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In the path integral formulation of the reduced phase space loop quantum gravity (LQG), we propose a
new approach to allow the spatial cubic lattice (graph) to change dynamically in the physical time
evolution. The equations of motion of the path integral derive the effective dynamics of cosmology from the
full LQG, when we focus on solutions with homogeneous and isotropic symmetry. The resulting
cosmological effective dynamics with the dynamical lattice improves the effective dynamics obtained
earlier from the path integral with a fixed spatial lattice: The improved effective dynamics recovers the
Friedmann-Lemaitre-Robertson-Walker cosmology at low energy density and resolves the big-bang
singularity with a bounce. The critical density p, at the bounce is Planckian p, ~ A~!', where A is a
Planckian area serving as a certain UV cutoff of the effective theory. The effective dynamics gives the
unsymmetric bounce and has the de Sitter (dS) spacetime in the past of the bounce. The cosmological
constant A,y of the dS spacetime is emergent from the quantum effect A.; ~ A~!. These results are
qualitatively similar to the properties of ji-scheme loop quantum cosmology. Moreover, we generalize the
earlier path integral formulation of the full LQG by taking into account the coupling with an additional real
scalar field, which drives the slow-roll inflation of the effective cosmological dynamics. In addition, we
discuss the cosmological perturbation theory on the dynamical lattice and the relation to the Mukhanov-

Sasaki equation.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a candidate for a
background-independent and nonperturbative theory of
quantum gravity [1-4]. Among successful subareas in
LQG, applying LQG to cosmology is a fruitful direction
in which LQG gives physical predictions and phenomeno-
logical impacts. Most LQG literature on cosmology is
based on loop quantum cosmology (LQC): a LQG-like
quantization of symmetry-reduced model with homo-
geneity and isotropy (see, e.g., [5-7]). LQC leads to the
important prediction that the big-bang singularity is
resolved with a nonsingular bounce. However, the con-
nection between LQC and the full theory of LQG has been
a long-term open problem.

In recent progress [8—10], we developed the top-down
derivations of the effective dynamics of homogeneous-and-
isotropic cosmology and perturbations from the full theory
of LQG. The key tool in our approach is the path integral
formulation of the reduced phase space LQG on a fixed
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spatial cubic lattice (graph) y (see [8,11] for details). The
semiclassical dynamics from the path integral formulation
reproduces the effective dynamics of uy-scheme LQC,
which recovers the Friedmann-Lemaitre-Robertson-Walker
(FLRW) cosmology at low energy density. Although the
Uo-scheme effective dynamics resolves the big-bang singu-
larity with a bounce, it suffers the problem that the critical
density at the bounce depends on the initial condition of the
scale factor and is not always Planckian. In LQC, the p,
scheme is replaced by the improved p scheme, which
guarantees the critical density to be constant and Planckian.

In this work, we propose a new strategy in the full theory
of the reduced phase space LQG for overcoming the pro-
blem of the yy-scheme effective dynamics. The key point in
our strategy is to allow the spatial cubic lattice (graph) to
change in the time evolution. Indeed, we consider a large
number of discrete time steps z; with i = 1, ..., m in the
evolution, such that the spatial lattices y; at different time
steps may not be the same. We still assume all y; are cubic
lattices. The LQG Hilbert space H,, are different if y; are
different. There are more degrees of freedom (DOFs) on a
finer lattice than DOFs on the coarser lattice. With the

coherent states, we define 7, , *'H, ~— H, whichis an
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FIG. 1.

(I + 1)d illustration of the lattice refinement during the time evolution: Each horizontal line is a lattice y; partitioning the

spatial slice at the time z; when the lattice refinement is carried out. Each vertical line is the time evolution of a vertex in the spatial
lattice. The unitary evolution is defined in the area between two horizontal lines.

embedding when y;_; is coarser than y; and is a projec-

tion otherwise. Inserting 7, ., = between unitary time

evolutions generated by the physical Hamiltonian H on
|

Az,2)(K) = (¥ |e A T-5n)T

The initial and final states W7, and ‘Pf’z,] are defined on
different spatial lattices. The spatial lattice changes from
yi_1 to y; at each instance 7; (i = 1,...,m), while the
unitary time evolution in every time interval [z;, ;] is on
the fixed spatial lattice y;. Furthermore, we follow the
coherent state path integral method in Ref. [8] to express
Aiz,1z1(K) as a path integral formula. In contrast to our
earlier path integral formulation which is defined on a
hypercubic lattice, Az (K) is defined on the spacetime
lattice /IC whose spatial lattices change in time, similar to
Fig. 1. A7 21(K) may be viewed as an analog of the spin
foam model.

Based on the lattice Fourier transform of the semi-
classical data Z, on y;, Z, , ~maps the coherent state
‘P[’IZ ] € Hy,-_. to the coherent state ‘P’{’Z ] € Hy,-’ such that

Vi-1 Vi
the set of nonvanishing Fourier modes in Z, are the same as
Z, , (see Sec. V for details).

By the path integral formula of A7 7 (KC), the dominant

contribution to Az z)(K) comes from the trajectory

Yms¥m=1"""

y; and y;_;, we construct the transition amplitude
Az,1z)(K) between initial and final semiclassical states

‘I‘[hz] and ‘P[hz,] :

e—iﬁ(Tm—Ti)I e—ﬁﬁ(fi—fi—l) R |lP’[”l /]>

(1.1)

VisVi-1

|

satisfying the semiclassical equations of motion
(EOMs) from the stationary phase approximation. We
assume each time interval [z,_;, 7;] is sufficiently small so
that the EOMs can be approximated by differential
equations with smooth time 7. We look for solutions
corresponding to the homogeneous and isotropic cosmol-
ogy. We find that, fixing the initial condition, different
solutions are determined by different choices of the
spacetime lattices K. The effect of K turns out to be
an analog of an external force in the effective EOMs of
cosmology.

Among choices of the spacetime lattices K, we
propose two preferred choices and call the resulting
cosmological effective dynamics the p.,;,-scheme effec-
tive dynamics and the average effective dynamics,
respectively. First, the p.;,-scheme effective dynamics
is resulting from choosing the finest lattice K, such that
an UV cutoff A where A ~ (length)? is saturated at all
time steps (see Sec. VI). The UV cutoff A validates the 7
expansion of the coherent state expectation value of the
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physical Hamiltonian,' so that the derivation of the
effective dynamics from the path integral is valid
throughout the evolution. A is a Planckian area when
the Barbero-Immirzi parameter f is relatively small. A
plays the role of the minimal physical scale of the
lattice and is an analog of the minimal area gap in
the z-scheme LQC. Second, the average effective dynam-
ics is resulting from taking /C to be the random lattice
(see Sec. VII). We perform the disorder average over all
K which are coarser than K.;,. The ppi,-scheme and
average effective dynamics have the following remarkable
features (see Sec. VIII for details).

(i) Both effective dynamics reduce to the classical
FLRW cosmology at low energy density.

(i) Both effective dynamics resolve the problem of the
Ho-scheme dynamics; they both resolve the big-bang
singularity and lead to bounces where the critical
density p,. ~ m is Planckian when A is set to be a
Planckian area scale. In particular, the critical
density of the p,,;,-scheme dynamics coincides with
the prediction from the LQC with unsymmetric
bounce [14] if A is identified with the minimal area
gap used in LQC.

(iii) Both effective dynamics give unsymmetric bounces
and have the asymptotic de Sitter (dS) spacetime on
the other side of the bounce, similar to Ref. [14]. The
asymptotic dS spacetime has the emergent cosmo-
logical constant Ag; ~ A~

In Sec. IX, we extract the effective cosmological

Hamiltonian and Poisson bracket for homogeneous and
isotropic DOFs from the p,,;,-scheme effective dynamics.

Another new aspect of this paper is taking into account

the coupling to a real scalar field in the path integral
formulation,” in contrast to the earlier works [8,10] where
we consider only pure gravity coupling to clock fields. The
scalar field with a suitable potential drives the slow-roll
inflation in our effective cosmological dynamics.3 The
inflation provides us another motivation for letting the
spatial lattice dynamical: Suppose we use a fixed cubic
lattice y; the geometrical lengths of the lattice edges are
dynamical and describe the scale factor in cosmology. The
inflation causes both the scale factor and the extrinsic
curvature K to grow exponentially. The large K leads to
the failure in the approximation of the py-scheme effective
dynamics to the FLRW cosmology unless the lattice y is
very fine. However, fixing a very fine y would cause the
geometrical lengths of the lattice edges to be very small
before the inflation, so that the 7 expansion of the coherent

state expectation value of H became invalid. To resolve this

"This # expansion is first proposed in Ref. [12] and is
computed explicitly in Ref. [13] to the first order in 7.

“See, e.g., [15-20] for some earlier works on coupling a scalar
field to LQG.

3See [21] for recent results on the inflaton in the reduced phase
space LQC.

tension, we have to let the spatial lattice dynamical be such
that we have the fine lattice during the inflation and coarser
lattice at early time.

