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The Lorentzian Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) spinfoam model and
the Conrady-Hnybida (CH) timelike-surface extension can be expressed in the integral form

∫
eS .

This work studies the analytic continuation of the spinfoam action S to the complexification of the
integration domain. Our work extends our knowledge from the real critical points well-studied in
the spinfoam large-j asymptotics to general complex critical points of S analytic continued to the
complex domain. The complex critical points satisfying critical equations of the analytic continued
S. In the large-j regime, the complex critical points give subdominant contributions to the spinfoam
amplitude when the real critical points are present. But the contributions from the complex critical
points can become dominant when the real critical point are absent. Moreover, the contributions
from the complex critical points cannot be neglected when the spins j are not large. In this paper,
we classify the complex critical points of the spinfoam amplitude, and find a subclass of complex
critical points that can be interpreted as 4-dimensional simplicial geometries. In particular, we
identify the complex critical points corresponding to the Riemannian simplicial geometries although
we start with the Lorentzian spinfoam model. The contribution from these complex critical points of
Riemannian geometry to the spinfoam amplitude give e−SRegge in analogy with the Euclidean path
integral, where SRegge is the Riemannian Regge action on simplicial complex.
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I. INTRODUCTION

Spinfoam models arise as a covariant formulation of
Loop Quantum Gravity (LQG), for a review, see [1–5].
The spinfoam model is defined as a state sum model over
certain cellular complex K which contains vertices v, edges
e, and faces f . K is dual to a triangulation in 4 dimensions.
Each face f are bounded by a cyclic sequence of contiguous
edges and each edges e are bounded by two vertices.
One of the popular spinfoam models is the Engle-Pereira-
Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model and
the Conrady-Hnybida (CH) extension. These models
using certain boundary gauge choices to weakly impose
the simplicity constraint. The EPRL model uses the time
gauge which leads SU(2) irreducible representations on
boundary states, and correspond to quantum spacelike
boundary geometries [6, 7]. The CH extension extends
the model to space gauge which uses SU(1, 1) irreducible
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representations for boundary states, thus have timelike
boundary geometries [8–10]. Both the EPRL/FK and CH
models can be cast into an integral expression

∫
eS with

the spinfoam action S =
∑
f Sf . The action Sf at each

face f can be either the space action or the time action
for the triangle dual to f being spacelike or timelike. The
space action uses representations of the SU(2) or SU(1, 1)
discrete series while the time action uses continuous-series
representation of SU(1, 1) . In these models, a spinfoam
can be regraded as a Feynmann diagram with 5-valent
vertices. Each vertex corresponds to a quantum 4-simplex,
as the building block of the discrete quantum spacetime.

The semiclassical behavior of spinfoam model is deter-
mined by its large-j asymptotics. Recently there have
been many investigations of large-j behavior of spinfoams,
in particular the asymptotics of EPRL/FK model [11–
16] and the asymptotics of CH extension [17–19]. It has
been shown that, in large-j asymptotics, the spinfoam
amplitude is dominant by the contributions from critical
configurations, which corresponds to simplicial geome-
tries on a simplicial complex and gives discrete Regge
action as its critical action. The models may contain
critical configurations of degenerate simplicial geometries,
known as vector geometries, except for the CH model
with both spacelike and timelike tetrahedra appearing in
every 4-simplex.

Currently, most of the studies about the spinfoam mod-
els focus or rely on the critical configurations inside the
real integration domain of the spinfoam amplitude. These
results show the semi-classical behavior and perturbative
effect around these semi-classical configurations corre-
sponds to simplicial geometries. However, for the bound-
ary data does not correspond to simplicial geometry con-
figurations, the behavior of amplitude will be dominated
by complex critical points away from the real integration
domain [20–23]. Those contributions from complex criti-
cal points have not been extensively studied. Moreover,
the complex critical points will give the "sub-dominate"
contributions (e.g. analog of instantons) of the model
when real critical points appear, which reflects the non-
perturbative behavior. As shown in [24, 25], complex
critical points play an important role in resolving the
flatness problem, thus curved geometries can emerge in
the semi-classical regime of spinfoam models. At smaller
j regime, these "sub-dominate" contributions can become
important and determine the behaviour of the model.
The recent progress on the Monta-Carlo computation
of spinfoams [26] also request a better understanding of
these sub-dominant contributions in complex domain in
order to clarify the behavior of the model. Moreover,
a complete analysis of these sub-dominate contribution
might be a necessary step towards the understanding of
the non-perturbative topological property of the model
and the study may give different phases and unveil possi-
ble quantum phase transition of the model via resurgent
trans-series [23, 27].
The spinfoam model can be written as an oscillatory

integral of type
∫
eS over finite dimensional real integra-

tion cycle. According to the Picard-Lefschetz theory, we
can deform the original integration cycles to the weighted
unions of Lefschetz thimbles, each of which is defined as
the union of all steepest descent paths ending at a com-
plex critical point of the analytic continued action [20–23].
The Picard-Lefschetz theory and Lefschetz thimble have
been applied to the spinfoam model and turned out to
be important in particular for numerical computations.
When we analytic continue the spinfoam action S, the
critical points of the analytic continued action in general
live in the complexification of the integration domain,
and contain both the dominant and sub-dominant critical
configurations of the model. In this paper, we study the
analytic continuation of EPRL/FK model and CH exten-
sion, extract the complex critical points (of the analytic
continued spinfoam action), and analyze their possible
geometrical interpretations.
In the analysis we firstly derive the analytic continua-

tion of spinfoam amplitude in the most general EPRL-CH
model, to include both spacelike and timelike tetrahe-
dra and triangles. We then analytic continue the action
and derive the analytic continued critical equations, from
which we extract the complex critical points. At each ver-
tex v, the analytic continued critical equations can be writ-
ten as two copies of parallel transport equations and clo-
sure conditions for simple bivectors, which are rotated by
SO(4,C) group elements (g̃+ ∈ SL(2,C), g̃− ∈ SL(2,C))
respectively:

G̃±veB
±
vef (G̃±ve)

−1 = G̃±ve′B
±
ve′f (G̃±ve)

−1 , (1)

0 =
∑
f

jf (−i)
1−tf

2 B±ve′f (2)

where G̃− = (g̃−)−1, G̃+ = g̃+Re with Re = I2 or iσ3

respectively for SU(2) or SU(1, 1) gauge fixing (σ are
Pauli matrices). Simple bivectors B±vef are given as

B±vef = tfa
γ±
vef ṽefB0ṽ

−1
ef (aγ±vef )−1 (3)

with ṽef represents the (complexified) coherent states
associated to edge e (ṽef = vef ∈ H for boundary edges.
H is SU(2) for the EPRL and SU(1, 1) for the CH ex-
tension). B0 = 1

2σ3, tf = 1 for space action (related
to spacelike triangles and discrete-series representations)
and B0 = 1

2σ1, tf = −1 for time action (related to
timelike triangles and continuous-series representations).
aγ±vef ∈ SL(2,C) is a group element related to phase space
variables depending on Immiriz parameter γ. B± satisfies
the following condition:

0 = tr
(
B± · (B+ − tfB−)

)
(4)

= tr
(
(B+ − tfB−) · (B+ − tfB−)

)
, (5)

namely, B± differs by a null bivector orthogonal to them-
selves. As a result, B± may have different geometrical
interpretations and the cross-simplicity condition will be
in general broken.
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(1) are complex holomorphic polynomial equations of
complex variables, where the number of equations equals
the number of variables. There always exists complex
solutions for generic spinfoam boundary data, e.g. even
when the boundary data do not satisfy the closure condi-
tion, in contrast to the existing results of critical points
in the real integration cycle. However, not all of these
complex solutions have geometrical interpretation as the
simplicial geometries, since they might not always satisfy

the cross-simplicity condition for the bivectors.
We then identify the subset of complex critical points

that have clear geometrical interpretations as simplicial ge-
ometries, namely all their corresponding bivectors satisfy
cross-simplicity condition. These solutions we identified
satisfying aγ±vef = I2. There are three possible signatures
of the simplicial geometry arises from the complex critical
points: Riemannian, Lorentzian, and split signature. The
analytic continued spinfoam action evaluated at these
critical points gives:

• Riemannian or split signature critical points

S̃[X̃0] =
∑
f

Jf (−i)
1−tf

2

(
(−i)

1−t∆f
2 (±γΘf − i(ΦBf + µfπ)) mod (γπ, iπ)

)
(6)

+
∑

f∈boundary

Jf (i + γ)
1 + tf

2

ωfπ mod 2π

2

S̃[X̃0] =
∑
f

Jf (−i)
1−tf

2

(
(−i)

1−t∆f
2 (i(±Θf − ΦBf − µfπ)) mod (γπ, iπ)

)
(7)

+
∑

f∈boundary

Jf (i + γ)
1 + tf

2

ωfπ mod 2π

2

• Lorentzian critical points

S̃[X̃0] =
∑
f

Jf (−i)
1−tf

2

(
i
1−t∆f

2

(
±iγΘf − i(ΦBf + µfπ)− (i + γ)

ω∆
f π

2
mod (iπ, γπ)

))
(8)

+
∑

f∈boundary

Jf (i + γ)
1 + tf

2

ωfπ mod 2π

2
(9)

S̃[X̃0] =
∑
f

Jf (−i)
1−tf

2

(
i
1−t∆f

2 (±Θf − i(ΦBf + µfπ)) mod (iπ, γπ)

)
(10)

+
∑

f∈boundary

Jf (i + γ)
1 + tf

2

ωfπ mod 2π

2
(11)

where Θf (ΘB
f ) are deficit (dihedral) angles for internal

faces (boundary faces), ΦBf are determined by the phase
convention of the boundary coherent state, which in prin-
ciple can be 0 for certain boundary data, and ΦBf = 0 for
internal faces. ωf ∈ {0, 1} are parameters distinguish the
difference of the time gauge or space gauge in EPRL-CH
model where ωf = 1 when the gauge fixing are different at
edges on ∂f and ω = 0 otherwise. ω∆

f ∈ {0, 1} distinguish
the different geometries between the pair of tetrahedra
sharing f , where ω∆

f = 1 when the boundary tetrahedra
have different signature and ω∆ = 0 otherwise. t∆f = ±1
determines the signature of the reconstructed triangles

on face f : spacelike triangle corresponds to t∆f = 1 while
timelike triangle corresponds to t∆f = −1. Both ω and ω∆

are 0 for internal faces. The extra iπ and γπ ambiguity
appearing in the critical action coming from the analytic
continuation of logarithm function which is multivalued.
Thus, the analytic continued action has to be defined
on the cover space, in which there are infinitely many
critical points associated with the same geometrical in-
terpretation. One can easily recognize that the critical
action for Riemannian sub-dominate contributions (6) is
nothing else, but the Wick rotated action of the Regge
action up to (−i)

1−tf
2 iπ and (−i)

1−tf
2 γπ ambiguity for
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both space and time action. Namely, their contributions
to the spinfoam amplitude are proportional to e−SRegge

with

SRegge = ±
∑
f

AfΘf (12)

where Af := γJf for both space and time action is the
area for triangle associated to f , and ± associate to differ-
ent critical points. Θf is the deficit angle (dihedral angle)
when f is an internal (boundary) face. We have analyti-
cally continued the spin Jf → iJf for the time action to
cancel the extra i appearing in (6). In the case when the
tetrahedra contain both timelike and spacelike triangles,
this analytical continuation of the spin is required by the
closure condition (1).
This paper is organized as follows: In Section II, we

give a brief introduction the spinfoam action for EPRL-
CH model to fix the notation and derive the analytic
continued action. In Section III, we derive and analyze
the analytic continued critical equations. The critical
equations are reformulated in geometrical form. Then
in Section IV, we reconstruct geometries from a subset
of complex critical points. Finally, in Section V, we
evaluate the analytic continued action at critical points
corresponding to simplicial geometries.

II. ANALYTIC CONTINUATION OF THE
SPINFOAM AMPLITUDE

A 4-dimensional triangulation K (and a dual graph)
contains 4-simplices v (dual to vertices), tetrahedra e
(dual to edges), triangles f (dual to faces), line segments,
and points, as illustrated in FIG. 1. The spinfoam ampli-
tude on K can be written in an integral representation
[6, 14, 17, 18, 28]

Z(K) =
∑
~J

∏
f

dJf

∫
[dX] e

∑
f JfFf [X], (13)

Jf are half-integer spins relates to the quantum area of f .
1. dJf labels the choice of the face amplitude: dJf = 2Jf +
1 for EPRL model, while dJf = 2Jf − 1, Jf ≥ 1 for CH
model with spacelike triangles in timelike tetrahedra and
dJf = 1, Jf ≥ γ/2 for CH model with timelike triangles
in timelike tetrahedra. (13) is a universal expression of
spinfoam models, while different spinfoam models have
different integration variables X and functions Ff [X]
independent of Jf . For instance,

1 For the amplitude related to timelike triangles in timelike tetrahe-
dra in CH model, Jf ∈ Z/2 is related to the Casimirs of SU(1, 1)

principle series label sf by sf = − 1
2
+ i

2

√
4J2
f

γ2 − 1.

FIG. 1. A 4-simplex and the graph dual to it (dark lines):
vertex v refers to the 4-simplex, edges e label tetrahedra as the
boundary of the 4-simplex, faces f label triangles shared by
tetrahedra e and e′. The grey dashed line shows the boundary
spin-network graph of the 4-simplex, where each dashed line
corresponds to a triangle f and each node corresponds to a
tetrahedra e.

• Euclidean EPRL model [6, 12, 15]:

X ≡
(
g±ve, ξef

)
(14)

including (g+
ve, g

−
ve) ∈ Spin(4) at each pair of 4-

simplex v and tetrahedron e ⊂ ∂v, and ξef ∈ C2 at
each pair of tetrahedron e and triangle f ⊂ ∂e. Each
ξef is normalized by the Hermitian inner product
〈 · | · 〉 on C2. Ff [X] in the exponent is a function of
g±ve, ξef and independent of Jf :

Ff [X] =
∑
v,f⊂v

[
(1− γ) ln〈ξef

∣∣(g−ve)−1g−ve′
∣∣ξe′f 〉 (15)

+(1 + γ) ln〈ξef
∣∣(g+

ve)
−1g+

ve′

∣∣ξe′f 〉].
• Lorentzian EPRL model - spacelike triangles f in
spacelike tetrahedra [6, 13, 14]

X ≡ (gve, zvf , ξef ) (16)

with gve ∈ SL(2,C), zvf ∈ CP1, and ξef ∈ C2

normalized by the Hermitian inner product. We can
equivalently view ξef ∈ SU(2) since ξef corresponds
to the SU(2) group element which rotates ξ0

ef (1, 0)

to ξef . Defining Zvef = g†vezvf , Ff [X] is given as

Ff [X] =
∑
v,f⊂v

(
ln
〈ξef , Zvef 〉2 〈Zve′f , ξe′f 〉2

〈Zvef , Zvef 〉 〈Zve′f , Zve′f 〉

−iγ ln
〈Zvef , Zvef 〉
〈Zve′f , Zve′f 〉

)
(17)

with SU(2) invariant inner product 〈·, ·〉.

• Hnybida-Conrady extension - spacelike triangles f
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in timelike tetrahedra [17, 28]

X ≡
(
gve, zvf , ξ

±
ef

)
(18)

with now two different spinors ξ±ef ∈ C2 which cor-
responds to the SU(1,1) group element vef which
rotates ξ+

0 = (1, 0) and ξ−0 = (0, 1) to ξ±ef = vefξ
±
0 .

