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Analytic Continuation of spinfoam Models
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The Lorentzian Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) spinfoam model and

the Conrady-Hnybida (CH) timelike-surface extension can be expressed in the integral form | es.

This work studies the analytic continuation of the spinfoam action S to the complexification of the
integration domain. Our work extends our knowledge from the real critical points well-studied in
the spinfoam large-j asymptotics to general complex critical points of S analytic continued to the
complex domain. The complex critical points satisfying critical equations of the analytic continued
S. In the large-j regime, the complex critical points give subdominant contributions to the spinfoam
amplitude when the real critical points are present. But the contributions from the complex critical
points can become dominant when the real critical point are absent. Moreover, the contributions
from the complex critical points cannot be neglected when the spins j are not large. In this paper,
we classify the complex critical points of the spinfoam amplitude, and find a subclass of complex
critical points that can be interpreted as 4-dimensional simplicial geometries. In particular, we
identify the complex critical points corresponding to the Riemannian simplicial geometries although
we start with the Lorentzian spinfoam model. The contribution from these complex critical points of
Riemannian geometry to the spinfoam amplitude give e ~SResse in analogy with the Euclidean path
integral, where Sgegge is the Riemannian Regge action on simplicial complex.
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the simplicity constraint. The EPRL model uses the time
gauge which leads SU(2) irreducible representations on
boundary states, and correspond to quantum spacelike
boundary geometries [6, 7]. The CH extension extends
the model to space gauge which uses SU(1, 1) irreducible
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representations for boundary states, thus have timelike
boundary geometries [8-10]. Both the EPRL/FK and CH
models can be cast into an integral expression [ eS with
the spinfoam action S = -, Sy. The action Sy at each
face f can be either the space action or the time action
for the triangle dual to f being spacelike or timelike. The
space action uses representations of the SU(2) or SU(1,1)
discrete series while the time action uses continuous-series
representation of SU(1,1) . In these models, a spinfoam
can be regraded as a Feynmann diagram with 5-valent
vertices. Each vertex corresponds to a quantum 4-simplex,
as the building block of the discrete quantum spacetime.

The semiclassical behavior of spinfoam model is deter-
mined by its large-j asymptotics. Recently there have
been many investigations of large-;j behavior of spinfoams,
in particular the asymptotics of EPRL/FK model [11-
16] and the asymptotics of CH extension [17-19]. It has
been shown that, in large-j asymptotics, the spinfoam
amplitude is dominant by the contributions from critical
configurations, which corresponds to simplicial geome-
tries on a simplicial complex and gives discrete Regge
action as its critical action. The models may contain
critical configurations of degenerate simplicial geometries,
known as vector geometries, except for the CH model
with both spacelike and timelike tetrahedra appearing in
every 4-simplex.

Currently, most of the studies about the spinfoam mod-
els focus or rely on the critical configurations inside the
real integration domain of the spinfoam amplitude. These
results show the semi-classical behavior and perturbative
effect around these semi-classical configurations corre-
sponds to simplicial geometries. However, for the bound-
ary data does not correspond to simplicial geometry con-
figurations, the behavior of amplitude will be dominated
by complex critical points away from the real integration
domain [20-23]. Those contributions from complex criti-
cal points have not been extensively studied. Moreover,
the complex critical points will give the "sub-dominate"
contributions (e.g. analog of instantons) of the model
when real critical points appear, which reflects the non-
perturbative behavior. As shown in [24, 25], complex
critical points play an important role in resolving the
flatness problem, thus curved geometries can emerge in
the semi-classical regime of spinfoam models. At smaller
4 regime, these "sub-dominate" contributions can become
important and determine the behaviour of the model.
The recent progress on the Monta-Carlo computation
of spinfoams [26] also request a better understanding of
these sub-dominant contributions in complex domain in
order to clarify the behavior of the model. Moreover,
a complete analysis of these sub-dominate contribution
might be a necessary step towards the understanding of
the non-perturbative topological property of the model
and the study may give different phases and unveil possi-
ble quantum phase transition of the model via resurgent
trans-series [23, 27].

The spinfoam model can be written as an oscillatory
integral of type [ e over finite dimensional real integra-

tion cycle. According to the Picard-Lefschetz theory, we
can deform the original integration cycles to the weighted
unions of Lefschetz thimbles, each of which is defined as
the union of all steepest descent paths ending at a com-
plex critical point of the analytic continued action [20-23].
The Picard-Lefschetz theory and Lefschetz thimble have
been applied to the spinfoam model and turned out to
be important in particular for numerical computations.
When we analytic continue the spinfoam action S, the
critical points of the analytic continued action in general
live in the complexification of the integration domain,
and contain both the dominant and sub-dominant critical
configurations of the model. In this paper, we study the
analytic continuation of EPRL/FK model and CH exten-
sion, extract the complex critical points (of the analytic
continued spinfoam action), and analyze their possible
geometrical interpretations.

In the analysis we firstly derive the analytic continua-
tion of spinfoam amplitude in the most general EPRL-CH
model, to include both spacelike and timelike tetrahe-
dra and triangles. We then analytic continue the action
and derive the analytic continued critical equations, from
which we extract the complex critical points. At each ver-
tex v, the analytic continued critical equations can be writ-
ten as two copies of parallel transport equations and clo-
sure conditions for simple bivectors, which are rotated by
SO(4,C) group elements (§" € SL(2,C),g~ € SL(2,C))
respectively:

GLBEL(GH) ' =GE BE (GE) Y, (1)
l—tf

0=> jf(-) ™ BE, (2)
f

where G~ = (§7)"',G" = gtR. with R, = Iyorios
respectively for SU(2) or SU(1,1) gauge fixing (o are
Pauli matrices). Simple bivectors Bvie § are given as

=+ =+ ~ ~—1 +\-1
Bvef = tfazefvefBovef (aZef) (3)
with 0. represents the (complexified) coherent states

associated to edge e (Uey = vey € H for boundary edges.
H is SU(2) for the EPRL and SU(1,1) for the CH ex-

tension). By = 3o03,ty = 1 for space action (related
to spacelike triangles and discrete-series representations)
and By = %Ul,tf = —1 for time action (related to

timelike triangles and continuous-series representations).
u;’;tf € SL(2,C) is a group element related to phase space

variables depending on Immiriz parameter v. B* satisfies
the following condition:

0=tr(B* - (B* —t;B7)) (4)
=tr((BY —t;B7)- (Bt —tyB7)), (5)

namely, BT differs by a null bivector orthogonal to them-
selves. As a result, B¥ may have different geometrical

interpretations and the cross-simplicity condition will be
in general broken.



(1) are complex holomorphic polynomial equations of
complex variables, where the number of equations equals
the number of variables. There always exists complex
solutions for generic spinfoam boundary data, e.g. even
when the boundary data do not satisfy the closure condi-
tion, in contrast to the existing results of critical points
in the real integration cycle. However, not all of these
complex solutions have geometrical interpretation as the
simplicial geometries, since they might not always satisfy

e Riemannian or split signature critical points
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8] =32 J5(-0) = ()5 (90 ~i(0F 4 0ym) mod (i)
f

the cross-simplicity condition for the bivectors.

We then identify the subset of complex critical points
that have clear geometrical interpretations as simplicial ge-
ometries, namely all their corresponding bivectors satisfy
cross-simplicity condition. These solutions we identified
satisfying aZiE = I5. There are three possible signatures
of the simplicial geometry arises from the complex critical
points: Riemannian, Lorentzian, and split signature. The
analytic continued spinfoam action evaluated at these
critical points gives:

1+tfwemr mod 27

+ ) i+ 5 5
f€boundary
) =2 J5(-0) % ()5 (20, - 8 pym) mod (rm.im) ) 7

+ Z Jr(i+7)

f€boundary

e Lorentzian critical points
1—ty 1-t8

SIXo) =3 Jp(-) = (izf
!
Ly

f€boundary

Jr(i+7)

SXol =) Jf(fi)l% (il_;f(i@f —i(®F + pyr)) mod (im, w))

f
4

where Oy (9}9 ) are deficit (dihedral) angles for internal

faces (boundary faces), <I>}3 are determined by the phase
convention of the boundary coherent state, which in prin-
ciple can be 0 for certain boundary data, and <I>]ﬂB =0 for
internal faces. wy € {0,1} are parameters distinguish the
difference of the time gauge or space gauge in EPRL-CH
model where wy = 1 when the gauge fixing are different at
edges on df and w = 0 otherwise. wa € {0,1} distinguish
the different geometries between the pair of tetrahedra
sharing f, where w? = 1 when the boundary tetrahedra
have different signature and w® = 0 otherwise. t% = +1
determines the signature of the reconstructed triangles

(iw@f —1(®F + pgm) — (i + W)?

1+tfwpmr mod 27

1+1tfwpm mod 27
2 2

A
wfﬂ'

mod (i, 77r)> )

Jr(i+7)

f€boundary

2 2

(10)

1+tfwsmr mod 27
2 2

(11)

(

on face f: spacelike triangle corresponds to t]% = 1 while

timelike triangle corresponds to tf‘ = —1. Both w and w®
are 0 for internal faces. The extra im and ym ambiguity
appearing in the critical action coming from the analytic
continuation of logarithm function which is multivalued.
Thus, the analytic continued action has to be defined
on the cover space, in which there are infinitely many
critical points associated with the same geometrical in-
terpretation. One can easily recognize that the critical
action for Riemannian sub-dominate contributions (6) is

nothing else, but the Wick rotated action of the Regge

1—ty

1—t
action up to (—i) = ir and (—i) 7= ym ambiguity for



both space and time action. Namely, their contributions
to the spinfoam amplitude are proportional to e~ SResse
with

Shegse =+ »_ AfOy (12)
f

where Ay := ~J; for both space and time action is the
area for triangle associated to f, and + associate to differ-
ent critical points. Oy is the deficit angle (dihedral angle)
when f is an internal (boundary) face. We have analyti-
cally continued the spin Jy — iJ¢ for the time action to
cancel the extra i appearing in (6). In the case when the
tetrahedra contain both timelike and spacelike triangles,
this analytical continuation of the spin is required by the
closure condition (1).

This paper is organized as follows: In Section II, we
give a brief introduction the spinfoam action for EPRL-
CH model to fix the notation and derive the analytic
continued action. In Section III, we derive and analyze
the analytic continued critical equations. The critical
equations are reformulated in geometrical form. Then
in Section IV, we reconstruct geometries from a subset
of complex critical points. Finally, in Section V, we
evaluate the analytic continued action at critical points
corresponding to simplicial geometries.

II. ANALYTIC CONTINUATION OF THE
SPINFOAM AMPLITUDE

A 4-dimensional triangulation K (and a dual graph)
contains 4-simplices v (dual to vertices), tetrahedra e
(dual to edges), triangles f (dual to faces), line segments,
and points, as illustrated in FIG. 1. The spinfoam ampli-
tude on K can be written in an integral representation

[6, 14, 17, 18, 28]

200 = Y [T ds, [1ax)e= e, as)
f

J

J; are half-integer spins relates to the quantum area of f.
Ld 7, labels the choice of the face amplitude: d;, = 2J5+
1 for EPRL model, while d;, = 2Jy —1,J; > 1 for CH
model with spacelike triangles in timelike tetrahedra and
dy; =1,Jy > /2 for CH model with timelike triangles
in timelike tetrahedra. (13) is a universal expression of
spinfoam models, while different spinfoam models have
different integration variables X and functions Fy[X]
independent of J;. For instance,

1 For the amplitude related to timelike triangles in timelike tetrahe-
dra in CH model, Jy € Z/2 is related to the Casimirs of SU(1,1)

. [4J?
principle series label s; by sy = —% +3 Tzf —1.

FIG. 1. A 4-simplex and the graph dual to it (dark lines):
vertex v refers to the 4-simplex, edges e label tetrahedra as the
boundary of the 4-simplex, faces f label triangles shared by
tetrahedra e and €’. The grey dashed line shows the boundary
spin-network graph of the 4-simplex, where each dashed line
corresponds to a triangle f and each node corresponds to a
tetrahedra e.

e Euclidean EPRL model [6, 12, 15]:

X = (g5, 6.) (14)

including (g.,9,.) € Spin(4) at each pair of 4-
simplex v and tetrahedron e C dv, and &5 € C? at
each pair of tetrahedron e and triangle f C de. Each
&cr is normalized by the Hermitian inner product
(]-) on C2. Fy[X] in the exponent is a function of
gi,{ef and independent of Jy:

Fr(X] =3 [(1 =) s |(g0) " grrl€ers) (15)
v, fCv
+(1L+ ) o] (97) 7 gt 60rp)]

e Lorentzian EPRL model - spacelike triangles f in
spacelike tetrahedra [6, 13, 14]

X = (gvevzvfagef) (]-6)

with g,. € SL(2,C), z,; € CP', and & € C?
normalized by the Hermitian inner product. We can
equivalently view &5 € SU(2) since £ corresponds
to the SU(2) group element which rotates §2f(1, 0)

to &.s. Defining Z,ep = gl 20, Fr[X] is given as
2 2

<§ef»Zvef> <Zve’f7£e’f>

<Zvefa Zvef> <Zve’f7 Zve’f>

<Zvefvz'uef> )
<Zve’fa Zve’f>

(17)

with SU(2) invariant inner product (-, -).

e Hnybida-Conrady extension - spacelike triangles f



in timelike tetrahedra [17, 28]

X = (gv67 Zufs geif) (18)

with now two different spinors {i € C? which cor-

responds to the SU(1,1) group element Ve Wthh
rotates £ = (1,0) and & = (0,1) to £ of = = v,
The face action reads

= > huerFli [X] (19)

v,e€0f

FE1X] = = (kuer = DI (£65. Zuep)) - (20)

— (ffve‘f + 1) In (Zl:<Zvefa€2‘:f>>
= (17 = Fep) 1 ({Zues Zues)

where now (-,-) is SU 1 1 invariant inner prod-
uct and mey = +1 : ef, ef> Kvef = £1 de-
fines the direction of snnphaal complex satisfying
Kyef = —Kuye' f = —Kyref. Moreover, the integration
is restricted to the domain mef(Zyef, Zyes) > 0.
All the other variables are the same as Lorentzian
EPRL model.