We generalize our discussion to include perturbations on
the u.;,-scheme or average effective cosmological back-
ground in Sec. X. The perturbations are derived from the path
integral formulation as the first principle. The effective
dynamics of the cosmological perturbations are obtained
by linearizing the EOMs of the full theory on the effective
cosmological background. Our analysis mostly focuses on the
scalar-mode perturbation on the ,,;,-scheme background. In
particular, we obtain the consistency result that the scalar-
mode perturbation recovers the standard Mukhanov-Sasaki
equation at late time, e.g., at the pivot time and later.

Here are our conventions of constants frequently used in
this paper: k = 162G, £% = hx, % = hG,andmp = \/1h/G.

This paper is organized as follows: Section II reviews
some preliminaries on the reduced phase space LQG
of gravity-scalar-dust, the coherent state of the coupled
system, and the physical Hamiltonian operator. Section III
extends the coherent state path integral formulation to the
reduced phase space LQG coupled to the scalar field.
Section IV derives the EOMs from the path integral on the
fixed lattice and discusses the cosmological solution.
Section V generalizes the formalism to allow the spatial
lattice to change in time and applies the formalism to the
cosmological effective dynamics. Section VI derives the
HUmin-Scheme effective dynamics of cosmology. Section VII
derives the average effective dynamics of cosmology.
Section VIII discusses the properties of the p,;,-scheme
and average effective dynamics and compares them to the
p-scheme LQC. Section IX extracts the effective cosmo-
logical Hamiltonian and Poisson bracket from the ;-
scheme effective dynamics. Section X derives the cosmo-
logical perturbation theory on the effective background
from the path integral formulation and compares the late-
time behavior to the Mukhanov-Sasaki equation.

II. PRELIMINARIES

A. Reduced phase space formulation

The reduced phase space formulation couples gravity to
clock fields at the classical level. In this paper, we mainly
focus on the scenario of gravity coupled to Gaussian dust
[22,23] and a real scalar field. The Gaussian dust serves as
the clock fields. The total action is given by

S = Scr + Sep + Sscatars (2.1)

where Sgr is the Holst action of gravity [24]
1
Scrlef. Q] =——— [ d'x\/|det(g)]
167G Jy

1
X [e’;ej <Ql€{, —I-ﬁeUKLQ{fyL) +2A} , (2.2)
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where the tetrad ¢} determines the 4-metric by g,, =
npy€yey and Q7 is the curvature of the so(1,3) connection
w)/. p is the Barbero-Immirzi parameter. The scalar field
action reads

Ssatsldoc] =5 [ dxv[ala)llg"(0,0)0,0 -+ U]

(2.3)

where the scalar potential U(¢) is specified later. Sgp is the
action of the Gaussian dust:

SGDMduw guwT S W]]

:_/ d*xy/| det(g) {pdz““ (¢0,TO,T + 1)
M

+ g"”aﬂT(WjaySf)} ,

(2.4)

where T, $/=13 are clock fields and define time and space
coordinates in the dust reference frame. pq.q, W; are
Lagrange multipliers. The energy-momentum tensor of
the Gaussian dust is

T, = pausUU, —UW,). U, ==0,T. W,=W,;d,s,

(2.5)
which indicates that pg, is the energy density and W,
relates to the heat flow [22].

We assume M ~ R x X and make Legendre transform of
dust variables:

55 GD

\% det {pdusl ‘CnT +W; [‘C S]]}
5SGD

Pi= 50 = /detlg) W, [£,T).

_9Sep _

5p dust

58S,
7l = 8D 0,

SW;

(2.6)

where ¢4 (a, f =1, 2, 3) is the 3-metric and £, denotes
the Lie derivative along the normal to the hypersurface X.
The constraint analysis [22,23] results in Hamiltonian and
diffeomorphism constraints C'*** and C¥', which are first-
class constraints, and eight second-class constraints z, z/,
¢1, &5, 5, and K:

z=m, Zd=n,

$r = W P3s — W3Py,

é’l = W1P2 - W2P1’
(2.7)
1

T()Plz + \/ det(q) (qaﬂT,aT’ﬂ —+ 1)W12, (28)
eilq

5%
|
|

_ PPIQWI Pdust 3
\/det \/det
+\/det(q)W g™ T ,(P;S)).

where T, = 0,T. Solving second-class constraints gives

(2.9)

P;
W, = —. (2.10)
det(q)(q™T T 5+ 1) /
B P
Pt = et(g) (q T oT 5 + 1)1
PBT (P.S
4T a(PjSy) (2.11)

det(q)(q™T ,T s+ 1)3/2

by a choice of sign in the ratio between W; and P;. These
relations simplify C*** and C¥' to equivalent forms:

Ctm = P + /’l, ]’l = C\/ 1 + qaﬁT’aT’/} —_ qaﬂT’uC/},
(2.12)
C = Cy + PT , + P;S%, (2.13)

where C and C, are the gravity-scalar Hamiltonian and
diffeomorphism constraints from Sgr + Sgcarar- Note that it
is possible to have a negative pg4,. However, we always
guarantee that the total energy density pg. + 25 (P 1s the
energy density of the scalar field) must be non-negative, in
order that the energy condition is satisfied.
We construct the Dirac observables based on the fields in
Sor and Sg.qac With the help of the clock fields.
Gravity.—We use A%(x) and E%(x) to be canonical
variables of gravity, where A%(x) is the real Ashtekar-
Barbero connection with gauge group SU(2) and
E%(x) = y/detgel(x) is the densitized triad. a = 1,
2, 3 is the Lie algebra index of §u24. We choose basis
1 = —i¢c" (6 are Pauli matrices) in 8u,. Dirac
observables are constructed relationally by parame-
trizing (A, E) with values of dust fields 7'(x) = 7 and
SJ-(X) =0/, ije., A?(G, T) = Aj(x)|T(x)Er.S-f(x)Eaj and
E4(0,7) = Ea(X)|7(x)=r.5/(x)=0/» Where ¢ and 7 are
physical space and time coordinates of the dust
reference frame. Here, j = 1, 2, 3 is the dust coor-
dinate index (e.g., A; = A,S%).
Real scalar.—Canonical conjugate variables of the
real scalar field are ¢(x) and z(x). Corresponding

Dirac observables are ¢(c,7) = G(X)|7(v)=r 5i(x)=o/
and 71'(0, T) = ﬂ(X) |T<x)ET,Sj(.X)EGj'
4[ z ,%] = —1[0".06"] = —ie"6°/2 = ¢S and Tr(%%) =
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All the above fields are Dirac observables weakly Poisson
commutative with diffeomorphism and Hamiltonian con-
straints. They satisfy the standard Poisson bracket in the
dust frame

(Ei(0.7), AL/, 7)} = %Kﬂ5;5253(6, &), (2.14)

J

{n(6,7),¢(c,7)} = & (0,0), (2.15)
where /3 is the Barbero-Immirzi parameter, k = 167G yewion-
The above conjugate pairs and Poisson brackets define the
reduced phase space P.

The evolution in physical time 7 is generated by the
physical Hamiltonian H, given by integrating & on the
constant 7'(x) = 7 slice S. The constant 7 slice S is coordi-
nated by the value of dust scalars S/ = ¢/ and, thus, is
referred to as the dust space [23,25]. T, = 0 on S leads to

H, = /d36C(0). (2.16)
S

H, formally coincides with smearing the gravity-scalar

Hamiltonian C with the unit lapse, while here C(o) is in

terms of Dirac observables:

C=Cof+C5, (2.17)
1 EjEk
Gravity :COR = —[F%, — (f* 4 1)e 4, KIK¢]e™Pc —2=¢
y K[ Jjk (ﬂ ) de ™™ j k] det(q)
2A
+——Vdet(q), (2.18)

s T 1 k(9.
Scalar:CS = N + 5 V/det(q)q’* (0;¢)(0r)

+ +/det(q)U(o).

The 7 evolution is governed by the Hamilton equation

(2.19)

d

4= H,. )

0 (2.20)

for all functions f on P. This evolution is formally the same
as the evolution of a gravity scalar with unit lapse function
and zero shift vector.

In the gravity-scalar-dust model, we resolve the
Hamiltonian and diffeomorphism constraints classically,
while the SU(2) Gauss constraint

1 .
ga - EDJEQ - 0
still has to be imposed to the phase space. The time evolu-
tion preserves the Gauss constraint since {G,(c,7),Hy} =0
by the gauge invariance of H,. Second, C;(s,7) is con-
served on the Gauss constraint surface [25]:

(2.21)

dCi(s,7)
= {Hy.Cj(o.7)} = 0, (2.22)
where
2
G=Cr+C O = gFiE, G =0,
(2.23)

replaces the gravity-scalar diffeomorphism constraint by
the corresponding Dirac observable.