The face action reads

F
{m}
f [X] =

∑
v,e∈∂f

κvefF
mef
vef [X] (19)

with

F±vef [X] =− (κvef − 1) ln
(
±〈ξ±ef , Zvef 〉

)
(20)

− (κvef + 1) ln
(
±〈Zvef , ξ±ef 〉

)
− (iγ − κvef ) ln (±〈Zvef , Zvef 〉)

where now 〈·, ·〉 is SU(1,1) invariant inner prod-
uct and mef = ±1 := 〈ξ±ef , ξ

±
ef 〉. κvef = ±1 de-

fines the direction of simplicial complex satisfying
κvef = −κve′f = −κv′ef . Moreover, the integration
is restricted to the domain mef 〈Zvef , Zvef 〉 > 0.
All the other variables are the same as Lorentzian
EPRL model.

• Hnybida-Conrady extension - timelike triangles f
in timelike tetrahedra [18, 19]

X ≡
(
gve, zvf , l

±
ef

)
(21)

with now again two different spinors l±ef ∈ C2 which
corresponds to the SU(1,1) group element which
rotates l+0 = (1, 1) and l−0 = (1,−1) to l±ef . The face
action reads

F
{s}
f [X] =

1

γ

∑
v,e⊂∂f

κvefF
svef
vef [X] (22)

where svef = ±1 is a parameter to distinguish differ-

ent actions. Note that in a different approach given
in [19], the action only contains svef = + terms.
F
svef
vef [X] is given by

F±vef [X] =γ ln
〈Zvef , l±ef 〉
〈l±ef , Zvef 〉

− i(1∓ 1) ln〈Zvef , Zvef 〉

∓i ln
(
〈Zvef , l±ef 〉〈l

±
ef , Zvef 〉

)
, (23)

with SU(1,1) invariant inner product 〈·, ·〉.

For both Euclidean and Lorentzian models, the theory
have the following gauge transformations

zvf → gvzvf & gve → (gv)
−1†gve, (24)

gv ∈
SL(2,C) Lorentzian
Spin(4) Euclidean ,

ξef → veξef & gve → (ve)
−1†gve, (25)

ve ∈
SU(2) spacelike boundary
SU(1, 1) timelike boundary .

The Lorentzian model has an extra gauge transformation

gve → −gve . (26)

A. Analytic Continuation

We complexify the integration variables X to complex
variables X̃, and analytic continue the integrand in (13)
to be the holomorphic function on the space of X̃.
We define the following complexification for integra-

tion variables in X: The group variables appear in X
are complexified as in SO(4,C) ' SL(2,C)C ' Spin(4)C,
SU(2) or SU(1,1) spinors ξ0,±

ef , l±ef are complexified via
their corresponding group element vef where now becomes
in SL(2,C), and CP1 spinor zvf are complexified as in C2.
We look for new critical points of the spinfoam action∑

f JfFf in the space of complex variables.
The complixification is illustrated below:

Euclidean (g+
ve, g

−
ve) → (g̃+

ve, g̃
−
ve)

Spin(4) Spin(4)C
ξef → ξ̃ef

SU(2) SL(2,C)

Lorentzian (gve, g
†
ve) → (g̃+

ve, g̃
−
ve)

SL(2,C) SO(4,C)
zvf → z̃vf
CP1 C2

ξef → ξ̃ef
SU(2) SL(2,C)

EPRL

ξef → ξ̃ef
SU(1, 1) SL(2,C)

CH spacelike faces

l±ef → l̃±ef
SU(1, 1) SL(2,C)

CH timelike faces

where we use ·̃ to mark the variables in the space of
complex variables. The details of the complexification is

given in Appendix A.
Below we give the analytic continuation of the face
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action F̃ [X̃] for specific spinfoam models

• Euclidean EPRL/FK model:

X ≡
(
g±ve, ξef

)
→ X̃ ≡

(
g̃±ve, ξ̃ef

)
(27)

where the analytic continued action for each face
now is given by

F̃f

[
X̃
]

=
∑
v,f⊂v

[
(1− γ) ln

(
ξ̃′ef (g̃−ve)

−1g̃−ve′ ξ̃e′f
)

+(1 + γ) ln
(
ξ̃′ef (g̃+

ve)
−1g̃+

ve′ ξ̃e′f
)]
. (28)

• Lorentzian EPRL model:

X ≡
(
gve, g

†
ve, zvf , z

†
vf , ξef , ξ

†
ef

)
→

X̃ ≡
(
g̃+
ve, g

−
ve, z̃vf , z̃

′
vf , ξ̃ef , ξ̃

′
ef

)
. (29)

We define

Z̃vef = g̃−vez̃vf Z̃ ′vef = z̃′vf g̃
+
ve , (30)

– Spacelike triangles f : We can unify both the
EPRL and CH extension with spacelike trian-
gle f with the following F̃f [X] (space action)

F̃f [X] =
∑

v,e⊂∂f

F̃vef [X̃, κvef ] (31)

where

F̃vef [X̃, κvef ] = κvef

[
(1 + κvef det(ηe)) ln

(
ξ̃′efηeZ̃vef

)
+ (κvef det(ηe)− 1) ln

(
Z̃ ′vefηeξ̃ef

)
(32)

− (iγ + κvef det(ηe)) ln Z̃ ′vefηeZ̃vef

]
This formula of F̃vef unifies 2 cases: when
e is spacelike, ηe = I2,det(ηe) > 0, ξ̃ is the
complexification of SU(2) spinor ξ; when e

is timelike, ηe = σ3,det(ηe) < 0, ξ̃ = ξ̃± is
the complexification of SU(1,1) spinor ξ±. We
often adopt this convention in the following
discussion to unify the treatment of ξ̃ and ξ̃±.

– Timelike triangles f : F̃ {s}f [X] (time action) is
given by

F̃
{s}
f [X] =

∑
v,e⊂∂f

κvef F̃
svef
vef [X] (33)

where svef = ±1 and

F̃±vef [X] = γ ln
(Z̃′vef )tηl̃±ef

l̃′±efηZ̃vef
(34)

∓ i ln
(

((Z̃ ′vef )tηl̃±ef )(l̃′±efηZ̃vef )
)

− i(1∓ 1) ln
(
Z̃ ′vefηZ̃vef

)
.

This defines a series of actions for given sets
of {svef}.

The analytic continued theory now have the following
gauge transformations

z̃vf → g̃−v z̃vf & g̃−ve → g̃−ve(g̃
−
v )−1, g̃−v ∈ SL(2,C) , (35)

z̃′vf → z̃′vf g̃
+
v & g̃+

ve → (g̃+
v )−1g̃+

ve, g̃
+
v ∈ SL(2,C) , (36)

ṽef → ṽeṽef & g̃−ve → ṽe(g̃
−
v )−1& g̃+

ve → ṽ′eg̃
+
ve,

ve ∈ SL(2,C), ṽ′eηeṽe = ηe . (37)

There is still a discrete gauge transformation the analytic
continued spinfoam action satisfied:

g̃−ve → −g̃−ve & g̃+
ve → −g̃+

ve . (38)

III. SEMI-CLASSICAL ANALYSIS OF THE
AMPLITUDE

We may write the analytic continued action as

S̃ = λ

∑
f

jf F̃
γ
f [X̃]

 (39)

where Jf = λjf . The LQG area spectrum Arf =

8πγ`2P
√
Jf (Jf + 1) suggests that λ → ∞ should corre-

spond to the `P → 0 while fixing the area Arf . Thus,
the semi-classical limit of the amplitude is given by the
asymptotic analysis of the path integral in the λ → ∞
limit. In addition to the real critical points which has been
studied in the literature, here we focus on the complex
critical points emergent from the analytic continuation of
the action. The complex saddles give subdominant contri-
butions to the amplitude when the boundary data allow
the amplitude to have real saddles. When the bound-
ary data forbids the amplitude to have any real saddle,
the contributions from the complex saddles may become
dominant to the amplitude. We will identify all possible
critical point of analytic continued spinfoam action S̃ on
the complexified domain of X̃. We will concentrate on the
analysis of Lorentzian model here, while a simple analysis
for Euclidean model is given in Appendix D.

A. Critical equations for Lorentzian Theory

The critical points (critical point) of the analytic con-
tinued action are given as the solutions to the equations
of motion:

δg̃+ S̃ = δg̃− S̃ = δṽS̃ = δz̃S̃ = 0 . (40)
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By variation of the corresponding action (31) and (33), we
have the following result concerning the critical equations
of Lorentzian spinfoam model.

Theorem III.1. The equations of motion for complexi-
fied spinfoam action is given by the following set of poly-
nomial equations of X̃ at each vertex v:
Parallel transport:∑
e⊂∂f

κvefχ
′
vefηeg̃

−
ve = 0 =

∑
e⊂∂f

κvef (g̃−ve)
−1Z̃vef , (41)

∑
e⊂∂f

κvef g̃
+
veηeχvef = 0 =

∑
e⊂∂f

κvef Z̃
′
vef (g̃+

ve)
−1 , (42)

Closure:

0 = −(iγ − 1)
∑

f :e⊂∂f

(−i)
1−tf

2 κefχ
′
vefσiZ̃vef , (43)

0 = −(iγ + 1)
∑

f :e⊂∂f

(i)
1−tf

2 κef Z̃
′
vefσiχvef . (44)

Here tf = 1 for spacelike triangle f while tf = −1 for
timelike triangle. χ′, χ is defined as the following: when
tf = 1,

χ′vef =
iγ + κef det(ηe)

iγ − 1

Z̃ ′vef

Z̃ ′vef Z̃vef

− det(ηe)κef + 1

iγ − 1

ξ̃′ef

ξ̃′efηeZ̃vef
, (45)

χvef =
iγ + κef det(ηe)

iγ + 1

Z̃vef

Z̃ ′vefηeZ̃vef

− det(ηe)κef − 1

iγ + 1

ξ̃ef

Z̃ ′vefηeξ̃ef
, (46)

when tf = −1,

χ′vef =
iγ − svef

iγ − 1

l̃′±ef

l̃′±efηZ̃vef

− 1− svef
iγ − 1

ln
Z̃ ′vef

Z̃ ′vefηZ̃vef
, (47)

χvef =
iγ + svef

iγ + 1

l̃±ef

Z̃vefηl̃
±
ef

(48)

+
1− svef
iγ + 1

ln
Z̃vef

Z̃ ′vefηZ̃vef
. (49)

Proof. The proof is given in Appendix B

One can check the consistency with the critical equa-
tions from real action F :

Corollary III.1.1. When the variables assumed to be
real, the equations (41), (43) are complex conjugations

of (41), (43) respectively. By imposing real condition
Z ∝ ξ or Z ∝ l∓, the above equations recover the EoMs
of EPRL-CH model.

Proof. When the variables assumed to be real, we have
g̃+ = (g̃−)† =: g, Z̃ ′ = Z̃† =: Z and ξ̃′ = ξ̃†,l̃′± =

(l̃±)†. It is then straight forward to check (41), (43)
are complex conjugations of (41), (43) respectively. By
imposing real condition Z ∝ ξ for spacelike triangle f , one
see immediately χ = (χ′)† ∝ ξ, which recovers the EoMs
of EPRL-CH model with spacelike triangles [13, 14, 17]. χ
also recovers the EoMs of EPRL-CH model with timelike
triangles when the real condition Z ∝ l∓ are imposed [18].
This will be further confirmed in section IV.

We can define simple timelike bivectors B± = X± −
1
2 I2 ∈ sl(2,C)2 from χ̃ and Z̃ as

X−vef = Z̃vef ⊗ χ′vefηe , X+
vef = ηeχvef ⊗ Z̃ ′vef . (50)

It is easy to check by above definition we have
Tr(X± ·X±) = Tr(X±) = 1, thus B± are traceless:
Tr(B±) = 0. B± is simple and timelike since

||B±||2 := 2 Tr
(
B± ·B±

)
(51)

= 2 Tr
(
X± ·X± −X± + I2/4

)
= 1 . (52)

Notice that B± can be rewritten as B± = 1
2

∑3
i v
±i
c σi for

some complex vector field ~vc:

vic = Ki + iJ i = Tr(Bσi) , i = 1, 2, 3 (53)

with
∑3
i v

i
cvci = 2 Tr(B ·B) = 1 where σi are Pauli ma-

trices. Using vic, we can induce a map from spin- 1
2 rep-

resentation of B ∈ sl(2,C) to spin-1 representation of B,
where now BIJ ∈ SO(1, 3) is given as

BIJ =

 0 K1 K2 K3

−K1 0 J3 −J2

−K2 J3 0 J1

−K3 −J2 J1 0

 (54)

where Ki = B0i, J i = εijkBjk. Since each bivector corre-
spond to a surface in 4-dimensional spacetime, this gives
the geometric meaning to the critical equations.

Corollary III.1.2. Using simple bivectors B± = X± −
1
2 I2 given by (50), the critical equations given in Theorem
III.1 at each simplex v are equivalent to the following
bivector equations:

Bg±vef = Bg±ve′f , (55)

2 We define the norm of spin-1/2 bivector as ||B||2 := 2Tr(B ·B),
where ||B||2 ∈ R corresponds to a simple bivector with ||B||2 > 0
the bivector is timelike, ||B||2 < 0 is spacelike and ||B||2 = 0
is null. The definition generalize to spin-1 representations with
||B||2 := Tr(B ·B).
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∑
f :e⊂∂f

jfκef (∓i)
1−tf

2 Bg±vef = 0 , (56)

for both space action (31) with tf = 1 and time action
(33) with tf = −1. Simple bivectors Bg±vef are defined by

Bg+vef := g̃+
veB

±
vef (g̃+

ve)
−1 , Bg−vef := (g̃−ve)

−1B±vef g̃
−
ve .

(57)

The extra i appearing in closure (56) coming from the
fact that in our definition, B is always a timelike bivector
for both space and time action. The closure condition (56)
then implies that with real spin jf , after absorbing i into
the definition of B for time action tf = −1, the bivector
coming from time action must have different signatures
than space action.
As shown in Appendix B2, the bivectors B± defined

in (50) can be rewritten as

B−vef = ṽefa
γ−
vefB

tf
0 (aγ−vef )−1(ṽef )−1 , (58)

ηeB
+
vefηe = ṽefa

γ+
vefB

tf
0 (aγ+

vef )−1(ṽef )−1 , (59)

where aγ± ∈ SL(2,C) as functions of integration variables
X̃ are defined by (B30) or (B41) for space and time action
respectively. The bivectors B±vef are related by

B+
vef = tf ηe(B

−
vef −Mvef )ηe , (60)

Here Btf=1
0 := 1

2σ3 for space action and Btf=−1
0 := 1

2σ1

for time action. M are null bivectors defined in (B27)
and (B40) satisfying tr(M ·M) = tr(M ·B) = 0. M = 0
when we restrict the variables to the real domain.

By using the map Φ : SL(2,C) → SO(1, 3), we can
define

SO(1, 3) ∈ Re = Φ(iηe) =

{
I, EPRL
Φ(iσ3), CH , (61)

such that

B+
vef = tRe(B

−
vef −Mvef )(Re)

−1 . (62)

We then absorb Re into G± ∈ SO(1, 3) as G+ =
Φ(g̃+)Re, G

+ = Φ((g̃−)−1), such that the critical equa-
tions (55-56) can be rewritten as

B±f (v) := BG±vef = BG±ve′f , (63)∑
f :e⊂∂f

jfκef (∓i)
1−tf

2 B±f (v) = 0 , (64)

withB±f (v) = (∗) 1−t
2 G±ve

(
B−vef + (−1)

±1−1
2 Mvef

)
(G±ve)

−1.
When all theM = 0, G± are two possible sets of solutions
of above equations.