Hnybida-Conrady extension - timelike triangles f
in timelike tetrahedra [18, 19]

X = (gvevzvf:leif) (21)

with now again two different spinors leif € C? which

corresponds to the SU(1,1) group element which
rotates [7 = (1,1) and Iy = (1,—1) to l;tf. The face
action reads

Fix Z Koer Fors! [X] (22)

v,eCOf

where s,y = %1 is a parameter to distinguish differ-
J

ent actions. Note that in a different approach given
in [19], the action only contains s,y = + terms.
F’ ¢/ [X] is given by

vef
<lj:f7 ’Uef>
ZFi ln (<Zvefﬂ lj:f><l;tf’ Zvef>) ’ (23)

Fi

vef[X] ’Yln

(1 + 1) lIl< vef Zvef>

with SU(1,1) invariant inner product (-, ).

For both Euclidean and Lorentzian models, the theory
have the following gauge transformations

Zuf = Guiuf & Gve =7 (gv)_”gvea (24)
SL(2,C) Lorentzian

v € Spin(4) Euclidean
gef - Uegef & Gue — (UG)71T9067 (25)
v c SU(2)  spacelike boundary

SU(1,1) timelike boundary

The Lorentzian model has an extra gauge transformation
Gve = —Gue - (26)

A. Analytic Continuation

We complexify the integration variables X to complex
variables X, and analytic continue the integrand in (13)
to be the holomorphic function on the space of X.

We define the following complexification for integra-
tion variables in X: The group variables appear in X
are complexified as in SO(4,C) ~ SL(2,C)¢ ~ Spin(4)c,
SU(2) or SU(1,1) spinors fg}i,lj[f are complexified via
their corresponding group element v. s where now becomes
in SL(2, C), and CP; spinor 2, are complexified as in C2.
We look for new critical points of the spinfoam action
>t JrF in the space of complex variables.

The complixification is illustrated below:

: (gjeagv_e) — (g'j_e?gv_e) gef - gﬁf
Euclidean Spin(4) Spin(4)c SU(2) SL(2,C)
fef — fef
Lorentrian (Goesgb.) — (G, 95.) zvfl — év%c SU(2) SL(2,C) EPRL
SL(2,C) s0(4,C) CP c ef = Sef op spacelike faces
SU(1,1)  SL(2,C)
- Z;tf CH timelike faces
SU(l 1)  SL(2,C)

where we use * to mark the variables in the space of
complex variables. The details of the complexification is

(

given in Appendix A.
Below we give the analytic continuation of the face



action F[X] for specific spinfoam models

e Euclidean EPRL/FK model:

X= (o) X = (G06s) (@D

where the analytic continued action for each face
now is given by

Fr K] =30 [0 =1 (€550 Guwrbers)

v, fCv

(1 + 7) In (fef (gve) lgje’ge,f)} : (28)

e Lorentzian EPRL model:

X = (gveaglwZ'vazj,fyfef7£lf) —

X = (g'j_e?g;eaZ’Uf7§;)f7gefaéé_f) . (29)
We define
Zvef = gv_egvf Zzljef = Zi)fg'j_e ) (30)

— Spacelike triangles f: We can unify both the
EPRL and CH extension with spacelike trian-
gle f with the following F';[X] (space action)

Fi[X] = > FueslX, fues] (31)
v,eCOf

where
Foe[X, Kvef] = Foey [(1 + Kyes det(ne)) In <€/efneZvef)
(e det(n) = DI (Zie o) (32)
— (7 + Fvey det(ne)) In Zy e Zuoe f}
This formula of F,, ¢ unifies 2 cases: when
e is spacelike, n, = ]Ig,det(ne) > 0, £ is the

complexification of SU(2) spinor §; when e

is timelike, 7, = o3, det(n.) < 0, £ = £+ is
the complex1ﬁcat10n of SU(1,1) spinor £*. We
often adopt this convention in the following
discussion to unify the treatment of £ and £*.

— Timelike triangles f: F ];{S}[X | (time action) is
given by

= > ruerE X (33)

v,eCOf

where s,y = £1 and

(Z:;ef) "7l~3:f

+
‘F‘v(’f[X} = ’Yln llIﬁfnZ'uef

(34)

Filn (((lewf) niff)(i'ffnzvef))
~i0F D) (Zn i)

This defines a series of actions for given sets
of {Svef}-

The analytic continued theory now have the following
gauge transformations

Zof = Gy Zop & Gye = G0e(Gy )15 G, € SL(2,C), (35)
Zop = ZopG & G = (@) 7G4, @ € SL(2,C), (36)
Vef = Ueles &  Gye = Uel(dy )1 & G = U033,

ve € SL(2,C), U410 = e - (37)

There is still a discrete gauge transformation the analytic
continued spinfoam action satisfied:

g;e — _g;e & g:e - _g;)t: . (38)

III. SEMI-CLASSICAL ANALYSIS OF THE
AMPLITUDE

We may write the analytic continued action as

S=x (Y irFIx] (39)
f

where J;y = Ajy. The LQG area spectrum Ary =
SWWK%\/Jf(Jf + 1) suggests that A — oo should corre-
spond to the £p — 0 while fixing the area Ar;. Thus,
the semi-classical limit of the amplitude is given by the
asymptotic analysis of the path integral in the A — oo
limit. In addition to the real critical points which has been
studied in the literature, here we focus on the complex
critical points emergent from the analytic continuation of
the action. The complex saddles give subdominant contri-
butions to the amplitude when the boundary data allow
the amplitude to have real saddles. When the bound-
ary data forbids the amplitude to have any real saddle,
the contributions from the complex saddles may become
dominant to the amplitude. We will identify all possible
critical point of analytic continued spinfoam action .S on
the complexified domain of X. We will concentrate on the
analysis of Lorentzian model here, while a simple analysis
for Euclidean model is given in Appendix D.

A. Critical equations for Lorentzian Theory

The critical points (critical point) of the analytic con-
tinued action are given as the solutions to the equations
of motion:

0545 =0;-S=0;S=0:5=0. (40)



By variation of the corresponding action (31) and (33), we
have the following result concerning the critical equations
of Lorentzian spinfoam model.

Theorem II1.1. The equations of motion for complexi-
fied spinfoam action is given by the following set of poly-
nomial equations of X at each vertex v:

Parallel transport:

Z HvefX;;efnegu_e =0= Z ”fvef(gv_e)_lzvefa (41)

eCOf eCOf
Z Kvefgj;reneref =0= Z ”%efZ{;gf(gj;re)ily (42)
eCOf eCOf

Closure:

. 1T =
0=—(v—=1) > (=77 KefXoefOiZoer,  (43)
feCOf
. s & =
0=—-(y+1) Z (1) 7= KefZyeTiXoef - (44)
feCOf

Here ty = 1 for spacelike triangle f while ty = =1 for
timelike triangle. X', x is defined as the following: when
ty =1,

X/ :i’7+’fef det(ne) qu;ef
vef iy —1 z', P Ze s
. det(ne)ﬂef +1 ééf
i’Y -1 géfnezvef 7

Zyef
Z,ﬂefneZuef
det(ne)ker =1 Lof

iy+1 Z{,efneéef 7

_ 17+ ey det(ne)
B iy +1

Xvef

(46)

when ty = —1,

. i/i
X/ :lv_svef ef
A

_ 1- Svef 1 Z'Ll)ef
177 1 Z{)ef’f]Zvef7

. =

1’Y+Svef lef
iy +1 Zenl:
1)ef7] ef

Xvef =

Zvef
ZT/JefnZUEf

1- Svef
iv+1

Proof. The proof is given in Appendix B O

One can check the consistency with the critical equa-
tions from real action F':

Corollary III.1.1. When the variables assumed to be
real, the equations (41), (43) are complex conjugations

of (41), (43) respectively. By imposing real condition
Z x & or Z o« 1T, the above equations recover the EoMs
of EPRL-CH model.

Proof. When the variables assumed to be real, we have
gt =@ )W =9 2 =272 = Zand ¢ = &'+t =
(IF)T. Tt is then straight forward to check (41), (43)
are complex conjugations of (41), (43) respectively. By
imposing real condition Z o & for spacelike triangle f, one
see immediately x = (x/)! o ¢, which recovers the EoMs
of EPRL-CH model with spacelike triangles [13, 14, 17]. x
also recovers the EoMs of EPRL-CH model with timelike
triangles when the real condition Z o [T are imposed [18].
This will be further confirmed in section IV. O

We can define simple timelike bivectors Bt = X+ —
11, € sl(2,C)? from Y and Z as

X;ef = Zvef ® X;efnev X;ref = NeXvef @ Zz/;ef' (50)

It is easy to check by above definition we have
Tr(X* . X*) = Tr(X*) = 1, thus Bt are traceless:
Tr(B*) = 0. BT is simple and timelike since

|BE||? :== 2 Tr(B* - BY) (51)
=2Tr(X* X*F - X5 +D/4)=1. (52)

Notice that BT can be rewritten as B* = %Zf v for
some complex vector field v:

vl =K' +iJ' = Tr(Boy), i = 1,2,3 (53)

with Z? Vive; =2Tr(B - B) = 1 where o; are Pauli ma-
trices. Using v}, we can induce a map from spin-1 rep-
resentation of B € s[(2,C) to spin-1 representation of B,

where now B!/ € SO(1, 3) is given as

0 K' K* K®
-K* 0 J¥ —J?
-K* J* o0 J*
-K3 —J2 J' 0

B = (54)

where K = B%, Ji = ¢k B;.. Since each bivector corre-
spond to a surface in 4-dimensional spacetime, this gives
the geometric meaning to the critical equations.

Corollary II1.1.2. Using simple bivectors B¥ = X+ —
%]Ig giwen by (50), the critical equations given in Theorem
III.1 at each simpler v are equivalent to the following
bivector equations:

+ +
B =Bl (55)

2 We define the norm of spin-1/2 bivector as ||B||? := 2 Tr(B - B),
where ||B||? € R corresponds to a simple bivector with ||B||? > 0
the bivector is timelike, ||B||2 < 0 is spacelike and ||B||? = 0
is null. The definition generalize to spin-1 representations with
IIBI2 = Tx(B - B).



+
Z rkes( :Fl ngf—o (56)
feCOf

for both space action (31) with t; = 1 and time action
(88) with t; = —1. Simple bivectors Bg op are defined by

(gve) !

+ + /= —
Bgef = gveref(gve) Bvef

The extra i appearing in closure (56) coming from the
fact that in our definition, B is always a timelike bivector
for both space and time action. The closure condition (56)
then implies that with real spin j, after absorbing 4 into
the definition of B for time action t; = —1, the bivector
coming from time action must have different signatures
than space action.

As shown in Appendix B2, the bivectors B* defined
n (50) can be rewritten as

Bvef _vefavejBO ( vef) 1(6€f)_1> (58)
t ~ —
nPBU(ifnp - ,UefaU(ijB f( ’uef) 1(Uef) ! ? (59)

where a’* € SL(2,C) as functions of integration variables
X are defined by (B30) or (B41) for space and time action

respectively. The bivectors Bi[e 5 are related by

B, =trne(By.; — Mycg)ne, (60)

Here B/~ := Loy for space action and By~ ' := 1o
for time action. M are null bivectors defined in (B27
and (B40) satisfying tr(M - M) =tr(M - B) =0. M =
when we restrict the variables to the real domain.

By using the map ® : SL(2,C) — SO(1,3), we can
define

O\_/

) 1, EPRL
SO(1,3) eER, = (I)(lne) = { (I)(i0'3), CH ) (61)
such that
Bf.; =tR.(B,,; — Myes)(Re)™". (62)

We then absorb R, into G* € SO(1,3) as Gt =
D(GT)Re, GT = ®((g7) 1), such that the critical equa-
tions (55-56) can be rewritten as

By (v) := By; = Bf;;eif? (63)
Z Jker(Fi) Bi( )=0, (64)
feCOf

with BF (v) = ()5 G, (Bry + (-1) 7% My ) (GE) !
When all the M = 0, G* are two possible sets of solutions
of above equations.