B. Quantization

We fix y to be a cubic lattice which partitions the dust
space S. In this work, we assume S ~ T3, and y is a finite
lattice. We denote by E(y) and V(y) sets of (oriented) edges
and vertices, respectively, in y. By the dust coordinate ¢/ on
S, we assign every edge a constant coordinate length y in
the dust frame. u — 0, |V(y)| — oo keeping u*|V(y)| fixed
is the lattice continuum limit. Every vertex v € V(y) is
6-valent. At v there are three outgoing edges ¢;(v) (i = 1,
2, 3) and three incoming edges e;(v — ,Lﬁ), where i is the
lattice vector along the ith direction. It is often convenient
to orient all six edges at v to be outgoing from v and denote
six edges by e, (s = L)

Cpit+ = 6,-(11), Cpi— = el(U _ﬂ?)_l' (224)

These notations are illustrated in Fig. 2.
Canonical Dirac observables of gravity and matters can
be discretized on the lattice y and quantized as follows.

1. Gravity

Discretizations of gravity canonical pair A (e, 7), El(0,7)
gives holonomy /(e) and gauge covariant flux p“(e) atevery
e € E(y) [26]:

h(e) = Pexp/ do’A47/2,

1 .
pie) =— B tr [T"l &;jxdo’

A do’h(p,(0))E}, (o)t h(pe(e))™" |

(2.25)

where recall 7 = —i(Pauli matrix)®. S, is a 2-face intersect-
ing e in the dual lattice y*. p, is a path starting at the source of
e, traveling along e until e N S,, and then running in S, until
6. a is a length unit for making p“(e) dimensionless. Note
that, because p“(e) is gauge covariant flux, we have

1
pa(ev;l,—) = ETr[Tah(ev—7;1,+)_lph(ey—?;l.+)Tbh(ev—i;l,Jr)]‘

(2.26)
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v+u3

v+ pl

(a)

FIG. 2.

The Poisson algebra of h(e) and p“(e) are called the
holonomy-flux algebra:

{h(e),h(e")} =0, (2.27)
(0. Me)} = 56,0 THE).  (229)
{p"(e). P"(€)} = =5 8eveancp™(€).  (229)

The LQG quantization defines the Hilbert space of square-
integrable (complex-valued) functions of all &(e)’s on vy,
OHOR = L2(SU(2). duy)®/EWI, where dpy is the Haar mea-
sure. /i(e) becomes multiplication operators on functions in
OHCR. p?(e) = itR%/2, where R is the right invariant vector
field on SU(2) associated to the edge e: R°f(h) = 4
0f (e*h). t =¢%/a* is a dimensionless semiclassicality
parameter (£5 = hik). h(e) and p?(e) satisfy the commuta-
tion relations:

57(6). (&) = i3, 5 (e,

[ﬁa (6) ’ ﬁb(el)] = _itée,e’eahcpc (6/) ’
as quantization of the holonomy-flux algebra. Imposing the

Gaussian constraint at the quantum level reduces “H¥ to the
Hilbert space HY* of SU(2) gauge invariant functions of 4 (e).

(2.30)

2. Real scalar
Lattice scalars ¢(v) and z(v) = [d*xy,(x,v)z(x) are
located at vertices and satisfy the Poisson bracket

{z(v).¢(v)} = 6,0 (2.31)

v+u3

v+;¢§

v+pl

(a) Notations of edges and vertices when all six edges are oriented toward positive directions of coordinates. (b) Notations of
edge and vertices when all six edges are oriented outgoing from v.

The quantization defines Hf = Quev(y) H,» Where H, ~

L?*(R,d¢(v)) is spanned by squared-integrable functions of
¢(v) with the Lebesgue measure d¢p(v). Quantization of

scalar fields give ¢(v) and #(v) whose actions on H; are,
respectively,

() f(P) = ¢(0)f(p),  #(v)f(p) = in[0/0¢p(v)] ()
(2.32)

for all functions f(¢) € H;. Both ¢(v) and #(v) are self-
adjoint operators satisfying

[7(v), (V)] = iR, .

The reduced phase space on the lattice, denoted by &2,
has coordinates h(e), p“(e), ¢(v), z(v). As a result from
the quantization of &, the LQG Hilbert space of gravity
coupled to the scalar is given by the tensor product:

(2.33)

H, =HRQH;. (2.34)

States in 'H, are SU(2) gauge invariant since the scalar is
SU(2) invariant. H, is the physical Hilbert space on y free
of constraints because it comes from quantizing Dirac
observables.

C. Coherent states
1. Gravity
The coherent state for gravity, y}, € H}(,;R , is defined by

Wy = H ‘//;@)7 ‘//;(e)(h(e))

e€E(y)
= ) Qe+ e UNRy; (g(e)h(e) ™).
jﬂez+/2U{0}

(2.35)
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Here y; is the SU(2) character of the spin-j irrep. g(e) €
SL(2,C) is the complex parametrization of the gravity
sector in the reduced phase space and relates to the classical

flux p“?(e) and holonomy e (e)/2 by
gle) = e P EF20 T2 pa(e) ga(e) € RP.
(2.36)

The coherent state yy is labeled by the dimensionless
semiclassicality parameter

(2.37)

which is the value of #% measured by the length
unit a’?. The semiclassical limit # — O implies ¢ — 0
or /3 < a*.

The above coherent state is not normalized; the
normalized coherent state (on a single edge) is deno-
ted by

- Y(e)
Vo) = T
W

. (2.38)

It is useful to review the overlap of two normalized
coherent states 1/7; (©) and lf/; (@) [1,27]:

K(ga(),91(¢)) = Ear(e)? = 5 pale)? =3 pi(e).

2

s <e>>{
sinh(&,;(e))

Ene)  [sinh(py(e)sinh (ma(e)) . . -
\/ memie)  ou )}’ (2.39)
! £21(¢) = arccosh (%tr[gxe)*g] <e>]), (2.40)

where O(r®) stands for contributions that are suppressed
exponentially as ¢— 0. pjs(e) =./pi,(e)pi,(e) =

arccosh(3 Tr[g 2(e)g12(e)]). (W}, )7} () 1s invariant
under &; — —&,; which relates to the Weyl refection of
SU(2). We fix the sign ambiguity of &,; by using the inverse
hyperbolic cosine function, so Re(&;) > 0. Our conven-
tion for the inverse hyperbolic cosine is arccosh(x) =
In(x + v+ 1vx = 1). [ 7, )| behaves as a Gaus-
sian sharply peaked at g|(e) = ¢,(e) with the width given
by |pi(e) = ps(e)| ~|01(e) — 05(e)| ~ V1 [27].

It is important that, at every edge e, the normalized
coherent states form an overcomplete basis in L>(SU(2))
[27]:

dg(e it 7t =1 ’
/ o SN | = Vs
¢ 2
dg(e) :t—sdﬂH(h(E))d3p(e), c :;+0(too), (2.41)

where dug(h) is the Haar measure on SU(2).

2. Scalar

Coherent states in Hf are similar to coherent states of a
simple harmonic oscillator. We define annihilation and
creation operators

() =~ [0 - S 400)]
A(v)' = \/% {(27(1}) + éfz(v) : (2.42)

|

where a” appears to balance the dimensions between
#(v) ~ (length)~! and z(v) ~ (length)!. We have the
following commutation relations of 2(v) and 9(v)':

2

[2(v), A(W)T] = 8,0, (2.43)

which give harmonic oscillators at all ». Annihilation
operators 9(v) define a “ground state” |0) in HS by
9(()|0) = 0. Coherent states are defined by

N z(v) ()9
A(v)|yh) = ﬁlw?% !y = [T o).

(2.44)

where z(v) and z(v) give the complex parametrization of
the scalar sector in the reduced phase space:

(2.45)

[y} can be expressed as a function of ¢(v):

2\ 1
wh(¢) = H<%)zeﬁz(v>2—z‘—h[a¢<v>—ﬁz<v>lz. (2.46)

v,r

The inner product between two coherent states |y”) and
") is given by
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(i) = e 7 R0 (247)

The normalization |j) =
completeness relation

JT5

dzz(v) = dRe[z(v)]dIm[z(v)].

lw™)/|lwh| satisfies the over-

h| - lHS
(2.48)

For any normal ordered polynomial operator O(2(v)",
9%(v)),

Whlo@(v)". A(v)lw?) = O(z(v). 2(0)) whlw?).

(2.49)

vi-Il Y @i+

¢ jﬁez+/2U{0}

=11 >

¢ jeeZ+/2U{0}

. t
= Wi,

Gauge invariant coherent states ¥

(2’]6 + 1)€_tje(je+1>/2)(je (us_(le

where ¢“(e) = us‘(]e)g

Coherent states in the Hilbert space HO OHGR ® HS
are given by the tensor product:
vi=wi®yl,  Z=(g9.2). (2.50)

Z is the complex parametrization of the reduced phase
space on the lattice y. The normalization {7 = % /||y2||
satisfies the overcompleteness relation

dz = Hdg(e)lZ[ <%>

(2.51)

/ AZh) ) = Ly,

The gauge transformation u, € SU(2) transforms coher-
ent states as

e"jf(jﬁl)/z)(jf (g(e)use)h(e)™! ”;(le))

flz] € H, are defined by group averaging

glegoh(e)™)
(e)ut(e)’ (252)
wi =yl (2.53)
W @y, where [Z] = ([g], 2). (2.54)

mpfwz_/

We denote by [g] the gauge equivalence class of g ~ g*.