In general, as a summary, for each vertex, the solution of
the critical equations (63) represents two sets of bivectors
subject to closure conditions at each tetrahedron e on

the complex manifold. Compare to the critical equation
obtained in the real domain, we do not have the condition
∃N±e , ∀f :e⊂∂f N

±
e · B±f (v) = 0, which equivalent to the

cross simplicity condition

∀(f, f ′) : e ⊂ ∂(f, f ′), εIJKLB
IJ
vefB

KL
vef ′ = 0 . (65)

As a result, there is no simplicial geometric notion for the
data associated to each tetrahedron e of the triangulation.
The bivectors lie in a 4-dimensional Lorentzian manifold,
unless one impose by hand additionally cross simplicity
condition (65), similar to the bivectors found in [29].

The parallel transport equations are invariant under
Hodge duality ∗. As a result, we have two possible geo-
metric interpretation of the bivectors Bf (v). They can
be generally interpreted as either timelike bivectors or
spacelike bivectors, related by Hodge duality. Unlike in
the real domain where Bf (v) at each tetrahedron are
always subject to cross simplicity condition thus have
common 4-normals which induce a nature choice of the
signature for bivectors associated to each triangle in the
tetrahedron, here both choice are possible. However, note
that from the closure condition, the bivectors associated
to each tetrahedron e must be defined simultaneously as
either Bvef or ∗Bvef for all triangles f in tetrahedron e.
Since Bvef is always a timelike bivector in our notation,
the corresponding geometric explanation associated to
given tetrahedron e will be determined up to an overall
flip of the signature of the metric associated to these tri-
angles. For example, when actions at a given tetrahedron
e are all space actions, the corresponding geometrical
faces can be interpreted as all timelike or all spacelike. A
special situation is the case where both time and space
actions appear at a given edge e (which is the mixed case
mentioned in [18]). In this case, an extra i or Hodge
dual for time action in closure condition always appears,
thus we will have both timelike and spacelike bivectors
appears in the geometric explanation. As a consequence,
an explanation of those bivectors in a Euclidean space
is not possible unless we analytic continue the spin j for
time action to ij as well.

We also derive the critical equations for the internal
edges e on a triangulation with many simplices as shown
in Appendix B. The variational principle respect to ṽef
at shared tetrahedron e of neighboring simplices v and v′
introduces new equations (B9) or (B19-B20) restricts aγ±vef
and ṽef in definition of the bivector B± given in (58-59).
As a result, one of the closure conditions in (55) becomes
the closure constraint for ṽ

0 =
∑
f

jfκvef ṽefB
tf
0 (ṽef )−1] . (66)

This is compatible with the fact that the closure con-
straints in EPRL-CH model are actually imposed strongly
[30, 31].
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IV. GEOMETRICAL INTERPRETATION AND
RECONSTRUCTION

The critical equations (63) contain two sets of equa-
tions for bivectors BG+

vef and BG−vef in 4-dimensional
Lorentzian space.As a result, we can explain the bivectors
{BG+

vef , B
G−
vef } satisfying (63) as pairs of two geometries

in 4-dimensional Lorentzian space. The gauge transfor-
mations (35) of SO(1, 3)C group elements becomes gauge
transformations on BG±vef separately. Thus, these two sets
of bivectors correspond to independent geometries given
by the same boundary B±vef following independent gauge
transformations at each vertex v. We will summarize all
possible geometries appearing in 4-dimensional Lorentzian
space in this section, and build the link between bivec-
tor solutions BG±vef and these 4-dimensional Lorentzian
geometries. The 4-simplex geometry and degenerate vec-
tor geometry will appear as the subsets of all possible
geometries correspond to BG±vef .

Note the set of bivectors {BG±vef } transform non-trivially
between neighboring v and v′, the reconstructed geome-
tries can not be glued together unless BG±vef = BG±v′ef . The
discussion of this section focuses on the geometrical recon-
struction of a single 4-simplex, except for the paragraphs
of (75 - 77) where 4-simplex geometries are glued to form
a geometrical triangulation. The boundary geometries in
this section means the data of 5 boundary tetrahedra of
the 4-simplex.

A. Classification of geometries

1. Non-degenerate simplicial geometry

A non-degenerate geometrical 4-simplex up to global
scaling is specified by five 4-dimensional normals Ui :=
ViNi, i = 1, 2, . . . , 5 where any 4 of them are linearly inde-
pendent. Note that the analysis here holds for all signa-
tures of 4-dimensional spacetime M , not only Lorentzian.
The set of Ui satisfy the 4-dimensional closure condition:∑

i

ViNi =
∑
i

Ui = 0 . (67)

The geometrical 4-simplex is bounded by 3D planes or-
thogonal to the normals. The 3D boundary is also simpli-
cial, and made by tetrahedra orthogonal to the normals
Ni. Each Vi is the volume of corresponding boundary
tetrahedron. The boundary of these tetrahedra are trian-
gles specified by the bivector

B∆
ij = V4∗(Ui ∧ Uj) , (68)

where V4 is the oriented volume of the 4-simplex given by

1

V4
=

1

5!

∑
i,j,k,l

εijkl det[Ui, Uj , Uk, Ul] (69)

where the orientation of the 4-simplex is given by the
ordering of these 5 normals. One can check that the bivec-
tors satisfy the following equation from the 4-dimensional
closure

∀i
∑
j,j 6=i

B∆
ij = 0, Ni ·B∆

ij = 0 . (70)

This is the closure and linearized simplicity conditions
which imply the cross simplicity condition (65) that results
in the simplicial boundary geometry of the 4-simplex. The
3D normal of the triangles in the boundary tetrahedra
are given by

~nij = |B∆
ij |
Nj − ti(Ni ·Nj)Ni
|tj − ti(Ni ·Nj)2|

. (71)

The co-frame of the 4-simplex is specified by

EIij =
V4

3!

∑
l,m,n

εijlmnε
IJKLUlJUmKUnL , (72)

where EIij is the vector related to each oriented edge
shared by tetrahedra l,m, n, as the discretization of the
co-tetrad eIi of the manifold. The face bivectors now can
be rewritten as

B∆
ij =

1

3!
εijlmn(Elm ∧ Eln) . (73)

The shape of the 4-simplex is determined by its 10 edge
lengths. This implies that, in order to form a 4-simplex,
the boundary tetrahedra must satisfy the length matching
condition (When gluing together boundary tetrahedra to
form the 4 -simplex, the lengths of the common triangle of
boundary tetrahedra need to the same. This condition can
also be described as shape matching condition). Moreover,
in order to form a 4-simplex, the oriented volume for the
boundary tetrahedra must have the same sign. As a result,
one has to choose a consistent orientation of the boundary
tetrahedra prior to construct the 4-simplex such that their
oriented volumes have the same sign.

When the simplicial geometry is composed by several 4
simplices, we can define the co-frame at each 4-simplex.
These co-frames of neighboring 4 simplices are related to
each other by an SO(M) group element ΩI

J such that

∀i6=jΩIJ(v′, v)Eij(v) = Eij(v
′) , (74)

ΩJI (v′, v)Ne(v) = Ne(v
′) (75)

at the shared tetrahedron te and the group element is
determined uniquely by the common edges at the shared
tetrahedron te. Notice that, in order to have a consistent
orientation on the entire simplicial manifold, for every
internal tetrahedron, its orientation seen from different
neighboring 4 simplices must be opposite. When the
sign of the oriented volume, sgn(V ), of neighboring 4
simplices are the same, the above ΩJI is the discrete spin
connection. For boundary tetrahedra, the above relation
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between neighboring co-frames then restricted to bound-
ary symmetry groups SO(V ) with V a 3D subspace of
M .

Simplicial geometries are said to be gauge equivalent if
there exists group elements in special orthogonal group
Gv ∈ SO(M) at each vertex v such that the co-frames
Ẽij(v) and Eij(v) are related by

∀ijẼij(v) = GvEij(v) . (76)

The above transformation of co-frames of simplices is the
gauge coordinate transformation which will not change
the geometry and orientations. Notice that, for given non-
degenerate length data satisfying the length matching
condition at each vertex, there are always a geometric
4-simplex up to rotations in the orthogonal group O(M).
As a result, there are two non-gauge equivalent geometries
related by a reflection:

∀ijẼij(v) = ReaEij(v), (77)

where Rea is the reflection with respect to any normal-
ized vector ea. These two geometries then have opposite
oriented volume.

When parametrizing the simplicial geometry in terms of
edge lengths and angles, it is manifestly SO(M) invariant.
We will see later in the reconstruction that the simplicial
geometries appear as the corresponding solutions of the
critical point equations. The gauge transformation of
SO(1, 3)C is a pair of two SO(1, 3) transformations acing
on the Lorentzian simplicial geometry, and leaving the
geometry invariant.

2. Degenerate vector geometry

A degenerate vector geometry is again specified locally
by 10 faces. However, now these face bivectors B∆

ij =

−B∆
ji with i, j ∈ (1, ..., 5) are all lying in the same 3-

dimensional subspace of the 4 dimensional Minkowski
space, namely,

B∆
ij = ~V∆

ij · ~τ , ~V∆
ij ∈ R3 , (78)

where τ i represents the generators of SU(2) if the 3-
dimensional subspace is Euclidean or SU(1, 1) if the sub-
space is Lorentzian. The bivector equations then become
vector equations, namely

~V∆
ij = −~V∆

ji , ∀i
∑
j,j 6=i

~V∆
ji = 0 . (79)

Thus, the geometry is given by 10 3D normals by the
Minkowski theorem. The extra simplicial condition for
the simplicial geometry are automatically satisfied:

∀i,j N ·B∆
ij = 0 , (80)

with N = (1, 0, 0, 0) =: e0 or N = (0, 0, 0, 1) =: e3 up to
O(1, 3) rotations. Notice that, for a simplicial geometry in
4-dimensional Euclidean space or split signature spaceM ′
whose metric is given by gIJ = ηIJ −2N2NINJ , since the
Hodge duality satisfies ∗2 = 1, we can always introduce a
map on the bivector B∆

ij by decomposing it into self dual
and anti-self dual part:

Φ± : Λ2(M ′)→ V : Φ±(B∆
ij ) = (∗B∆

ij ±B∆
ij ) ·N = ~V∆±

ij ,

(81)

such that

N · ~V∆±
ij = (±(B∆

ij )IJN
INJ + (∗B∆

ij )IJN
INJ) = 0 .

(82)

The inverse map is given by

Φ−1(~V∆+
ij , ~V∆−

ij ) =
1

2

[
(~V∆+
ij − ~V

∆−
ij ) ∧N (83)

+ ∗((~V∆+
ij + ~V∆−

ij ) ∧N)
]

= B∆
ij .

One can check that,

Φ−1(~V∆+
ij , ~V∆−

ij ) · Φ−1(~V∆+
ij , ~V∆−

ij )

=− t

2

[
(~V∆+
ij )2 + (~V∆−

ij )2
]
, (84)

∗ (Φ−1(~V∆+
ij , ~V∆−

ij )) · Φ−1(~V∆+
ij , ~V∆−

ij )

=− t

2

[
(~V∆+
ij )2 − (~V∆−

ij )2
]
. (85)

When (~V∆+
ij )2 = (~V∆−

ij )2 the bivector Bij is simple and
have the same norm specified by the vector up to a sig-
nature. As a result, the maps build the correspondence
between simplicial geometries in Riemannian or flipped
signature space and the vector geometries in their sub-
space. At given vertex, the flipped signature simplicial
geometry and the vector geometries under the maps Φ
clearly have the same boundary geometries, since the
boundary bivector are given as Bij = ∗(~V∆

ij ∧N) which
satisfies

Φ+(Bij) = Φ−(Bij) = ~Vij . (86)

Notice that, when the original simplicial geometries in
Euclidean space or split signature space are degenerate, we
have B∆

ij = Bij = ∗(~V∆
ij ∧N) up to gauge transformations,

such that

Φ+(B∆
ij ) = Φ−(B∆

ij ) = ~V∆
ij . (87)

When ~V∆+
ij = ~V∆−

ij , the inverse map gives

Φ(~V∆
ij ,
~V∆
ij ) = ∗(~V∆

ij ∧N) . (88)

Namely, non-degenerate 4-simplex geometries in flipped
space are always in one to one correspondence to two
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non-gauge equivalent vector geometries.
The map also induces a map on transformations with

group elements G ∈ SO(4) or G ∈ SO(2, 2),

Φ±(GBG−1) = Φ±(G)~V∆±
ij , Φ±(G) ∈ O(V ) (89)

since it keeps the norm unchanged. As a result, in this
case the geometric solution satisfies Φ+(G) = Φ−(G) if
and only if GN = ±N up to gauge transformations.

3. Lorentzian SO(1, 3) bivector geometry

Generally speaking, the SO(1, 3) geometry are specified
by 10 faces whose simple face bivectors B∆

ij = −B∆
ji

with i, j ∈ (1, ..., 5) in the 4-dimensional Minkowski space
satisfy the closure condition at each i:

∀i
∑
j,j 6=i

B∆
ij = 0 . (90)

Each i here related to a SO(1, 3) boundary geometry
composed by 4 faces with bivectors Bij , j 6= i. The
simplicial geometries (4-simplex or vector geometries) are
a subclass of this geometry where these boundary data
satisfying further cross simplicity constraint (65), or

∃Ni, s.t. Ni ·B∆
ij = 0 . (91)

This condition actually implies the simplicity to the
boundary geometry. In the case when the boundary
satisfying closure condition but do not satisfy the cross
simplicity constraint, these boundary bivectors do not be-
long to the same lower dimensional subspace. We call this
geometry the SO(1, 3) geometry with SO(1, 3) boundary
data, which does not correspond to a simplicial geometry.

The non-simplicial geometry can be regarded as a com-
position of two orthogonal vector geometries in a corre-
sponding 3 dimensional Euclidean or Lorentzian subspace,
since we can always decompose the bivector as

B∆
ij = (~V∆R

ij + i~V∆I
ij ) · ~τ (92)

with real 3D vectors ~V∆R
ij and ~V∆I

ij . These vectors satisfy

|~V∆R
ij |2 − |~V∆I

ij |2 = |B∆
ij |2, ~V∆R

ij · ~V∆I
ij = 0 , (93)

where the fact that the face bivector B∆
ij is simple is

encoded in the last equation. The bivector equations then
become two vector equations for ~V∆ = ~V∆R, ~V∆I

~V∆
ij = −~V∆

ji , ∀i
∑
j,j 6=i

~V∆
ji = 0 . (94)

{~V∆R, ~V∆I} can be regarded as the lie algebra element
of so(1, 3) for boost and rotation parts respectively.

We can introduce new bivectors B∆R and B∆I defined

as

B∆R
ij = −B∆R

ji = ~V∆R
ij · ~τ , B∆I

ij = −B∆I
ji = ~V∆I

ij · ~τ
(95)

with tr
(
B∆R ·B∆R) = 0. The bivector B∆

ij is then de-
composed as

B∆
ij = B∆R

ij + ∗B∆I
ij , (96)

where both B∆R and B∆I satisfy closure condition

∀i
∑
j,j 6=i

B∆R
ij =

∑
j,j 6=i

B∆I
ij = 0 . (97)

The decomposition (96) are invariant under SO(1, 3) trans-
formations for each i. As a result, we can always explain
the SO(1, 3) bivector geometry as the composition of two
orthogonal vector geometries3, related by (96). The ge-
ometry is invariant under an overall SO(1, 3) rotation
which rotates simultaneously two vector geometries. Due
to (96), the overall SO(1, 3) rotation of a single vector
geometry is not allowed.
Notice that, 10 bivectors B∆

ij = −B∆
ji are totally de-

termined if the B∆
ij for the geometries of three boundary

tetrahedra are given. This can be seen from the fact that
three boundary tetrahedra determine 9 out of 10 bivec-
tors, and the only one left needs to satisfy two closure
conditions thus is determined uniquely. When the data of
three boundary tetrahedra out of five satisfy the closure
condition and length matching condition on the gluing
triangles, the only geometry it can form is a 4-simplex
(or degenerate vector geometry).