In general, as a summary, for each vertex, the solution of
the critical equations (63) represents two sets of bivectors
subject to closure conditions at each tetrahedron e on

the complex manifold. Compare to the critical equation
obtained in the real domain, we do not have the condition

NZE, Viecor NE - B]jf(v) = 0, which equivalent to the
cross simplicity condition

V(£ ) e cof, f),

As a result, there is no simplicial geometric notion for the
data associated to each tetrahedron e of the triangulation.
The bivectors lie in a 4-dimensional Lorentzian manifold,
unless one impose by hand additionally cross simplicity
condition (65), similar to the bivectors found in [29].

GIJKLqué]fBg{e%/ =0. (65)

The parallel transport equations are invariant under
Hodge duality *. As a result, we have two possible geo-
metric interpretation of the bivectors By(v). They can
be generally interpreted as either timelike bivectors or
spacelike bivectors, related by Hodge duality. Unlike in
the real domain where By(v) at each tetrahedron are
always subject to cross simplicity condition thus have
common 4-normals which induce a nature choice of the
signature for bivectors associated to each triangle in the
tetrahedron, here both choice are possible. However, note
that from the closure condition, the bivectors associated
to each tetrahedron e must be defined simultaneously as
either Bycr or #B,.s for all triangles f in tetrahedron e.
Since By is always a timelike bivector in our notation,
the corresponding geometric explanation associated to
given tetrahedron e will be determined up to an overall
flip of the signature of the metric associated to these tri-
angles. For example, when actions at a given tetrahedron
e are all space actions, the corresponding geometrical
faces can be interpreted as all timelike or all spacelike. A
special situation is the case where both time and space
actions appear at a given edge e (which is the mixed case
mentioned in [18]). In this case, an extra i or Hodge
dual for time action in closure condition always appears,
thus we will have both timelike and spacelike bivectors
appears in the geometric explanation. As a consequence,
an explanation of those bivectors in a Euclidean space
is not possible unless we analytic continue the spin j for
time action to ij as well.

We also derive the critical equations for the internal
edges e on a triangulation with many simplices as shown
in Appendix B. The variational principle respect to vy
at shared tetrahedron e of neighboring simplices v and v’
introduces new equations (B9) or (B19-B20) restricts aZ:Ef
and ¥ in definition of the bivector B* given in (58-59).
As a result, one of the closure conditions in (55) becomes
the closure constraint for @

0= jshvesBes By (Ber) ] (66)
7

This is compatible with the fact that the closure con-
straints in EPRL-CH model are actually imposed strongly
[30, 31].



IV. GEOMETRICAL INTERPRETATION AND
RECONSTRUCTION

The critical equations (63) contain two sets of equa-
tions for bivectors Bf;}} and Bfe} in 4-dimensional
Lorentzian space.As a result, we can explain the bivectors
{BS;]C,BS;}} satisfying (63) as pairs of two geometries
in 4-dimensional Lorentzian space. The gauge transfor-
mations (35) of SO(1,3)¢ group elements becomes gauge
transformations on Bg’; separately. Thus, these two sets
of bivectors correspond to independent geometries given
by the same boundary Bfe 7 following independent gauge
transformations at each vertex v. We will summarize all
possible geometries appearing in 4-dimensional Lorentzian
space in this section, and build the link between bivec-
tor solutions BUG;# and these 4-dimensional Lorentzian
geometries. The 4-simplex geometry and degenerate vec-
tor geometry will appear as the subsets of all possible
geometries correspond to BUGj

Note the set of bivectors {Bf};e?} transform non-trivially
between neighboring v and v’, the reconstructed geome-
tries can not be glued together unless BS‘; = BSE,. The
discussion of this section focuses on the geometrical recon-
struction of a single 4-simplex, except for the paragraphs
of (75 - 77) where 4-simplex geometries are glued to form
a geometrical triangulation. The boundary geometries in
this section means the data of 5 boundary tetrahedra of
the 4-simplex.

A. Classification of geometries
1. Non-degenerate simplicial geometry

A non-degenerate geometrical 4-simplex up to global
scaling is specified by five 4-dimensional normals U; :=
ViN;, i =1,2,...,5 where any 4 of them are linearly inde-
pendent. Note that the analysis here holds for all signa-
tures of 4-dimensional spacetime M, not only Lorentzian.
The set of U; satisfy the 4-dimensional closure condition:

Y ViNi=> Ui =0. (67)

The geometrical 4-simplex is bounded by 3D planes or-
thogonal to the normals. The 3D boundary is also simpli-
cial, and made by tetrahedra orthogonal to the normals
N;. Each V; is the volume of corresponding boundary
tetrahedron. The boundary of these tetrahedra are trian-
gles specified by the bivector

Bf = Vix(U; NU;), (68)
where V} is the oriented volume of the 4-simplex given by

11
— == > eijudet[U;,U;, Uy, Ul (69)
Vi Bl

where the orientation of the 4-simplex is given by the
ordering of these 5 normals. One can check that the bivec-
tors satisfy the following equation from the 4-dimensional

closure
Vi Y B =0,
J,J#i

N;-B5 =0. (70)

This is the closure and linearized simplicity conditions
which imply the cross simplicity condition (65) that results
in the simplicial boundary geometry of the 4-simplex. The
3D normal of the triangles in the boundary tetrahedra
are given by

Nj — tl(Nl . NJ)Nl

fl;; = |BS : (71)
! Pty = ti(Ni - N;)?|
The co-frame of the 4-simplex is specified by
V.
E = 3;!1 €ijimn€ MU U U, (72)
l,m,n

where El is the vector related to each oriented edge
shared by tetrahedra [, m,n, as the discretization of the
co-tetrad e! of the manifold. The face bivectors now can
be rewritten as

1
B = 3iistmn (Eim A Ein) . (73)

The shape of the 4-simplex is determined by its 10 edge
lengths. This implies that, in order to form a 4-simplex,
the boundary tetrahedra must satisfy the length matching
condition (When gluing together boundary tetrahedra to
form the 4 -simplex, the lengths of the common triangle of
boundary tetrahedra need to the same. This condition can
also be described as shape matching condition). Moreover,
in order to form a 4-simplex, the oriented volume for the
boundary tetrahedra must have the same sign. As a result,
one has to choose a consistent orientation of the boundary
tetrahedra prior to construct the 4-simplex such that their
oriented volumes have the same sign.

When the simplicial geometry is composed by several 4
simplices, we can define the co-frame at each 4-simplex.
These co-frames of neighboring 4 simplices are related to
each other by an SO(M) group element Q;7 such that

Vi;éjQ[J(U/, U)Eij (’U) = Eij (’UI) s (74)
Q7 (v, v)Ne(v) = Ne(v') (75)

at the shared tetrahedron t. and the group element is
determined uniquely by the common edges at the shared
tetrahedron .. Notice that, in order to have a consistent
orientation on the entire simplicial manifold, for every
internal tetrahedron, its orientation seen from different
neighboring 4 simplices must be opposite. When the
sign of the oriented volume, sgn(V'), of neighboring 4
simplices are the same, the above 7 is the discrete spin
connection. For boundary tetrahedra, the above relation



between neighboring co-frames then restricted to bound-
ary symmetry groups SO(V) with V' a 3D subspace of
M.

Simplicial geometries are said to be gauge equivalent if
there exists group elements in special orthogonal group
G, € SO(M) at each vertex v such that the co-frames
Eij(v) and Ejj(v) are related by

VijEN‘ij (’U) = GUEZ‘J‘(U) . (76)

The above transformation of co-frames of simplices is the
gauge coordinate transformation which will not change
the geometry and orientations. Notice that, for given non-
degenerate length data satisfying the length matching
condition at each vertex, there are always a geometric
4-simplex up to rotations in the orthogonal group O(M).
As a result, there are two non-gauge equivalent geometries
related by a reflection:

Vi]‘Eij (’U) = ReaEij (’U), (77)

where R, is the reflection with respect to any normal-
ized vector e,. These two geometries then have opposite
oriented volume.

When parametrizing the simplicial geometry in terms of
edge lengths and angles, it is manifestly SO(M) invariant.
We will see later in the reconstruction that the simplicial
geometries appear as the corresponding solutions of the
critical point equations. The gauge transformation of
SO(1,3)¢ is a pair of two SO(1,3) transformations acing
on the Lorentzian simplicial geometry, and leaving the
geometry invariant.

2. Degenerate vector geometry

A degenerate vector geometry is again specified locally
by 10 faces. However, now these face bivectors B@ =
—Bﬁf with i,7 € (1,...,5) are all lying in the same 3-
dimensional subspace of the 4 dimensional Minkowski
space, namely,

BS =V5 7, V5 eR?, (78)

where 7! represents the generators of SU(2) if the 3-
dimensional subspace is Euclidean or SU(1, 1) if the sub-
space is Lorentzian. The bivector equations then become
vector equations, namely

V==V ¥ > Vi=0. (79)

J,J#

Thus, the geometry is given by 10 3D normals by the
Minkowski theorem. The extra simplicial condition for
the simplicial geometry are automatically satisfied:

Vi; N-Bj =0, (80)
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with N =(1,0,0,0) =: 9 or N = (0,0,0,1) =: e3 up to
O(1, 3) rotations. Notice that, for a simplicial geometry in
4-dimensional Euclidean space or split signature space M’
whose metric is given by gr; = n7; —2N2N Ny, since the
Hodge duality satisfies *2 = 1, we can always introduce a
map on the bivector BZ% by decomposing it into self dual
and anti-self dual part:

+ . A2 LBt RAY _ A A _ A+
OF AN (M) -V D (Bij) = (xBj; £Bj;) N=V; =,
(81)
such that
N -VE*E = (£(B5) N N7 + (+B5)1sN'N7) = 0.
(82)
The inverse map is given by

_L
2
A+ A — _ DA

+ (V5T + V5 AN)| = BS.

V5T -VS AN (83)

One can check that,

®_1(V£+?V£_) ’ ¢)_1(V£+7Vi?_)

= S|+ 5 (84)
«(@THVRTVET)) e (VR VE)
= [ - w5y (85)

When (1_}§+)2 = (1_);-?7)2 the bivector B;; is simple and
have the same norm specified by the vector up to a sig-
nature. As a result, the maps build the correspondence
between simplicial geometries in Riemannian or flipped
signature space and the vector geometries in their sub-
space. At given vertex, the flipped signature simplicial
geometry and the vector geometries under the maps ®
clearly have the same boundary geometries, since the
boundary bivector are given as B;; = *(ﬁﬁ‘ A N) which
satisfies

—

®T(Bij) = @~ (Bij) = Vij - (86)

Notice that, when the original simplicial geometries in
Euclidean space or split signature space are degenerate, we
have Bl% =B = *(]73 AN) up to gauge transformations,
such that

ot (BS) =2 (BS) = V5. (87)
When ﬁ£+ = 172-?_, the inverse map gives

DA YA A

i

Namely, non-degenerate 4-simplex geometries in flipped
space are always in one to one correspondence to two



non-gauge equivalent vector geometries.

The map also induces a map on transformations with
group elements G € SO(4) or G € SO(2,2),

+ —1\ _ (A +
P=(GBG™) = 2= (G)V; ™, PF(G) e O(V) (89)
since it keeps the norm unchanged. As a result, in this
case the geometric solution satisfies ®*(G) = &~ (G) if

and only if GN = £N up to gauge transformations.

3. Lorentzian SO(1,3) bivector geometry

Generally speaking, the SO(1, 3) geometry are specified
by 10 faces whose simple face bivectors B = —BjAZ-
with 4,7 € (1,...,5) in the 4-dimensional Minkowski space
satisfy the closure condition at each ¢:

Vi > B =0. (90)

JJF#i

Each ¢ here related to a SO(1,3) boundary geometry
composed by 4 faces with bivectors B;j;,j # 4. The
simplicial geometries (4-simplex or vector geometries) are
a subclass of this geometry where these boundary data
satisfying further cross simplicity constraint (65), or

aN;, st N; B =0. (91)

This condition actually implies the simplicity to the
boundary geometry. In the case when the boundary
satisfying closure condition but do not satisfy the cross
simplicity constraint, these boundary bivectors do not be-
long to the same lower dimensional subspace. We call this
geometry the SO(1,3) geometry with SO(1,3) boundary
data, which does not correspond to a simplicial geometry.

