¢;)" " where M’(€) is given by
(105).
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The proof of this Lemma is given in Appendix D. (106)
and (107) agree with the spin-coupling rule of SU(2)q
with q = e™/(k+2),

Lemma IT1.2. 04035020; =1 has solution O; € PSU(2)
if 3 given by (97) equals either j; or k/2 — jI where {j]}
satisfy the triangle inequality (106) and (107).

Proof: Given a solution H; € SU(2) to HyHsHoH; =
1, Both =+H; projects to O, € PSU(2) solving
0403020, = 1. If H; is given by (104) with j' = k/2—j,

2 (k/2-5)) 0

—H; = M(&) ( ‘ 0 o i (k/2-5) ) M)

Since both £H; are allowed for the PSU(2) equation, j;
is given by the squared eigenvalue (97) of either H; or
—H;, thus can be either j/ or k/2 — j.

O

We restrict jup to satisfy the condition in Lemma III.2
so that 04,030,007 = 1 has solution at every S,. The
triangle inequality in Lemma III.1 is the analog of the
triangle inequality for SU(2) intertwiners in spinfoam
models without cosmological constant.

FIG. 6. An ideal triangulation of 4-holed sphere.

The eignvector of the holonomy O;, & = (¢},£2)7 or
(— ]2, 5]1)T, is the framing flag sy (of ¢ connecting the hole
i) parallel transported to the base point p of O;, i.e.

& = su(p),

the FG coordinates on S, can be expressed in terms of £/:
Without loss of generality, we assume that p is inside the
quadrilateral shown in FIG.6, and each O; travels around
the hole ¢ counterclockwise. We have

p € Sa, (108)

G ASNE NG
508 = R e A gy

o OGN LA
w08 = neng e 109

Here O, is given by

Lay
04 = M() ( e L ) M(g)™ . (110)



where +elev = +exp [ (baab + (2]ab + 6‘“’))} for £y
attached to the 4th hole x g is independent of + sign.
Both 25 (7, &), 2 (], €) are invariant under the PSL(2, C)
gauge transformation of (99): O; — hO;h™1, & — hEl.

The correspondence between {zg}g’s and framed
PSL(2,C) flat connections on S, is 1-to-1 [29], so g, x g/
given by (109) and four e?Fe> at the holes uniquely
determine a PSL(2,C) flat connection labelled by 7, &.
This connection reduces to PSU(2) when aqp = 0. We
choose E, E' to be such that 2g, zx equals e¥e,eYe in
(e?1,e?1). We lift 2, zp to logarithmic coordinates
xe = log(zg), xg = log(xp/) (the lift is uniquely given
by (41) and the lifts of ideal- tetrahedra coordinates), and
obtain X,,Y, as functions of j, £. By (73) (76), we have
LasVasMa,Ng € R as functions of ] f Furthermore, by
(79) and (82), we obtain uniquely the functions za(], f),
za(J,€), and ya (5, &)

Recall (88), the implementation of the simplicity con-
straint restricts the label ¢ to the subspace

&= <{O’mab}a<b’ {p(ﬂl}a_l) ’
7076, 57.8))

where § = {jup + €av/4}a<y and € = {€ap}arp=1, 5. Mab
relates to jup by (94). Here j have to satisfy the condition
in Lemma III.2 so that the solution O;=1 ... 4+ € PSU(2) to
Eq.(99) exists. gare eigenvectors of the solution O;—; ... 4.

Therefore the simplicity constraint restrict the partition
function Zgs\p, () in (87) to

Zga\r, (L; *) = A,(7,6),

which is defined to be the spinfoam vertex amplitude with
cosmological constant.

Note that only 2 FG coordinates xg,zp out of 6
are used in z,,Z4,Y,. Only these 2 coordinates are
restricted to be (109). Other four FG coordinates
Tpr # g, rp may not be simultaneously expressed in
terms of j,& as (109) when ag, # 0, since otherwise
N =Tlg aggund hole £5 would belong to U(1), whereas
generally e*“et ¢ U(1) for a,p # 0. However other four

Tpr # Tg,rp are absent in the coherent label. p(flg is

(111)

generally an PSL(2,C) flat connection, but reduces to
PSU(2) when g, = 0 or in the semiclassical limit.

B. SU(2) flat connections on S, and 4-gon

A simple counting degrees of freedom shows that g’s
solving 04030207 = 1 modulo PSU(2) gauge transfor-
mations generically span real 2-dimensional space. This
2-dimensional space is denoted by M. zp, xp in (109)
are densely defined functions on ./\/l]v.

A description of M5 [37] generalizes the Kapovich-
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Millson phase space description [38, 39]: We lift to the
cover space M the moduli space of SU(2) flat connection

with fixed J. M: is the moduli space of solutions to
H4H3H2H1 =1 with
Ji ) M(gz)_l

ertii 0
—mie) ()
where j; = jqp of annuli £,;, connecting to the holes.
Given the 4-dimensional complex vector space
V = Mataxa(C) =~ C* of complex 2 x 2 matri-
ces, we endow V with the complex metric (X,Y) =
—1[Tr(XY)-TrXTrY]. If we write X = 2°I +
S ato, and Y = y°T + 30 404, (X,Y) is the
complexified Minkowski metric on C*: (X,Y) = 2090 —
Zzzl x%®. SU(2) is the unit 3-sphere in Vg ~ R* C V
defined by

3
H=hn"+iY hs, hoha €R,
a=1
3

+) () =1

a=1

(H,H) = (h")?

When restricting h° + 4 22:1 h%o, with hg,he € R, (-, )
becomes the Euclidean metric on R* and induces the
spherical metric of S% on SU(2).

v3 = HyH,y
€23 €34
=H;
€13 Vg :HgHQHl
€12 €14
v =1

FIG. 7. The 4-gon in SU(2) determined by HsHsH>H1 = 1.

Given H; ...
set of H; determines 4 points vy, - -

4 € SU(2) satisfying HyH3HoHy = 1, The
,vq in SU(2) where

= H,y, vs = HyHy, v4 = H3HyH;.

vy =1, vy

We firstly assume the generic situation that vy,--- ,v4 are
linearly independent in R*. Any pair (v;,v;) viewed as 2
vectors in R* determines a 2-plane E;; = Spang(v;,v;) C
R%. The intersection between E;; and SU(2) is the
geodesic e;; connecting v;, v; (SU(2) is the unit 3-sphere
in R*)
e;; = Ei; N SU(2) = {t1v; + tov; |
13+ 13 4 2t1ty (v, v;) = 1, t1,t5 > 0}.

The vertices v; and edges ejs, €23, €34, €14 made a 4-gon
in SU(2). The geodesic distance 6;; between v; and v; is



given by

COS(QiJ‘) = <’Ui,’l)j> = Cij, Qij S (0,7‘(‘).

The lengths of eq2, e23, €34, €14 are a; = 0; ;41 such that
cos(a;) = Tr(H;)/2.

We draw the diagonal geodesic connecting v, v3. 613 is
the length of the diagonal.

The face f;;; with the vertices v;, v;, vy is the intersec-
tion of Fjji, = Spang(v;,v;,vx) and SU(2)

fijk = Fijk N SU(2) = {tlvi + tg?)j + t3vg | t1,t2,t3 > 0,
t% + t% + t% + 2t1t26ij + Qtltgcik + 2t2t3(3jk = 1}

The unit normal n;j; of Fyji is defined by (f,n) = 0,
V f € Fiji, and (n,n) = 1. A choice of orientation of F;jj
corresponds to the sign of n. We define the bending angle
¢ij S (0,7T) by

cos(¢iz) = (Mikt, Mjki) - (112)

0 = 013, ¢ = o4 are symplectic coordinates of Mvj [37].
Up to isometries of S3, (0, ¢) determines a unique 4-gon
in % ~ SU(2) whose geodesic edge lengths relate to the
conjugacy classes of H;. Indeed, geodesic edge lengths
a;,® € (0,7) uniquely determine two triangles sharing
the diagonal ez, up to isometries of S3. We break the
translational symmetry by fixing v; = 1. The remaining
symmetry is the rotation leaving v; = (1,0,0,0) € R*
invariant. We use the freedom of the rotation to fix the
position of vg,vs of the triangle (v1,ve,vs). Fixing the
position of the triangle (v1, v2,v3) breaks the continuous
rotational symmetry. vy, vg, v determine the hyperplane
Fio3 C R*. The freedom of v, is equivallent to choosing
the hyperplane F}34, which is determined by the bending
angle ¢ up to a parity symmetry with respect to Fyo3. This
parity symmetry can be fixed by choosing the orientaion
of the bending flow in addition, i.e. fixing the orientation
of n193 Aniss (see Appendix E). As a result, vq, -+ ,v4 €
SU(2) are uniquely determined by (6, ¢) once we fix v; = 1
and the rotation symmetry. vo = Hyi,v3 = HoHy,v4 =
H3HoH, determines Hly...74 with Hy = (HgHQHl)il.
By (100) and the given {j;}?_;, we obtain all &; as the
eigenvector of H; whose squared eigenvalue is e*™i/k,
We normalize §;’s by det(M(&;)) = 1 up to individual
phases. As a result, all &’s are functions of j; and 6, ¢.
Appendix E provides an algorithm to determine &;’s from
0, ¢ in practise.