B. Geometric condition and solutions

By comparing the equations of motion (63) with the
geometric condition for classification of geometries in pre-
vious subsection, we see immediately the correspondence
between them. More specifically, the bivector solutions
BG± to the equations of motion correspond to the geo-
metrical bivectors B∆ via

B∆ = rκBG (98)

where r = ± is an overall sign at each vertex related to
the orientation and the oriented volume of the geometry
[13, 14, 17]. One then can reconstruct geometries from
B∆. According to the classification, different geometries
are distinguished via their boundary geometries at each
vertex. One should keep in mind such boundary geometry

3 Here orthogonal means in the 3D subspace, the normals of bound-
ary tetrahedra of these two vector geometries are orthogonal to
each other
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is not necessarily a simplicial geometry, unless specified,
there will be no simplicial meaning of geometry.
Since the equations of motion (63) contain two sets

of bivector equations, there will be two 4-dimensional
geometries reconstructed from BG± respectively at each
vertex. As we already argued in Section III, BG± may
correspond to different geometries. As a result, the two
4-dimensional geometries may be in different classes: they
can be possible pairs of combinations of non-degenerate
Lorentzian simplex, vector geometries and Lorentzian
non-simplicial geometry. The pair of geometries recon-
structed from (BG+, BG−) can be understood as the
geometry correspond to SO(4,C) group element which
are invariant under SO(4,C) transformations by pairs of
(g+, g−) ∈ SO(4,C). The transformation of the geome-
try is consistent with the gauge transformations of the
analytic continued action given by (35). Moreover, as
we show in Section III, for given edge e the boundary
geometries given by B±vef and B±v′ef may be different. The
reconstructed geometries at neighboring vertices may be
in different classes.

There is a special case when the boundary geometry cor-
respond to B+ are the same with B− up to gauge transfor-
mations. Namely, we will have ηeB+

vefηe = ±gveB−vefg−1
ve

for all triangles f at a given vertex v and tetrahedron e for
some gve ∈ SL(2,C). In this case, the pairs of geometries
correspond to BG± are equivalent to each other up to
reflections and SO(1, 3) gauge transformations. As we
derived in Section III and Appendix B, a simple situation
for this is aγ±vef = I2. This seems to be the only possible
case to have same boundary geometry for neighboring
internal vertices thus remove the v dependence of bound-
ary data, since the matrix transformation from ηeB

+
vefηe

to B−vef which is (aγ−vef )(aγ+
vef )−1 given in (58-59) depends

non-trivially on v and f .

1. Non-simplicial SO(1, 3) boundary

From (65), it is clear that the cross simplicity condition
is invariant under the action of group element G±ve on
boundary bivectors B±vef for given edge e. This relates
to the fact that geometrically the shape of the boundary
geometry is invariant under overall SO(1, 3) gauge trans-
formations. As a result, the appearance of non-simplicial
boundary is determined by B±vef . From definition (58-59),
for boundary edges, since ṽef = vef ∈ SU(2) or SU(1, 1)
are not complexified, the existence of non-simplicial ge-
ometry for the boundary edge clearly implies one must
have non-trivial solutions of aγ± at edge v. This is the
case, for example, when the boundary data does not sat-
isfy the closure condition. The existence of non-trivial
aγ± 6= I2 then opens the possibilities to have non-trivial
solutions as complex critical point which contribute to
the leading order critical action with Re(S̃) < 0 for the
analytic continued action S̃.

For the internal faces, due to the analytical continuation
of ξ and ξ′, it is not necessarily to have aγ± 6= I2 for a

non-simplicial boundary.

2. Simplicial boundary

When the boundary satisfies the cross simplicity con-
straints, the critical equations are exactly two copies of
the equations of motion derived in the original real EPRL-
CH model, whose solutions corresponding to 4-simplices
or degenerate vector geometries, as described in previous
section. We briefly summarize the result here. For the
detailed reconstruction of geometry from the solution, we
refer to ([12, 13, 17, 18, 32]).

Since the boundary geometries are simplicial, they cor-
respond to tetrahedra in a 3D subspace. As a result,
we can reconstruct lengths of all the tetrahedra at given
vertex v. Here we will only concentrate on the case when
boundary data satisfies the length matching condition
and non-degenerate. When it does not satisfy the length
matching condition or is degenerate, there will be no so-
lution or only one set of vector geometry solutions exist
for each copy of the geometric equations of motion.
According to the geometric interpretation and recon-

struction theorem of EPRL-CH model, we have the follow-
ing 2 possibilities at a given vertex determined by their
boundaries, which can be described by the signature of
length gram matrix contains all boundary lengths at each
vertex:

• Boundary corresponds to Lorentzian geometry.
For given solution of bivectors Bf (v) satisfying equa-
tion of motions, one can reconstruct uniquely up to
a sign sve = ±1 the normals Ne(v) which satisfying
Bef (v) · Ne(v) = 0 at each tetrahedron e. These
normals are given by Ne(v) = Gveue, Gve ∈ O(1, 3),
and they are non-degenerate. The sign sve here re-
lated to the inversion gauge transformations gve →
−gve as shown in (38). Using these normals, one
can show that the bivectors can be rewritten as

Bf(e,e′)(v) = λ ∗ (Ne ∧Ne′) (99)

with λ ∈ R.
Compare with the normals and bivectors for geomet-
ric 4 simplices, we see their relation to geometrical
normals N∆

e (v) and bivectors B∆
ef (v) of some sim-

plicial geometry are given as

Ne(v) = (−1)sveN∆
e (v) , (100)

Bf (v) = rvB
∆
f (v) . (101)

These solutions correspond to geometric Lorentzian
4-simplices, which are bounded by 3D planes or-
thogonal to the normals. Notice that, the existence
of 4-simplex geometry implies that the boundary
geometries at each vertex satisfies length (shape)
matching and orientation matching, otherwise the
critical equations have no solution.
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From the fact that Ne(v) = Gveue, we have

Gve = G∆
veI

sve(IRue)
sv , (102)

which implies

∀e:v⊂∂e detG∆
ve = rv , (103)

where rv = ±1 is the Plebanski orientation of the
geometric simplices. Clearly at each vertex, if the
boundary satisfies the length matching condition
and orientation matching condition, there exists two
solutions for given boundary ṽef , which relates to
4 simplices up to the Plebanski orientation. We
denote these two solutions as G and G′, they are
related by the following relation

G′ve = ReαGveRue (104)

up to geometrical gauge transformations which cor-
responds to the reflection of geometries. In terms
of spin- 1

2 representation, one can show that these
two solutions are related by g′ = J−1gJ = g−1†.
In the case when the two boundary geometries cor-
respond to B± are the same (in the case α = α′ = 0
for space action and α + α′ = 0 for time action),
the two copies of equations of motion (63) coincide
with each other:

BGef := G±veBef (G±ve)
−1 = Gve′BefG

−1
ve′ , (105)

0 =
∑
f

jfκfB
G
ef (106)

with G±ve = (φ(g−ve))
−1, (φ(g+

ve)Re. As a result, G±ve
are the two possible solutions of the same sets of
geometric equations of motion up to a possible ro-
tation Re. As a result, we then have 4 possibilities
for G̃ = (G̃+, G̃−) at each vertex: G̃ = (G̃+, G̃−):
G̃ = (GRe, (G)−1), G̃ = (GRe, (G

′)−1) and G̃ =

(G′Re, (G)−1), G̃ = (G′Re, (G
′)−1) for two gauge

inequivalent geometrical solutions G and G′ of (105).

• Boundary corresponds to Riemannian or split sig-
nature geometry.
In these cases, the solutions {g} are in the subgroup
of SL(2,C), which is the stabilizer group for some
given normal u of the boundary geometry, namely
g ∈ SU(2) for u = e0 and g ∈ SU(1, 1) for u = e3.
There are two non-gauge equivalent sets of vector
geometry solutions for given boundary bivectors
Bvef , which we denote as (Vf (v),V ′f (v)). We have
0 = u · Vf (v) = u · V ′f (v) with u = e0 or u =

e3 correspondingly. (Vf (v),V ′f (v)) correspond to a
Riemannian or Split signature 4-simplex by the map

Bf (v) = Φ−1(V+
f (v),V−f (v)) . (107)

The reconstruction follows exactly the same proce-

dure for the non-degenerate Lorentzian simplicial
case, with two sets of geometric simplicial solutions
G,G′ related to the vector geometry solutions by
the induced map:

G = Φ−1(Gf (v), G′f (v)), (108)

G′ = Φ−1(G′f (v), Gf (v)). (109)

In the case when the two boundary geometries given
by B± are the same, the two copies of equations of
motion coincide with each other. We have 4 possi-
bilities for G̃ = (G̃+, G̃−) again: G̃ = (GRe, (G)−1),
G̃ = (GRe, (G

′)−1) and G̃ = (G′Re, (G)−1), G̃ =
(G′Re, (G

′)−1) with two non-gauge equivalent sets
of vector geometry solutions for boundary B±.

Note that, these solutions will reduce to the usual
real solution of EPRL-CH model when we restrict g̃ to
g̃ = (g̃+, g̃−) = (g, g†), and restrict ṽ as the stabilizer
group compatible with ηe appears in the action. The
solution in such case can be seen from parallel transport
equations and their complex conjugation:

gveBefg
−1
ve = gve′Be′fg

−1
ve′ , (110)

(gve)
−1†(Bef )†g†ve = (gve′)

−1†(Be′f )†g†ve′ . (111)

With the fact i
1+tf

2 Bef ∈ su(2) or i
1+tf

2 Bef ∈ su(1, 1) up
to gauge transformations, we have (Bef )† = tfηeBefηe.
Then

(gve)
−1†ReBef (Re)

−1g†ve = (gve′)
−1†Re′Be′f (Re′)

−1g†ve′ .
(112)

When there is only one solution, this directly implies
(gve)

−1†Re = gve, thus g ∈ SU(2) or SU(1, 1), and the
solution corresponds to vector geometry. When there
are two solutions, in the non-degenerate case since we
have (gve)

−1†Re 6= gve, this means (gve)
−1†Re is an-

other solution for the critical equations, which corre-
sponds to the solution with opposite Plebanski orienta-
tion from reconstruction. This is the parity transformed
solution in [16, 32] and is verified numerically in [33].
The above relation confirms the fact that there exists
two solutions for non-degenerate case, which are related
by g′ = J−1gJ = g−1†. One can then identify solu-
tion G̃ = (GRe, (G

′)−1) and G̃ = (G′Re, (G)−1) as the
real critical point of EPRL-CH model, which leads to
ReS = 0.

V. EVALUATION OF THE AMPLITUDE

As we already construct the link between the geome-
tries in 4-dimensional space and the critical equations in
Section IV, we will study explicitly several critical config-
urations relate to simplicial geometries in this section, to
obtain the corresponding critical amplitude.

At critical configurations, we can decompose on critical
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solutions Z0, Z ′0 ∈ X̃0 as

Z0
vef = ζvef (ξ̃0

ef + αvefJξ̃
0
ef ) , (113)

Z ′0vef = ζ ′vef (ξ̃′0ef + α′vefJξ̃
0
ef ) , (114)

for space action and

Z0
vef = ζvef (l̃∓0

ef + αvef l̃
±0
ef ), , (115)

Z ′0vef = ζ ′vef (l̃′∓0
ef + α′vef l̃

′±0
ef ) (116)

for time action where ζvef , ζ ′ve′f , αvef , α
′
ve′f ∈ C are some

complex numbers. Since for space action the parallel
transport equation implies either αvef = 0 or α′vef =

0 for internal edges, thus f(α, α′) only involves α and
α′ determined at the boundary. Moreover, as shown
in Appendix B 2, α and α′ can be directly solved via
equations of motion, the task is then to determine ζ and
ζ ′, which relate to loop holonomies along the face.
By inserting the decomposition of Z (113-115), the

function F̃ given in (31) and (33) can be expressed as

space action: F̃f [X̃0] = κf
∑
v:f⊂v

[
θ′e′vef − θme′vef

+ iγ
(
θ′e′vef + θme′vef

)
+ f tf (α, α′)

]
(117)

time action: F̃f [X̃0] = κf
∑
v:f⊂v

[
γ(θe′vef − θ′e′vef )

+ i(θe′vef + θ′e′vef ) + f tf (α, α′)
]

(118)

with

f tf=1(α, α′) := iγ ln
1 + αve′fα

′
ve′f

1 + αve′fα′ve′f

+ ln
(1 + αve′fα

′
ve′f )− det ηe′

(1 + αve′fα′ve′f )det ηe
(119)

f tf=−1(α, α′) := i ln
(αve′f + α′ve′f )1−sve′

(αvef + α′vef )1−sve

θme′vef = lnmefme′f+θe′vef is a term related to the action.
When summing over vertices, the term lnmefme′f in
internal faces will cancel with each other thus becomes a
pure boundary term. Here θe′vef and θ′e′vef are defined
as

θme′vef = lnmefme′f + θe′vef ln
ζve′f
ζvef

, (120)

θ′e′vef = ln
ζ ′ve′f
ζ ′vef

.

For the value of θ at general critical configurations, we
have the following theorem:

Theorem V.1. The θ angle defined in (120) are given by
the following expression using the decomposition provided

in (58-59)

θe′vef = log
[

Tr
(
me′fmefa

γ−
vefvee′(a

γ−
ve′f )−1

g̃−ve′(g̃
−
ve)
−1X−vef

)]
− iωfπ

2
, (121)

θ′e′vef =− tf log
[

Tr
(
aγ+
vefRevee′R

−1
e′ (aγ+

ve′f )−1

(g̃+
ve′)
−1g̃+

veX
+
vef

)]
, (122)

or equivalently

aγ−vefvee′(a
γ−
ve′f )−1g̃−ve′(g̃

−
ve)
−1 = me′fmefe(2θe′vef+iπωf )B−vef ,

(123)

aγ+
vefRevee′(Re′)

−1(aγ+
ve′f )−1(g̃+

ve′)
−1g̃+

ve = e−2θ′
e′vefB

+
vef

(124)

where ωf := | det ηe′−det ηe|
2 ∈ {0, 1} and takes 1 when

det ηe′ 6= det ηe, otherwise ω = 0.

The proof is given in Appendix C. Note that the
logme′fmef term in θvf will cancel exactly the same
term appears in the definition of θmvf , leading a critical
action that independent of m. As a result, we can safely
remove the logme′fmef terms in all the expressions for
simplicity. With this theorem, we relate the value of θ, θ′
with critical configurations X̃. They can further be re-
lated to the reconstructed geometry thus have geometric
interpretations, as we will show later.
Above theorem can be generalized to faces containing

internal edges as well. We can define the following group
element for boundary faces (faces containing boundary
tetrahedra in a triangulation),

G−f (e1, e0) := (125)

aγ−v1e1f

∏
v∈∂f

(aγ−ve′f )−1g̃−ve′(g̃
−
ve)
−1(aγ−vef )

 (aγ−v0e0f
)−1 ,

G+
f (e1, e0) := (126)

aγ+
v1e1f

∏
v∈∂f

(aγ+
ve′f )−1(g̃+

ve′)
−1(g̃+

ve)(a
γ+
vef )

 (aγ+
v0e0f

)−1 ,

For internal faces the definition is the same by identifying
e1, e0 as the same edge. The above theorem V.1 is still
valid for faces f containing internal edges by replacing
(g̃+
ve′)
−1g̃+

ve and g̃
−
ve′(g̃

−
ve)
−1 with G±f respectively. In such

case ωf only contains contribution from boundary edges,
thus ωf = 0 for internal faces.
As we discussed in Section III and Appendix B 2, the

critical configurations with a = I2 with α = α′ = 0 for
space action and α = −α′ for time action satisfy the
cross simplicity constraint (65)4, thus their corresponding

4 Note that for time action α = −α′ may lead to a 6= I2 on boundary
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critical geometries are simplicial. We will restrict our
study to such case. As a result, the boundary tetrahedra
(X±ef ) of neighboring simplices are independent of vertex v.
Moreover, B± correspond to the same boundary geometry
in this case. In this case, we have Xef := R−1

e X+
efRe =

X−ef , and the values of θ then simplify to

∑
v

θvf = log
[
Tr
(
me′fmefvee′G

−
f (e′, e)Xef

)]
− iωfπ

2
,∑

v

θ′vf = −tf log
[
Tr
(
vee′R

−1
e′ G

+
f (e′, e)ReXef

)]
(127)

with the general equations (125-126) become

G−f (e′, e) =
∏
v∈∂f

g̃−ve′′(g̃
−
ve)
−1 (128)

(Re′)
−1Gf (e′, e)+Re =: Gf (e′, e)R+ (129)

=
∏
v∈∂f

(g̃+
ve′′Re′)

−1g̃+
veRe .