The non-simplicial geometry can be regarded as a com-
position of two orthogonal vector geometries in a corre-
sponding 3 dimensional Euclidean or Lorentzian subspace,
since we can always decompose the bivector as

B = (ViR +iV57) -7 (92)

with real 3D vectors ]_/'Z%R and f/;%z . These vectors satisfy

VAR —|VET12 = |BSP?, VAR VAT =0, (93)

where the fact that the face bivector BZ% is simple is
encoded in the last equation. The bivector equations then
become two vector equations for V& = PAR PAT

Vi=-Vi Vi)Y Vi=0. (94)
J.i#i

{9AR, VAL } can be regarded as the lie algebra element
of s0(1,3) for boost and rotation parts respectively.
We can introduce new bivectors BA® and B2 defined
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as
AR __ AR _ VAR = AT _ AL _ JZAL =
BAR = —BAR =VAR.7 BAT = _BAT=VAT .7
(95)

with tr(BAR . BAR) = 0. The bivector Bz% is then de-
composed as

A _ pAR AT
B = B;;" +*B;;", (96)
where both BA® and BAT satisfy closure condition

v, > BiR=> Bi'=o0. (97)

3,378 JJ 7

The decomposition (96) are invariant under SO(1, 3) trans-
formations for each 7. As a result, we can always explain
the SO(1, 3) bivector geometry as the composition of two
orthogonal vector geometries®, related by (96). The ge-
ometry is invariant under an overall SO(1,3) rotation
which rotates simultaneously two vector geometries. Due
to (96), the overall SO(1,3) rotation of a single vector
geometry is not allowed.

Notice that, 10 bivectors BZ% = —Bﬁ- are totally de-

termined if the B2 for the geometries of three boundary
tetrahedra are given. This can be seen from the fact that
three boundary tetrahedra determine 9 out of 10 bivec-
tors, and the only one left needs to satisfy two closure
conditions thus is determined uniquely. When the data of
three boundary tetrahedra out of five satisfy the closure
condition and length matching condition on the gluing
triangles, the only geometry it can form is a 4-simplex
(or degenerate vector geometry).

B. Geometric condition and solutions

By comparing the equations of motion (63) with the
geometric condition for classification of geometries in pre-
vious subsection, we see immediately the correspondence
between them. More specifically, the bivector solutions
B&* to the equations of motion correspond to the geo-
metrical bivectors B2 via

B® =rkB¢ (98)

where r = + is an overall sign at each vertex related to
the orientation and the oriented volume of the geometry
[13, 14, 17]. One then can reconstruct geometries from
BA. According to the classification, different geometries
are distinguished via their boundary geometries at each
vertex. One should keep in mind such boundary geometry

3 Here orthogonal means in the 3D subspace, the normals of bound-
ary tetrahedra of these two vector geometries are orthogonal to
each other



is not necessarily a simplicial geometry, unless specified,
there will be no simplicial meaning of geometry.

Since the equations of motion (63) contain two sets
of bivector equations, there will be two 4-dimensional
geometries reconstructed from B+ respectively at each
vertex. As we already argued in Section ITI, B¢+ may
correspond to different geometries. As a result, the two
4-dimensional geometries may be in different classes: they
can be possible pairs of combinations of non-degenerate
Lorentzian simplex, vector geometries and Lorentzian
non-simplicial geometry. The pair of geometries recon-
structed from (BY*, B“~) can be understood as the
geometry correspond to SO(4,C) group element which
are invariant under SO(4, C) transformations by pairs of
(97,97) € SO(4,C). The transformation of the geome-
try is consistent with the gauge transformations of the
analytic continued action given by (35). Moreover, as
we show in Section III, for given edge e the boundary
geometries given by Buie f and Bi o Ay be different. The
reconstructed geometries at neighboring vertices may be
in different classes.

There is a special case when the boundary geometry cor-
respond to BT are the same with B~ up to gauge transfor-
mations. Namely, we will have neB;refne = :I:gveB;efg;e1
for all triangles f at a given vertex v and tetrahedron e for
some gy € SL(2,C). In this case, the pairs of geometries
correspond to BE* are equivalent to each other up to
reflections and SO(1,3) gauge transformations. As we
derived in Section III and Appendix B, a simple situation
for this is afo = I5. This seems to be the only possible
case to have same boundary geometry for neighboring
internal vertices thus remove the v dependence of bound-
ary data, since the matrix transformation from 7. B, (7.

to B, ; which is (a)_, )(aZ:f)_l given in (58-59) depends

ve
non-trivially on v and f.

1. Non-simplicial SO(1,3) boundary

From (65), it is clear that the cross simplicity condition
is invariant under the action of group element G, on
boundary bivectors Bvie for given edge e. This relates
to the fact that geometrically the shape of the boundary
geometry is invariant under overall SO(1, 3) gauge trans-
formations. As a result, the appearance of non-simplicial
boundary is determined by Bffe - From definition (58-59),
for boundary edges, since ey = vey € SU(2) or SU(1,1)
are not complexified, the existence of non-simplicial ge-
ometry for the boundary edge clearly implies one must
have non-trivial solutions of a¥* at edge v. This is the
case, for example, when the boundary data does not sat-
isfy the closure condition. The existence of non-trivial
a?* #£ I, then opens the possibilities to have non-trivial
solutions as complex critical point which contribute to
the leading order critical action with Re(S) < 0 for the
analytic continued action S.

For the internal faces, due to the analytical continuation
of ¢ and ¢, it is not necessarily to have a¥* # I, for a
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non-simplicial boundary.

2. Simplicial boundary

When the boundary satisfies the cross simplicity con-
straints, the critical equations are exactly two copies of
the equations of motion derived in the original real EPRL-
CH model, whose solutions corresponding to 4-simplices
or degenerate vector geometries, as described in previous
section. We briefly summarize the result here. For the
detailed reconstruction of geometry from the solution, we
refer to ([12, 13, 17, 18, 32]).

Since the boundary geometries are simplicial, they cor-
respond to tetrahedra in a 3D subspace. As a result,
we can reconstruct lengths of all the tetrahedra at given
vertex v. Here we will only concentrate on the case when
boundary data satisfies the length matching condition
and non-degenerate. When it does not satisfy the length
matching condition or is degenerate, there will be no so-
lution or only one set of vector geometry solutions exist
for each copy of the geometric equations of motion.

According to the geometric interpretation and recon-
struction theorem of EPRL-CH model, we have the follow-
ing 2 possibilities at a given vertex determined by their
boundaries, which can be described by the signature of
length gram matrix contains all boundary lengths at each
vertex:

e Boundary corresponds to Lorentzian geometry.

For given solution of bivectors By (v) satisfying equa-
tion of motions, one can reconstruct uniquely up to
a sign s,. = =1 the normals N, (v) which satisfying
Bes(v) - Ne(v) = 0 at each tetrahedron e. These
normals are given by N, (v) = Getie, Gye € O(1,3),
and they are non-degenerate. The sign s, here re-
lated to the inversion gauge transformations g, —
—gve as shown in (38). Using these normals, one
can show that the bivectors can be rewritten as

Bi(e,ery(v) = A* (Ne A Nev) (99)

with A € R.

Compare with the normals and bivectors for geomet-
ric 4 simplices, we see their relation to geometrical
normals N2 (v) and bivectors Béc (v) of some sim-
plicial geometry are given as

(100)
(101)

No(v) = (-1 N2 (),
By(v) = rvaA(v) .

These solutions correspond to geometric Lorentzian
4-simplices, which are bounded by 3D planes or-
thogonal to the normals. Notice that, the existence
of 4-simplex geometry implies that the boundary
geometries at each vertex satisfies length (shape)
matching and orientation matching, otherwise the
critical equations have no solution.



From the fact that N.(v) = Gyeue, we have

Gve - Gfe-[sve (IRue)Sv ) (102)
which implies
ve:vC@e det GUAe =Tov, (103)

where r, = +1 is the Plebanski orientation of the
geometric simplices. Clearly at each vertex, if the
boundary satisfies the length matching condition
and orientation matching condition, there exists two
solutions for given boundary @y, which relates to
4 simplices up to the Plebanski orientation. We
denote these two solutions as G and G’, they are
related by the following relation

G, = Re, GyeRy, (104)
up to geometrical gauge transformations which cor-
responds to the reflection of geometries. In terms
of spin—% representation, one can show that these
two solutions are related by ¢’ = J~tgJ = g~ 1.
In the case when the two boundary geometries cor-
respond to B are the same (in the case @ = o/ =0
for space action and a + o = 0 for time action),
the two copies of equations of motion (63) coincide
with each other:

(105)
(106)

BS = Gy, Bes(Gi,) ' = Guer Bes G,

ve’?
0= jrsBS
f

with GE, = (6(g7.)) ", (6(g7) Re. As a result, G,
are the two possible solutions of the same sets of
geometric equations of motion up to a possible ro-
tation R.. As a result, we then have 4 possibilities
for G = (GT,G7) at each vertex: G = (GT,G7):
G = (GR.,(G)™"), G = (GR.,(G")™") and G =
(G'R., ()™ Y), G = (G'R.,(G")™1) for two gauge
inequivalent geometrical solutions G and G’ of (105).

Boundary corresponds to Riemannian or split sig-
nature geometry.

In these cases, the solutions {g} are in the subgroup
of SL(2,C), which is the stabilizer group for some
given normal u of the boundary geometry, namely
g € SU(2) for u=eg and g € SU(1,1) for u = es.

There are two non-gauge equivalent sets of vector
geometry solutions for given boundary bivectors
Byey, which we denote as (V¢ (v),V(v)). We have
0 =wu-Vi(v) = u-Vi(v) with u = eg or u =
ez correspondingly. (V¢(v), V}(v)) correspond to a
Riemannian or Split signature 4-simplex by the map

By(v) = @71 (Vf (v),Vy (v)). (107)

The reconstruction follows exactly the same proce-
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dure for the non-degenerate Lorentzian simplicial
case, with two sets of geometric simplicial solutions
G, G’ related to the vector geometry solutions by
the induced map:

G =2 (Gt (v),G}(v)),
G =0 (G} (v), Gy (v)).

(108)
(109)

In the case when the two boundary geometries given
by B¥ are the same, the two copies of equations of
motion coincide with each other. We have 4 possi-
bilities for G = (G, G™) again: G = (GR,, (G)™1),
G = (GR.,(G")™Y) and G = (G'R., (G)™1), G =
(G'R., (G")~1) with two non-gauge equivalent sets
of vector geometry solutions for boundary B¥.

Note that, these solutions will reduce to the usual
real solution of EPRL-CH model when we restrict § to
g = (3%,57) = (9,9"), and restrict © as the stabilizer
group compatible with 7. appears in the action. The
solution in such case can be seen from parallel transport
equations and their complex conjugation:

(110)
(111)

gveBefgqjel = gve’Be/fg;el/y
(90e) 1 (Bep) gl = (900) 1 (Berg) gl
. Aty Lty
With the fact i72 Bey € su(2) or 1733{ € su(l,1) up
to gauge transformations, we have (Bey)" = t 41 Begne.
Then

(gve)_lTReBef (Re)_lg:r;e = (gve’)_lTRe’Be’f(Re’)_lg:r;e'-

(112)
When there is only one solution, this directly implies
(gve) M R. = gue, thus g € SU(2) or SU(1,1), and the
solution corresponds to vector geometry. When there
are two solutions, in the non-degenerate case since we
have (gye) YR, # @gue, this means (gy.) ‘TR, is an-
other solution for the critical equations, which corre-
sponds to the solution with opposite Plebanski orienta-
tion from reconstruction. This is the parity transformed
solution in [16, 32| and is verified numerically in [33].
The above relation confirms the fact that there exists
two solutions for non-degenerate case, which are related
by ¢ = JlgJ = g~'. One can then identify solu-
tion G = (GR., (G")™1) and G = (G'R., (G)~!) as the
real critical point of EPRL-CH model, which leads to
ReS = 0.

V. EVALUATION OF THE AMPLITUDE

As we already construct the link between the geome-
tries in 4-dimensional space and the critical equations in
Section IV, we will study explicitly several critical config-
urations relate to simplicial geometries in this section, to
obtain the corresponding critical amplitude.

At critical configurations, we can decompose on critical



solutions Z°, 2’0 € X, as

Zer = Coes (€5 + wes JEY) (113)
Zlvef Q/Jef(flgf +O‘2}ef‘]£2f) ) (114)
for space action and
Zyer = Goes U7 + awesly), (115)
Z/vef = gvef (l/$0 + aq)efl/ ) (116)

for time action where (yef, C;e,f, Qyef, o/ve,f € C are some
complex numbers. Since for space action the parallel
transport equation implies either a,cy = 0 or o, F=
0 for internal edges, thus f(«, ') only involves « and
o' determined at the boundary. Moreover, as shown
in Appendix B2, a and o’ can be directly solved via
equations of motion, the task is then to determine ¢ and
¢’, which relate to loop holonomies along the face.