For any function f on Mj., f can be lifted to a function

on /T/l:. and is invariant under H; — —H;. we define the
following integral on J\/l;.

J.

This integral on the right-hand side is over compact do-
main, thus is finite provided that |f| is bounded. The
degenerate 4-gons with 6,¢ = 0 is included as bound-

dgf:/de/\d¢f (113)

i
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aries of the integral. This integral is needed for gluing
vertex amplitudes to construct spinfoam amplitudes on
complexes.

It may happen that for certain j’, M; only contain
degenerate 4-gon (i.e. becoming a n-gon with n < 4)
where a vector v; is a linear combination of anotheL 2
vectors v;, vy, in R%. In this case the dimension of M-
is less than 2, thus the above integral is ill-defined. The
degenerate 4-gon leads to at least two H;’s belonging to
a U(1) subgroup in SU(2). It sometimes gives a pair of
collinear &’s that result in ill-defined zg,xg on entire

Mv; (see (109)). We set the contribution from j such that

dim(M>=) < 2 to vanish in the spinfoam amplitude. In
particufar, it set the contribution of j; = 0 to vanish.

C. Finite spinfoam amplitude on simplicial complex

Given a simplicial complex I made by a finite number
of 4-simplices, we associate each 4-simplex with a vertex
amplitude as a function on x2_; M 7, When fixing j

—

Au(,€) = Zsar, (17.¢) (114)

where ¢t~ > = (jab, p(a)). When gluing a pair of 4-simplices

7,€ 7€
by identifying a pair of tetrahedra, we identify 4 spins
js (of tetrahedron face areas) for the pair of tetrahedra,
we associate p; # = (2(7,8),2(5,6),y(F, &) (of the tetra-

hedron shape) to one tetrahedron and associate
Toje= (0.8 2G.6), ~G.6)

to the other tetrahedron (recall (85)). We may define the
gluing of the pair of vertex amplitudes by

(115)

/M A€ Zos\r, (7, 05 ) Zso\r, (7, Jp3 ), (116)

J

where we only focus on variables associated to the pair of
tetrahedra identified by gluing. [ . A€ 1s an analog of in-
j

tegrating SU(2) coherent intertwiners in the EPRL model.
The gluing defined by (116) identify at the quantum level
{ between the pair of tetrahedra. Generally speaking it
may only be necessary to identify 5 semiclassically, i.e.
gluing 4-simplices by identifying 2 tetrahedra with shape-
matching only semiclassically. Thus we define the more
general gluing by

[ a6 Zonr, Gy ) A:G.E8) Zee, (.90 ).

J

(117)

where A, is called the edge amplitude. A, is a function
of 5, 5, E’ relating to the tetrahedron e (A, may depend
on k,~ which is implicit in the formula). The precise
form A, is not determined in this work, but we require



that Ae is Gaussian-like continuous function peaked at
§ §’ and suppressed elsewhere. A, approaches to (5(§ 5 )
when j — oo. Choices of integration measures of f § are
included in choices A..

Given any simplicial complex K, we associate a “spin”
jr =0, %, e ,% to each (internal or boundary) face
f, and associate to each (internal or boundary) tetra-
hedron e a PSU(2) flat connection labelled by 575 on
the 4-holed sphere. These data enter vertex amplitudes
Ay = Zga\r, (Lig), edge amplitudes Ae(j, E, E’), and face
amplitudes A;(j;). We construct the full spinfoam am-
plitude A on K by integrating over Pi g of all internal
tetrahedra e and summing over j; of all internal faces.

[14.G.9).

(118)

(k—1)/2

A= ST 4 [ lagae) [T 4068

{iry f

We put subscript e to manifest that A, only depend on
variables relating to e. [[d¢] is a product of integrals (117)
over all internal tetrahedra e. Af(j7) is an undetermined
face amplitude. [], products over all 4-simplices. ) /{jf}
sums j¢ at all internal faces in K. The sum of each j; is
finite by (96). The cosmological constant relating to k
provides a cut-off to the sum over spins. Y’ indicates that
we exclude j¢’s that do not satisfy the triangle inequality

or lead to M 7 of dimension less than 2.

Theorem II1.3. The amplitude A is finite for any choice
of simplicial complex.

Proof: |A,| is bounded because of Theorem II.1. |A.|
is bounded since it is continuous on the compact space
of é,{g The integral in A integrates a function whose
absolute value is bounded on a compact domain, thus
is absolutely convergent. Then the finite sum over j;
implies the finiteness of A.

O

D. Boundary data

The boundary data of the spinfoam amplitude A relates
to the kinematical states of LQG up to a deformation. The
boundary of the 4d simplicial complex K is a 3d simplicial
complex OK. The dual complex OK* =T is an (oriented)
graph with links [ C T" dual to faces f C K and nodes
v € I dual to tetrahedra e C OK. The boundary data of
A color every link by a spin j; = 0, 1 CTRERE kz , and color
every node v an element p, = M~ There is an 1-to-1
correspondence between p, and a “convex constant cur-
vature tetrahedron (up to degenerate tetrahedra) whose
face areas are determined by ji of [ adjacent to v (see [21]
or Theorem IV.1). These data are perfect analog of LQG
spin-network data on I': spins j; on links and coherent
intertwiners ||§',§?}n at nodes. The coherent intertwiners
1-to-1 correspond to convex flat tetrahedra whose face
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areas are proportional to j; [40-42]. The boundary data
of Ais a deformation of the spin-network data due to the
cut-off £=L of j; and p, for constant curvature tetrahedra

versus || j,€>n for flat tetrahedra. When k& — oo while
fixing j; (different from the semiclassical limit j, k — oo
fixing j/k), the cut-off is removed and the constant curva-
ture A given by (16) reduces to be flat, then the boundary
data of A reduces to the spin-network data.

We expect that A defines transition amplitudes of
boundary states that are the eigenstates of area oper-
ators at links and coherent with respect to quantum
tetrahedra at nodes, similar to spin-network states with
coherent intertwiners. The coherent states at nodes are
expected to quantize the phase space ./\/l;: the moduli
space of SU(2) flat connections on 4-holed sphere with
fixed conjugacy classes. The quantization of (/\/l , 2’; Q) is
known to give the Hilbert space of quantum group SU(2),
intertwiners with q = e™/(*+2) (see e.g. [43, 44]). By
these arguments, we conjecture that the boundary Hilbert
space of A are spanned by g-deformed spin-network states
[T, 41, 4p) where ji,, are unitary irreps and intertwiners
of SU(2)4 respectively. The proof of this conjecture is
a research undergoing. It Involves the coherent inter-
twiner of SU(2)4 and showing the relation to the curved
tetrahedron labelled by the SU(2) flat connection. Some
earlier studies of the quantum group coherent intertwiner
is given in [45]. Constructing geometrical operators for
the boundary Hilbert space is also a research in progress
(see [46] for the first step).

E. Ambiguities

The construction of the spinfoam amplitude with cos-
mological constant depends on several choices, which may
relate to ambiguities of the model. In the following we
classify and discuss these choices:

(1) The spinfoam amplitude depends on choices of
coherent states in Section ITF. This dependence is a result
from the proposal of imposing the simplicity constraint on
coherent state labels. In this work we choose the coherent
states (80) and (81). But a different set of coherent states
may be chosen, as far as their are peaked semiclassically
at points in the phase space.

(2) There are freedom of choosing edge and face ampli-
tudes A¢, Ay in (118). See e.g. [47, 48] for some existing
discussion about preferred choices of A., Ay in the ab-
sence of A. The freedom of A. _contains the freedom
of the integration measure for £&. Moreover the free-
dom of A, has an overlap with the freedom of coherent
states discussed in (1). Namely if we make a change

of coherent state W, . — \I/’__g = fdgeK(Ee,E;)\pr; o
: 7, :

with certain function K of &,,& of the tetrahedron
e, the spinfoam amplitude constructed with the new
state U/ can be written in the same form as (118)

ps e
with A, of the old state \Ilpo & while A, transforms as



A&, &) > [ACACK (G, E)AC, CYK(C,E).