H dup (u

veV

D. Physical Hamiltonian operator

We quantize the physical Hamiltonian H, to be a non-

graph-changing Hamiltonian operator H on the Hilbert
space H, of gauge invariant states [25,28]:

|
There exist self-adjoint extensions of H [29,30], so we
choose an extension and define the self-adjoint

Hamiltonian, which is still denoted by H. (A?y sums the
contributions from gravity and scalar:

C,=COR 4+ 5. (2.56)

N 1 ~ ~ n ~
H 3 Z (C, +Ch) (2.55)  CS® and CS are listed below (see Appendix A for details
veV(y) of C‘g)
|
1. Gravity
a 2 L ~ ~ ~ ~
(C);ﬁ B /}Kf Z S1S2s3811lzl}Tr(h(av;ilxl.izsz)h(ev;i353)[h(ev z;s3> 1’ Vv])v (257)

P sy,5y.53==%1
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. ~ ~ 2A 4
GR __ /GR 2 GR
G =Cop + (14 F)C0 + Vo {E Cou D } (2.58)

veV(y veV(y)

16 L

GR iyiyi

CL.v (iﬂf2)3 E §18,83€1725
P7 sy,87.83=%1

S Tr(]/:l(ev;ils] )[ﬁ(eugils] )_l ’ i{]il(ev;izsz)[il(ev;izsz)_l K]il(ev;i3s3 ) [h(ev;i3s3)_] ’ VLD’ (259)

where directions iy, i,, i3 = 1, 2, 3 are summed in the above formulas. C % and C » are the Euclidean and Lorentzian
terms, respectively, in the Hamiltonian constraint operator CDGR by Glesel and Thlemann [28,31]. %Vv quantizes the
cosmological constant term. V, is the volume operator at v:

‘A/v = (A%)l/4’ (260)
Q = —i 'B_f% ’ Rgtl _RZI RSH_Rh R;H—Rg”
v 4 abc ) ) 3
_ ﬁ3a6€abc i’a(ev;H) ; j)a(ev;l—) i’b(ev;2+) ; f’b(evﬂ—) ﬁc(ev;3+) ; ﬁc(evB—) ) (2.61)

CYR|_, is the quantization of sgn(e)CR|,_,, where sgn(e) is the sign of det(e ¢) [11, because the quantization uses
Thiemann’s trick:

BB Ek}
sen(e) \/det(gq Kﬂ

The right-hand side is quantized to be fz(e){fz(e)‘l, VL,}. Equation (2.59) quantizes the cosmological constant term

h(e){h(e)™".V,}e. (2.62)

det(g) to be the volume operator %\7,) without involving sgn(e). Therefore, flipping sgn(e) effectively flips the

cosmological constant from A to —A in H. Asa result, even if we fix A > 0 in the definition of C’gR and ﬁ, both positive
and negative cosmological constants can appear from the theory [9].

2. Scalar
We consider the following real scalar field contribution in C:
z? 1 .
CS = 72 det( ) + = 3 det(C])q/k(aj(ﬁ)(ak(ﬁ)) + det(q)Ul (¢) + det(e;?)(]z(qﬁ), (263)

where we take into account both parity-even and parity-odd potential terms +/det(q)U,(¢) and det(e$)U, ().
We define a family of essentially self-adjoint operators parametrized by » > 0 [19]:

Qi) = e (eh()h(e) ! V1. Oule) = O(e) 5 = =ih(e)ife). 1) (.60
We define the quantization of £
det(q)
(e 18 x 64
<@> N < Xﬁ > ZSIS2S3Z€] Tr Q1/3( v; ls])Ql/3( v]\z)Ql/S(eb kv;)] (265)
v P

515253 i.j.k

C3 is the quantization of sgn(e)CS:

c—%(gT”)an(g ) S S s X)X () (33 () (B )

s18283 j.k

A A

2 82 A N
(bﬂzﬁ)3 Z S1S2S3€UkTr[Q1 (eb isy )Ql (ev;jsz)Ql (el;;kS3)]U1 (¢) + VvU2<¢)7 (266)
P 515283
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where § Njg?)(v) is the lattice derivative:

III. COHERENT STATE PATH INTEGRAL OF
GRAVITY-SCALAR-DUST

An interesting quantity for quantum dynamics is the
transition amplitude

i, .
Nz = Wy lexo L TR] 1980, )
For the purpose of semiclassical analysis, we focus on the
initial and final gauge invariant coherent states ‘P[ L yr

Recall that [Z] = ([g],
with

[z
z), where [g] is the SU(2) gauge orbit

g(e) — e_ipa(e>7a/2h<e> — e_ipa(e)fa/zega(e),[a/z’

pi(e),0%e) € R?. (3.2)

Applying Eq. (2.54) and a discretization of time 7 =
Néot with large N and infinitesimal 6z, followed by
inserting N + 1 overcompleteness relations of normalized
coherent state % in Eq. (2.51):

Az (z) = / du (| [N |y, ) (3.3)

N+1
I5TYY
/ du [ aZiwhlis, Yt | )
i=1

|l ~iorfy

‘l/zN ]> <ll/z2 e n

x (@} @)% wh),

(3.4)

where [du =[],ey() Jsuw) dun(u,) and Z" = (g, 2).

Following the standard coherent state functional inte-
gral method, we let N arbitrarily large and, thus, &7
arbitrarily small. U(67) is a strongly continuous unitary

group and [U(87)|w) = |w)]/67 — tHly), so &(5):=
b y(sr) — 1 -t H] satisfies the strong limit 2(2F)|y) —

0 as 6t — 0 for all y in the domain of H. The coherent state
1,7/2 belongs to the domain of H; thus, &, (%) =
(7 |8CH) ) satisfies limg,_o £;11;(%) = 0. We obtain
the following relatlon.

_ I\ -
@, lexp (outt ) )

B 0T A,
= (97,11 +—-HpZ) +

h h

is arbitrarily small and satisfies limg,_ &; +1,i(5—{) =0.

ot _ ot iot <17’ |I:I|'/~/§>
_8i+1,i<_> =1In |:1+7 < fl> +—
Z

h §i+1|~ i %8 z
who Al )
ot ~‘1+] “i +ZEi+Iz( )
= (g lihye Taalu T (3.5)
where
|

i+l 5T€i+l,[(51/h):| _i5_7:<l/~/§i+] |I:I|ll~/§> (3 6)
5| n(pl, lwy) ] ho i)

By Eq. (3.5) and expressions of overlaps between coherent states Eqs. (2.39) and (2.47), a path integral formula can be

derived for Ay (41:

Aziz) = ||W§||||W§/||/dquZ,»y[Z]eS[Z /1
i=1

where the action S[Z, u| is given by

N+1

S[Z,u] = Z’C i1, Z
i=0

-yl

N+1

(3.7)
(wh [Hyh) (51)]
R Lk T S LA N (3.8)
wh lwh) T\ n

024011-10



LOOP QUANTUM GRAVITY ON DYNAMICAL LATTICE AND ...

PHYS. REV. D 104, 024011 (2021)

The “kinetic term” KC(Z,, . Z;) reads

vEV(y)
where Zy =Z", Zy,» = Z, and &;, ,;(e) are given by
&iv1.i(e) = arccosh(x;y ;(e)).

v[Z] is a measure factor from Eq. (2.39):

K(ZirZ) = 3 [:,»H.,»(ef S Pi(e) - gmeﬂ (3.9)
e€E(y)
25 3 [ 0a0) = 370 (i () - 370020 (3.10)
te1i(6) = 5l (6) ()] G.11)
arccosh(x; 1 ;(e)) sinh (p;,(e)) sinh (p;(e)) o
\/ pivi(e) pi(e) toum)). 312)

N+1
vzl =vlg =] I Linh (arccosh(x; 1 ;(e)))

=0 e€E(y)

The path integral Eq. (3.7) is constructed with discrete
time and space and is a well-defined integration formula for
the transition amplitude A ;] as long as o7 is arbitrarily
small but finite. The time translation of y with finite 6t
makes a hypercubic lattice in four dimensions, on which
the path integral is defined. There is no issue of any
divergence in this path integral formulation of LQG, since it
is derived from a well-defined transition amplitude.

IV. SEMICLASSICAL DYNAMICS ON
FIXED LATTICE

A. Equations of motion of the full theory

The semiclassical limit 2 — O (or t = 0) of the transition
amplitude A (7] can be studied by the stationary phase
analysis. Dominant contributions to Az z} as 7 —0

For i =1,..., N, at every edge e € E(y),

come from semiclassical trajectories satisfying the EOMs
8S[Z,u] =0. We neglect & ,;(6r/h) in the following
derivations of the EOMs, since we will be interested in
the time continuum limit 67 — 0 of the EOMs, where the
contribution of &;,,;(6z/h) is negligible (see Appendix B
for details).