By inserting the decomposition of Z (113-115), the
function F given in (31) and (33) can be expressed as

space action: Ff[Xo = kKf Z [ e'vef (ZLvef
v:fCw
+l’y (96v6f+96 vef) +ff(a CY):|
(117)

time action: Ff[XO] =Ky Z [’Y(ge/vef —0rrper)
v:fCv

Fi(Oerves + Olrpeg) + [ (0,0)] (118)
with

/
Fr=Ya, o) == MHM
7 1 + ave,fa'/ue’f
(1+ Qo) 00

1+ ozve/fa;e/f)dct Ne

+In (119)

1—5,./

(avelf + a;e/f)
(Qes + alep) 5w

6?"[}6

've f
When summing over vertices, the term Inmesme ¢ in
internal faces will cancel with each other thus becomes a

pure boundary term. Here fc/pep and 6, 7 are defined

e’ve
as
m Cve 'f
ae’vef =In MefMer f + O ‘vef In — (120)
Cvef
Coer
é’vef =In ’U/E !
vef

For the value of 6 at general critical configurations, we
have the following theorem:

Theorem V.1. The 0 angle defined in (120) are given by
the following expression using the decomposition provided

= Inmesmes f+0cryes is a term related to the action.
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in (58-59)
Ocrves =log [Tr (m@/fmefﬂze_ft’ee'(C‘ze_/f)_l
s iwem
gve’(gve) 1X1)ef):| - ; )
9(/»3’11€f == tf lOg I:’I‘r ( vefR Uee'R ( Ue/f)_l

gvqu—;:f):|

(121)

(Ge)™ (122)

or equivalently

. e Nelae (a1 (20,105 Himws) By,
avefuee' (ave/f) Gyer (gve) = MerfMefe ! ! ok

(123)

- qa —15 720/1 B+

az:fReUee’(Re) ( ;}Y:f) 1(91—):’) lg;}: = e elvef “vef
(124)
where wy = W € {0,1} and takes 1 when

det nes # detne, otherwise w = 0.

The proof is given in Appendix C. Note that the
logmerymey term in 6,5 will cancel exactly the same
term appears in the definition of ), leading a critical
action that independent of m. As a result, we can safely
remove the logmes pmey terms in all the expressions for
simplicity. With this theorem, we relate the value of 6,6’
with critical configurations X. They can further be re-
lated to the reconstructed geometry thus have geometric
interpretations, as we will show later.

Above theorem can be generalized to faces containing
internal edges as well. We can define the following group
element for boundary faces (faces containing boundary
tetrahedra in a triangulation),

Gy (e1,e9) := (125)

— — \—1x— (~—\—1 — - —1
az1e1f H (aZe’f) gye’ (gve) (az/ef) (azoeof) )
vedf

G}(e1, ) := (126)

+ -1/~ + -
azlelf H (C‘Z:f) 1(9:; ) (gve)< Zef) (az(j_eof) ! ’
veEIf

For internal faces the definition is the same by identifying
e1, e as the same edge. The above theorem V.1 is still
valid for faces f containing internal edges by replacing
(g5 gt and g,/ (G,.) " with G? respectively. In such
case wy only contains contribution from boundary edges,
thus wy = 0 for internal faces.

As we discussed in Section III and Appendix B2, the
critical configurations with a = Iy with a = o/ = 0 for
space action and o = —co’ for time action satisfy the
cross simplicity constraint (65)*, thus their corresponding

4 Note that for time action o = —a/ may lead to a # Iz on boundary



critical geometries are simplicial. We will restrict our
study to such case. As a result, the boundary tetrahedra
(Xj;) of neighboring simplices are independent of vertex v.
Moreover, BT correspond to the same boundary geometry
in this case. In this case, we have X .5 := Re_lX;}Re =
Xops and the values of 6 then simplify to

inﬂ
2 )

Zﬁuf = log {Tr(me’fmef'uee/G;(el,G)Xef):| .
>0 = —tylog [Tr(ve RZ'GF (¢, e) R Xop )| (127)

with the general equations (125-126) become

G;(e/’e) = H g;e”(g;e)_l (128)
vEDf
(Re)1Gy (¢, e)* Re = Gy(e!, )+ (129)

= [[ Gr/Re) "Gk R .
7J€l9f

Again the definition for internal faces are given by identi-
fying €', e as the same edge.

A. Geometrical interpretations

From (127) and (128), we see that the 6 angles are
determined by §*, which clearly have a geometric meaning
by the reconstruction described in Section IV. Here we
will study such geometrical interpretations of 6, in the
case where corresponding critical geometries are simplicial.
The analysis given here holds for Lorentzian, Riemannian,
and split signature simplicial geometries.

By the reconstruction theorem, when the critical ge-
ometry corresponds to simplicial geometry, there are two
solutions available at each vertex which differs by a Ple-
banski orientation r = +1. Suppose at each vertex the
solutions are given by G and G’ respectively, and they
satisfy (104), one can show that the loop holonomies G
and G} along a face are related to each other by

Gie) =[] (@) "G
veIf
= H Ruc/ (Gve’)ilRea Rea Clve]%ue
veIf
=R, Gy(e)Ry,

G/f(6/7€) = H (G;e”)_lG;e
veIf

(130)

(131)

edges as shown in (C11). In such situation we can always make a
redefinition of 9.y and ¥/ ¢ to absorb d.; and d./y appear on the
boundary edge.
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sgn(u,/s)
" sgn(ue) 1
= I 2 H Rue// (Gve”) Rea Reu G’UERue
veDf

san(u, /)
sEniie)

=] = R, Gy(e e)R,, ,

for internal and boundary faces respectively. The equation
then implies
Gve( /f)_leG;el
= GueRu, (Goe) ! (Gf (€)(Gue) -t ) ! Ry, GfG;el (132)

NP AN,
INgANel |

20
=/

= Bn. ) Bypw) =

for internal face with N¥(v) = Gue(Gy)™' - ue =
Goe(Gf) " (Gye)™t - Ne(v) which is the parallel trans-
ported vector in the reference frame specified by Gy.. Oy
is the dihedral angle between N¥(v) and N, (v), which is
defined by O := cos ! (sgn(|Ne(v)| )N (v) - Ne(v)) when
the plane span by N (v) and N, (v) have signature (——)
or (++), and O := sgn(N,(v) - Ne(v)) cosh ™ (|NP (v) -
N.(v)|) when the plane span by N (v) and N,(v) have
signature (+—). For boundary faces, similar argument
holds where now we have

Gue(GY)TH (e, e)Gy(e,e)Gr

sgn(ug/)
— sgn(ue)
=17 By.wBNw) (133)
e
L sen(ugy) sgn(u,s) N:,/\Ne
_ 07555‘(“” e o5n(ue) FINE ANl ’
: P — —1\—1 _ —1
with Ne,(’U) = (Gvae) CUer = Gve(Gf) © U
NP AN,
ok N%,/\N . .
and O = e Mol O, is now the dihedral an-

gle between NP (¢’) and N.(e). The definition of Oy
is the same as internal faces with special cases when
sen(NF(e’)) # sgn(NP(e)), in which it is defined as
©; := sinh (NP (v) - N.(v)). Note that, for both in-
ternal and boundary faces, similar arguments hold for
N'P(v) := Ge(G') ™" - ue by rewriting above equations
using G’, for example,

o207 TNPANST — Goe(G) GGt
= Gue(G4(€) T Ry GG Goe Ry Gt

(134)

N'PAN
72@’ e e
FINTEANel |

= RN/p(v)eRNe(U) =e

and we have cos(@}) := N'P(v) - N.(v) where N'F(v)

are in the same plane span by N*(v) and N,. As a result,
@’f = —O/ which indicates the fact that G and G’ differ
by the Plebanski orientation.

Notice that, by reconstruction described in Section
IV, when the reconstructed geometry admits a consistent
orientation and the signature of the 4-volume sgn(V'(v))
of each reconstructed simplex at vertex v along a face is
a constant, we have the following equations hold for both



G and G’ for any co-frame vector E; in the dual triangle
orthogonal to N, and N¥(v) or NE (v):

GueG (v)G ol Ey(v) = (1) E(v),

Mf:Z,U'eeR-‘rv,u'ee{Oal}' (135)

For boundary faces, from G7(e/,e)Ej(e) = pE;(e'), we
have

1—m_, 1—m,

Re/(~i09) = (Terg) ' GF (¢, €)Tes(ion) = R.EY(e)
- 148 ”

— WE(E) = et B B (o) (136)

Recall BY™" = 1/203 or BY~ ' = 1/20, for space

action and time action respectively. We use the fact

that both E(e) := R;'(—ion) = (te) ' Ey(e) and
1—m,

EP(e) = R;l(—iag)Tf(ﬁe/f)_lEl(e') are in the plane

orthogonal to By or *By. As a result, we have

0. GY () Ey(v) (137)

— 1—m ,

= Ve Re(i09) T (—ion) T Re(ver ;)" GY (¢, €) Ey(v)

which implies

Goetee GT (e, €)GL E (v) = pRee Ey(v), (138)
B L+ B (v)
Repo =1 2 0T (139)

&8 are some real parameters totally determined by the
boundary data. Moreover, one notes that, when the
triangles span by E; are timelike, we have p = 0.

Since N¥(v) - E; = N¥(v) - Eyy = 0, we have

NP AN,

LA
NEANe 0 Bi(v)
INZ A N|

B (v)]

with the Plebanski orientation r of the reconstructed
simplicial geometry related to signed volume sgn(V'(v))
of the simplex when the simplicial complex admits a
consistent orientation as described before in Section IV.
For the cases the sgn(V(v)) is not a constant on the
reconstructed simplices, we can perform subdivisions of
the simplicial complex, such that in each sub-complex
sgn(V (v)) thus r is a constant.

r(*) (140)

As a result, the above analysis leads to the following
theorem:

Theorem V.2. In a consistently oriented simplicial com-
plex with signed volume sgn(V (v)) to be a constant, there
exists two sets of geometric solutions G and G’ which
corresponding to different Plebanski orientation r = £1
respectively. The following relations hold for G and G':
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for internal faces,

A A
“'F By LAty

oG Gl = o219 2 i)
(141)
YN A
Goni Gt = O T )
(142)
for boundary faces,
Gveﬁee’GfG;el (143)
_ 000 7L é;j—ﬁ”;;+<@?+ufw><*>m? Te5tT
Greleer GG (144)
Arefef(@lggﬁ ;%§37+<¢f+ﬂfw—w?nuooiijiTgﬁ%%,

where w? = 1 when sgn(uer) # sgn(u.) for boundary faces,
otherwise w?‘ =0.

On the other hand, from theorem V.1 and (128), we
have 6 and 6 given by functions of G* and bivectors B.
Combine the result we then can determine the value of 8
by relating the solutions of G* and geometrical solutions
G and G'. For example, when G~ = G, we have

ZRe(@vf) = r% ,

OF + 3, e+

Zlm(evf) = B

(145)

Note that here we define both ©f and <I>J1? to take their
principle values, s.t., cos~'(z) € [0,27), cosh™!(z) €
[0,00). The detailed correspondence for simplicial geome-
tries will be built explicitly later.

For special cases when the critical group elements are
in the stabilizer group of normal uy up to gauge transfor-
mations, namely we have vector geometry as the critical
geometry, (127) simplifies to

A A
1+t 1+tf B

_ 2 —i)7 2 0,0
Gver(e)(Gve) 1 _ o >, ()72 r) 2

1468
23 (—) =0,
=€

£(v)
By ()]

: (146)
Gvevee’ Gf((f/, e)(Gve)_l

144

()=

=€

148
f v
@Y, Oop+iwsm) ()2

By

(147)
H”’Af Vie#
_ e(—i) 2 (2%, e,uf+iwfw)‘;jﬁ

for internal and boundary faces respectively, where G

are in the stabilize group of uy. T are generators of
A

1+t
the stabilize group and (—i)Tf (23, 0y mod 27i) +



iwgm) € R is a real parameter which will be determined
later. ¢4 is the corresponding signature for the plane
orthogonal to both us,Vy, and we use the fact that By is
always a timelike plane in our notation. The equations
for ' follow similarly.

Notice that, when there are two gauge in-equivalent
vector-geometry solutions available, the solution actually
corresponds to 4-simplices with Riemannian or split sig-
nature. Suppose the two solution are given by {G} and
{G"} and correspond to normal vectors V* respectively,
by using the mapping

Br(v) = 7' (Vf (v), V5 (v)), (148)

and the induced map on group elements

G =& (Gs(v),Gs(v)), G = 2 1(G}(v),Gy(v))
(149)

with G € SO(4) for v = (1,0,0,0) and G € SO(2,2)
for u = (0,0,0,1). Following the same analysis as in
Lorentzian case, we then have

(v)

Gou GG = ST T (150)
Gou G}t = & T TG (151
for internal faces and
Gueleer G Ge = O T O e . (152)
Guciow GGt = & OF RN HEF MG (153
for boundary faces. Notice that since
O (By(v)) = £V5 (v), @ (xBy(v)) = Vi (v), (154)

above equations recover (146) for vector geometry solu-
tions {G} and {G'} with 2> 60,y =i"2z (+£O; + @? +
psm) —iwgm, where u = 0 when ¢4 = —1, since in such
case both the plane orthogonal to normals are timelike
in the split signature space. Oy is given as the angle
between NP(v) and N, (v) where

Ne(v) - g’ueuf 5 NS(U) = gveg;tuf7 (155)
which is the deficit angle along face f in Riemannian or
split signature space.
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B. Summary and Special Cases

Now we can relate the above result to different cases
to identify the value of # and S according to the cor-
responding critical simplicial geometry. As we show in
previous analysis, when the critical geometry corresponds
to non-degenerate simplicial geometry, for each set of the
equations of motion given by BT or B~ we have two
solutions at each vertex v. As a result, we have four sets
of geometrical solutions: two of them correspond to B+
while the other two correspond to B~. The solutions may
correspond to different geometries in general.