Again the definition for internal faces are given by identi-
fying e′, e as the same edge.

A. Geometrical interpretations

From (127) and (128), we see that the θ angles are
determined by g̃±, which clearly have a geometric meaning
by the reconstruction described in Section IV. Here we
will study such geometrical interpretations of θ, in the
case where corresponding critical geometries are simplicial.
The analysis given here holds for Lorentzian, Riemannian,
and split signature simplicial geometries.
By the reconstruction theorem, when the critical ge-

ometry corresponds to simplicial geometry, there are two
solutions available at each vertex which differs by a Ple-
banski orientation r = ±1. Suppose at each vertex the
solutions are given by G and G′ respectively, and they
satisfy (104), one can show that the loop holonomies Gf
and G′f along a face are related to each other by

G′f (e) =
∏
v∈∂f

(G′ve′)
−1G′ve

=
∏
v∈∂f

Rue′ (Gve′)
−1ReαReαGveRue (130)

= RueGf (e)Rue ,

G′f (e′, e) =
∏
v∈∂f

(G′ve′′)
−1G′ve (131)

edges as shown in (C11). In such situation we can always make a
redefinition of ṽef and ṽ′ef to absorb ãef and ãe′f appear on the
boundary edge.

= I
1−

sgn(u
e′ )

sgn(ue)
2

∏
v∈∂f

Rue′′ (Gve′′)
−1ReαReαGveRue

= I
1−

sgn(u
e′ )

sgn(ue)
2 Rue′Gf (e′, e)Rue ,

for internal and boundary faces respectively. The equation
then implies

Gve(G
′
f )−1GfG

−1
ve

= GveRue(Gve)
−1(Gf (e)(Gve)

−1)−1RueGfG
−1
ve (132)

= RNe(v)RNpe (v) = e
2Θf

N
p
e∧Ne

|Npe∧Ne| ,

for internal face with NP (v) := Gve(Gf )−1 · ue =
Gve(Gf )−1(Gve)

−1 · Ne(v) which is the parallel trans-
ported vector in the reference frame specified by Gve. Θf

is the dihedral angle between NP (v) and Ne(v), which is
defined by Θf := cos−1(sgn(|Ne(v)|)NP (v) ·Ne(v)) when
the plane span by NP (v) and Ne(v) have signature (−−)
or (++), and Θf := sgn(Ne(v) ·Ne(v)) cosh−1(|NP (v) ·
Ne(v)|) when the plane span by NP (v) and Ne(v) have
signature (+−). For boundary faces, similar argument
holds where now we have

Gve(G
′
f )−1(e′, e)Gf (e′, e)G−1

ve

= I
1−

sgn(u
e′ )

sgn(ue)
2 RNe(v)RNp

e′ (v) (133)

= O
1−

sgn(u
e′ )

sgn(ue)
2 e

2
sgn(u

e′ )
sgn(ue)

Θf
N
p
e′
∧Ne

|Np
e′
∧Ne| ,

with NP
e′ (v) := (GfG

−1
ve )−1 · ue′ = Gve(Gf )−1 · ue′

and O = e
π∗

N
p
e′
∧Ne

|Np
e′
∧Ne| . Θf is now the dihedral an-

gle between NP (e′) and Ne(e). The definition of Θf

is the same as internal faces with special cases when
sgn(NP (e′)) 6= sgn(NP (e)), in which it is defined as
Θf := sinh−1(NP (v) · Ne(v)). Note that, for both in-
ternal and boundary faces, similar arguments hold for
N ′P (v) := Gve(G

′
f )−1 · ue by rewriting above equations

using G′, for example,

e
2Θf

N
p
e∧Ne

|Npe∧Ne| = Gve(G
′
f )−1GfG

−1
ve (134)

= Gve(G
′
f (e))−1RueG

′
fG
−1
ve GveRueG

−1
ve

= RN ′p(v)eRNe(v) = e
−2Θ′f

N′pe∧Ne
|N′pe∧Ne| ,

and we have cos
(

Θ′f

)
:= N ′P (v) · Ne(v) where N ′P (v)

are in the same plane span by NP (v) and Ne. As a result,
Θ′f = −Θf which indicates the fact that G and G′ differ
by the Plebanski orientation.

Notice that, by reconstruction described in Section
IV, when the reconstructed geometry admits a consistent
orientation and the signature of the 4-volume sgn(V (v))
of each reconstructed simplex at vertex v along a face is
a constant, we have the following equations hold for both
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G and G′ for any co-frame vector El in the dual triangle
orthogonal to Ne and NP (v) or NP

e′ (v):

GveG
f (v)G−1

ve El(v) = (−1)µfEl(v) ,

µf =
∑
e

µe ∈ R+ , µe ∈ {0, 1} . (135)

For boundary faces, from Gf (e′, e)El(e) = µEl(e
′), we

have

Re′(−iσ2)
1−m

e′f
2 (ṽe′f )−1Gf (e′, e)ṽef (iσ2)

1−mef
2 ReE

0
l (e)

= µE0
l (e′) = µeΦBf (∗)

1+t∆f
2 B

tf
0 E0

l (e) (136)

Recall Btf=1
0 = 1/2σ3 or Btf=−1

0 = 1/2σ1 for space
action and time action respectively. We use the fact
that both E0

l (e) := R−1
e (−iσ2)

1−mef
2 (ṽef )−1El(e) and

E0
l (e′) := R−1

e′ (−iσ2)
1−mef

2 (ṽe′f )−1El(e
′) are in the plane

orthogonal to B0 or ∗B0. As a result, we have

vee′G
f (e′, e)El(v) (137)

= vefRe(iσ2)
1−mef

2 (−iσ2)
1−m

e′f
2 Re′(ve′f )−1Gf (e′, e)El(v)

= µe
ΦBf (∗)

1+t∆f
2

Bef
|Bef |El(e) ,

which implies

Gvevee′G
f (e′, e)G−1

ve El(v) = µRee′El(v) , (138)

Ree′ = e
ΦBf (∗)

1+t∆f
2

Bf (v)

|Bf (v)| . (139)

ΦB
f are some real parameters totally determined by the

boundary data. Moreover, one notes that, when the
triangles span by El are timelike, we have µ = 0.

Since NP (v) · El = NP (v) · El′ = 0, we have

Np
e ∧Ne

|Np
e ∧Ne|

= r(∗)
1−t∆f

2
Bf (v)

|Bf (v)|
(140)

with the Plebanski orientation r of the reconstructed
simplicial geometry related to signed volume sgn(V (v))
of the simplex when the simplicial complex admits a
consistent orientation as described before in Section IV.
For the cases the sgn(V (v)) is not a constant on the
reconstructed simplices, we can perform subdivisions of
the simplicial complex, such that in each sub-complex
sgn(V (v)) thus r is a constant.
As a result, the above analysis leads to the following

theorem:

Theorem V.2. In a consistently oriented simplicial com-
plex with signed volume sgn(V (v)) to be a constant, there
exists two sets of geometric solutions G and G′ which
corresponding to different Plebanski orientation r = ±1
respectively. The following relations hold for G and G′:

for internal faces,

GveGfG
−1
ve = e

Θf (∗)
1−t∆f

2
Bf (v)

|Bf (v)|+µfπ(∗)
1+t∆f

2
Bf (v)

|Bf (v)| ,

(141)

GveG
′
fG
−1
ve = e

−Θf (∗)
1−t∆f

2
Bf (v)

|Bf (v)|+µfπ(∗)
1+t∆f

2
Bf (v)

|Bf (v)| ,

(142)

for boundary faces,

Gveṽee′GfG
−1
ve (143)

= e
Θf (∗)

1−t∆f
2

Bf (v)

|Bf (v)|+(ΦBf +µfπ)(∗)
1+t∆f

2
Bf (v)

|Bf (v)| ,

Gveṽee′G
′
fG
−1
ve (144)

= e
−Θf (∗)

1−t∆f
2

Bf (v)

|Bf (v)|+(ΦBf +µfπ−ω∆
f π)(∗)

1+t∆f
2

Bf (v)

|Bf (v)| ,

where ω∆
f = 1 when sgn(ue′) 6= sgn(ue) for boundary faces,

otherwise ω∆
f = 0.

On the other hand, from theorem V.1 and (128), we
have θ and θ′ given by functions of G± and bivectors B.
Combine the result we then can determine the value of θ
by relating the solutions of G± and geometrical solutions
G and G′. For example, when G−1 = G, we have∑

v

Re(θvf ) = r
Θf

2
, (145)

∑
v

Im(θvf ) =
ΦBf +

∑
e µeπ + ωf

π
2

2
.

Note that here we define both Θf and ΦB
f to take their

principle values, s.t., cos−1(x) ∈ [0, 2π), cosh−1(x) ∈
[0,∞). The detailed correspondence for simplicial geome-
tries will be built explicitly later.
For special cases when the critical group elements are

in the stabilizer group of normal uf up to gauge transfor-
mations, namely we have vector geometry as the critical
geometry, (127) simplifies to

GveGf (e)(Gve)
−1 = e

2
∑
v(−i)

1+t∆f
2 θvf (i)

1+t∆f
2

Bf (v)

|Bf (v)|

= e
2
∑
v(−i)

1+t∆f
2 θvf

Vf ·~τ
|Vf | , (146)

Gvevee′Gf (e′, e)(Gve)
−1

= e
(−i)

1+t∆f
2 (2

∑
v θvf+iωfπ)(i)

1+t∆f
2

Bf (v)

|Bf (v)| (147)

= e
(−i)

1+t∆f
2 (2

∑
v θvf+iωfπ)

Vf ·~τ
|Vf |

for internal and boundary faces respectively, where G
are in the stabilize group of uf . ~τ are generators of

the stabilize group and (−i)
1+t∆f

2 ((2
∑
v θvf mod 2πi) +
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iωfπ) ∈ R is a real parameter which will be determined
later. t∆f is the corresponding signature for the plane
orthogonal to both uf ,Vf , and we use the fact that Bf is
always a timelike plane in our notation. The equations
for θ′ follow similarly.

Notice that, when there are two gauge in-equivalent
vector-geometry solutions available, the solution actually
corresponds to 4-simplices with Riemannian or split sig-
nature. Suppose the two solution are given by {G} and
{G′} and correspond to normal vectors V± respectively,
by using the mapping

Bf (v) = Φ−1(V+
f (v),V−f (v)) , (148)

and the induced map on group elements

G = Φ−1(Gf (v), G′f (v)), G′ = Φ−1(G′f (v), Gf (v))

(149)

with G ∈ SO(4) for u = (1, 0, 0, 0) and G ∈ SO(2, 2)
for u = (0, 0, 0, 1). Following the same analysis as in
Lorentzian case, we then have

GveGfG−1
ve = e

Θf
Bf (v)

|Bf (v)|+µfπ∗
Bf (v)

|Bf (v)| , (150)

GveG′fG−1
ve = e

−Θf
Bf (v)

|Bf (v)|+µfπ∗
Bf (v)

|Bf (v)| (151)

for internal faces and

Gveṽee′GfG−1
ve = e

Θf
Bf (v)

|Bf (v)|+(ΦBf +µfπ)∗
Bf (v)

|Bf (v)| , (152)

Gveṽee′G′fG−1
ve = e

−Θf
Bf (v)

|Bf (v)|+(ΦBf +µfπ)∗
Bf (v)

|Bf (v)| , (153)

for boundary faces. Notice that since

Φ±(Bf (v)) = ±V±f (v) , Φ±(∗Bf (v)) = V±f (v) , (154)

above equations recover (146) for vector geometry solu-

tions {G} and {G′} with 2
∑
v θvf = i

1+t∆f
2 (±Θf + ΦBf +

µfπ)− iωfπ, where µ = 0 when t∆f = −1, since in such
case both the plane orthogonal to normals are timelike
in the split signature space. Θf is given as the angle
between Np

e (v) and Ne(v) where

Ne(v) = Gveuf , Np
e (v) = GveG±f uf , (155)

which is the deficit angle along face f in Riemannian or
split signature space.

B. Summary and Special Cases

Now we can relate the above result to different cases
to identify the value of θ and S according to the cor-
responding critical simplicial geometry. As we show in
previous analysis, when the critical geometry corresponds
to non-degenerate simplicial geometry, for each set of the
equations of motion given by B+ or B− we have two
solutions at each vertex v. As a result, we have four sets
of geometrical solutions: two of them correspond to B+

while the other two correspond to B−. The solutions may
correspond to different geometries in general.
In the special case where the boundary given by B±

at each vertex v are the same and does not change at
given internal edge e for neighboring vertices v and v′

(with α = α′ = 0 for space action and α+α′ = 0 for time
action), the pairs of 4-simplex geometries differ only up
to reflection and geometrical gauge transformations since
they share the same boundary geometry at each vertex.
We then only have two possible sets of geometric solutions
correspond to this boundary geometry, denoted as G,G′,
where the honolomy Gf and G′f are related to the spin
connection compatible with the co-frame specified by the
bivector Bf when sgn(V ) is a constant along the face f .
θ is then related to the deficit angle between different
frame. The solution for G̃± now correspond to the same
geometries up to orientation and gauge transformations.
As a result, from the reconstruction given in Section

IV, we have 4 possibilities for solutions of G̃ = (G̃+, G̃−)

at each vertex: G̃ = (G̃+, G̃−): G̃ = (GRe, (G)−1),
G̃ = (GRe, (G

′)−1) and G̃ = (G′Re, (G)−1), G̃ =
(G′Re, (G

′)−1). In the following analysis we assume
sgn(V ) is a constant on the reconstructed simplicial com-
plex. When it is not a constant, we can always make a
subdivision of the complex such that in each sub-complex
it is a constant. Note that, for the boundary faces we
have ω∆

f = ω. However, for the boundary of subdivided
complexes which contains internal variables of the model,
ω∆
f 6= ωf is possible.
The result of the following special cases can be checked

numerically as shown in [33].

1. 4-dimensional Lorentzian simplicial geometry

We assume the solutions correspond to Lorentzian 4
simplices at vertices v. In such case, G,G′ ∈ SO(1, 3).
The corresponding spin connection is given by (141-144)
with Θf ∈ [0, π) mod 2π for timelike triangles of cor-
responding face f in the 4-simplices with t∆f = −1 and
Θf ∈ ±[0,∞) for spacelike triangles with t∆f = 1. ΦB

f
is again the angle determined by the boundary. µf = 0
when t∆f = −1.