(3) The vertex amplitude depends on the positive an-
gle structure (&, E) € Puew, since Zgs\r, depends on
(@, 5) More precisely Zgs\r, only depends on @ but is
independent of specific 5 as far as (@, E) € PBruew, b
the discussion below (65). The dependence on angles
& = ({oab ta<t, {@a}ts—1) in Zgs\p, may be analogous to
the framing anomaly of CS theory with compact group
[49, 50]. For the consistency “4d area = 3d area” at the
quantum level, it is preferred to restrict all agp in A, to
vanish and still be inside P, Whereas there still exists
some freedom of {a,}o_;.

The spinfoam amplitude depends on {3,}2_; because
they enter the vertex amplitude A, via the prefactor
e~ V2BaRe(za) of the coherent state 1, in (80). But this
prefactor can be absorbed in A, (or definition of integra-
tion measure of £). Thus this dependence on {B,}3_, is a
part of the freedom of (1) and (2). In more detail, by the
freedom of coherent states, we choose 12 instead of 1.,
in the definition of Zgs\p,(¢). Then (89) for the bound
of |Zgs\r,(¢)| is modified by

/ Hdua Zga\p, (' +id | m H%a i)

< oo Heﬁa (5o +VERe(a).

(119)

The bound diverges if Re(z,) approaches to co or —oo
depending on sgn(/3,). This can happen even after impos-
ing the simplicity constraint since xg, zp/ can approach
infinity when a pair of &/ becomes collinear in (109), partic-
ularly when the constant curvature tetrahedron approach
to degenerate. Then we need to require in addition the
following behavior to A, as Re(z) approaching to oo or
—o0 correspondingly

4.7, &) < Ce

where the exponential decay factors should cancel the
exponential grows in (119) of 2 vertex amplitudes sharing
the tetrahedron e. The freedom of 3. becomes part of
the freedom of A.. The integrand of [[d¢] in (118) still
has bounded absolute value, then A is finite.

—VEBeRe(ze(7,8)) o~ VIBLRe (2 (7€)

(4) The amplitude A generally depends on the choice
of the simplicial complex /C, similar to spinfoam models
in the absence of cosmological constant.

I 4i . .
Zgar, ([ | m) = 715 Z /dlsv e Z, (-BTi | -BT7)

ne(Z/kZ)*

Sp= {—2 (ﬁ-’%) T+ 2m-i— 7 ABT .7+
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IV. SEMICLASSICAL ANALYSIS

In this section, we examine the semiclassical behavior of
the vertex amplitude A, and show that the semiclassical
limit of A, reproduces the 4d Regge action with A.

The semiclassical limit of quantum gravity is {p — 0
while keeping geometrical quantities e.g. areas, shapes,
curvature, etc, fixed. A, is the LQG transition amplitude
associated to a 4-simplex whose boundary is made by 5
tetrahedra labelled by a,b = 1,---,5. A, depends on
ky, 7, Jab, and Equp. By the result of [21] (to be reviewed
in Section IV B), £,;’s parametrize geometrical shapes of
5 boundary constant curvature tetrahedra as boundary
data of A,, while ju,/k (up to e4p/k) is proportional to
|Alags. Here agp is the area of the face fup shared by
tetrahedra a and b. The cosmological constant A equals
to the constant curvature of tetrahedra. Therefore the
semiclassical limit in our context is £p — 0 while keeping
Eap’S, Agp’s, and A fixed. The Barbero-Immirzi parameter
« is also fixed. The relation between k and A in (16)
indicates that £k — oo in the semiclassical limit. These
motivate the following definition:

Definition IV.1. The semiclassical limit of A, is the
asymptotic behavior of A, when we scale uniformly all
Jab — 00 and k — 0o (so o = iky — icc) while keeping
jab/k ﬁ$ed

This limit generalizes the semiclassical limit of the
Turaev-Viro model in 3d gravity, and is studied in [13]
for 4d spinfoam vertex amplitude.

The semiclassical limit of spinfoam amplitude is the
same as the semiclassical limit of CS theory. Indeed,
the flat connection position variables 2; depending on
Jab only through the ratio jup/k (see (94)). The above
semiclassical limit send k — oo but leaves 2 finite. The
limit effectively removes the dependence of agp,€qp in
e?Lav The limit & — oo keeping 2y finite is the same as
the semiclassical limit of CS partition function. Therefore,
it is useful to firstly study the semiclassical limit of the CS
partition function Zgs\r; in Section IV A, then the result
can be applied straightforwardly to the semiclassical limit
of A, in Section IV B and IV C.

A. Semiclassical analysis of Chern-Simons partition
function

Recall the construction of Zgs\p, in Section ITE.

Eqgs.(58), (61), (64), and (67) lead to

(120)

(k+1)7-AB” -7 (121)



5
Z (fi | 77)
a=1

pw, =1Q — pux, — Hy, — HZ,

and ¥ is given by (35).

= [T %a (ux, I mx,) a (uy, | my,) Oa (pz, | mz,) Ya (pw, | mw,)

mw, = —mx, —My, —Mzg,
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(122)

(123)

We use (69) to change variables from py, m; to 27 = 25 —int; and é} = é] —4mtr. It is intuitive to make similar
change of variables from vy, ny to &7, &y for studying the semiclassical limit

k(%-ﬁ-@])

T T2 1)

ik (,@, - b'@})
27 (02 +1)

nr= (124)

Semiclassically 2 here is identical to the classical momenta conjugate to 9 (recall (55) and the discussion there). By

the change of variables,

LGy E

So=—3

47 (1 4 b2
ik?

T PE (93 - b%@) -ABT. (@ — b?@) .

We treat the sum ) /kz Dy the Poisson resummation

Zf

e(Z/kZ)*s nI:O pezrs
<k>15 2 276/‘1153 (et (126)
S \or peELL® 51
2
7= 2(922 +b1%), £1(3) = g, (120
Here f(7i)) = x(i)g(7) where g(7i) is the summand in

(120) extended from 7 € (Z/kZ)*® to it € RS, x(7) is a

compact support function satisfying x (i) = 1 for 7 € Z.

J

Zy(ji | 1) = €515t [1 +00/B),

Sl = 1 n b2 azz:l LIQ
~ ik >
Sl = W azz:l [ng

8 When extend WA (u|m) to m € R, poles of WA (uz|m) are given by
e.g. fipole = tbutib~lv withv = —j and u = —j—m+kZ (j € Ng)
when Im(b) > 0. Poles with u > 1 cancels with zeros when
m € Z/kZ, but this cancellation does not apply for non-integer
m. At poles Im(ppole) = Re(b)(u + v) = Re(b)(—25 — m + kZ).

) {97. (ABT.@’HQ’) +b2§’- <ABT.§5+2§§’>}

(125)

(

X(7) vanishes outside [—d, k—4]'5\U (with arbitraily small
d > 0) where U is an open neighborhood of singularities
of g(i7) and U NZ* = () 8. The result does not depend
on details of x at 7 ¢ Z' because ), e*" P =

Zn'I cZ 6(7’1[ -n

). By changing integration variables

dvdJ; = d2,d2;. (128)

k
2miQ

The following large-k asymptotic formula of the quan-
tum dilogarithm is useful [15, 51]

\I,A = eiﬁLiz(F‘)iZ)iWk&f?)Li?(eiz)
x [14O(1/k)]. (129)

The large-k asymptotic behavior of Zy is given by

(130)
*) + Lig(e ") + Lis(e™?*) 4 Lig(e”"*)] , (131)
Xa) 4 Lig(e™Y*) + Lig(e=%) + Lis(e Na)]. (132)

(

Here (X,,Ya, Zo)_, = —BT P and (X,, Y4, Z,)°_, =

There exists m’s such that Im(upoe) = @, i.e. the pole lies on
the integration contour C and may cause the integral to diverge.
Therefore open neighborhoods of these m’s should be removed.



-BT 2. W,, W, are given by
o
Xy + Yy + Zy+ W, :27ri+%(1+b2),
S o 5 = . 2mi _9
Xa+Ya+Za+Wa:27m+T(l+b ) (133)
coinciding with the classical octahedron constraint (43)

up to O(1/k).
Therefore we rewrite Zgs\r, for large k by

Zonrs =No Y /d1532d15ye 7x [14+ O(1/k)],(134)

pGZL’Cf

Sy=50(2,2,2,2)+ 5 (-B* 2) + 5, (-BT 2)
.

where Ny = —% The integration domain C4 is

(135)

the 30 (real) dimensional submanifold of (2, 2) € C3°
satisfying 7 € C and J € [—d',2m — &']'%.