In the special case where the boundary given by B+
at each vertex v are the same and does not change at
given internal edge e for neighboring vertices v and v’
(with o = &/ = 0 for space action and o+ o’ = 0 for time
action), the pairs of 4-simplex geometries differ only up
to reflection and geometrical gauge transformations since
they share the same boundary geometry at each vertex.
We then only have two possible sets of geometric solutions
correspond to this boundary geometry, denoted as G, G’,
where the honolomy G and G'f are related to the spin
connection compatible with the co-frame specified by the
bivector By when sgn(V') is a constant along the face f.
¢ is then related to the deficit angle between different
frame. The solution for G* now correspond to the same
geometries up to orientation and gauge transformations.

As a result, from the reconstruction given in Section
IV, we have 4 possibilities for solutions of G = (G*,G™)
at each vertex: G = (GT,G7): G = (GR.,(G)™),
G = (GR.,(G")™') and G = (G'R.,(G)™Y), G =
(G'R.,(G")™1). In the following analysis we assume
sgn(V) is a constant on the reconstructed simplicial com-
plex. When it is not a constant, we can always make a
subdivision of the complex such that in each sub-complex
it is a constant. Note that, for the boundary faces we
have w? = w. However, for the boundary of subdivided
complexes which contains internal variables of the model,
wf # wy is possible.

The result of the following special cases can be checked
numerically as shown in [33].

1. 4-dimensional Lorentzian simplicial geometry

We assume the solutions correspond to Lorentzian 4
simplices at vertices v. In such case, G,G’ € SO(1,3).
The corresponding spin connection is given by (141-144)
with ©f € [0,7) mod 27 for timelike triangles of cor-
responding face f in the 4-simplices with t? = —1 and
©f € £[0,00) for spacelike triangles with t? = 1. <I>}3
is again the angle determined by the boundary. py =0
when t5& = —1.

In such case, comparing theorem V.1 and V.2 we have
the following result
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e G=(G'R.,G™)
1t
1 Latri
S Oy = o (O +i(®F + py +wi)) - — LT od i, (156)
2 2 2
117 .
>0, = i t§(©f —i(®7 + pyw)) mod i, (157)
1—t4 A
~ S Rl S . =B . Wy T .
F¢[Xo] = (—i) (1 2 <17@f —i(®F + pym) — (1+'y)2> mod (177777r)>
1+t d2
(i)l @ mod 27 (158)
2 2
e G =(GR.,(G)™)
A 1 .
Zevf_f S (07 +1(DF + puym)) — J;tf 1“;” mod i, (159)
, 1 B A :
ngf =51 ty (=05 —i(®F + pym —wym)) mod mi, (160)
1—t4 A
o oty [T . . xB . Wy T .
FrlXo) = (—1)= (1 P (—17®f—1(<1>f —|—,uf7r)+(1—fy)> mod (177,77r)>
(i+7)1+tf wym  mod 277; (161)
2 2
e G =(GR.,(G)™)
-t 14+triwem .
Zevf = - ( @f—|—1(<1>f + pym)) — 5 ! 2f mod i, (162)
1— tA
Zevf_f T2t (O —i(®F + pym))  mod i, (163)
1—t 1t
Fylol = (<% (175 (@ ~i@f +1m)  mod (im,m))
n (i+’y)1+tf wym  mod 277; (164)
2 2
o G=(G'R.,(G)™)
‘A l—l-tf inTr .
Zevf =—i"2 (O7+i (<I>f +uf7r+wf 7)) — 5 5 mod i, (165)
11—t
>0, = 5iTt,c(—ef —i(®F + pyr + wfm)) mod i, (166)
Foro (ot (1 . .
Fyfa] = (<) F (175 (-0 (8] + ) mod (im.1m))
n (i+7)1+tf wym  mod 27 . (167)

2

Here f mod (ym,in) := (f mod ir) mod vx. Note that
the vy and ir ambiguity coming from the fact that the
analytic continued action is defined on the cover space due
to the analytic continuation of the logarithm. As a result,
there are infinitely many critical points on the cover space
corresponding to the same geometrical interpretation.

2

The original mtegratlon path is contained in the case
1 and 2 with ¢; ftf,wf fwf and ¢'R, = g~ 't. One
can identify them with the non-degenerate solution shown
in [13, 14, 17, 18]. In such case ¢’ = 01, and Fy[X,] is
determined up to 2m. This removes the domain of covering
space from analytic continuation. Note that since j can



be half integers the total action is determined only up to
m. Some 7 ambiguities can be removed by fixing the lift
ambiguity according to [13, 17, 18].

By applying the above result to each vertex and sum-
ming over the result, we have now

E Gvf, t? =1
As a result, Oy = €7 mo a! )71' or Of = 6f

A
od (1+2tf )7r, thus we can replace @ ¢ in above equations

to €y for internal faces or 6 for boundary.

o G =(G'R.,G™Y)
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2. 4-dimensional Riemannian and split signature simplicial
geometry

Suppose the solutions correspond to a Riemannian or
split signature 4-simplex at vertex v, we have G,G’ €
SO(3) for Riemannian and G,G’ € SO(1,2) for split
signature. The solution G, G’ then subject to (141-144).
When t» = 1, the corresponding triangles associated to
face f in the 4 simplices is spacelike with O € £[0, )
mod 27 is a rotation angle associated to triangle By and
@? € (0,27) corresponds to a phase related to boundary
data, while t* = —1 the triangle is timelike with Oy €
[0, 00), @? € [0,00) and p = 0. For pure boundary faces
of the complex, we must have wf = wy = 0 to have
degenerate solutions. For the boundary of subdivided
complexes which are internal variables of the model, only

& =0 is needed. Note that w¢ =0 when t; = —1. By
comparing (146) and (150-153), we have the following
result:

1+t?
. ) .
Zvaz IT(@f—l—q)?—i—ufﬂ)——i_Twlwgﬂ mod i, (169)
1+tf
Z@Uf—itf(@f—q)?—ufﬂ')) mod 71'i7 (170)
Fy[Xo] = (=)= | (=1)77 (=70 —i(®F + pym)) mod (y,im) (171)
+(i+7)1+tfwfﬂ- mod 271;
2 2
o G=(GR.,(G")™)
ef Lt
2
S b= (-0 @F +pym) - LT mod i, (172)
- 2 2 2
147
2
S, =" —tp(—0; —®F —pym) mod i, (173)
S i =y .
Fy[Xo] = (=)= ((—1) = (Y9 —i(®F + pym)) mod (wmﬂ) (174)
+(i+7)1+tfwf7r mod 277;
2 2
e G=(GR.,(G)™)
e .
D bup = | —5— (O +2F +pym) - 1J;tf 1‘”5‘” mod ir, (175)
1+tf
> o, = tr(—05 — ®F — uym) mod i, (176)
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1—t 14
Fyla] = () # () (-0~ 0F — ym) mod (i) ()
+(i—|—7)1+tfwfﬂ- mod 27‘(';
2 2
o G=(G'R.,(G")™)
-
S 00 = | o (-0 + ®F 4 pym) — LT o i, (178)
2 2 2
1+tf
Zevf = 72?]«(@]« - @}3 — pym) mod i, (179)
1—t 1t
Fy[Xo] = (=)= ((—i)zfu@f —@F — ppm) mod (yr, m) (180)

1+tfwemr mod 27

+i+7)—

The original integration path is contained in the case 3
and 4 with ¢y = t? and wy = 0. In case of Riemannian sig-
nature where R, = I this implies g* = (¢7)~! while for
split signature R, = io3 where we have g™ = (¢7)7. One
can identify them with the degenerate solution of EPRL-
CH model shown in [13, 14, 17, 18|. In such case ' = 1
thus the F r [f(o] is determined up to 27, which removes
the domain of covering space from analytic continuation
and determines the action up to 7 for half integers spin
Jy. Again some m ambiguities can be removed by fixing
the lift ambiguity according to [13, 17, 18].

By applying the above result to each vertex and sum-
ming over the result, due to the cancellation of internal
®; at each vertex, one immediately notice that we have

>, Ot tp=—1
@f_Z@Uf_{ (W_ovf)a t?:l )

(181)

thus © is related to the deficit angle ¢; or boundary
A

deficit angle 6y by ©f = ¢ mod (1+2tf)

A

mod %

Wor@fzef

7 . As a result, we can replace O in above
equations to ey for internal faces or 7 for boundary.

Notice that when t? = 1, namely the geometry are
Riemannian 4-simplex, the contributions of (171) to the
spinfoam amplitude are proportional to e~ “Resse with the
Regge action

Shegge = = Y AsOy, (182)
f
where Ay := vJy is the area for triangle associated to

f. We have analytically continued the spin Jy — ¢Jy
for the time action to cancel the extra i appearing in
(171). As we indicated in Section II, in the case when
both time and space action appears at a given edge, this
analytical continuation of the spin is required by the

2

(

closure condition given in (63).

VI. DISCUSSIONS AND OUTLOOK

In this work we study the analytic continuation of the
Lorentzian EPRL spinfoam model and the CH extension
on 4-dimensional simplicial manifold. We then derive the
complexified critical equations and find all complex critical
points. We also obtain the geometrical correspondence
of the complex critical points. Our result is important
for understanding the subdominant contributions to the
large-j spinfoam amplitude when the real critical point
is present, and dominant contributions to the amplitude
when the real critical point is absent. Our result may also
be helpful for studying spinfoam amplitude when j is not
very large.

There are a few future perspectives from this work:
Firstly, we do not take into account the analytic continu-
ation of the Barbero-Immrizi parameter . The complex
critical points with simplicial-geometry interpretations
satisfy critical equations that are independent of . Thus,
the effect of possible complex v may be seen from the
critical action with complexified v and may relate to the
Stokes phenomenon.

Secondly, the result of the special critical points cor-
responding to simplicial geometries can be checked nu-
merically [33]. Concerning the generic critical points,
since the critical equations obtained in our work form a
polynomial system, finding all possible complex solutions
of the system numerically using the rational univariate
representation [34] or homotopy continuation method [35]
maybe possible.

Lastly, our work propose a realization of Wick rotation
in the spinfoam LQG: By the analytic continuation of
the Lorentzian model, we identify the complex critical
points correspond to Riemannian simplicial geometries,



whose contributions to the amplitude behave as e ~5Resse

similar to the situation in the Euclidean path integral.

This provides a possible relation from the spinfoam model
to the Euclidean quantum gravity. This relation should
be important for applying spinfoams to studies such as
the black hole entropy computation and the entanglement

21

entropy computation.
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Appendix A: Complexification of variables

In this appendix we give explicitly the details of complexifying X:

e Group elements g € SL(2,C) or g € Spin(4)

Since SO(4,C) ~ SL(2,C)¢ =~ Spin(4)c, we can write gy = (37, 7,.) € SO(4,C), where g, € SL(2,C). For
FEuclidean model, the complexification is simply defined as

(9der Gve) = (e Tue) - (A1)
For Lorentzian model, we define the complexification as
(gveagle) - (.é:rea g;e) : (A2)

Given any 2 x 2 matrix z, the complexification of g,.zg], is

gvexgqte - gjexgv_e (A?’)

for Lorentzian model while for Euclidean model this simply implies gzl = gt x(gt)~! — gL a(g;5) "

e Normalized spinors &,1 € C?

According to the definition,

& =&y, v e SU(2),

A4
¢ =&k, 1F =lE, v e SU(1, 1), (A44)

where &, £F are reference spinors &, &5 = (1,0)%, & = (0,1)*, I = (1,£1)". The complexifications of £, £+ are

equivalent to the complexifications of SU(2) and SU(1, 1) group variables v:
v,of = 9,9 € SL(2,C), v € SU(2) or SU(1,1). (A5)
Here 0,7 are related to each other. Indeed, ¥,?’ can be expressed by complexifying the parametrization of group

elements, where we consider the complex conjugation of a complex parameter a as an independent variable, e.g.
a — a,a — a where a, a are independent complex parameters, see below:

v 1 ( a Fb ) L os— < a Fb )
Vaa % bb b a \/aaj:b boa )’ (A6)
Tamle) C (Bl
v = — b — b
aa£bp \ TV @ Vaarbh \Fb a
where a,b,a,b € C, the minus sign in the square-root corresponds to v, vi € SU(1,1). Note that
' = vt =, n = DiagonalMatrix[1, +1] (A7)

where detp = 1 corresponds to SU(2) and det n = —1 corresponds to SU(1,1). The exact form of spinors can be
read from (A4), for example, £ and &' = £§9’ are given by

EWG) ~ 5\/6“37”(,(2) (A8)
d=— 1 _@p - 5’2*(&’5)'

Vaa + bb Vaa + bb
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This also define the complexification of J¢, (J¢)T as

B 1 b = 1 —b
JE_\/da—i—l_Jb(a ) - i \/da+5b<a )7 (A9)
(&) = (-ba) - JE=— (ba),

v aa + bb \/ELCH—Bb

&+, €+ and I*,1* are defined similarly. Note that £ and jé are linearly independent since there does not exist

SL(2,C) group element v such that 9y = avJ&y. Thus € and J¢ form a basis for 2 dimensional spinor space.