In such case, comparing theorem V.1 and V.2 we have
the following result
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• G̃ = (G′Re, G
−1)

∑
θvf =

i
1−t∆f

2

2
(Θf + i(ΦBf + µfπ + ω∆

f π))− 1 + tf
2

iωfπ

2
mod πi, (156)∑

θ′vf =
1

2
i
1−t∆f

2 tf (Θf − i(ΦBf + µfπ)) mod πi, (157)

F̃f [X̃0] = (−i)
1−tf

2

(
i
1−t∆f

2

(
iγΘf − i(ΦBf + µfπ)− (i + γ)

ω∆
f π

2

)
mod (iπ, γπ)

)

+ (i + γ)
1 + tf

2

ωfπ mod 2π

2
; (158)

• G̃ = (GRe, (G
′)−1)

∑
θvf =

1

2
i
1−t∆f

2 (−Θf + i(ΦBf + µfπ))− 1 + tf
2

iωfπ

2
mod πi, (159)∑

θ′vf =
1

2
i
1−t∆f

2 tf (−Θf − i(ΦBf + µfπ − ω∆
f π)) mod πi, (160)

F̃f [X̃0] = (−i)
1−tf

2

(
i
1−t∆f

2

(
−iγΘf − i(ΦBf + µfπ) + (i− γ)

ω∆
f π

2

)
mod (iπ, γπ)

)

+ (i + γ)
1 + tf

2

ωfπ mod 2π

2
; (161)

• G̃ = (GRe, (G)−1)

∑
θvf =

1

2
i
1−t∆f

2 (−Θf + i(ΦBf + µfπ))− 1 + tf
2

iωfπ

2
mod πi, (162)∑

θ′vf =
1

2
i
1−t∆f

2 tf (Θf − i(ΦBf + µfπ)) mod πi, (163)

F̃f [X̃0] = (−i)
1−tf

2

(
i
1−t∆f

2 (Θf − i(ΦBf + µfπ)) mod (iπ, γπ)

)
+ (i + γ)

1 + tf
2

ωfπ mod 2π

2
; (164)

• G̃ = (G′Re, (G
′)−1)

∑
θvf =

1

2
i
1−t∆f

2 (Θf + i(ΦBf + µfπ + ω∆
f π))− 1 + tf

2

iωfπ

2
mod πi, (165)∑

θ′vf =
1

2
i
1−t∆f

2 tf (−Θf − i(ΦBf + µfπ + ω∆
f π)) mod πi, (166)

F̃f [X̃0] = (−i)
1−tf

2

(
i
1−t∆f

2 (−Θf − i(ΦBf + µfπ)) mod (iπ, γπ)

)
+ (i + γ)

1 + tf
2

ωfπ mod 2π

2
. (167)

Here f mod (γπ, iπ) := (f mod iπ) mod γπ. Note that
the γπ and iπ ambiguity coming from the fact that the
analytic continued action is defined on the cover space due
to the analytic continuation of the logarithm. As a result,
there are infinitely many critical points on the cover space
corresponding to the same geometrical interpretation.

The original integration path is contained in the case
1 and 2 with tf = t∆f , ωf = ω∆

f and g′Re = g−1†. One
can identify them with the non-degenerate solution shown
in [13, 14, 17, 18]. In such case θ′ = θ†, and F̃f [X̃0] is
determined up to 2π. This removes the domain of covering
space from analytic continuation. Note that since j can
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be half integers the total action is determined only up to
π. Some π ambiguities can be removed by fixing the lift
ambiguity according to [13, 17, 18].

By applying the above result to each vertex and sum-
ming over the result, we have now

Θf =
∑
v

Θvf =

{ ∑
v θvf , t∆f = 1∑
v(π − θvf ), t∆f = −1

. (168)

As a result, Θf = εf mod
(1+t∆f )

2 π or Θf = θf

mod
(1+t∆f )

2 π, thus we can replace Θf in above equations
to εf for internal faces or θf for boundary.

2. 4-dimensional Riemannian and split signature simplicial
geometry

Suppose the solutions correspond to a Riemannian or
split signature 4-simplex at vertex v, we have G,G′ ∈
SO(3) for Riemannian and G,G′ ∈ SO(1, 2) for split
signature. The solution G,G′ then subject to (141-144).
When t∆ = 1, the corresponding triangles associated to
face f in the 4 simplices is spacelike with Θf ∈ ±[0, π)
mod 2π is a rotation angle associated to triangle Bf and
ΦBf ∈ (0, 2π) corresponds to a phase related to boundary
data, while t∆ = −1 the triangle is timelike with Θf ∈
[0,∞), ΦBf ∈ [0,∞) and µ = 0. For pure boundary faces
of the complex, we must have ω∆

f = ωf = 0 to have
degenerate solutions. For the boundary of subdivided
complexes which are internal variables of the model, only
ω∆
f = 0 is needed. Note that ωf = 0 when tf = −1. By

comparing (146) and (150-153), we have the following
result:

• G̃ = (G′Re, G
−1)

∑
v

θvf =

 i
1+t∆f

2

2
(Θf + ΦBf + µfπ)− 1 + tf

2

iωfπ

2

 mod iπ, (169)

∑
v

θ′vf =
i
1+t∆f

2

2
tf (Θf − ΦBf − µfπ)) mod πi, (170)

F̃f [X̃0] = (−i)
1−tf

2

(
(−i)

1−t∆f
2 (−γΘf − i(ΦBf + µfπ)) mod (γπ, iπ)

)
(171)

+ (i + γ)
1 + tf

2

ωfπ mod 2π

2
;

• G̃ = (GRe, (G
′)−1)

∑
v

θvf =

 i
1+t∆f

2

2
(−Θf + ΦBf + µfπ)− 1 + tf

2

iωfπ

2

 mod iπ, (172)

∑
v

θ′vf =
i
1+t∆f

2

2
tf (−Θf − ΦBf − µfπ) mod πi, (173)

F̃f [X̃0] = (−i)
1−tf

2

(
(−i)

1−t∆f
2 (γΘf − i(ΦBf + µfπ)) mod (γπ, iπ)

)
(174)

+ (i + γ)
1 + tf

2

ωfπ mod 2π

2
;

• G̃ = (GRe, (G)−1)

∑
θvf =

 i
1+t∆f

2

2
(Θf + ΦBf + µfπ)− 1 + tf

2

iωfπ

2

 mod iπ, (175)

∑
θ′vf =

i
1+t∆f

2

2
tf (−Θf − ΦBf − µfπ) mod πi, (176)
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F̃f [X̃0] = (−i)
1−tf

2

(
(−i)

1−t∆f
2 i(−Θf − ΦBf − µfπ) mod (γπ, iπ)

)
(177)

+ (i + γ)
1 + tf

2

ωfπ mod 2π

2
;

• G̃ = (G′Re, (G
′)−1)

∑
θvf =

 i
1+t∆f

2

2
(−Θf + ΦBf + µfπ)− 1 + tf

2

iωfπ

2

 mod iπ, (178)

∑
θ′vf =

i
1+t∆f

2

2
tf (Θf − ΦBf − µfπ) mod πi, (179)

F̃f [X̃0] = (−i)
1−tf

2

(
(−i)

1−t∆f
2 i(Θf − ΦBf − µfπ) mod (γπ, iπ)

)
(180)

+ (i + γ)
1 + tf

2

ωfπ mod 2π

2
.

The original integration path is contained in the case 3
and 4 with tf = t∆f and ωf = 0. In case of Riemannian sig-
nature where Re = I2 this implies g+ = (g−)−1 while for
split signature Re = iσ3 where we have g+ = (g−)†. One
can identify them with the degenerate solution of EPRL-
CH model shown in [13, 14, 17, 18]. In such case θ′ = θ†

thus the F̃f [X̃0] is determined up to 2π, which removes
the domain of covering space from analytic continuation
and determines the action up to π for half integers spin
Jf . Again some π ambiguities can be removed by fixing
the lift ambiguity according to [13, 17, 18].
By applying the above result to each vertex and sum-

ming over the result, due to the cancellation of internal
Φf at each vertex, one immediately notice that we have

Θf =
∑
v

Θvf =

{ ∑
v θvf , t∆f = −1∑
v(π − θvf ), t∆f = 1

, (181)

thus Θf is related to the deficit angle εf or boundary

deficit angle θf by Θf = εf mod
(1+t∆f )

2 π or Θf = θf

mod
(1+t∆f )

2 π . As a result, we can replace Θf in above
equations to εf for internal faces or θf for boundary.
Notice that when t∆f = 1, namely the geometry are

Riemannian 4-simplex, the contributions of (171) to the
spinfoam amplitude are proportional to e−SRegge with the
Regge action

SRegge = ±
∑
f

AfΘf , (182)

where Af := γJf is the area for triangle associated to
f . We have analytically continued the spin Jf → iJf
for the time action to cancel the extra i appearing in
(171). As we indicated in Section II, in the case when
both time and space action appears at a given edge, this
analytical continuation of the spin is required by the

closure condition given in (63).

VI. DISCUSSIONS AND OUTLOOK

In this work we study the analytic continuation of the
Lorentzian EPRL spinfoam model and the CH extension
on 4-dimensional simplicial manifold. We then derive the
complexified critical equations and find all complex critical
points. We also obtain the geometrical correspondence
of the complex critical points. Our result is important
for understanding the subdominant contributions to the
large-j spinfoam amplitude when the real critical point
is present, and dominant contributions to the amplitude
when the real critical point is absent. Our result may also
be helpful for studying spinfoam amplitude when j is not
very large.

There are a few future perspectives from this work:
Firstly, we do not take into account the analytic continu-
ation of the Barbero-Immrizi parameter γ. The complex
critical points with simplicial-geometry interpretations
satisfy critical equations that are independent of γ. Thus,
the effect of possible complex γ may be seen from the
critical action with complexified γ and may relate to the
Stokes phenomenon.
Secondly, the result of the special critical points cor-

responding to simplicial geometries can be checked nu-
merically [33]. Concerning the generic critical points,
since the critical equations obtained in our work form a
polynomial system, finding all possible complex solutions
of the system numerically using the rational univariate
representation [34] or homotopy continuation method [35]
maybe possible.

Lastly, our work propose a realization of Wick rotation
in the spinfoam LQG: By the analytic continuation of
the Lorentzian model, we identify the complex critical
points correspond to Riemannian simplicial geometries,
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whose contributions to the amplitude behave as e−SRegge ,
similar to the situation in the Euclidean path integral.
This provides a possible relation from the spinfoam model
to the Euclidean quantum gravity. This relation should
be important for applying spinfoams to studies such as
the black hole entropy computation and the entanglement

entropy computation.
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Appendix A: Complexification of variables

In this appendix we give explicitly the details of complexifying X:

• Group elements g ∈ SL(2,C) or g ∈ Spin(4)

Since SO(4,C) ' SL(2,C)C ' Spin(4)C, we can write g̃ve = (g̃+
ve, g̃

−
ve) ∈ SO(4,C), where g̃±ve ∈ SL(2,C). For

Euclidean model, the complexification is simply defined as

(g+
ve, g

−
ve)→ (g̃+

ve, g̃
−
ve) . (A1)

For Lorentzian model, we define the complexification as

(gve, g
†
ve)→ (g̃+

ve, g̃
−
ve) . (A2)

Given any 2× 2 matrix x, the complexification of gvexg†ve is

gvexg
†
ve → g̃+

vexg̃
−
ve (A3)

for Lorentzian model while for Euclidean model this simply implies g±vexg±†ve = g±vex(g±ve)
−1 → g̃±vex(g̃−±ve )−1.

• Normalized spinors ξ, l ∈ C2

According to the definition,

ξ = vξ0, v ∈ SU(2) ,

ξ± = vξ±0 , l
± = vl±0 , v ∈ SU(1, 1) ,

(A4)

where ξ0, ξ±0 are reference spinors ξ0, ξ+
0 = (1, 0)t, ξ−0 = (0, 1)t, l±0 = (1,±1)t. The complexifications of ξ, ξ± are

equivalent to the complexifications of SU(2) and SU(1, 1) group variables v:

v, v† → ṽ, ṽ′ ∈ SL(2,C) , v ∈ SU(2) or SU(1, 1) . (A5)

Here ṽ, ṽ′ are related to each other. Indeed, ṽ, ṽ′ can be expressed by complexifying the parametrization of group
elements, where we consider the complex conjugation of a complex parameter a as an independent variable, e.g.
a→ a, ā→ ã where a, ã are independent complex parameters, see below:

v =
1√

āa± b̄b

(
a ∓b̄
b ā

)
→ ṽ =

1√
ãa± b̃b

(
a ∓b̃
b ã

)
,

v† =
1√

āa± b̄b

(
ā b̄
∓b a

)
→ ṽ′ =

1√
ãa∓ b̃b

(
ã b̃
∓b a

)
,

(A6)

where a, b, ã, b̃ ∈ C, the minus sign in the square-root corresponds to v, v† ∈ SU(1, 1). Note that

ṽηṽ′ = vηv† = η, η = DiagonalMatrix[1,±1] (A7)

where det η = 1 corresponds to SU(2) and det η = −1 corresponds to SU(1,1). The exact form of spinors can be
read from (A4), for example, ξ̃ and ξ̃′ = ξt0ṽ

′ are given by

ξ =
1√

āa+ b̄b

(
a
b

)
→ ξ̃ =

1√
ãa+ b̃b

(
a
b

)
,

ξ† =
1√

āa+ b̄b

(
ā, b̄
)
→ ξ̃′ =

1√
ãa+ b̃b

(
ã, b̃
)
.

(A8)

https://github.com/LQG-Florida-Atlantic-University/extended_spinfoam
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This also define the complexification of Jξ, (Jξ)† as

Jξ =
1√

āa+ b̄b

(
−b̄
ā

)
→ J̃ξ =

1√
ãa+ b̃b

(
−b̃
ã

)
,

(Jξ)† =
1√

āa+ b̄b
(−b, a) → J̃ξ

′
=

1√
ãa+ b̃b

(−b, a) ,

(A9)

ξ̃±, ξ̃±′ and l̃±, l̃±′ are defined similarly. Note that ξ̃ and J̃ξ are linearly independent since there does not exist
SL(2,C) group element ṽ such that ṽξ0 = αṽJξ0. Thus ξ̃ and J̃ξ form a basis for 2 dimensional spinor space.
The same argument hold for pairs of ξ̃′ and J̃ξ

′
, pairs of l̃± and pairs of l̃±′.

In the following, many formulae can unify the treatments of SU(2) ξ and SU(1,1) ξ±. In these formulae, we
often skip the upper index ± of ξ̃±.

• CP1 spinors z
Since z ∈ CP1, we can use Gelfand’s choice of the section

z =

(
x
1

)
, x ∈ C . (A10)

Under complexification we have

z̄ → z̃ =

(
x̃
1

)
, (A11)

with x̃ ∈ C independent of x.