The large-k asymptotics of Zgs\r; can be analyzed by
the stationary phase approximation. The dominant contri-
butions of integrals in (134) come from critical points that
are solutions of the critical equations 0, S5 = 05 S5 =0

(see Appendix F for details).
We make the linear transformation from 2’ , P tod =

(Xo,Ys, Z, ) _, and = (Px,,Py,, Pz, )a 1, and similar
to tilded variables
9 —2ri(ii+p)=A-d+B-II, (136)
9 1 omi(ii+7) = A-d+B-TI, (137)
p— —(BT) "', 7 - B o, (138)
In terms of 5, ﬁ, the critical equations reduces to
Py, =X'-W!" Py =Y'-W' (139
Py, =70 -W/!, Px,=X!-W/  (140)
Py, =Y/ -W/, Pz, =ZI-W/  (141)
where
X! =log(l—e %), Y/ =log(l—e "),
Z!" =1log (1 — e_Za) , W) =log(1- e_Wa) , (142)

(
X = log (1 — e_fa) , f’a" = log (1 — e_?“) ,
)(143)

1 =0 with
z=¢% and 2" = e?, i.e. the Lagrangian submanifold
LA C Pya of framed flat PSL(2,C) connections on the
ideal tetrahedron A. W,, W, are given by (133). The
above logarithms are defined with the canonical lifts same
as in (13). Moreover X,,Y,, Z,, Px,, Py,, Pz, satisfying
Eqgs.(139) - (141) parametrizes the moduli space of framed

Z" = log (1 - e_Z“) . W/ =log (1 —

Eqgs.(142) and (143) reproduce e.g 2~ + 2" —
Z//
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flat PSL(2, C) connections on the ideal octahedron oct(a)
made by gluing 4 ideal tetrahedra. Therefore any solution
of critical equations gives 5 flat connections respectively
on 5 ideal octahedra and vice versa. As a result, all
possible critical points are in Lgs\r;, since the set of 5 flat
connections on 5 ideal octahedra respectively is equivalent
to a flat connection on S\ T's (see the discussion below
(54)) Given a PSL(2,C) flat connections on S* \ I's,
', P at the critical point are determined by (136) -
(138) the same as the (53) up to 27i(7 + p).

We set ny € Z in (136) and (137) as an approximation
up to O(1/k), because for large k any Jr € R in (127)
can be approximated by n; € Z up to O(1/k) ?. Semiclas-
sically critical equations are insensitive to O(1/k). Then
(136) - (138) are the same as (53) (only up to gauge shifts
my = my+kZ of my € Z/kZ).

Fixing the range of m; (e.g. fixingm; =0,--- ,k—1)in
Zga\r, (f | m) fixes the lifts of 27, 27 from e?1 e21 then
uniquely fixes p'= py € Z, given the lifts of logarithms
n (142) and (143), since different p; € Z change 2;, 2y
by F2mipr (n; is determined by ;). Therefore only
one term with 7 = py in (134) has critical point and
contributes to the leading order, whereas other terms

with p # py have no critical point thus are suppressed
faster than O(k~") for all N > 0.

Given [i,m or g, 2 such that there exists a PSL(2,C)
flat connection on S® \ T's satisfying (136) and (137),
Zga\r, (f | M) has a critical point thus is not suppressed
fast, or in physics terms, Zgs\p, (ji | 77) has a semiclassical
approximation. In this case, the critical point is generally
non-unique, namely, there exiits multiple critical points

corresponding to the same Q_" 2. Indeed different 2 thus
different @, II satisfying (138) - (143) can give the same
9 via (136) (the critical equations expressed in terms of
e?1,e?’1 are polynomial equations of degree higher than
1) and similar for tilded variables. The critical points 1- to—

1 correspond to the solutions of (2, 9) with given , Q .
The solutions are denoted by (2(®)(2), (@) (2),aeT
where 7 is a set of index labelling the solutions. « labels
the branches of Lgs\r,. Given any «, the coordinates 9
provide a local parametrization of Lgs\p;.

The asymptotic behavior of Zgs\r, relates to the action
Sp=p, evaluated at critical points

S22, 2) = Sy, (g, 9,2 (2), ﬁﬂ(é)) (144)

The derivative of ng) with respect to Q_: 2 are
ik

o (1 +b2)‘@(a)( )

9755 =~ (145)

9 e.g. When k = 10000, J;/27 = 0.5624587 --- can be approxi-
mated by ny = 5625, the error bound is | J; /27 — nr/k| < 1/k.



(@) _ ik S &
895p0 = (1+b—2)‘@ (2). (146)
where we have used 045, 0555, = 0 since
J
(a) 7\ — [}
S (2,2) =~ +bQ/ P (2

where C'* is an integration constant. The integrals are
along certain curves embedded in Lgs\r,. The result is
independent of smooth deformations of the integration
contour in Lgs\r,, since {1 = 0 on the Lagrangian sub-

manifold Lgs\r,. By this result exp(SZg?)) is expressed as
analog of WKB wave function. The large-k asymptotics
of Zgs\p, is given by a finite sum over critical points

Zganp, (ji | 17) = ZN“”E 7 (2D 111 0(1/k)] (148)

No

N = =2
det(—H,/27)

(149)

where H, is the Hessian matrix %S, evaluated at the
critical point. H, is generically nondegenerate as sup-

J

We make the change of variable (69) in 9, (recall 27 = 25 —

o\ /4
va=(7) O s

b (,é; + g;)
BECEST
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{2()(9), ég(a)(g)}aez satisfy the critical equations.

It implies that 1°
Y. P dD + 147
D7) (2) +C. (147)

ported by a large number of numerical experiments.

B. Critical points of vertex amplitude and constant
curvature 4-simplex

Let’s recall Zgs\p,(¢) and coherent states v, &z, y.)
defined in (80) and (81). Restricting ¢ = ¢; 7 to satisfy
the simplicity constraint, A, = Zgs\r, (L;,g) is the vertex
amplitude with cosmological constant.

The simplicity constraint restrict Re(uqs) = 0 (the
semiclassical behavior is insensitive to agp), thus

i . "
e et = exp []7: (baab + 2jap + 6;)] ~ ¢ F ab,

)] o o
2

Here ~ stands for the semiclassical approximation.

- A1
eZLab = exXp |:]7€m (b_laab 2jab

ity é} = c@v] —iﬂt])

5. b <a@~; + 2{1) B k(fa + Za)2.

2(02+1) 8

(150)

where we neglect the term —+/28,Re(z,) since it is subleading as k — oo. §(a.ya) is simplified by & — oo and

restricting mg, = 0,--- ,k — 1 and x4,y, €

(0,27). After neglecting exponentially small contributions,

1 1
Saya) = (12@) Tt o (e ) mivama <12c) " eStane, (151)
~ 2 ~
; ' 12 o I 12 o
S _ kaaya _ ﬁ ! (ga b Qa) — + k (ga b ga) y (152)
(%aya) P ar |7 241 ° 2r (B2 +1) 7
The vertex amplitude A, is expressed as below
. 5/2
Y 45 ud15y (2. 7.2.9). N d(2 ! 153
v = Z rve - k15 k/’ 9 ( )
R5xC

€(Z/kZ)5 e (Z/KZ)1D

10 Given S(Z) function on R and VS(Z) = f(Z), we choose a curve
¢ C R™ parametrized by t € [0, 1] ends at zo. we denote by 7 the
L@ =1 V(W) = - [#(0)).

tangent vector of ¢. Then

—

Therefore S(Zo) = [7° f(Z) - dZ + C.
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5
T=8)(2,2 2 2)+5 (-B'2)+ 5§ (_BT@*) +3 [s%(e@a, Da) + S(an ) (Las éa)] .
a=1

For finite z,, the integrand is a Schwartz function of both i and 7 along the integration cycle (¢, is a Gaussian
function, and see the discussion below (64)), so interchanging ji-integral with 7-integral does not affect the result. We

apply the Poisson resummation similar to (126),

/ - S (505 , i/
A, =N P°2d°24V° 2 4V p trs(7:7,2.2) N = L (154)
(F.5ez CoXCop ’ 819277406220
p,s N
- A . O g
Iﬁ’gzz(r@7z@,g7g)_b2—*—lp(<@_b z@>_b2—'_12$a<ga_b Qa>, (155)

where Cg is 10-dimensional real manifold satisfying p, €
R and m, € [0, k) (here 14, m, are understood as contin-
uous variables relating 2,, 2, by (69)).