EOMs from 6,S[Z,u] =6,S[Z,u] =0 have been
derived in Ref. [8].

(1) The variation with respect to g; using the holomor-

phic deformation

gi(e) = gi(e) = gi(e)e', ¢ei(e) €C,  (4.1)

leads to the following equations from derivatives of
€¢(e) and & (e), respectively.

1 [arccosh(x; ;1 i(e))tr[z?g;y1(e) gi(e)] _ pi(e)tr[z?gi(e) gi(e)]

ot \/xi+l,i(e) - 1\/xi+1,i(e
i o (i ©vl [Hyj, ey

B

sinh(p;(e))

For i =2,...,N + 1, at every edge ¢ € E(y),

- . 42
20wl ®wh I ®wh) | 2
1 [arccosh(x;_1 (e))tr[z?gi(e)"gizi (e)] _ pi(e)tr[z®gi(e) gi(e)]
ot Vxiioi(e) = 1y/x;;-1(e) + 1 sinh(p;(e))
ik 0 eyl Hy, @y’ ) “3)

- 0E(e) (Wi ®yllyy ®wl ) |

i
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(i) The variation with respect to u, leads to the closure (ii) Fori=2,....,N+1, at every v € V(y),
condition at every vertex v € V(y) for initial data:
- () =z ()] . 9 Wi )
- a(e) + AS(B,(e))pble) =0, (4.4 =i : 3 (4.6)
PILCEETICLIES 5 B5(0) W, )
where AZ(@) € SO(3) is given by ?*/274¢=07/2 = The initial and final conditions for z;(v) and Z;(v)
A“(é)r” are given by z(v)=2(v) and zy.(v)=2z(v),
. .

respectively.

Semiclassical EOMs (4.2)—(4.4) are derived with finite
or. We prefer to derive EOMs from the path integral
Eq. (3.7) with discrete time and space, because Eq. (3.7)
is a well-defined integration formula for the transition
amplitude.

The initial and final conditions for g; are given by g, = ¢*
and gy, = g.

We compute the variation of S[Z, u] with respect to scalar
DOFs z;(v) and Z;(v).

(i) Fori=1,...,N, at every v € V(y),

B B ( A |ﬁ| h> The right-hand sides of Egs. (4.5) and (4.6) can be

Ein(@)-z@)] _ _, 0 Wz, HWyz, 4.5 expressed explicitly by relations 9., |w?) = A(v)T|yh)
5 l8 ( 7 7 . ( . ) zi(v) ¥z Zi
g ) wz.,lvz) and 0, wh| = (W [A(v):

o (wh Myh) (@l 1A (o)l )Wl Iwh) — b Blwh) s 19 (0)yh)

- : (4.7)
9zi(v) (W Ivh) (Wl lwh)?
0 (whMWS ) (Wi HWS VW lvh ) -k EWS ) 9w y] )
= B [y = Ak \2 : (4.8)
9Zi(v) (wylwy ) w7 lwz )
The time continuous limit 67 — 0 gives Z; — Z;,| = Z. By the above relations,’
T o A 3
0wz, Mlwz) b (0)lwh) whlwlh) — whHlwS) WA (o) y})
6-00z;(v) ('} lwh) (whlys)?
B n ﬁ n
_ <'//z|h Il/h/z> (4.9)
9z(v) (wihlvy)
0 WLIHWL ) W) A (whlyh) — (WS (o))
lim - iR = A2
0=00Z;(v) (wylwy_) WA
n ﬁ h

" z(v) (hlwh)

which are finite. The left-hand sides of Eqs. (4.5) and (4.6) are finite as 6z — 0 if and only if z;(v) and z;(v) admit
approximations z(z, v) and Z(z, v) which are differentiable in z. All solutions z;(v) and Z;(v) of Egs. (4.5) and (4.6) must give
finite left- and right-hand sides in Egs. (4.5) and (4.6). Therefore, for all solutions, we can take the time continuous limit:

z(v) . 9 i dz(v) . 0 hip-
& = o) ([ H]g), & oz )<l//”|H ). (4.11)

Recall Eq. (2.45); the above continuous-time EOMs can be written as Hamilton’s equations with the Hamiltonian (| H|i%):

dgp(v) 0 7 0L dz(v) 0

= Hy’), = i H| k). 4.12

dr aﬂ'(l)) < Z| | Z> dr 8¢(U) <l//Z| |l//Z> ( )

5hmZ _. [dof(e f dpf(p)w.(¢), Vf € H; by the dominated convergence smce [y, (¢)| 1s uniformly bounded by an
integrable function when z, isin a f1n1te nelghborhood U at z. Similarly, 9, [d¢f (¢ = [dgf(9)0.w.(¢h), since (@)| is

uniformly bounded by an integrable function in a finite neighborhood U at z. Note that y/Z and 0,y are Schwarz functions on [R{: .| or
10.p2] < Ce(2)(1 + [x)™ < Maxeey (C)(1 + |x]) ™ for all k € Z.,.
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Similarly, Refs. [8,11] prove that Egs. (4.2) and
(4.3) also admit the continuous-time approximation
and can be expressed in terms of p(e) = (p'(e),
p*(e), pP(e))" and O(e) = (0'(e),6°(e), 6 (e))" and their

time derivatives:
dp(e) . L<l,~,h| )
dr IK _ dp(e) z

(aa(a) =219 1( 9y ) (4.13)
dr W<‘I/z| )

where T'(p, 6) (whose explicit express is given in Ref. [32])
is a 6 x 6 matrix satisfying

ia*
—TP(p,O)T(p,G) - 16><67

Equation (4.13) is equivalent to Hamilton’s equations:

dh(e)

= {(W31A]7}). h(e)}.
dp(€) _ ¢ oo nipyiiny pa
5 = LZ[HpZ), p(e)}. (4.15)
The coherent state expectation value of H has the correct
semiclassical limit

WhAgS) =B(Z.Z)+ 0(h).  (4.16)
where H[Z, Z] is the classical discrete Hamiltonian evalu-
ated at p“(e), h(e), =(v), and ¢(v) determined by Z =
(g,z) in Egs. (3.2) and (2.45). Note that the above semi-

classical behavior of (i|H|j7) relies on the following

a b a b N
P(p.0) = ({p (e).p7(e)} {p*(e).0 (e)}) (4.14)  semiclassical expansion of volume operator V, [12]:
{0°(e). p"(e)} 0
|
2k 1 2
w(n=1+¢q) . "
1 1 40 =4)...(n LT O(h+! 4.17
@1+ (- . 5 o) (@.17)
) 4=}
[
where (Q,) = (y}|0,|w}). When we aPply this expimsion d(v) = P = ¢y, z(v) = & = pn. (4.20)
to, e.g., the expectation value of V,, using (QV) = ). (). 6o = o (2). and )
Here Ky = K¢(7), Pog = Py(7), pg = ¢o(7),and 7y = 7o (7
<Q”> 1+ 812 (N = 1)] [33], we can see that the expan- are constant on y but evolve with the dust time 7. This ansatz

sion is valid in the regime p?>>t. When Eq. (4.17) is
actually applied to compute perturbatively <1/72,|I:I|1/7§>, the
validation of the expansion and, in particular, Eq. (4.16) use
the same requirement p> > ¢ (see [13] for details).

The EOMs derived from the semiclassical approximation
are not sensitive to O(#). Neglecting O(#) in Egs. (4.15)
and (4.12) imply that, for function f on the reduced phase
space &, its 7 evolution is given by the Hamiltonian flow
generated by the classical discrete Hamiltonian H:

df

L —{H, f}. 4.18
= {H.f) (4.18)
The closure condition is preserved by 7 evolution
by {G¢,H} = 0.

B. Homogeneous and isotropic cosmological
dynamics on the fixed lattice

We would like to find the solution of Eq. (4.18)
describing the homogeneous and isotropic cosmology.
For this purpose, we apply the following homogeneous
and isotropic ansatz to the semiclassical EOMs:

0“(ei(v)) = 05] = upKody,

2
p(ei(v)) = pé? —; Py, (4.19)

is a simple generalization of the one used in Refs. [8,34].