Appendix B: Detailed analysis of critical equations

First, from the definition of Z̃ and Z̃ ′ given in (30), we have the following constraints

(g̃−ve)
−1Z̃vef = (g̃−ve′)

−1Z̃ve′f (B1)

Z̃ ′vef (g̃+
ve)
−1 = Z̃ ′ve′f (g̃+

ve′)
−1 (B2)

These constraints hold for both spacelike and timelike faces. Then we will calculate the critical equation for spacelike
action (31) and timelike action (33) respectively:

1. Critical equations

a. Space action

With parametrization (A11) of z̃, the variation of spinor variables z̃ can be decomposed as the variation respect
to x and x̃ under our parametrization of z given in (A10-A11). From the analytic continued face action F̃ (31), the
variation respects to zvf and z̃vf leads to

the following sets of equations

0 = −(iγ − 1)
∑
e⊂∂f

κvefχ
′
vefηeg̃

−
ve , 0 = −(iγ + 1)

∑
e⊂∂f

κvef g̃
+
veηeχvef , (B3)

with

χ′vef =
iγ + κef det(ηe)

iγ − 1

Z̃ ′vef

Z̃ ′vef Z̃vef
− det(ηe)κef + 1

iγ − 1

ξ̃′ef

ξ̃′efηeZ̃vef
, (B4)

χvef =
iγ + κef det(ηe)

iγ + 1

Z̃vef

Z̃ ′vefηeZ̃vef
− det(ηe)κef − 1

iγ + 1

ξ̃ef

Z̃ ′vefηeξ̃ef
, (B5)
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where κvef = ±1 flips its sign for changing e to e′ with given face f .
For the variation respect to g̃± ∈ SL(2,C), we introduce the small perturbation of g̃± as g̃ε± = g̃±eε·~σ with

infinitesimal ε ∈ C. The variation to g̃± then becomes the derivation respect to ε evaluated at ε = 0, which leads to

0 = −(iγ − 1)
∑

f :e⊂∂f

κefχ
′
vefσiZ̃vef , 0 = −(iγ + 1)

∑
f :e⊂∂f

κef Z̃
′
vefσiχvef , (B6)

where we use the fact that ηe(σ)i = ±σi.
We also derive the variation respect to bulk ξ̃ and ξ̃′. According to the parametrization (A8), the equations of

motion are given by variations respect to a, b, ã, b̃, which imply

0 =
∑
v⊂∂e

κvef

[
− κvef ξ̃′ef + (κvef det(ηe)− 1)

Z̃ ′vef

Z̃ ′vefηeξ̃
±
ef

]
, (B7)

0 =
∑
v⊂∂e

κvef

[
− κvef ξ̃ef + (κvef det(ηe) + 1)

Z̃vef

ξ̃′efηeZ̃vef

]
. (B8)

The solution are given by

Z̃vef (+) ∝C ξ̃ef , Z̃ ′vef (−) ∝C ξ̃
′
ef , (B9)

where (±) correspond to κvef = ± det ηe.
The set of equations (B3 - B9) are equations of motion for general analytic continued space action.

b. Time action

Similar to the space action case, the variation of spinor variables z̃ can be decomposed as the variation respect to x
and x̃. From the analytic continued face action F̃ (31), the variation respects to zvf and z̃vf leads to the following
equations

0 = i(iγ − 1)
∑
e⊂∂f

κvef χ
′svef
vef ηeg̃

−
ve , 0 = −i(iγ + 1)

∑
f :e⊂∂f

κvef g̃
+
veηeχ

svef
vef , (B10)

with

χ
′svef
vef =

iγ − svef
iγ − 1

l̃′±ef

l̃′±efηZ̃vef
− 1− svef

iγ − 1
ln

Z̃ ′vef

Z̃ ′vefηZ̃vef
, (B11)

χ
svef
vef =

iγ + svef
iγ + 1

l̃±ef

Z̃vefηl̃
±
ef

+
1− svef
iγ + 1

ln
Z̃vef

Z̃ ′vefηZ̃vef
, (B12)

where again κef = ±1 flips its sign for changing e to e′ with given face f .
The variation respect to g̃± ∈ SL(2,C) leads to

0 = i(iγ − 1)
∑

f :e⊂∂f

κefχ
′
vefησiZ̃vef , 0 = −i(iγ + 1)

∑
f :e⊂∂f

κef Z̃
′
vefσiηχvef . (B13)

The variation respect to bulk l̃± and l̃′± leads to

0 = δ{a,b,ã,b̃}F̃
svef
vef − F̃

sv′ef
v′ef , (B14)

with

δaF̃
±
vef =

±iã√
aã− bb̃

+
γ ∓ i√

2

(
Z̃ ′vefηξ0

Z̃ ′vefηl̃
±
ef

)
+
−γ ∓ i√

2

(
±Jξ0ηZ̃vef
l̃′±efηZ̃vef

)
, (B15)
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δbF̃
±
vef =

∓ib̃√
aã− bb̃

+
γ ∓ i√

2

(
Z̃ ′vefηJξ0

Z̃ ′vefηl̃
±
ef

)
+
−γ ∓ i√

2

(
± ξ0ηZ̃vef

l̃′±efηZ̃vef

)
, (B16)

δãF̃
±
vef =

±ia√
aã− bb̃

+
γ ∓ i√

2

(
±
Z̃ ′vefηJξ0

Z̃ ′vefηl̃
±
ef

)
+
−γ ∓ i√

2

(
ξ0ηZ̃vef

l̃′±efηZ̃vef

)
, (B17)

δb̃F̃
±
vef =

∓ib√
aã− bb̃

+
γ ∓ i√

2

(
±
Z̃ ′vefηξ0

Z̃ ′vefηl̃
±
ef

)
+
−γ ∓ i√

2

(
Jξ0ηZ̃vef

l̃′±efηZ̃vef

)
. (B18)

One can show that, after inserting the decomposition of Z,Z ′ s.t. Z̃ ′ = l̃′∓ef + α′vef l̃
′±
ef and Z̃vef = l̃∓ef + αvef l̃

±
ef , the

above equation give the following solution:

svef = sv′ef : (i + svefγ)(αv′ef − αvef ) = (i− svefγ)(α′v′ef − α′vef ) , (B19)

svef = −sv′ef : (i + svefγ)αvef = (i− svefγ)α′vef , (i + sv′efγ)αv′ef = (i− sv′efγ)α′v′ef . (B20)

The set of equations (B10 - B20) are equations of motion for general analytic continued time actions.

2. Analysis of bivectors in Critical equations

a. Space action

Since pairs of ξ̃ and J̃ξ as well as pairs of ξ̃′ and J̃ξ
′
can be regarded as a basis for spinor space, we can make the

following decomposition of Z and Z ′:

Z̃vef ∝C zvef := ξ̃ef + αvef J̃ξef , Z̃ ′vef ∝C z′vef := ξ̃′ef + α′vef J̃ξ
′
ef , (B21)

where α is defined as αvef := J̃ξ
′
efηeZ̃vef . With the decomposition, the bivectors correspond to space action then can

be rewritten as

B− = mef ξ̃ef ⊗ ξ̃′efηe −
1

2
I +mefαvef J̃ξef ⊗ ξ̃′efηe + E−vef , (B22)

ηeB
+ηe = mef ξ̃ef ⊗ ξ̃′efηe −

1

2
I +mefα

′
vef ξ̃ef ⊗ J̃ξ

′
efηe + E+

vef , (B23)

where E± are given as

E−vef =
−α′vef (γ − i det ηeκef )

(i + γ)(1 + det ηeαvefα′vef )

(
det ηeαvef

(
2mef ξ̃ef ⊗ ξ̃′efηe − I2 + αvefmef J̃ξef ⊗ ξ̃′efηe

)
−mef ξ̃ef ⊗ J̃ξ

′
efηe

)
(B24)

E+
vef =

−αvef (γ − i det ηeκef )

(γ − i)(1 + det ηeαvefα′vef )

(
det ηeα

′
vef

(
2mef ξ̃ef ⊗ ξ̃′efηe − I2 + α′vefmef ξ̃ef ⊗ J̃ξ

′
efηe

)
−mef J̃ξef ⊗ ξ̃′efηe

)
, (B25)

satisfying tr(E± · E±) = 0, tr(X± · E±) = 0. mef := ξ̃′efηeξ̃ef is −1 when ξ̃ef is ξ̃−ef , otherwise mef = 1. We check
that B± are related to each other by the following mapping

κef → −κef , γ → −γ, αvef ↔ α′vef , J ξ̃ef ⊗ ξ̃′efηe ↔ ηeξ̃ef ⊗ Jξ̃′ef (B26)

which relate to the fact that B± here are related by complex conjugation in the original real domain. Moreover, we
can define M := X− − ηeX+ηe = B− − ηeB+ηe where

Mvef =
1

(1 + γ2)(1 + det ηeαvefα′vef )

(
2i(det ηeγ − iκvef )αvefα

′
vef

(
2mef ξ̃ef ⊗ ξ̃′efηe − I2) (B27)
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+mefαvef (αvefα
′
vef (1 + iγ)(det ηe + κvef ) + i(γ + i)(det ηeκvef − 1)J̃ξef ⊗ ξ̃′efηe

)
+mefα

′
vef (αvefα

′
vef (iγ − 1)(det ηe − κvef )− i(γ − i)(det ηeκvef + 1))ξ̃ef ⊗ J̃ξ

′
efηe

)
.

One can check that

tr(M ·M) = tr
(
B± ·M

)
= 0. (B28)

This relation then implies B− and ηeB+ηe differs by a null bivector M orthogonal to them. M is trivial only when
both α and α′ are zero. As a result, when B−vef at given edge e satisfies the cross simplicity (65), in general B+

vef
associated to the same edge will not satisfy it, The cross simplicity conditions imposing non-trivial constraints to M
thus to α, α′.

Since B±vef are bivectors satisfying tr(B± ·B±) = 1
2 , we can always define a SL(2,C) group element a±vef depending

on α, α′ such that

B−vef = ṽefa
γ−
vef

σ3

2
(aγ−vef )−1(ṽef )−1 , ηeB

+
vefηe = ṽefa

γ+
vef

σ3

2
(aγ+
vef )−1(ṽef )−1 , (B29)

where a±vef ∈ SL(2,C) can be defined as

a−vef =

 1 − iαvef ((1+det ηeκvef )αvefα
′
vef+(1−iγ) det ηe)

(γ+i)(αvefα′vef det ηe+1)

α′vef (γ−i det ηeκvef )

γ+i(αvefα′vef (det ηe+κvef )+1)

γ+i(αvefα
′
vef (det ηe+κvef )+1)

(γ+i)(αvefα′vef det ηe+1)

 , (B30)

aγ+
vef =

 1
αvef (iκvef−det ηeγ)

(γ−i)(αvefα′vef det ηe+1)

α′vef
γ−i(αvefα′vef (det ηe−κvef )+1)

(γ−i)(αvefα′vef det ηe+1)

 , (B31)

where a±vef = I when α = α′ = 0.

The bivectors satisfy the closure condition from which {αvef , αvef ′} can be solved up to re-scaling. Notice that

(iγ − 1)X−vef − (iγ + 1)ηeX
+
vefηe (B32)

=− 2ξ̃ef ⊗ ξ̃′efηe − (κef det(ηe) + 1)(αvef J̃ξef ⊗ ξ̃′efηe) + (κef det(ηe)− 1)(α′vef ξ̃ef ⊗ J̃ξ
′
efηe) .

The closure for B± then can be rewritten as the following conditions

0 =
∑
f

jfκef (iγ − 1)B−vef − (iγ + 1)ηeB
+
vefηe = −

∑
f

jfκvef (2ξ̃ef ⊗ ξ̃′efηe − I)+ (B33)

∑
f

jfκvef

(
−(κef det(ηe) + 1)(αvef J̃ξef ⊗ ξ̃′efηe) + (κef det(ηe)− 1)(α′vef ξ̃ef ⊗ J̃ξ

′
efηe)

)
,

0 =
∑
f

jfκvef

(
B−vef − ηeB

+
vefηe

)
=
∑
f

jfκvefMvef . (B34)

Notice that the second equation are closure condition for null bivectors Mvef .

At given edge e, since there are only 6 closure conditions, only 3 pairs of {α, α′} out of 4 will be fixed. This generates
a series of continuous connected solutions [a]e, correspond to a continuous deformation of the corresponding bivectors.
However, in general not all these solutions [a]e solves the parallel transport equation. Actually α, α′ here subject to
extra conditions (B1) can be viewed as a coordinate change which removes spinor variables z̃vf , z̃′vf . Thus, we have
the same number of variables and polynomial critical equations, which in general admits isolated solutions unless the
system is degenerate. If one carefully counts the d.o.f with parametrization using α, α′ and the number of critical
equations at each vertex, they are equal: we have in total 2× (20 + 4× 3) = 64 complex variables for α, α′, g±, and
the critical equations contains 2× 10× (3− 1) = 40 complex bivector equations plus 2× 4× 3 = 24 complex closure
conditions.

For the internal edges, from the parallel transport equation between vertices, we have αvef = 0 or α′vef = 0 for
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κvef = ± det ηe respectively. As a result, E∓vef = 0 respectively and Mvef becomes

Mvef =
mef

(1 + γ2)

(
αvef (i(γ + i)(det ηeκvef − 1)J̃ξef ⊗ ξ̃′efηe

)
+ α′vef (−i(γ − i)(det ηeκvef + 1))ξ̃ef ⊗ J̃ξ

′
efηe

)
.

As a result, the closure condition given by (B33) becomes

0 =
∑
f

jfκvef (2ξ̃ef ⊗ ξ̃′efηe − I) , (B35)

which is independent of α, α′ thus constrains internal ṽ to satisfy the closure condition. This is compatible with the
argument that the closure constrain in spinfoam models is imposed strongly [30, 31]. The left undetermined α, α′
are constrained by (B34). Notice that, since κvef have opposite sign between the two vertices v and v′ associated to
the edge e, we have Bvef 6= Bv′ef unless α = α′ = 0. However, one should note that the existence of the α = α′ = 0
solution will be determined finally by solving simultaneously parallel transport equations.

b. Time action

For the time action, a similar analysis can be carried out while now we can expand the bivector using the decomposition
Z̃ ′ ∝C l̃

′∓
ef + α′vef l̃

′±
ef and Z̃vef ∝C l̃

∓
ef + αvef l̃

±
ef , which gives

X−vef = (l̃∓ef + αvef l̃
±
ef )⊗ l̃′±efηe + E−vef , X+

vef = ηe l̃
±
ef ⊗ (l̃′∓ef + α′vef l̃

′±
ef ) + E+

vef , (B36)

where now

E−vef =
1

αvef + α′vef

[ (1− svef )αvef
2

iγ − 1
l̃±ef ⊗ l̃

′±
efηe (B37)

− (1− svef )

iγ − 1
(−2αvef l̃

∓
ef ⊗ l̃

′±
efηe + αvefI2 + l̃∓ef ⊗ l̃

′∓
efηe)

]
,

E+
vef =

1

αvef + α′vef

[ (svef − 1)α′vef
2

iγ + 1
ηe l̃
±
ef ⊗ l̃

′±
ef (B38)

+
(1− svef )

iγ + 1
(−2α′vefηe l̃

±
ef ⊗ l̃

′∓
ef + α′vefI2 + ηe l̃

∓
ef ⊗ l̃

′∓
ef )
]
,

satisfying

Tr
(
E±vef

)
= Tr

(
E±vef .E

±
vef

)
= 0 . (B39)

Namely, E± is always a null bivector. Notice that we have

M := B− + ηB+η =
1

αvef + α′vef

[(√ iγ − svef
iγ − 1

αvef +

√
iγ + svef

iγ + 1
α′vef

)2

l̃±ef ⊗ l̃
′±
efηe

+
(1− svef )

γ2 + 1

(
2l̃∓ef ⊗ l̃

′∓
efηe −

(
iγ(αvef + α′vef ) + αvef − α′vef

)(
2l̃∓ef ⊗ l̃

′±
efηe − I2

))]
,

by the fact that l̃∓ef ⊗ l̃′
±
efηe + l̃±ef ⊗ l̃′

∓
efηe = I. One can check that similar to the case of the space action, we have

tr(M ·M) = tr
(
B± ·M

)
= 0. (B40)

When s = 1 and α+ α′ = 0, M is trivial.
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We can define again a±vef ∈ SL(2,C) :

a−vef =

√
(1 + αvef )f−a (α, α′)

1− iγ

(
1 0

αvef
αvef+1 +

(svef−1)

f−a (α,α′)
−1

αvef+1 −
(svef−1)

f−a (α,α′)

)
, (B41)

aγ+
vef =

√
(1− α′vef )f+

a (α, α′)

1 + iγ

(
1 0

α′vef
α′vef−1 +

(svef−1)

f+
a (α,α′)

−1
−α′vef+1 +

(svef−1)

f+
a (α,α′)

)
, (B42)

with

f−a (α, α′) = 1− α′vef + iγ(αvef + α′vef )− (αvef + 1)s (B43)

f+
a (α, α′) = αvef + iγ(αvef + α′vef ) + (α′vef − 1)s+ 1 (B44)

such that the bivectors B±ver can be rewritten as

B−vef = ṽefa
γ−
vef

σ1

2
(aγ−vef )−1(ṽef )−1 , ηeB

+
vefηe = ṽefa

γ+
vef

σ1

2
(aγ+
vef )−1(ṽef )−1 , (B45)

Note that when α = α′ = 0 we have a±vef = I.