We again apply the stationary phase analysis to the
integral as k — oo. The critical equations 05755 =
057Lps = 0 give the same results as (136) - (143) whose
solutions are flat connections on S \ I's. Other set of
critical equations 09755 = 05755 = 0 imply

2%rRe(ua) = V2Re(z4), 2%TRe(Va) = V/2Im(z,),

21 _ 27

e
See Appendix F for derivations. At the critical point,
the 4-holed sphere data 2,, 2,, £,, &, are determined
by the coherent state label z,, x4, Yq- Ihe determined 4-
holed sphere data together with 2L, 2L, determined by
Jap provide the boundary condition to the flat connection
solving (136) - (143).

The simplicity constraint requires that z,, z,,y, are
determined by the data j, £ via (109). Then (156) deter-
mines the 4-holed sphere FG coordinates X,,),. Due to
the 1-to-1 correspondence between values of FG coordi-
nates {zg}r and framed PSL(2,C) flat connections on
Sa [29], the resulting X, Y, together with eZa = ¢2Lav
(belonging to U(1) as k& — o0) determine uniquely a
PSU(2) ~ SO(3) flat connection on S,. We denote by
M 14t (Sa, PSU(2)) the moduli space of PSU(2) flat con-
nections on the 4-holed sphere S,. Flat connections in this
moduli space have following geometrical interpretations
as constant curvature tetrahdra.

Ng = Yo, Sq =0. (156)

Theorem IV.1. There is a bijection between flat connec-
tions in Mpqs (Sa, PSU(2)) and convex constant curvature
tetrahedron geometries in 3d, excepting degenerate geome-
tries. Non-degenerate tetrahedral geometries are dense in

M iat (Sa, PSU(2)).

The proof of this theorem is given in [21]. Both positive
and negative constant curvature tetrahedra are included
in My (Sq, PSU(2)).

Given the boundary condition leading to PSU(2) flat
connections on {S,}5_;, if there exists a PSL(2,C) flat

a=1

(

connections on S3 \ TI's satisfying the boundary condi-
tion, it is a critical point of A, = Zgs\p, (Ljr,g) and has
the geometrical interpretation as a constant curvature
4-simplex.

Theorem IV.2. There is a bijection between PSL(2,C)
flat connections on S3\ T's satisfying the boundary con-
dition, and nondegenerate, convex, oriented, geometrical
4-simplex with constant curvature in Lorentzian signature.

The proof of this theorem is given in [13|. Note that
not every flat connection on x°_;8, can extend to a flat
connection S®\I's. It is shown in [13] that there is a subset
of PSU(2) flat connections on x?_;S, that can serve as
the boundary of PSL(2, C) flat connections on S3\T's, and
these boundary PSU(2) flat connections correspond to 5
constant curvature tetrahedra that can be glued!! to form
the close boundary of a nondegenerate 4-simplex with
the same constant curvature A. A, with these boundary
data has critical points. However, any boundary PSU(2)
flat connection corresponding to 5 tetrahedra that cannot
be glued to form 4-simplex boundary cannot extend to a
PSL(2,C) flat connection on S? \ I's, then results in that
A, has no critical point thus is suppressed faster than
O(k=N) for all N > 0.

We do not discuss the possible flat connections corre-
sponding to degenerate 4-simplex or tetrahedron. We also
do not consider the boundary condition with z, — oo
which leads to critical points located at the infinity of the
integration cycle 2.

In this geometrical correspondence between flat con-
nection and 4-simplex geometry, the holonomy’s squared
eigenvalue e?Le relates to the area a,; of the 4-simplex

11 Namely, they have the same constant curvature A, and satisfy
triangle-shapes matching and orientation matching when they
are glued.

12 Critical points at infinity give z, 2z’ or 2z — oo of certain A C
S3 \ I's. They either correspond to degenerate 4-simplex or
correspond to special 4-simplices which become close to degenerate
if |[Aa| < 1, i.e. scales of 4-simplices are small (see [19] and
Appendix E therein).



boundary triangle f,;, shared by the pair of tetrahedra
a,b (corresponding to S,,Sy), i.e. semiclassically

Al

e2lor v eiflan g e (0,6n/|All. (157)

The framing flag s, evaluated at p, € S,, s¢,, (Pa) = Eab,
relates to the unit normal 7i,; (located at a vertex of the
curved tetrahedron) of the face f,;, viewed in the frame
of tetrahedra a by 7., = glbﬁgab. Note that £, is not
alway the same as &; in (100), see the discussion in the
paragraph above (104). Given the tetrahedra a, if we
denote by #; the geometrical outward pointing face-normal
of the tetrahedron, we have 7iq, = sgn(A)n; if £ = & =
(&.€)", and 7igy = —sgn(A)ii; if €up = (—€7.€1)" [24].

In order to obtain the geometrical interpretation of the
conjugate T, we review the definition of the complex
FN twist variable: Let’s consider the annulus cusps ¢
connecting a pair of 4-holed spheres Sy, S,,. Let s be the
framing flag for ¢, and sg », $(,,, be the framing flags for
a pair of other cusps connecting So,n- Then the complex
FN twist is defined by (see e.g. [27])

{s0 A 50)
(so A s) (s{ A s)

(8 N 8) (s, /\5>.

($n A sh) (158)

Ty — —

where (s A s') are evaluated at a common point after paral-
lel transportation. Without loss of generality, we evaluate
the first ratio with factors (sg A sj), (so A s), (sh A s) at
a point pg € Sy, and evaluate the second ratio with fac-
tors (sp A s), (s, A's), (s, As),) at a point p,, € S,,. The
evaluation involves both s(pg) and s(p,,) at two ends of
¢, while the parallel transportation between s(pg) and
s(p») depends on a choice of contour ~y, connecting po, py,
(FIG.8). Different v, may transform s(p,) — A¢s(pn) but
keep s(po) invariant. Moreover by definition, 74 also de-
pend on the choice of two other auxiliary cusps for each of
S0, Sn- The choices of v, and the auxiliary cusps are part
of the definition for 7. The choices in defining 74, doesn’t
affect our later result. The Atiyah-Bott symplectic form
implies log(y) is the conjugate variable of the FN length
variable L, = log()\¢) associated to the same annulus £:

{Le,log(Ter) o = deer- (159)

FIG. 8. The contour - used to define the complex FN twist
7¢, and the meridian cycle v used to define the complex FN
length A,.
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Applying the above definition to S3\I's, we set Sy = Sp,
po=pp and S, = S, Pn = po- Framing flags associated
to holes in S, (or Sp) evaluated at p, (or pp) are {€ac}exta
(or {&ctexp). In particular, s(pa) = {ap and s(pp) = &pa-
We denote by G, the flat connection holonomy along .,
staring at p, and ending at p,. G satisfies [13, 19, 24]

Gaplap = e~ 27580 (VOwHibure, 1) — 5o (A)(160)
By the geometrical correspondence of the flat connection,
©O.p is the hyper-dihedral (boost) angle hinged by the
face f,p shared by the tetrahedra a,b on the boundary
of the 4-simplex. sgn (V4) = £1 is the orientation of the
4-simplex. 0, € [0,27) is an angle relating to the phase
convention of £’s. Inserting (160) in the definition of 7,
we obtain

Tl = Tab = eV sgn(V4)@n,b+2i0,,,bXab(£>’ (161)
Xab(€) = (Epa N Epn) (Eac N Eap) (Eae A Eap)
a (€ba A Epa) (Eon A Eba) (€ae N Eqe)

where we have set so(pp) = Epa, $4(Ps) = Eon and s, (pe) =
Eacy $h(Pa) = Eae- x(€) is a function only depending on
the boundary condition on {S,}2_;.

Theorem IV.3. Given a PSL(2,C) flat connection 2 on
S3\T's corresponding to a nondegenerate convex constant
curvature 4-simplex, there exists a unique flat connection
A # A sharing the same boundary condition. A, 2 corre-
spond to the same constant curvature 4-simplex geometry,
but opposite orientations: sgn (Vy) [a = —sgn (Vi) |5

The detailed proof is again given in [13]. The boundary
condition corresponding to the boundary tetrahedra of
nondegenerate 4-simplex gives exactly 2 critical points
2,24 which are called the parity pair, as an analog of
the similar siutation in the EPRL amplitude [22]. That
A, 2A correspond to the same geometry means that they
endow the same edge-lengths, areas, angles, etc to the
4-simplex. Implied by this result, e?%«>, e¥s, e have
the same value at 2, 2 since they are determined by the
geometry, whereas 7, are different

Tab|Ql _ efu@ab+2i9abxab(£)’ Tab|§[ _ eV@ab+2i0abxab(£)’

since 7, relates to the orientation. Here 64, xab(£) are

the same at 2(, 2 since they are determined only by the
boundary condition.