The same argument hold for pairs of £ and J~§/, pairs of [+ and pairs of [*'.

In the following, many formulae can unify the treatments of SU(2) § and SU(1,1) ¢*. In these formulae, we
often skip the upper index + of £+.

e CP! spinors z

Since z € CP', we can use Gelfand’s choice of the section

z=<f),a:e<c. (A10)

Under complexification we have
z—>z—<f), (Al1)

with £ € C independent of .

Appendix B: Detailed analysis of critical equations

First, from the definition of Z and Z’ given in (30), we have the following constraints

(Goe) ™ Zver = (o)™ Zoery (B1)
Lef (gje)il = ;ze’f(gz_e’)il (Bz)
These constraints hold for both spacelike and timelike faces. Then we will calculate the critical equation for spacelike

action (31) and timelike action (33) respectively:

1. Critical equations
a. Space action

With parametrization (A11) of Z, the variation of spinor variables Z can be decomposed as the variation respect
to = and Z under our parametrization of z given in (A10-A11). From the analytic continued face action F (31), the
variation respects to z,f and Z,¢ leads to

the following sets of equations

0=—(1y=1) Y FvefXoesNedue » 0=—(v+1) Y FverdielieXves (B3)

eCOf eCOf

with
X/ _17 + Kef det(n.) Z'Lef det(ne)’ief +1 éf (B4)
vef — . > 2 - . = 2 )
1y = 1 Z:}evaef 1y = 1 féfnezvef

i + ke det(ne Zve det(ne)ker — 1 Ee

Xvef = f (Me) _ f~ . (1e) f f (B5)

17 +1 Z:;gfneZvef lry +1 Z'll,efnegef ’
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where ko = 1 flips its sign for changing e to ¢’ with given face f.

For the variation respect to §* € SL(2,C), we introduce the small perturbation of §g* as §& = §Te®? with
infinitesimal € € C. The variation to §* then becomes the derivation respect to € evaluated at e = 0, which leads to

0=—(y=1) > FefXpes0iZues 0=—(v+1) > FefZiesiXves (B6)
feCOf feCof

where we use the fact that n.(o)" = +0;.
We also derive the variation respect to bulk 5 and f’ . According to the parametrization (A8), the equations of
motion are given by variations respect to a, b, a, b, which imply

) 7.,
0= kues [ — ool + (Fyes det(ne) — Dﬁ} , (B7)
vCoe vef'leSef
. Z
0= Z Kvef [ — Koef&ef + (K‘vef det(ne) + 1)7#} . (BS)
vCOe gefneZvef
The solution are given by
Zvef(+) Xc gefa Zéef(i) Xc é;f ) (Bg)

where (£) correspond to kyey = £ det7e.
The set of equations (B3 - B9) are equations of motion for general analytic continued space action.

b. Time action

Similar to the space action case, the variation of spinor variables Z can be decomposed as the variation respect to =
and Z. From the analytic continued face action F' (31), the variation respects to z,; and Z, leads to the following
equations

0=i(iy = 1) D Kues Xoef Mefve,  0=—i(iy+1) Y Kues GaeleXon? » (B10)
eCof feCOf
with
. 714 5
rsvey _ VT Svef l/%‘ _ 1T Seer Z’ljef (B11)
vef iy—1 l/;tfnZvef iy—1 Z{,efnZvef
. 7+ 5
Svef _ 1’Y+ Svef _ lef~ 1-— S'Uef In — Zve]: (B12)
vef iy+1 Zuefnlff iy +1 Z{,efnZvef
where again k.y = £1 flips its sign for changing e to e’ with given face f.
The variation respect to §= € SL(2,C) leads to
0=i(ly =1) Y KesXoesnoiZuves 0=—i(iy+1) > HefZiesOiXves - (B13)
f:eCOf f:eCOf
The variation respect to bulk I* and I'* leads to
I ”U€ NS’UIG
0= 5{a1b7&75}F;eff — Fv,eff , (B14)

with

- +ia i [ Z5,méo —~TFi [ JenZ

+ YT+ vef YT 0N 4wef

et = e T vE \z i ) T v TRz, ) (B1%)
aa — bb vefllef efN4vef
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g . ~/ .

- Fib yFi UefWJ§0 -y Fi §onZvef

W Fyer = Y + ( s + /2 Z (B16)
aa — bb Uef77 ef77 vef
. +ia 7 Fi Uefano -y Fi EOT]wa

6 FE, = += =+ (B17)
! v aa — b f ( Z;ef’f]leif \/§ l/i 77Zvef
_ $ib L Fi Z,, méo —y Fi [ JeonZyey

5 F* +2 )+ (B18)
blvef = V2 ( Z! i V2 \UEnZyey

One can show that, after inserting the decomposition of Z, Z’ s.t. Z' = l’qE + ozvefl’i and Zyep = Z ;t aveflef, the
above equation give the following solution:

Svef = Svref © (14 Sver¥)(Quref — Quep) = (1= Svef V) (Qrep — Qhes) s (B19)
Svef = —Sv’ef * (1 + SUEf’Y)avef - (1 - Svef’y) Qe s (1 + S'u’effy)av’ef = (1 - S’U’effy)ai)’ef . (B20)

The set of equations (B10 - B20) are equations of motion for general analytic continued time actions.

2. Analysis of bivectors in Critical equations

a. Space action

~ —~ ~ —~
Since pairs of &€ and J¢ as well as pairs of £ and J¢ can be regarded as a basis for spinor space, we can make the
following decomposition of Z and Z’:

- ~ —~ ~ ~ —
Zvef XC Jvef = Eef +avef‘]§efa Z:;ef Xc 5'Iuef = féf +a;ef‘]€efa (BQI)

—~/ ~
where « is defined as aef := JE, fneZve ¢- With the decomposition, the bivectors correspond to space action then can
be rewritten as

) . — )
B :mefgef(g)f;fne*§H+mefaveft]§ef®§(laf77€+Evef7 (B22)
+ 7 & 1 rg 7é +

T]EB Ne :meffef@)fefnef §H+m€fav8f£€f®J§€fne+Evef’ (B23)

where E* are given as

B — Qe p (v —idet nekiey)
vel (14 4)(1 4 det Neef e p

) (detneavef<2mefgef ®€~éfne — I, + avefmefjgef & gflgfne)

~ —~/
—Mesler @ JE, fne) (B24)
—Olye ('7 —idet nel‘ief) / e ] ’ e T
ET ., = _ I (det e Qo (2Me e f @ ELpNe — Lo 4+ o tMefer @ JE 4Me
e = )L+ ot g alp) | o1 (Bmesbes © Eopte = o+ 0lymestes © JEpne)
_mefjfef ®£éfn6)7 (B25)

satisfying tr(E* - E¥) = 0,tr(X* - EF) = 0. m.y := féfnefef is —1 when fef is E;f, otherwise mey = 1. We check
that B are related to each other by the following mapping
Ref — —Ref, Y - =7, Qyef e a{uefa Jéef ®ééfne s neéef ® Jgéf (B26)

which relate to the fact that BT here are related by complex conjugation in the original real domain. Moreover, we
can define M := X~ —n.X*n. = B~ — n.B" 1, where

1
(L+92)(1 + det neaeyal,, ;

Myes = ) (Qi(det NeY — iKuef ) Qve f Qe s (2mef£ef ® ééfne - L) (B27)
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+ e paruef(Ome s @ s (14 17)(det e + Foer) +i(y +1)(det nerves — 1)JE0; ® € sme)
o 1M O (e Ol (17 = D(Aet e = ueg) = i(y = D(det erives +1))éer @ Tupn ) -
One can check that
tr(M - M) = tr(B* - M) = 0. (B28)

This relation then implies B~ and n,B7, differs by a null bivector M orthogonal to them. M is trivial only when
both « and o' are zero. As a result, when B, . at given edge e satisfies the cross simplicity (65), in general B ;
associated to the same edge will not satisfy it, The cross simplicity conditions imposing non-trivial constraints to M

thus to a, o'.

Since ije s are bivectors satisfying tr(B* - B%) = 1, we can always define a SL(2,C) group element ufe s depending
on «, o’ such that

- ~ - 03 —\—=1/~ \— - + 03 Fy—1/~ \—
Bvef:vefaZef?(aZef) 1(U€f) 1’ neB:efnezvefaZef?(aZef) 1<v6’f) 17 (B29)

where afef € SL(2,C) can be defined as

1 _iavef((1+detnenwf)avefa;ef—i-(l—i'y) det n.)
= (y+1i)(owesor,, ; det me+1)
Qpef = o), (y—idet neryer) Yti(averal, ;(det etroer)+1) ) (B30)
YFi(Quesal,, ;(det netroes)+1) (r+i)(avesal, ; detne+1)
1 Qvef(ikives —det ney)
T+ (=) (averal,, ; detne+1)
Qoef = o Y=i(@yepan,,;(det ne—kyer)+1) ) (B31)
vef (=) (vesal, ; detne+1)

where afef =1 when aa =o' =0.

The bivectors satisfy the closure condition from which {cef, wes } can be solved up to re-scaling. Notice that
(iy = D)Xy p — (v + Dne X, pme (B32)
~ ~ — ~ ~ —~/
= - 2€ef 0 géfne - (’iEf det(ne) + 1)(avef‘]§ef @ féan) + (“ef det(776) - 1)(a;ef§ef b2 Jgef”E) .

The closure for B* then can be rewritten as the following conditions

0=" dres(iy = DBy — (Y + 1)ne Bl pte = =Y dphiver (26es @ ELpne — D+ (B33)
7

f
— ~ ~ —~/
ijﬁvef (_(KEJ‘ det(ne) + 1)(avefJ§ef ® f{ef%) + (Kes det(ne) — 1)(O‘;ef§ef ® Jgef”&)) )
f
0= ijlivef (B;ef - neB;f776> = ij"@vevaef . (B34)
f f

Notice that the second equation are closure condition for null bivectors My.ey.

At given edge e, since there are only 6 closure conditions, only 3 pairs of {c, @’} out of 4 will be fixed. This generates
a series of continuous connected solutions [a]., correspond to a continuous deformation of the corresponding bivectors.
However, in general not all these solutions [a]. solves the parallel transport equation. Actually a, o’ here subject to
extra conditions (B1) can be viewed as a coordinate change which removes spinor variables Z,¢, 2y ¢- Thus, we have
the same number of variables and polynomial critical equations, which in general admits isolated solutions unless the
system is degenerate. If one carefully counts the d.o.f with parametrization using o, o’ and the number of critical
equations at each vertex, they are equal: we have in total 2 x (20 4 4 x 3) = 64 complex variables for a, o/, g%, and
the critical equations contains 2 x 10 x (3 — 1) = 40 complex bivector equations plus 2 x 4 x 3 = 24 complex closure
conditions.

For the internal edges, from the parallel transport equation between vertices, we have a,.y = 0 or o, =0 for



Kyef = & detn, respectively. As a result, EJ =0 respectively and M,.; becomes

mef
(1+9?)
~ —~
@ (=i(y = D)(det neriver + 1)ées @ JEsme) -

Myes = (atves (7 + ) (et netives — 1)TEcs © € pne)

As a result, the closure condition given by (B33) becomes

0= ij”vef(Qgef X g:gfne - H) y
f
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(B35)

which is independent of a, o’ thus constrains internal © to satisfy the closure condition. This is compatible with the
argument that the closure constrain in spinfoam models is imposed strongly [30, 31]. The left undetermined «, o’
are constrained by (B34). Notice that, since k.5 have opposite sign between the two vertices v and v’ associated to
the edge e, we have Bycs # Byes unless a = o' = 0. However, one should note that the existence of the o« = o/ =0

solution will be determined finally by solving simultaneously parallel transport equations.

b. Time action

For the time actlon a similar analysis can be carried out while now we can expand the bivector using the decomposition

7' ¢ l’jF + avefl op and Zvef o IF F+ aveflef, which gives

Xv_ef = (Zj:f + av@fiétf) ® Zlétf’r]e + Ev_ef ) X@Tef neii (l,:F + Oévefl/i ) + Evef )
where now
- 1 (1- Svef)avef 74
E-. = [ Y
vef avef+a{()ef 17_1 ® efne
(1 — svey)
_ 177—1( 2aveflef QI* cflle + Querla +l ®l efne)] ,
+ _ 1 {(Svef - 1)aijef li ®l/
vef Qyef +ai)ef iy +1
A= 5ver) g0y 5 @UT + dyopla + el T ©1'F)
1,_)/_’_1 vefne ef vef+2 Te ef ef/ |

satisfying
+ +
Te(BE,) = Tr(EL,EL,) = 0.