Inserting the ansatz, equations in (4.13) with e = ¢;(v)
are split into two sets: (i) dp“(e;(v))/dr=--- and
do“(e;(v))/dz = - -+ with a = i: Left-hand sides of these
six equations are proportional to PO =dP,/dr and
K, = dK,/dz. They reduce to

4P [-24*/PoKy + sin® (BuK,) + Au*Po] — sin® (28uKy)

VP,
= kP u*\/Po(T3Py? — (4.21)
V/Po[2? sin (2uK,) — (B> + 1) sin (4BuK,)]
+ 2puPy = 0, (4.22)

where U = U, + U,, and (ii) equations of dp“(e;(v))/
dr =--- and d6%(e;(v))/dr = --- with a # i: Left-hand
sides of these 12 equations are zero. We explicitly check that
the ansatz also reduces their right-hand sides to zero, so that
these equations are trivial. Note that this check and
Egs. (4.21) and (4.22) are nontrivial, since they involve
brute-force computation of right-hand sides of (4.13) or
Poisson bracket in (4.15) in the full theory before reducing
with the ansatz. Detailed computations and Mathematica
files are given in Ref. [35]. See also [36] for a recent more
abstract argument about obtaining Egs. (4.21) and (4.22)
from Eqgs. (4.15).
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For the scalar field, (4.12) reduces to 3m? K 2
U(go) = I —exp| - §¢0 . (4.24)

P3/2¢0 — Ty = 0, P03/2U/(¢0) = —27.7.'0. (423)

where m is the mass parameter.

In the following discussion, we set U(¢y) to be the The physical Hamiltonian H is conserved by the time
Starobinsky inflationary potential evolution governed by Eqgs. (4.21)—(4.23):
M- —f( : Py sin? (BuKo)[—f> + (B + 1) cos (2BuK o) + 1]
vl P ' e
I 3 5
=5, Do (4A+xU(do)) ——2P3/2>~ (4.25)

The dust density pg,q relates to H by [recall Egs. (2.11) and (2.12)]

¢,
Pdust = — 3/2 . (426)
PO/ ”3
Po = 0 gives the bounce, and the matter density p = pgug + 25 + PA = Pdust + % + % Ulgy) + % at the bounce is the
0

critical density:

3
.= . 4.27
Pe 26%(B? + 1)kPy(bounce)u? (4.27)
When puKy < 1, by sin(puK,) =~ puK,, Eqgs. (4.21)—(4.23) reduce to the classical cosmological dynamics:
8Py Ko+ 4K3P} + k13 = PY(AA +kU(¢y)),  2Ko\/Po = Py, (4.28)
7o = Py o, PYU' (o) + 2700 = 0, (4.29)
Equations (4.29) give the classical EOM of ¢:
S Py |
2¢o + 6Hpy + U'(¢py) =0, where H = T the Hubble parameter with respect to 7. (4.30)
0
Equation (4.28) can reduce to
, 4nG Py . .
H = _TPO(p +3P), where H = T the Hubble parameter with respect toz, (4.31)
0
. . o L
where 7 is the conformal time (dy = \/P—Odr)
£ =/Pof. (4.32)
p and P are total matter density and pressure (including cosmological constant), respectively:
P = Pdust + Ps + Pas (433)
2A 6K} mp 1 2N 6H* () 1
=t ——-— U =4+ — - ——Ul¢y), 4.34
2 /\2
5 1 (96 1
=—=+-U = =U(¢y), 4.35
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A 721
Pp=_"4 0
Kk 2P 2 (¢o)
‘We have the relation
8rG
H2 =" pop. (4.38)

3

In order to demonstrate the inflation from Eqs. (4.21)—
(4.23) or classical counterparts (4.28) and (4.29), we define
the slow-roll parameters

—m, H = ﬁ (439)

8H =

The inflation corresponds to 0 < ey < 1. Figure 3 plots ey
of a solution and demonstrates the inflation. When practi-
cally solving EOMs (4.21)—(4.23) or other versions of
EOMs to be discussed later, we use values of dynamical
variables at pivot time 7, to uniquely determine the
solution. We require that the dynamics at 7, and later
must be well approximated by the classical dynamics of
cosmology Egs. (4.28)—(4.30) (this requirement is always
fulfilled by our model as discussed later). The values of
$o(Tpiver) and H(7piye), as well as the value of the
parameter m in U(¢,), are determined by the observational

values of A; and n, (here we use the same data as in
Ref. [21]):

EH

3r (LI LI

0k - | ‘ RRRA
0 1x10 2x10' 3x10 4x10 6x10

5%10'

FIG. 3. The inflation is in the period with 0 < e < 1 (before
t=15x107). Toivot = 0 1S the pivot time. Parameters in
this solution are m=2.44x10Cmp, H(7pyo) =1.21x1070mp,
¢0(7pivot) = 1.07mp, ”O(Tpivot) =-5.03x 1079’"%’ PO(Tpivot) =1,
and A =0. For very small p, the difference in ey is negli-
gible between solutions of (4.21)—(4.23) and of (4.28)
and (4.29).

2A
4.36
; (4.36)
2A 1 (%)’
=-" : 4.
2 U@o) + 55 (4.37)
Ay =210%x 1077, n, = 0.96, (4.40)

where A, is the amplitude of the scalar power spectrum at
the pivot mode ko = 0.002 Mpc~! and n; is the spectral
index of scalar perturbations. Following the procedure
described in Ref. [37], we obtain that

(o) = 121 X 107511,
m =244 x 10~%mp.

¢O (Tpivot) =1 '07mP’
(4.41)

In principle, this derivation is based on zero dust density,
but numerical errors in the above numbers give tiny but
nonzero dust density. In this paper, we work with non-
zero dust density, but we always consider the dust den-
sity to be very small in numerical studies. Classically,

K, (Tpivot) = H(Tpivot) V PO(Tpivot)’ SO
KO(Tpivot) =121 x 10_6mP\/ PO(Tpivot)'

The values of ¢g(7yivor) and H (7o) determine éﬁo(fpivot)
by Eq. (4.30) (¢ is negligible by the slow-roll approxi-
mation) and further determine 7y (7o) by Eq. (4.23) up to
a choice of P (7piver):

(4.42)

ﬂO(Tpivot) = -5.03 x 10_9m%’P0(Tpivot)3/2 (443)
P (Tpivor) is not determined, since P is the square of scale
factor which is defined up to rescaling.

We are going to take the above values of ¢(7yiver)
Ko(Tpivor), and 7y (7pive) to determine the cosmological
dynamics, while Py(7pivo) is left undetermined. The
classical cosmological dynamics (of H and ¢) is free of
the ambiguity, since Eqgs. (4.28) and (4.29) are invariant
under the constant rescaling

Po(7) = aPy(z).  Ko(r) > a'?Ko (1),

mo(7) = @ my (7). (4.44)
But this invariance is broken by Eqgs. (4.21) and (4.22) due
to the length scale p. Consequently, the dynamics of
Egs. (4.21) and (4.22) on the fixed spatial lattice is
ambiguous due to the dependence on the choice of
Py (Zpivor)- In particular, the critical density p, at the bounce
is ambiguous and may be even very small if Py(7piyor) i8
large. The bounce occurring at low density is not physically
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sound. This is considered as a problem of the cosmological
dynamics from LQG on the fixed spatial lattice.

V. DYNAMICAL LATTICE REFINEMENT
A. Motivation

The cosmological dynamics described above coincides
with the y-scheme effective dynamics of LQC. However, it
is not the popular scheme in LQC. The preferred scheme in
LQG is the improved dynamics, or, namely, the iz scheme,
in which u is not a constant but set to be dynamical
u — pu(7) = y/A/Py(7); in other words, the spatial lattice
changes during the time evolution. The z scheme has the
advantage that the critical density p, = p(bounce) at the
bounce depends only on constants k, A, and f and is
Planckian if A ~ #%, in contrast to the y, scheme where

3
" 27(B2 + 1)kP,(bounce)u?

pe (5.1)

Py(bounce) depends on the initial or final condition, e.g.,
Py (7pivor), Which does not guarantee p. to be Planckian.
It turns out that the existence of inflation leads to a
difficulty if the spatial lattice y is fixed. The reason is the
following: First of all, the path integral (3.7) and the
approximation to classical gravity on the continuum rely
on two requirements.
(i) As a key step in deriving the EOMs (4.18), the
semiclassical approximation of (F%|H[@?%) in
Eq. (4.16) uses the expansion of volume operator
as in Eq. (4.17). This expansion requires p? > t or
4Pt > pPra = PPey . (5.2)
(i) 6“(e) has to be sufficiently small in order to
approximate the classical theory on the continuum,
namely, the background EOMs (4.21) and (4.22),
where puK, = 0(e) has to be small enough to
validate sin(@) ~ @ and reduce these EOMs to the
ones in classical cosmology.
However, requirement (i) can contradict requirement (ii) if
we fix the lattice y throughout the cosmological evolution
including the inflation. Indeed, if we construct the lattice y

such that p“(e) and Ha(e) satisfy requirement (i) before
inflation, during the inflation, the classical cosmology gives

o o 1/2 .
PO = 62){(6(—[")1)0 and KO :)(e}((lf_[i)PO [ti or tf is the
time of starting or ending the inflation, and Py is deter-
mined by p“(e)]. The classical solution with large K,
cannot approximately satisfy (4.21)—(4.23), unless we set u
to be extremely small. But an extremely small ;¢ makes
requirement (i) hard to be satisfied at the early time. For
example, if we set e/~ ~10** and y~ 107/
(I3 = hG = 1= ¢%), we have to set y extremely small such

°1/2
that ﬂ,uPO/ ~ 107201, or less to validate sin(BuK,) ~ pukK,
and fulfill requirement (ii). However, by requirement
)
() pPy~1000 /gt > 1200/t o 1> 4(@2 108046,
which violates the semiclassical limit t — O unless f is
extremely small (or # — 0 even much faster than ¢ — 0).
For not so small j, setting u extremely small results in that

;)a(e) violates requirement (i) before inflation. This would
not be in favor, since the semiclassical approximation is
expected to be valid before and during the inflation.