Lemma IV.4. At each annulus lyp, Tap = Te,, Telates to
7:1b by 771b = %log(Tab) + f({Lab}; {Xay ya})7 where f 18
a linear function of {Lap}, {Xa,Va}-

Proof: Each 7, is a product of 21 2/#! 2"+l of

some ideal tetrahedra in the triangulation of S3 \ I's (see
Appendix A.3.3 in [27]). When expressing in terms of
octahedron phase space coordinates, Each log(7.p) is a
linear function of X,, Px,,Yas, Py,, Za, Pz, (a=1,---,5)
when we impose C, = 271, see [19] for explicit examples
of log(7,p). By the symplectic transformation (53), we



express 10g(7a0) = Y .cq((ab),(cd) Ted + Blab),(cdyLed) +

Yo i(peXe + 0oe) + inZ. By {Lylog(re)}ta = deu,
we determine (ap) (ca)y = 20(ab),(ca) and define f =

_% [Zc<d ﬁ(ab),(cd)Lcd + Eizl(pcxc + Ucyc) + ZT‘-Z]
O
As a result, T, are given by

1 . 1
Tavla = _§V®ab + i0qp + 3 log xa5(&)

+F({Lap}, {Xay Va}) + miNGY (162)
1 1

7:1b|§[ = §V@ab + i0ap + 3 log Xab(§)
+F({Lap}, {Xa, Vo) + miNGD (163)

where N N(A) € Z label the lifts of logarithms.

ab

C. Asymptotics of vertex amplitude

The vertex amplitude A, has precisely 2 critical points
2, A when the boundary condition corresponds to 5 tetra-
hedra that can be glued to form the close boundary of a
nondegenerate constant curvature 4-simplex. By (148),
the vertex amplitude has the following large-k asymptotics

. (a ) (&
A, (7,8 = | M0 2 2 | preSio (2D (164)
x[1+0(1/k)]
’ l?r ; [4Re(za)Im(za)—TaYal
No = Neir 2o . (165)

det(—s7,/27)

where Sz(?:) is given in (147). The nondegeneracy of the
Hessian matrix J7, = 82150,6 is supported by many nu-

merical experiments. 21,2 are the same at the critical
points 2, 2. «a, & are branches of the Lagrangian submani-
fold Lgs\r, containing 2, 2l respectively. The asymptotics
(164) of A, reduces to the same form as the one studied
in [23, 24]. In the following we sketch the computation of
(164) and refer the details to [23, 24].

We rewrite (164) in A, ~ (A, e + A_e™) where
we factor out the overall phase €7, and we are interested
in the phase difference e?° bewteen 2 exponentials in
(164). To extract the phase difference, we consider a
small variation 62;,02;.
05 is given by

The consequent variation of

ik
2m(1+02)

kA
= Te 1) Z (Oap + 2miNgp) daqy — c.c.

61+ 12) 2
= —*Im Z Ol — Z Nabaaaba

a<b a<b

208 = — (97@ - 97@) 69— ce.

where Ny, = sgn(A)(Né?) — Néf)) € Z. Only O, and

25

NW N, (4) ; in 7,4 give nonvanishing contribution to 265

ab
because each of {Lap, Xa, Va, Xab(§), 0ap} gives the same

value at 2 and 2A (see [23, 24] for details). By the Schlifli
identity >, _, 00404 = A|Vy| of constant curvature 4-
simplex [52], 0.5 can be integrated

1Ak
- 67'('7 (Z Clab@ab - A|V4|>

a<b

Ak
Z ZNabaab + 20
a<b

28 =

(166)

where |Vy| is the 4-simplex volume. 2C is a geometry-
independent integration constant. Egs.(157) and (97)
implies A laab = 4%jab, thus ZA’“ Y act Naptay € 27miZ
is neghglble in e2%. As a result we obtain the leading
asymptotics of A, as

Ay = € (N e SressetC g7 = iSresse=C) (167)
x [1+ 0 (1/k)],
/
Ny = N (168)
det(— o 5/27)

where in the exponents

Ak
e (Z 00O —AV4|> (169)

is the Regge action of the constant curvature 4-simplex.
The coefficient ‘ﬂ? is identified to be the inverse gravi-

tational coupling 1/¢%. This identification is consistent
with (16).

SRegge =

V. CONCLUSION AND OUTLOOK

In this work, we propose an improved formulation of
4d spinfoam quantum gravity with cosmological constant
A. This formulation is featured with the finite spinfoam
amplitudes on simplicial complexes and the correct semi-
classical behavior of the vertex amplitude.

Despite the above promising aspects, this formulation
still has several open issues, which are expected to be
addressed in the future research: Firstly, it is conjectured
in Section ITIID that the boundary Hilbert space of the
spinfoam amplitude A is the Hilbert space of g-deformed
spin-network states with q root of unity. To prove this
conjecture, we need to define and study coherent inter-
twiners of g-deformed spin-networks, and clarify if there is
a canonical bijection between these coherent intertwiners
and the boundary data of A. The expected coherent inter-
twiner should be a g-deformation of the Livine-Speciale
coherent intertwiner [40].

We need to construct geometrical operator on the
boundary Hilbert space to understand quantum geomet-
rical interpretaion of boundary states. The construction
may be based on the combinatorial quantization of SU(2)



CS theory [53, 54]. It is interesting to define coherent
states that are coherent in both spins (areas) and inter-
twiners (shapes of curved tetrahedra). The coherent state
may be a g-deformation of the complexifier coherent states
in [55]. In addition, we need to direct sum over all graphs
to defind the entire g-deformed LQG kinematical Hilbert
space and check the cylindrical consistency of operators.
This should generalize the work [12] from real q to q root
of unity.

It is discussed in Section IIT E that the spinfoam ampli-
tude A has ambiguities in which the freedom of choosing
coherent states is due to imposing semiclassical simplicity
constraint to coherent state labels. It may be useful to
develop an operator formalism or other ways to impose
the simplicity constraint (such as the master constraint,
Gupta-Bleuler, etc) at the quantum level, for reducing the
freedom of the ampltiude. Another possible drawback of
our implementatAign of simglvicity constraint is that spins
such that dim(M3) < 2 (M5 only contains degenerate

4-gons) have to be excluded from our formalism.

The present work only study the semiclassical behavior
of the vertex amplitude. The semiclassical analysis should
generalizes to the spinfoam amplitude with A on arbitrary
simplicial complex, as well as taking into account the sum

26

over j.

A in this spinfoam model should be understood as the
value of cosmological constant at ultraviolet. It would be
interesting to apply the Wilson renormalization to the
spinfoam model with A (see e.g. [56] for some earlier
results). The spinfoam renormalization is expected to
result in a flow of A from the ultraviolet to infrared, where
the infrared value of A should relate to the observation.

It should also be interesting to develop a group field
theory (GFT) based on the spinfoam formulation with A.
The notion of group fields might be suitably generalized
to include A. The “group fields” might actually be fields
on the moduli space of flat connections. The GFT is
expected to reproduce spinfoam amplitudes A, which are
finite order by order in the perturbative expansion.
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Appendix A: A plot for the polytope PB(oct)

The open polytope P(oct) is defined by the following inequalities

ax,Qy,,0z >0a

ax +ay +az <Q,

ax+5x<§, aY+ﬁY<%7 az+ﬁz<%7
Q Q
ax+ay+az+5x>§, ax+ay+az+ﬁy>§,
Q
ax+ay+az+ﬁz>§.