Namely, E* is always a null bivector. Notice that we have

- 1 1’}/ - Svef 1’7 svef
M:= B~ +nBty= ( e l R 1 Zpme
K 1 Qyef ai}ef iry -1 17 1 UEf ef efn

(1 = svey)
i1 (W D UT e — (V(wer + Qpeg) + Qver — ey) (21T @ T 5me — 1 ))] :

(B36)

(B37)

(B38)

(B39)

by the fact that l P ® l’efn6 —|—l~ l,eﬂ?e = I. One can check that similar to the case of the space action, we have

tr(M - M) =tr(B*- M) = 0.

When s =1 and a + o’ = 0, M is trivial.

(B40)
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We can define again afef € SL(2,C) :

- 1+ awey) fa (¢ 1 0
avef = \/( f)f ( ) ( Xvef —|— (Svef_l) —1 _ (Svef_l) ) 9 (B41)

1-iy Qoer F1 T f(aal) Gwer L fo (o)
ot A dpfd (o) (] 0 (B42)
U€f - 1 +1’Y ?vﬁf + (Sver—1) —1 + (sver—1) )
O G DA R P CRD)
with
fa (,d) =1—apep +iy(owes + ep) = (Qwer +1)s (B43)
fa(aya) = aves +iv(ower + lep) + (alep — 1)s+1 (B44)
such that the bivectors B can be rewritten as
Bv_ef Uefavef 9 ( Z;f)il(ﬁef)il ’ neB'j_efne vefavef 2 ( Z:f)il(ﬁef)il ’ (B45)

Note that when o = o/ = 0 we have afef =1

As a result, all the argument for space action then follows similarly here, namely a, o’ can be solved from the closure
condition combining with the parallel transport equation. For example, from the fact that

(iy—=1DE™ + iy +1DnEtn = (1 - syey) ((avef Uef)li l’efr]e + 2l~ l/eﬂ?e — ]Ig) , (B46)
one of the closure condition can be rewritten as

> drtiver (i = DX+ iy + DnX )
f
:ij,‘ﬁ:wf ( QSvEfZef @'t elle T 12+ (iy(aves + Qo) = Svep(Ques — Oc;ef))[i l’efne) . (B47)

Another closure condition is then given by null closure condition:

0= Z.jfﬂvevaef- (B48)
f

Note that, when s,.r = 1, we have Evie ;= 0, the closure conditions become
1t 1
O—ijmef ef+o¢veflef) lefne— 2H , (B49)
. - ~ 1
0= ijﬁvef <(le:Ff - a;efl:: ) llefne - 2H2> 5 (B50)
f

which are the same set of equations for a and —a’ respectively. As a result, in the case when boundary variables at
edge e satisfy the closure: 0=} jirrvef ((lef QIE oflle — %Hg), a and —a' differ by only an overall scaling at edge e.

For the internal edges, due to (B19) and (B20), one can check that for all possible s, we have ((iy — 1)X,_; + (iy +
)nXUefn) ((y = 1)X, p+ v+ 1)77X:€f77) Thus comparing (B47) at v and v’ leads to an equation independent of

a, o/ which now reads 0 = Zf JfKvef ((l l’efne — %H2)7 thus imposing the closure condition to ¥.f. For the case

Svef = Suef, (B4T) becomes 0 = Zf Jfkver{y(aper +a;ef) — Svef(Quef — cu;ef))li ®l’efne) while this is automatically
satisfied for the case Syes # Sves. The left undetermined «, o are then given by (B48). As a result, this again implies
Xvef # Xvep in general since Myep # Myer. The possible situation to have Myep = Myrey is When M is trivial for
both v and v’, otherwise it will parallel transport non-trivially between v and v’. A simple situation for this is given
by s =1 for both v and a + o’ = 0.
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For the action composed by both time and space action, the closure condition reads

> dpker(I=iv)By+i Y Gpkeer(iv = 1)By; =0, (B51)
fispacelike fitimelike
Z JfRvef(—iy — 1)Bvef i Z Jftver iy + 1)Bvef 0, (B52)
fispacelike fitimelike
which implies
> dpkwerBry =1 D> drkwerBry = Y. dpkeerBly i > dpkuesBl; =0. (B53)
fispacelike f:timelike f:spacelike fitimelike

The compatibility between timelike and spacelike action then requires

0= Z JfKvef (B nBvefn) —1i Z Jfbvef (B;ef + 773;1‘-77) (B54)
f:timelike f:timelike
= Z jfﬁvefM'uef —1 Z jf"ivevaef ) (B55)
f:spacelike f:timelike

which is again a closure condition of null bivectors.

Appendix C: Proof of Theorem V.1

Here we give the proof of Theorem V.1 which determines the value of 6 at critical configurations.

Proof. From the parallel transport equation for space and time action, we have

,1 Cvef ~— Cve/

X;Zfﬁeéie@v_e/) Xoer e gv_e/ (gvie)ilgvef = Zve fo (Cl)
Cue 'f vef
1 't ~1
Soep(Tue) T 0de = FFSer s (Ge) T G Xley = = e X ey (C2)
vef ve' f
where we define Z = (5 and Z' = (’/ 37. The equations can be rewritten as
~— —1J ~/— Cvef ~/— ~— e N—1% Cve 3
gve’ (gve) (Xvefne) - ( ve’fne ) ’ gve’ (gve) 5U€f - 3U€'f ) ( )
Cve 'f C’uef
_ Coer PR Cre
(g'j_e’) g’ue‘](zvef) = - f ']( Ue f)T I (gu—:’) 191—;:77@)(:6]0 ’ 77e X/Ue/f Y (04)
vef Cve’f
where we use J~1gJ = g~ for any SL(2,C) group element g.
Using X defined by (50), we have
Xe_fJ()Zf/uefne)T - gvef ® )Zf/uefneJ(fé/ef’r}e)T = Oa Xe_fgvef - 3vef ® )Z;efnegvef = Zvef 5 (05)

where we use the fact a’Ja'" = 0 for arbitrary spinor a and tr(X) = 1. From the definition of bivectors B = X — %I ,
we then have

ZBJefJ(fc’efne)T = _J(félefne)T , QBv_efgvef = 3vef . (06)
Similar argument also holds for BT which leads to

QB;;fJ(giief)T = _J(Z;ef>T ) 2B;refne)~(vef = 77€>2vef . (C7)
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If we introduce a group element related to boundary variables such that

Veer : Mer fOeerbery @ ELr per (Veer) ™ = Meper ® E e, (C8)
we then have

avefnee’(ave’f)_lB,U_e/fave’f(uee’)_1(avef)_l =B, (C9)

where @,.s here are related to a,.s defined in (B30) and (B41) by Gyef = Defayef(Tes) . Note that since ont’ = n,
we have

l—mgy 1-mgry

Veer = ﬂefRe_l(_iUQ) 2 (iUQ) 2 Re/(ﬁe'f)_l . (CIO)

Thus,
avefReUee’(Re’)_1(uve/f)_lB;re/fave’f(nee’)_1(avef)_l = B:}ref . (Cll)

And one can check that,

1—det ne L Lodetn, s

me’fnee’J(gé'fne’)T = me/fmefmef(i) 2 (_1) 2 (f(/efne)T , (C12)
1-—detne ,, 1—detn, ~
Deer fe 1f = Mer fmef(_l) (i) = er (C13)
Revew RV I(EL )T = J(EL )T, (C14)
Merf ReVee Ry Nerberf = megneley - (C15)
In the case when the face contains only one vertex, this then implies
) 0eer (000 1) Goer (Goe) ~H = e pmepePOos HTes) Bucy (C16)
_ _ - 1~ _ +
0] Reveor (Rer) "M (0] ) M (5 ) 1, = e 20vs Poes (C17)

where wy 1= w € {0,1} and takes 1 when det 7. # det ., otherwise w = 0. Then 0 and 6’ can be expressed
as

evf = IOg |:TI' (me/fmefazgfneel (aZ;f)_lg;e’(gve) 1Xv(>f)} ? ) (C18)
ei)f = _tf IOg |: ( vefR UEC'R ( ve/f)_l(gje’) g'ueX;tzf)i| (019)
where the log me gmey term in 0, ¢ will cancel exactly the same term appears in the definition of 8;'}, leading a critical

action that independent of m. As a result, we can safely remove the log me smes terms in all the expressions for
simplicity. O

Appendix D: Critical configurations and action for Euclidean Model
From the action for Euclidean EPRL model,

Ff |:X:| - Z |:(1 - )ln (Eef(gve) 1§;e’£€,f) (1 + ’Y) In (gef(gve) 1'&:;/58/}()] ’ (Dl)

v,fCv

The variation respects to group elements §* leads to the following closure condition

gve) 10i§;e’£5,f
O—ij/-ief ej: - 1= ¢ (DQ)
ef(gve) gve’gelf
P izt ¢
e gve) g'g e/gelf
o= S Y s

ef(gve) 1.&:’;’5@’]"
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For internal faces, the variation respect to £ and & becomes the variation respect to the SL(2,C) group element 9.
Since we have 9’0 = Iy, for 60 = v€ - L , we have 60/ = —¢€- L( ) = & Ii. Asa result, we have

Ribes o) " Guebes o Erp@uer) " e Rikes

0=(1—-7v)———-"—= — = — (D4)
:af(gv’e)ilgve’ge/f é-/”f(gv’e”)7191}’6’58]6
RLgéf(gje)ilgje/ge’f § //f(gv e”) 1§$€/RL£ef
+ (]‘ + ’Y) El (- \—1~F ¢ - (1 + ’Y) , ~ 1~+ ¢ (D5)
ef(gve) gve’fe,f e”f(gv’e”) «gv/e/gef
where RLf~ = 00;&p. Since o1&y x o2&y x JE and o3&y = &y, there are only one non-trivial equation given by
—~/ ~ ~ —_—
JE +(55) LG, Eer L (Goren) 0 TE
0 :(1 _ 'Y) ~§ef(gve) Ive ge o (1 _ 7) gc; f(gv e ) v 3 f (DG)

§er(Gure) M Gperbery ot (Guren ) Gprerbes
—~ ~ ~ ~ . —~
‘]gef(g:re)ilg:re’ge/f éé/'f(g:r’e”) 1gj,e,J§€f
O+ o s At
Eor(Gue) 1 Gperber s Eon p(Gyren)  Gurerer

The equations of motion are totally different from these obtained in the case of Lorentzian models, but we can still
assume for special configurations there are solutions of above equations of motion which satisfies
e SN Ay I e I P D7
gve’gelf =eeve gve'gef ’ fc’f(gue’) =e @ve gef(gve) ( )
One can check that this ansatz solves (D6). The equation of motion now have the same form as (63) with bivector Bfi
defined as
~ ~ 1
+ Gt BE ~t T
Bf (’U) - B (gve ) 1 = Gye (gef ®£é’f - 2‘[2) (gve/) ! (D8)

Then the analysis for Lorentzian case follows Eexactl}i her~e. Namely, for the (degenerafe) s~implici~al geometry soluti~0ns
G,G', we have 4 possibilities for solutions G = (G*,G7) at each vertex: G = (G*,G7): G = (G,(G)™), G =
(G,(G")™Y and G = (G',(G)71), G = (G',(G")~1). The critical action associated to each face in this case reads

Fr[£] = 32 [a=my + a6l (DY)
v, fCv

The parallel transport equations are given by
+ —
veer GF (€, €) = e* 20 OurPes (D10)
: + N1~
with GF = [],cp, (d5e) 1t

We can then get similar result for 8+ as in Section VB2 and VB 1 by identifying #~ with # and §+ with —¢’ as
well as set wy = 0. Substitute them to (D9) gives out the critical action. As a result, we may have the following
possibilities:

e Riemannian or split signature critical points

ZJf(

A

T i(+905 + <I>f + pym) mod (v, iﬂ')) (D11)

A

i(£0f + <I>f + pym) mod (v, i7r)> (D12)

Z#(
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e Lorentzian critical points

fA 1- fA w®r mod 27
A ——— (D13)

Z‘]f ( = (70 +1i (<I>f + pym)  mod (im,ym)) +1i i(1—7) 5

tA

(+0; + 1(<I>f + pym) mod (i7r,fy7r))> (D14)

1—
=50 (5
For the Lorentzian critical points (D13), their contributions to the spinfoam amplitude are again proportional to
—SRegge wri
e sge with

Shegge = = Y AsOy (D15)
f

the Lorentzian Regge action with Ay = vJy. There is also another subdominant contribution proportional to ™ Sresse
given by (D14)
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