A way to resolve the tension between requirements (i) and
(i1) is to refine the spatial lattice during the time evolution, as
suggested by the i scheme in LQC. We are going to ask the
lattice to be finer at a late time while coarser at an early time,
so that we have a small enough 4 to satisfy requirement (ii) in
the inflation while having a large enough p to satisfy
requirement (i) at an early time before the inflation.

B. Transition amplitude with dynamical
lattice refinement

First, as the setup, we write the lattice variables 6“(e),
pi(e), ¢(v), and z(v) generally as below:

0(e;(v)) = plpKoS] + X (e(v))].

pﬂ(e,w))=;Z2Po[57+ya<e,<v>>1, (5.3)
$0) = do+ S9(0).  w(v) = @lmo + Sn(v)].  (5.4)

where Py, Ky, ¢y, and m, are the homogeneous and
isotropic DOFs. Y“(e;(v)), X“(e;(v)), W(v), and Z(v)
are DOFs beyond the homogeneous and isotropic
sector. Their dimensions are X“, ¢ ~ (length)~!, 67 ~
(length)~2, and )“ ~ (length)?. We introduce a vector
V?(v) as shorthand notation for nonhomogeneous and
nonisotropic DOFs:

Ve(v) = (V(er(v)). X(e;(v)). d7(v). 6(v))".

p=1,..20. (5.5)

The dictionary between V”(v) and X“(e;(v)), V*(e;(v)) is
given below:

Vi=Yle), V2=)e),  VP=D(e3),

Vi =Y (ey), V3 =1(e), Ve =)P(ey),
Vi=Y(e). VE=Yes).  V'=)(e3)
VIO =X!(e)), VI = X2(e,). V12 = X(e3).
VB = X%(ey), Vit =X (e), VB =X (ey),
V16 — X1(e,), V17 = X1(e3), VI8 = A2(ey),
V19 = 6z, V0 =5 (5.6)
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Equations (5.3) and (5.4) do not lose any generality of the
lattice variables. All 6(e), p“(e), ¢(v), and #(v) in 22,
can be expressed as Egs. (5.3) and (5.4), while V” may be
large for phase space points far away from being homo-
geneous and isotropic. When we discuss cosmological
perturbation theory, we are going to assume V” to be small
and linearize the EOMs.

Because we work with cubic lattice y with constant
coordinate spacing u and periodic boundary, it is conven-
ient to make the following lattice Fourier transformation:

1
Ve(r.6) = o >

ke(Zz)* |k <2

-

V(. v) = VP (7, %),

ol ez, (5.7)

where both & and k have periodicity ¢! ~ ¢! + L and k! ~

d +217” (I =1, 2, 3), so the sum Zi{ has the UV cutoff
K| < E (L/u is assumed to be an integer). Equation (5 7)
can also be expressed as below when we write k= L Zm,

o/ = un!, and L = uN, where N is the total number of
vertices along each direction:

VP(z,v) = VP(r,1) = Z H XY (¢, i),
mEZ
(5.8)
~ - L3 3 2mi -
VP (t,m) = Z H —xFmn'ye(z, i), (5.9)
nez(N)? I=1

where Z(N) are integers in [-N /2, N/2 — 1] if N is even or
in [-(N-1)/2,(N—1)/2] if N is odd.

We may absorb the homogeneous and isotropic DOFs in
zero modes and define

02
(1) = (2—ﬂ2p“<el<v>>, ief*(e,(v)),d»(v),;n(v))
(5.10)
—(P4(0). C3(0), $(v). TI(0)). (5.11)
w@m:w@m:% fp%wwpm
Aez(N) 1=1
(5.12)

where @ (z,0) contains the homogeneous and isotropic

DOFs (PO(T)MBKO(T)’¢0(T)7”0(7))’ e.g.,
P4(2,0) = Py(e)[8¢L3 + V7=10(2,0)].  (5.13)
We propose a linear map 7, , ‘H, — H, to map

states on the coarser lattice y,_; to a finer lattice ;. The total

3, and here
is going to be inserted in the middle

number of vertices in y;,7,_, are N3,N
Ni = Ni—l' IJ’,‘J’H
of the Hamiltonian evolution by H, to refine the lattice
during the evolution and relate the dynamics on different
lattices.

The formal definition of Z,, ,  is given as the following:
First, we denote the lattice Fourier transformation
Eq. (5.12) by

F, (@) ez = 19 (@ D) ez (5.14)
At a given instance 7; where we apply Z, ,  to change y;_;
to y;, the Fourier transformations on y; and y;_; are given,
respectively, by

CDP(Ti’ n)y = ﬁ}’id)p(rl’ ﬁ1)7i
1 3 2aiplpl = —
:E HeN,- @/ (Tl’m)]/’ (515)
meZ(N;)? I=1
q)p(Ti’ n)}’i—l - y}/x—l ~p(Tl’ ’/71)7:‘—1
1 ﬁ == m’n’¢I, )
fry —3 eri-1 i m f )
L meZ(N;_;)? I=1 "
(5.16)

where we have added the label y; to @ (z;, 71) to manifest its
corresponding lattice. Recall that the coherent states ‘P[hz]

are labeled by Z = (g, z) depending on both y and @*:

n — wph
[Z vl T \P[ Z(u.®,,)] — lP[Z(ﬂi-e’o‘;yi(i)/,‘)]’ (5.17)

n __ph _ wh
Yz = Z(ui @, )] — lp[z(/‘f—l*yn_lé’n_l)]' (5.18)
Given Ci>yl,_ , on the coarser lattice y;_;, we determine cf)yi =

®, [®, ] on the finer lattice y; by simple relations

mezZ(N )  (519)

(i)p(’l'i,ﬁi) = 0,

. m e Z(N

DN\Z(Ni-). (5.20)

Given @, [®, | determined by ®, with the above
relations, we define the linear embedding map 7, , :

H}’i—l - HY:‘ by

K SOTENIE Lo
I},i’}/iil — /dz(71_1) [h(y,yl_l)] [h(yz—l)] , (521)
||WZ(7i’7i—l)||||l//Z(7ifl)||
Z(risvic1) = Z(pi, 9”&% [qSyH]),
Z(]/i_l) = Z(:ui—lv fquN)yH) (522)
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Given the parameters y; and y;_;, Z(y;,7;—1) is determined
by Z(y;—) since @, [®, | is determined by ®, . Z(y;)isa
representative in the gauge equivalence class [Z(y;)].
llwh|| = |y is SU(2) gauge invariant. If both y; and
7,—1 have large numbers of vertices N;, N;_; > 1 and N; —
N;_yissmall (e.g., N;— N, = 1), Z, ,  approximates to
an isometry from H,  to H, (see Appendix C).

Az 121(K) = (¥} |~‘«’7H (T=tn)T

= bl / [Jaztre

= il / 1] d2(ir)
i=0

where [Z(y,,1)] = [Z] and [Z(yo,7-1)] = [Z]. The initial
time is 7y, and the final time is 7. Each factor in the
integrand is the Hamiltonian evolution from 7; to 7, and
has been expressed as a path integral as in Eq. (3.7).
The initial and final conditions of Z() are Z(y;) and

Z(yi.7i)"", respectively, and integrating ) implements
the SU(2) gauge invariance. The path integral gives the
EOMs (4.18) in every time interval [z;,7;,4]. Az 2 (K)
can be understood as a discrete path integral formula
defined on the spacetime lattice /C as in Fig. 1.
Ai21z)(K) is similar to spin foam models which are
defined on spacetime lattices. The set of N; or u;, =
L/N; (i=0,...,m) is determined by the choice of space-
time lattice /C.

Intuitively, in the semiclassical time evolution in each
[z;, 7i41] the initial data [Z(y;, y;—;)] uniquely determine the
final data [Z(y;)] [11]. The map Z,, .. glues the final data
[Z(y;)] to the initial data [Z(y;,,7;)] for the time evolution
in [z;,1,7;42), while the data [Z(y;)] and [Z(y;,,,7;)] share
the same infrared Fourier modes ®(m) with m € Z(N,)>.
The gluing at all 7; connects the semiclassical trajectories of
Hamiltonian evolutions in all intervals [z;, 7;, ] and makes
the semiclassical trajectories of the entire time evolution
from 7 to T.