FIG.9 plots the intersection between J(oct) and the plane of ax = ay = az, fx = By = Bz

B

0.3
02+
0.1}
0.0
=01

-0.2F

-0.3L

FIG. 9. Setting ax = ay = az = «a, Bx = By = Bz = 3, and Q = 1/2, PB(oct) is restricted to the grey open triangle in the plot.
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Appendix B: Darboux coordinates of Py g3\r;)

Si: Wy Oy Xy = Zs + Zs hynel: xSy =Y + 25+ Z{ + W}
hyOeh: Xof =28 +Wh+Zy  |hhnch: x5 =25 +Wh+ Y + ZL
hyney: xS =Y+ Zh+ Zs evne: X =Y/ +Z,+ 20 + W!
Sai  find: X = X7 Y+ X %ﬂﬁ:xQ—X§+V+WY+M

o W =x+x, i =W{ + X5+ X!+ Y/
FOb: XG5 = Wi+ X{+ Xs ﬁm%:xﬁ—xz+W+wm+n
Sst| vinay: XD =z +W/+ Xy, |aond,: ) =W+ X,+Y]+ 2!
vond, s 3 =W+ X+ XY dyndy s D = XY+ Y+ ZL+ WY

vonds: xD =wy+ Wi+ XY dnds: XY =Y, +Ws
Si| dndy: X3 =2+ X+Y)  |[dngy: Xg3>_yg+zg+zg+wg
i b Xy =Y+ Zi+WEH XY | b xS =Ya+ Y+ 2L
i Njh: Xy =Z{ + Wi+ X4+ VY 5055 Xy =Ws+Ys
Ssil i Nel: X§52>_1/1+z Wi+ XY [ ehngh: W) = 2L+ WY Y]+ 2l
g Xy =Y+ X5+ gyt Xsi =Wa+ Zy+ Wy
iNgh: Xy = X[+ + Wi+ XY 95N g by = Ys+ Wi

TABLE I. Edge coordinates X ), of 4-holed spheres. Recall in FIG.3 that the octahedra are glued through the triangles labelled
by a,b,c,d,e, f,g,h,i,j. For example ay labels the triangles symmetric to the triangle a with respect to the equator of Oct(2).
The “primed triangles” with the primed labels triangulate the geodesic boundary of S3 \T's. Here X4,Ya,Za, Wy (a=1,---,5)
are the tetrahedron edge coordinates from the 4 tetrahedra triangulating Oct(a).

Darboux coordinates 25 = (2Lap, Xa), P1 = (Tab, Va) expressed in terms of (X4, Px,),(Ya, Py,),(Za, Pz,),(Ca,T4)
are listed below

2L1p=—-C3—Cy —Cs+ Py, + Py, + Py, + X5+ Xy + X5 + Y3 + Yy + Y5 + 3im, (B1)
2L13=—-Cy—Cs+ Py, + Py, — Pz, + Pz, + Xo+ X5 + Yo+ Y5 + 275 +im, (B2)
2Ly =—-Cs+ Py, + Py, — Pz, + Pz, — Pz, + X3+ Y3 + 275, (B3)
2015 =—Cy —Cs+ Py, + Pz, — Pz, + Pz, + Xo+ Xu+ Yo+ Yy + 225+ 2274, (B4)
2L23:7PX1 +PX4 7PX57PY4+X4*Y4, (B5)
2L9y = —Px, + Px, — Py, — Py, — X1 + X5 — Y1 — Y5 +1m, (B6)
2L95s = Px, + Px, — Px, — Py, — Py, + Xi + X3 - Y, — Y3, (B7)
2034, =C1—C5+Px,+Px. — Py, — Pz, — Pz, — X1+ Xo+ X5 — Y1 - Yo+ Y5 — 27 +im, (BY)
2L35 = —C4 +Px, — Px,— Px, — Pz, + Pz, + X1 — Xu + Y1 — Y4 + 2im, (BQ)
2L45 = —Cs5 — Px, + Px3+ Py, — Pz, + Pz, — Pz, — Xo + X3 — Yo + Y3 + 2im. (B10)

Xy =X = Py, — Pz, — Zs + Z5 + i, (B11)
Ao =X§25) =—Px, — X1+ X5 +1im, (B12)
Xy =Y =0y —Cs+ Px, - X1 + X5 — Y1 + Y5 — Zy + Z5 + im, (B13)
(B14)
(B15)

Xy=\\D =—Cy = Px, + Py, + Py, + X1 — X5+ Y1 + Zy + 2in, Bl4
X5:X§LZ):—04—PX1+PX4+PYI—X1+X4+Y4+Z4+2i7T. B15
1
7-12:i(Xg—X3—X4+Y1+Y2—Y3—Y4+Zg), (B16)
1
7—1325(—X2+X3—Y2+Y3—Y5+Zl—Zz—Zs), (B17)



1

= (=Ya— 2o — Z3+ Zs),

2
(=Xo=Yo— 25— Z4),

(-Xu+V1+Ya-Ys+ 21— Zy),
(Xo+Xs—Xy+Y1+Ys Y+ 25+ Zs5),
(—Xs— Xy + Y1 +Ys - Y, — Zy),

(—Xo+ X3+ Ys Y5+ 271+ Z3),

el Bl S R e ORI

~(Xs+Ys-Ys+ 21— Zy— Zy),

~(Xo+Zs+Zs+ Zs) .

NN

V= X%) = Zy + Zs,
Vo = Xﬁ) = X1+ Xy,
V=X —omi=—Xs 4+ V- Vs — Zs,
Vi = —X;(;? +2mi = X3+ Y3 — Y5 + Zs,
Vs =\ —2mi=— X4+ Vs - V4 — Zy.

We impose C, = 27i to all 2L,;, and X,. We check that (45) implies

{21, Z:}a =011, {21,25}a={P1,Ps}a=0. I,J=(lap,Sa).

The linear symplectic transformation from ® = (X,, Yy, Z,)3_, and Ii = (Px,, Py,, Pz,)

Explicitly, A, B, are given below

(

Appendix C: Symplectic transformation

5

§>:(A<BT>1 E) (ﬁ)w(é)

0 06 06 001101 101 10
0o 06 1.1 000O0OO0CTOOTL1I 1 2
0 0 0 0 01 120 0O0O0 00
6o 0 1 1 20001 120 00
0o 0 0 0 0OO0O0OO0O1 =100 00
-1 0 0 0 O0O0OOOO OO0OT1 —-10
-10 0 0 01-100 0OO OO
-1-21 -1000O0O0 0O01 1 0|,
1 0 0 0 O0O0OOO0O-1-100 020
0 0 -1-1 01100 0O0O0 00O
0o 0 0 0 .10 0 00O OOO0O 01
0 0 0 0 00 0OO OCOT1T O0OPO
-1-10 0 0O0O0OO0OO0O OOT1 11
11 0 0 O0O0OOOO OO-12020
0o 06 0 06 0oo0o0O0O1 110 00

a=1

(B31)

to Qj P is given by

(C1)

(C2)
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0O 0 00 0O 0 0O 1 0 0 1 0 0 1 0
0O 0 001 0 0 0 0 0 1 -120 0 1
O 0 001 .10 0 1 0 0 0 0 1 -1
0O 0 000 1 0 1 -10 01 0 0 0
-10 0 0 0 0O 0O 0O 0O 1 -1 0 -1 0 0
0O -1 0 0 0 0 -10 0 0 0O O 1 -1 0
1 -10 0 0 0 1 -1 0 -10 0 0 0 0
B=| 0 0 -11-10 00 0 0 0 0 1 0 —-1], (C3)
1 0 -1-10 0 0 0 0 -10 1 0 0 0
0 1 -1-10 1 1 0 -10 0 0 0 0 0
0 0 0O 0O1 =10 0 0 0 0 0 0 0 0
-10 0 0 0 0O O O 0O 0O 0O 0O 0 0 0
0O 0 00O 0O 0O 0O O O O 0 0 1 0 0
0O 01 0 0 0 0O O O O 0O 0 —-11 0
-11 0 0 0 0 0O OO 1 0 0 0 0 O©
t=(-3,-3,-2,-4,0,1,0,1,0,0,1,1,1,0,0)T. (C4)

Appendix D: Proof of Lemma III.1

Lemma D.1. H;—; .. 4 € SU(2) satisfying HyHsHoHy = 1 exist if and only if j§:17,,, .4 satisfy the triangle inequality,
i.e. there exists J such that

J1 — Jol < J < min (51 + ja, k — j1 — 52)., (D1)
75 — Jal < J < min (j5 + 5. k — j5 — Ji) - (D2)
Proof: We denote by 4%/ = r; € [0,27). H; = cos(r;/2) + ifi} - & sin(r;/2) where i’ is a unit vector in R®. @@/ = —ii

in case of minus sign in (100) and 7’ = 7 in case of plus sign. We denote by HoHy = cos(R/2) + iN - &sin(R/2) with
R =%%] €[0,2r) then HyHs = cos(R/2) — iN - ¢ sin(R/2). Taking the trace gives

R
cos <2> = cos (%) cos (%2) — 71} - i sin (%) sin (%2) , (D3)
cos Ry cos (T—?’) cos (E) — Ty - Ty sin (E) sin <r—4) (D4)
2 2 2 3 2 2
Since sin (%) > 0, unit vectors ﬁ;zl,,,‘ 4 exists if and only if
R _
cos <r1;—r2> < cos (2) < cos (Tl 5 T2> , (D5)
cos (W) < cos <J;> < cos (7‘3 ; T4> , (D6)

|r1 —ro] < R <min(rq +re,dm — 11 —12), (D7)
[rs — 74| < R < min(r3 + 74,47 — 73 —74) . (D8)

which is equivalent to

Conversely, (D5),(D6) or (D7),(D8) imply the existence of 2 spherical triangles in S? sharing a common edge. The
spherical triangles form a 4-gon whose edges are geodesics in S% with length r;/2 (i = 1,---,4). The diagonal of
the 4-gon is a geodesic whose length is R/2. The 4-gon in S® implies the existence of H;—; ... 4 € SU(2) satisfy
H,H3H>H; =1 by the argument in Section III B.