As a result, all the argument for space action then follows similarly here, namely α, α′ can be solved from the closure
condition combining with the parallel transport equation. For example, from the fact that

(iγ − 1)E− + (iγ + 1)ηE+η = (1− svef )
(

(αvef − α′vef )l̃±ef ⊗ l̃
′±
efηe + 2l̃∓ef ⊗ l̃

′±
efηe − I2

)
, (B46)

one of the closure condition can be rewritten as∑
f

jfκvef ((iγ − 1)X− + (iγ + 1)ηX+η)

=
∑
f

jfκvef

(
−2svef l̃

∓
ef ⊗ l̃

′±
efηe + I2 + (iγ(αvef + α′vef )− svef (αvef − α′vef ))l̃±ef ⊗ l̃

′±
efηe

)
. (B47)

Another closure condition is then given by null closure condition:

0 =
∑
f

jfκvefMvef . (B48)

Note that, when svef = 1, we have E±vef = 0, the closure conditions become

0 =
∑
f

jfκvef

(
(l̃∓ef + αvef l̃

±
ef )⊗ l̃′±efηe −

1

2
I2
)
, (B49)

0 =
∑
f

jfκvef

(
(l̃∓ef − α

′
vef l̃

±
ef )⊗ l̃′±efηe −

1

2
I2
)
, (B50)

which are the same set of equations for α and −α′ respectively. As a result, in the case when boundary variables at
edge e satisfy the closure: 0 =

∑
f jfκvef

(
(l̃∓ef ⊗ l̃′

±
efηe −

1
2 I2
)
, α and −α′ differ by only an overall scaling at edge e.

For the internal edges, due to (B19) and (B20), one can check that for all possible s, we have ((iγ − 1)X−vef + (iγ +

1)ηX+
vefη) = ((iγ − 1)X−v′ef + (iγ + 1)ηX+

v′efη). Thus comparing (B47) at v and v′ leads to an equation independent of

α, α′ which now reads 0 =
∑
f jfκvef

(
(l̃∓ef ⊗ l̃′

±
efηe −

1
2 I2
)
, thus imposing the closure condition to ṽef . For the case

svef = sv′ef , (B47) becomes 0 =
∑
f jfκvef (iγ(αvef +α′vef )−svef (αvef −α′vef ))l̃±ef ⊗ l̃′

±
efηe) while this is automatically

satisfied for the case svef 6= sv′ef . The left undetermined α, α′ are then given by (B48). As a result, this again implies
Xvef 6= Xv′ef in general since Mvef 6= Mv′ef . The possible situation to have Mvef = Mv′ef is when M is trivial for
both v and v′, otherwise it will parallel transport non-trivially between v and v′. A simple situation for this is given
by s = 1 for both v and α+ α′ = 0.
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For the action composed by both time and space action, the closure condition reads∑
f :spacelike

jfκvef (1− iγ)B−vef + i
∑

f :timelike

jfκvef (iγ − 1)B−vef = 0 , (B51)

∑
f :spacelike

jfκvef (−iγ − 1)B+
vef − i

∑
f :timelike

jfκvef (iγ + 1)B+
vef = 0 , (B52)

which implies∑
f :spacelike

jfκvefB
−
vef − i

∑
f :timelike

jfκvefB
−
vef =

∑
f :spacelike

jfκvefB
+
vef + i

∑
f :timelike

jfκvefB
+
vef = 0 . (B53)

The compatibility between timelike and spacelike action then requires

0 =
∑

f :timelike

jfκvef

(
B−vef − ηB

+
vefη

)
− i

∑
f :timelike

jfκvef

(
B−vef + ηB+

vefη
)

(B54)

=
∑

f :spacelike

jfκvefMvef − i
∑

f :timelike

jfκvefMvef , (B55)

which is again a closure condition of null bivectors.

Appendix C: Proof of Theorem V.1

Here we give the proof of Theorem V.1 which determines the value of θ at critical configurations.

Proof. From the parallel transport equation for space and time action, we have

χ̃′−vefηeg̃
−
ve(g̃

−
ve′)
−1 =

ζ̃vef

ζ̃ve′f
χ̃′−ve′fηe′ , g̃−ve′(g̃

−
ve)
−1z̃vef =

ζ̃ve′f

ζ̃vef
z̃ve′f , (C1)

z̃′vef (g̃+
ve)
−1g̃+

ve′ =
ζ̃ ′ve′f

ζ̃ ′vef
z̃′ve′f , (g̃+

ve′)
−1g̃+

veηeχ̃
+
vef =

ζ̃ ′vef

ζ̃ ′ve′f
ηe′ χ̃

+
ve′f , (C2)

where we define Z = ζ z̃ and Z ′ = ζ ′z̃′. The equations can be rewritten as

g̃−ve′(g̃
−
ve)
−1J(χ̃′−vefηe)

† =
ζ̃vef

ζ̃ve′f
J(χ̃′−ve′fηe′)

† , g̃−ve′(g̃
−
ve)
−1z̃vef =

ζ̃ve′f

ζ̃vef
z̃ve′f , (C3)

(g̃+
ve′)
−1g̃+

veJ(z̃′vef )† =
ζ̃ ′ve′f

ζ̃ ′vef
J(z̃′ve′f )† , (g̃+

ve′)
−1g̃+

veηeχ̃
+
vef =

ζ̃ ′vef

ζ̃ ′ve′f
ηe′ χ̃

+
ve′f , (C4)

where we use J−1gJ = g−1† for any SL(2,C) group element g.
Using X defined by (50), we have

X−efJ(χ̃′vefηe)
† = z̃vef ⊗ χ̃′vefηeJ(χ̃′efηe)

† = 0 , X−ef z̃vef = z̃vef ⊗ χ̃′vefηez̃vef = z̃vef , (C5)

where we use the fact atJat† = 0 for arbitrary spinor a and tr(X) = 1. From the definition of bivectors B = X − 1
2I,

we then have

2B−vefJ(χ̃′efηe)
† = −J(χ̃′efηe)

† , 2B−vef z̃vef = z̃vef . (C6)

Similar argument also holds for B+ which leads to

2B+
vefJ(z̃′vef )† = −J(z̃′vef )† , 2B+

vefηeχ̃vef = ηeχ̃vef . (C7)
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If we introduce a group element related to boundary variables such that

vee′ : me′fvee′ ξ̃e′f ⊗ ξ̃′e′fηe′(vee′)−1 = mef ξ̃ef ⊗ ξ̃′efηe , (C8)

we then have

ãvefvee′(ave′f )−1B−ve′fave′f (vee′)
−1(avef )−1 = B−vef , (C9)

where ãvef here are related to avef defined in (B30) and (B41) by ãvef = ṽefavef (ṽef )−1. Note that since ṽηṽ′ = η,
we have

vee′ = ṽefR
−1
e (−iσ2)

1−mef
2 (iσ2)

1−m
e′f

2 Re′(ṽe′f )−1 . (C10)

Thus,

avefRevee′(Re′)
−1(ave′f )−1B+

ve′fave′f (vee′)
−1(avef )−1 = B+

vef . (C11)

And one can check that,

me′fvee′J(ξ̃′e′fηe′)
† = me′fmefmef (i)

1−det ηe
2 (−i)

1−det η
e′

2 (χ̃′efηe)
† , (C12)

vee′ ξ̃e′f = me′fmef (−i)
1−det ηe

2 (i)
1−det η

e′
2 ξ̃ef , (C13)

Revee′R
−1
e′ J(ξ̃′e′f )† = J(ξ̃′ef )† , (C14)

me′fRevee′R
−1
e′ ηe′ ξ̃e′f = mefηeξ̃ef . (C15)

In the case when the face contains only one vertex, this then implies

aγ−vefvee′(a
γ−
ve′f )−1g̃−ve′(g̃

−
ve)
−1 = me′fmefe(2θvf+iπωf )B−vef , (C16)

aγ+
vefRevee′(Re′)

−1(aγ+
ve′f )−1(g̃+

ve′)
−1g̃+

ve = e−2θ′vfB
+
vef (C17)

where ωf := | det ηe′−det ηe|
2 ∈ {0, 1} and takes 1 when det ηe′ 6= det ηe, otherwise ω = 0. Then θ and θ′ can be expressed

as

θvf = log
[
Tr
(
me′fmefa

γ−
vefvee′(a

γ−
ve′f )−1g̃−ve′(g̃

−
ve)
−1X−vef

)]
− iωfπ

2
, (C18)

θ′vf = −tf log
[
Tr
(
aγ+
vefRevee′R

−1
e′ (aγ+

ve′f )−1(g̃+
ve′)
−1g̃+

veX
+
vef

)]
, (C19)

where the logme′fmef term in θvf will cancel exactly the same term appears in the definition of θmvf , leading a critical
action that independent of m. As a result, we can safely remove the logme′fmef terms in all the expressions for
simplicity.

Appendix D: Critical configurations and action for Euclidean Model

From the action for Euclidean EPRL model,

F̃f

[
X̃
]

=
∑
v,f⊂v

[
(1− γ) ln

(
ξ̃′ef (g̃−ve)

−1g̃−ve′ ξ̃e′f
)

+ (1 + γ) ln
(
ξ̃′ef (g̃+

ve)
−1g̃+

ve′ ξ̃e′f
)]
. (D1)

The variation respects to group elements g̃± leads to the following closure condition

0 =
∑
f

jfκef
ξ̃′ef (g̃−ve)

−1σig̃−ve′ ξ̃e′f

ξ̃′ef (g̃−ve)−1g̃−ve′ ξ̃e′f
(D2)

0 =
∑
f

jfκef
ξ̃′ef (g̃+

ve)
−1σig̃+

ve′ ξ̃e′f

ξ̃′ef (g̃+
ve)−1g̃+

ve′ ξ̃e′f
(D3)
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For internal faces, the variation respect to ξ and ξ′ becomes the variation respect to the SL(2,C) group element ṽ.
Since we have ṽ′ṽ = I2, for δṽ = ṽ~ε · ~L , we have δṽ′ = −~ε · ~L(ṽ)−1 = −~ε · ~Lṽ′. As a result, we have

0 =(1− γ)
RLξ̃

′
ef (g̃−ve)

−1g̃−ve′ ξ̃e′f

ξ̃′ef (g̃−v′e)
−1g̃−ve′ ξ̃e′f

− (1− γ)
ξ̃′e′′f (g̃−v′e′′)

−1g̃−v′e′RLξ̃ef

ξ̃′e′′f (g̃−v′e′′)
−1g̃−v′e′ ξ̃ef

(D4)

+ (1 + γ)
RLξ̃

′
ef (g̃+

ve)
−1g̃+

ve′ ξ̃e′f

ξ̃′ef (g̃+
ve)−1g̃+

ve′ ξ̃e′f
− (1 + γ)

ξ̃′e′′f (g̃+
v′e′′)

−1g̃+
v′e′RLξ̃ef

ξ̃′e′′f (g̃+
v′e′′)

−1g̃+
v′e′ ξ̃ef

(D5)

where RLξ̃ := ṽσiξ0. Since σ1ξ0 ∝ σ2ξ0 ∝ Jξ0 and σ3ξ0 = ξ0, there are only one non-trivial equation given by

0 =(1− γ)
J̃ξ
′
ef (g̃−ve)

−1g̃−ve′ ξ̃e′f

ξ̃′ef (g̃−v′e)
−1g̃−ve′ ξ̃e′f

− (1− γ)
ξ̃′e′′f (g̃−v′e′′)

−1g̃−v′e′ J̃ξef

ξ̃′e′′f (g̃−v′e′′)
−1g̃−v′e′ ξ̃ef

(D6)

+ (1 + γ)
J̃ξ
′
ef (g̃+

ve)
−1g̃+

ve′ ξ̃e′f

ξ̃′ef (g̃+
ve)−1g̃+

ve′ ξ̃e′f
− (1 + γ)

ξ̃′e′′f (g̃+
v′e′′)

−1g̃+
v′e′ J̃ξef

ξ̃′e′′f (g̃+
v′e′′)

−1g̃+
v′e′ ξ̃ef

The equations of motion are totally different from these obtained in the case of Lorentzian models, but we can still
assume for special configurations there are solutions of above equations of motion which satisfies

g̃±ve′ ξ̃e′f = e
θ±
e′vef g̃±veξ̃ef , ξ̃′e′f (g̃±ve′)

−1 = e
−θ±

e′vef ξ̃′ef (g̃±ve)
−1 (D7)

One can check that this ansatz solves (D6). The equation of motion now have the same form as (63) with bivector B±f
defined as

B±f (v) := g̃±veB
±
ef (g̃±ve′)

−1 := g̃±ve

(
ξ̃ef ⊗ ξ̃′e′f −

1

2
I2

)
(g̃±ve′)

−1 (D8)

Then the analysis for Lorentzian case follows exactly here. Namely, for the (degenerate) simplicial geometry solutions
G,G′, we have 4 possibilities for solutions G̃ = (G̃+, G̃−) at each vertex: G̃ = (G̃+, G̃−): G̃ = (G, (G)−1), G̃ =

(G, (G′)−1) and G̃ = (G′, (G)−1), G̃ = (G′, (G′)−1). The critical action associated to each face in this case reads

F̃f

[
X̃
]

=
∑
v,f⊂v

[
(1− γ)θ−vf + (1 + γ)θ+

vf

]
. (D9)

The parallel transport equations are given by

vee′G
±
f (e′, e) = e2

∑
v θ
±
vfB

−
ef (D10)

with G±f =
∏
v∈∂f (g̃±ve′)

−1g̃±ve.

We can then get similar result for θ± as in Section VB2 and VB1 by identifying θ− with θ and θ+ with −θ′ as
well as set ωf = 0. Substitute them to (D9) gives out the critical action. As a result, we may have the following
possibilities:

• Riemannian or split signature critical points

S̃[X̃0] =
∑
f

Jf

(
(−i)

1−t∆f
2 i(±γΘf + ΦBf + µfπ) mod (γπ, iπ)

)
(D11)

S̃[X̃0] =
∑
f

Jf

(
(−i)

1−t∆f
2 i(±Θf + ΦBf + µfπ) mod (γπ, iπ)

)
(D12)
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• Lorentzian critical points

S̃[X̃0] =
∑
f

Jf

(
i
1−t∆f

2

(
±γΘf + i(ΦBf + µfπ) mod (iπ, γπ)

)
+ i

1−t∆f
2 i(1− γ)

ω∆
f π mod 2π

2

)
(D13)

S̃[X̃0] =
∑
f

Jf

(
i
1−t∆f

2

(
±Θf + i(ΦBf + µfπ) mod (iπ, γπ)

))
(D14)

For the Lorentzian critical points (D13), their contributions to the spinfoam amplitude are again proportional to
e−SRegge with

SRegge = ±
∑
f

AfΘf (D15)

the Lorentzian Regge action with Af = γJf . There is also another subdominant contribution proportional to e−
1
γ SRegge

given by (D14)
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