O
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Appendix E: Determining &;’s from 0 and ¢

It is useful to consider cos(f24) = —4[Tr(H1H, ') — Tr(Hy) Tr(Hy)] = & Te(HyHy) = § Tr(HoHs). The following
relation holds between ¢ and 64 [37]

(ei‘z’ + e’w) c12(A)cza(A) — 2 (mams + mimy) + A (mims + mamy)

2cos(f24) = yr) 5 (E1)
where m; = Tr(H;) and
A=e? e ¢5(A) =A% +m? + mf — Am;m; — 4. (E2)
For SU(2) flat connections satsifying HyHsHoHy = 1, we make a partial gauge fixing that H, = diag(e?®, e~%4),
as € [0,7) '*. Thus as a unit vector in Euclidean R*, v; = (v9, v}, v?,vY),
vg = (cos (asq),0,0, —sin (aq)) (E3)

representing H, *. For the triangle (vy,vs,v4), we v1 = (1,0,0,0), (v1,v3) = cos(f13) (613 = ), (vs,vs) = cos(as), and
(vg,v4) =1 to determine vs

vz = (cos (613) , 0,3, v3) (E4)
v3 = v/~ (csc2 (aq) (cos? (az) + cos? (013))) + 2 cos (a3) cot (aq) csc (ay) cos (013) + 1
3

= csc (aq) (cos (aq) cos (613) — cos (asz)),

where we have used the remaining rotational summetry (of 1-2 plane) to fix v = 0 and v3 > 0. Then we use
(v1,v2) = cos(ay), (ve,v3) = cos(az), (ve,vs) = cos(f24), and (va,va) = 1 to determine vq

vy = (cos (a1) ,v3,v3, csc (ag) (cos (aq) cos (as) — cos (624))) (E5)
vh ==+ (2 cos (ag) csc (ayq) (cot (aq) (cos (a1) cos (az) + cos (013) cos (B24)) — csc (aq) (cos (ay) cos (613)

+ cos (a3) cos (024))) + csc (aq) (—2 cos (a1) cot (aq) cos (024) + csc (aq) (cos2 (013) + sin? (613) cos? (924))

—2cos (az) cos (013) (cot (as) — cos (ar) csc (as) cos (24)) + cos® (az) csc (as) + sin® (az) cos® (a1) esc (as))

W=

1
2

+ cos? (ag) — 1) (CSC2 (aq) (cos® (as) + cos® (613)) — 2 cos (ag) cot (as) csc (aa) cos (613) — 1)

v3 =2 (cos (a1) (cos (13) — cos (az) cos (aq)) + cos (fa24) (cos (az) — cos (aq) cos (013)) + sin® (as) (— cos (az2)))
x/— (cse? (ay) (cos? (as) + cos? (013))) + 2 cos (a3) cot (ay) csc (ay) cos (A13) + 1
x (—4 cos (as) cos (as) cos (A13) + cos (2as) + cos (2a4) + cos (2013) + 1),

where =+ of v} corresponds to the parity symmetry with respect to the plane of Fi34 (spanned by the 29, 22, x3-directions
in R*) where vy, vs, vy leave. Choosing 4 or — of v is equivalent to fixing the orientation of n123 Any34 since vd — —vi

transforms

N123 A N34 — —N123 A N34, where nfijn”kH = Gabcdvf”l}?@i. (EG)

Now all {H,}}_; are fixed by

Hy = vq, H4:1)21, H3=v4v§1, ngu;gvgl, (E7)
3
where v; = U?I +injaa. (E8)
a=1

Every H; is uniquely determined by (a;, 613, 624), where o4 relates to ¢ by (E1), then &; is determined up to scaling
as the eigenvector of H; for the eigenvalue whose square is e?Lav.

13 We use the conjugation e diag(A\, A~1) ™! = diag(A™!, ), where 45 = —£g4 and det(e) = 1, to fix a4 € [0,7) in X = ei®4.
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Appendix F: Critical equations

Derivatives of Sy are given by

2m(1 + b?) T 3., & T 5 95
———0;5% =AB" - 2+ 2 AB' - | Z -b"P F1
o 550 T2t T ; (F1)
277(1 + b_2) T = = k T =3 2 =
—————20=5=AB" - £+ 2 — AB' - | Z -b"P F2
ik 770 + (1+b2) ) (F2)
2m(1 + b?)
_Taﬁsl =-B-: (PXa:L-H 59 PYa:l,-u 59 PZa:1,~-~ ,5)T7 (FS)
eg. Pz, =log(l— e_Z“) —log (1 - eX"'+Y“+Z“) , (F4)
2m(1+b72 ~ ~ ~ ~
B ( Zli) )85/81 = _B.(PXa:Iw-,5’PYa:l,m,5’PZQ:1,.,.,5)T7 (F5)
e.g. ]BXG = log (1 — 672‘1) — log (1 — e;(““?frz‘) , (Fo6)
gj = _(BT)_l : (Xa:L--- ,0 Ya:l,»-- ;09 Za:1,-~~ ,5)T7 (F7)
P =B (Xazt, 5. Yot 50 Zam1,5) T (F8)
where the branches of the logarithms are the same as the canonical lift in (13).
We define
X! :=log (1 - e*X“) , Y =log(1— e o),
Z!" :=log (1 — e_Z“) , W/ :=log (1 — €_W") , (F9)
X! :=log (1 - e*)?“) . Y/ :=log (1 - e*f/“> ,
Z" .= log (1 - e_Z“) . W =log (1 - e—Wa) , (F10)
Z//

such that e.g. z = eZ and 2" = e reproduce z=' + 2" — 1 = 0 i.e. the Lagrangian submanifold Lo C Paa of framed
flat PSL(2, C) connections on the ideal tetrahedron A. W,, W, are given by (133). The above logarithms are defined

with the canonical lifts same as in (13). We define Px_, Py,, Pz, and Px_,Py,,Pz, (a =1,---,5) in the same way as
(44). X,,Y4, Z4, Px,,, Py,, Pz, with Egs.(F9), (F10), and (133) parametrizes the moduli space of framed flat PSL(2,C)
connections on the ideal octahedron oct(a) made by gluing 4 ideal tetrahedra.

The critical equations Ox,Sp = 8)2155 = 0 can be written in terms of & = (Xa,Ya,Za)i:1 and I =
(Px,, Py, Pz,)o_y:

9 =A - &+B-1II + 2mi(ii + p), (F11)
=/ = =
2 =A - ®+B-II - 2i(ii + 7). (F12)

where € Z'5. Up to 2mi(it + ), the critical equations (136) and (137) reproduces the 2-part of (53), whereas here ®
and II are related by (F9) (F10), and (44). Note that the Z-part of (53) has been reproduced by the relation between
(Xa,YmZa)i=1 and P (see above (133)).

For the vertex amplitude A,, the critical equations 09757 = 05755 = 0 give

2 / oL ~

27 (1+ %) , v (2+2) o 1o .

02 Tps = —iPa+ VWi — g+ T et i = 278, = 0 (F13)
27h 211

= —i P, + 2z, — %ua — %ma + Yo +ixe — 278, = 0, (F14)

2 (1 +072) = 1 (9“"1 + QZL) 2, — 0?2, :
TQ@GI@; = —iPy+ V2 2 — R S TR Yo — 1Tq + 275, =0 (F15)

~ 2h~1 211

=i P+ V2 2, — T e + mma — Yq — 1Ty + 278, = 0. (F16)

k ko



32

where 11, and m, relate to 2!, and 2/, by (69). The above equations is solved by

2 2m 2m 27

& Ha = V2Re(z,), & Ve = V2Im(z,), % Ma = Tar M = Ya - 278, (F17)
where v, and n, relate to X, and )?a by (69). Although p,, v, have nonzero imaginary parts, o, = Im(ug,), 8o = Im(v,)
are fixed and do not scale as k — oo (whereas Re(uq), Re(v,) are not fixed and need to be determined by the critical
equations), thus we can view (14,1, to be real in (F17) as far as the semiclassical limit is concerned. The domain of
n, has been restricted to the single period n, € [,k — d] by (126) (6 > 0 is arbitrarily small), so the last equation
implies

sq = 0. (F18)

when y, € [0,27) and y, is not infinitesimally close to 0 or 2.
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