Indeed, as is shown in Appendix D, when we study the
variational principle of A7 (k) by taking into account
variations of Z(y;_;) (i =0,...,m) in the definitions of
Z,.,., these variations give some EOMs which are auto-
matically satisfied approximately by solutions of EOMs in
every [z;,7;.1], at least for the homogenous and isotropic
cosmological evolution and perturbations. The approxima-
tion is up to an arbitrary small error of O(1/N;) as N; is
arbitrarily large. Connecting by Z, . the semiclassical
trajectories in all [z;,7;, ;] makes the solutions satisfying
approximately the variational principle of [z z(KC) up to

Yms¥m=1"""

We assume the Hamiltonian evolution on the fixed lattice
Yi—1 to occur in the time interval [z,_;,7;], and then we
applyZ, . att; at the end of this Hamiltonian evolution to
map the state to a refined lattice y;, followed by the
Hamiltonian evolution on y; in the time interval
[z;,7iy1]. By iteration, we define the transition amplitude
with a dynamically changing lattice:

e_%ﬁ(1i+]_ri):z-y,»,y,~_le_%ﬁ(fl_ﬂ | |lP[Z’>
h —lﬁ(TH —7) |\ph
Hl (Bl le ey, ) (5.23)
11 ||wZ 7
m+1 i) (i
11 / AZ0)duldy[Z0] eSOV, (5:24)
i=0

|
an arbitrarily small error of O(1/N;). The resulting
solutions describe the semiclassical dynamics on the
spacetime lattice IC which relates to the choice of the
sequence of spatial lattices y,_o__,, and correspond-
ing pig,

When the initial state ‘P[hz,] is labeled by the homo-
geneous and isotropic [Z’], both the Hamiltonian evolution
and Z, ,  preserve the homogeneity and isotropy. Z,, ..
glues the final data [Z(y;)] to the initial data [Z(y;,1,7;)]
sharing the same zero modes P, K, ¢g, and z,. When the
initial state ‘P[hz,] has cosmological perturbations V”, at each

.....

step of the lattice refinement, Z, , identifies
VP (2 m), = VP (z;.m), . me€Z(N_,)?  (5.25)
V(2. m), =0, meZ(N)\Z(N,_y)?, (5.26)

by Eqgs. (5.19) and (5.20). This prescription freezes ultra-
violet modes on the finer lattice while identifying infrared
modes with the ones on the coarser lattice. Our study of
cosmological perturbations focuses only on long-wave-
length perturbations, so Eq. (5.32) is sufficient for our
purpose.

A(z],;z) has the limitation that Z,, ,  identifies only the
infrared modes when refining the lattice, while the ultra-
violet modes are lost. When we discuss cosmological

perturbations V*(z,m), the spatial momentum k = 2%

L
is conserved, and then the EOMs from Az ) can describe
only the dynamics of the modes V’(z,m) with

m € Z(Ny)3; ie., their momenta are bounded by the
ultraviolet cutoff on the coarsest lattice y, where the initial
state is placed, while these modes are infrared at late time in
the sense that their momenta are much smaller than the
ultraviolet cutoff on the refined lattice. EOMs from Az
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are not able to predict the dynamics of ultraviolet modes at
late time if the initial state is placed at the early time. This
feature suggests that Az 7 is likely to be a low-energy
effective theory, and the early-time dynamics on the coarser
lattice is expected to be the coarse-grained model obtained
from the full quantum dynamics by integrating out ultra-
violet modes [beyond Z(N)?]. In this work, we focus only
on Az 7] understood as the low-energy effective theory.

The tlme evolution in Az ) is not unitary. The numbers
of DOFs are not equal between early time and late time, and
there are ultraviolet modes at late time not predictable by
the initial state at early time. But it is possible that the
unitarity may be hidden by the coarse graining, if we view
the dynamics on the coarser lattice as the coarse grain of the
dynamics on the finer lattice. Ultimately, in more complete

although this information is still missing in our effective
approach. Standard examples in the Wilsonian renormaliza-
tion show that, when integrating out ultraviolet modes, their
effects are not lost but encoded in higher-order and higher-
derivative interaction terms in the effective Lagrangian. Here
we have ignored the correction to S[Z,u] from coarse
graining since we focus only on long-wavelength modes.
Our expectation regarding the unitarity in the effective theory
is somewhat similar to the one proposed in Ref. [38].
Aiz1)(K) in Eq. (5.24) requires y;_o__, is a mono-
tonically decreasing sequence from early to late time. We
can generalize the formulation by relaxing this require-
ment. When the spacetime lattice K is such that, at the
instance 7;, the lattice y; in the future of 7; is coarser than

the lattice y;_; in the past, i.e., u; > pu;_, we insert I;j_l,yj

treatment, quantum states and dynamics on the coarser  in Az z|(K) (recall that Z, , H, —H,  from the
lattice should contain the information of ultraviolet modes, coarser lattice to the finer):
|
Az (K) = (Blyle 0T, | eniflEnnT] | emifilomn ), (5.27)
where II}._M ‘R, _, = H,, is defined by
) [Pl ) (P, |
Ly, = / dZ(y; Aol (5.28)
uwz NI
Z(]’j—lv}’j) = Z(pj-1, 9},,[&)“,1 [(i)y/])v Z(Vj) = Z(u;, 9{,&%)' (5.29)
Inserting this expression of Z;,,,, in Az1z)(K) and denoting ‘i‘flz] = ‘Pf’zl /llwk||, we obtain
Ko 0) = [ 2l BB o).
Then the path integral expression of general Az (K) is
m m+1 B
Az 121(K) = ||‘l/§||||‘l/§/||/_11dz(}’i—l/i H<‘P[hz— |€ Q T’“'"’)|‘{‘fz+(yi)]> (5.30)
m m+1 :
) ull
= Wil [ TTa7ien TT [ az0auvuizopess i (5.31)
i=0

Our notation is Z*(y;) = Z(yi,7i-1)s Z7(vi-1)
Z(r)) = Z(ri), Z~(riz1) =

= Z(}/l’_l), and dZ(Vi—l/i) = dZ(?’i—l) when Vi is finer than Yi-1 but
Z(yi-1.7:), and dZ(y;_1;) = dZ(y;) when y; is coarser than y,_,

The semiclassical dynamics is still obtained by connecting semiclassical trajectories in [z;_;, 7;|. But we generalize from

monotonically decreasing u,_

.....

=V (Tia

VP (z;,m) =0,

Vi O Vi

. to arbitrary sequence p;_,

.....

’71)71‘—1 ’

ﬁi (S Z(MaX(N,-, N,-_l))3\Z(Min(N,-, N,‘_

.m> in other words we allow more general spacetime lattice

1’71 S Z(Min(Ni,Ni_]))3, (532)

) (5.33)

respectively. Equations (5.19) and (5.20) are generalized similarly. The modes captured by the semiclassical dynamics

correspond to the ones on the coarsest lattice:
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m € ZMin({N}izo_ ). (5.34)
In general, the coarsest lattice is not necessarily at the initial
time 7.

C. Homogeneous and isotropic cosmological
dynamics on dynamical lattice

We impose the initial state ‘P[h 1 labeled by the homo-

geneous and isotropic [Z']. The Hamiltonian evolution on
the fixed lattice y; determines the unique semiclassical
trajectory from the initial data [11]. The homogeneity and
isotropy are preserved by the semiclassical dynamics.

Z,.., ¢elues the final data [Z(y;)] to the initial data
[Z(yis1,7i)] sharing the same zero modes Py, Ky, ¢,
and 7. All nonzero Fourier modes vanish.

Given a choice of the spacetime lattice K, or, equivalently,
asequence of y,_ - the following variables

..........

are continuous at each instance z; where 7, is inserted:
Py(1;),, = Po(7i),,._,» Ko(7:),, = Ko(7;),_,»  (5.35)
¢o(7i),, = Po(zi),,_,s m(7i),, = mo(7i),, - (5.36)

On the other hand, the semiclassical time evolution within
[z;,7iy1] is on a fixed spatial lattice y; and is governed by

4/7)2 [_2#12 \/ PO(T);QI.(O(T)]/[ + Sin4 (ﬂﬂiKO(T)y,-) + AMIZP0<T);/,-] - Sin2 (2/))ﬂiK0(T)y,v)

= kB*ui\/Po(2),,[10(7); Po(2); = Ulo(7),,)].

\/ Po(2),,[28% sin (2BuiKo(x),,) = (6> + 1) sin (4K o(z),,)] + 2B Po (z),, = 0.

PO(T)yi
(5.37)
(5.38)
Po(2),/*U' (o (1),,) = —2(7),,. (5.39)

Py(2),*o(1),, = mo(1),, = 0,

which add lattice labels to Egs. (4.21)—(4.23).

We assume every interval [z;, 7, ] is sufficiently small, and for every N; > 1 and N; — N;_; ~ O(1) (u;/pi—; ~ 1), we
can approximate the sequence of y; by a smooth function u(7) (approximating the step function by a smooth function).
Moreover, we make the following approximations for time derivatives in Egs. (5.37)—(5.39):

. Py(i11),, — Polti),
Polzi)y, = Tit1 =T ’

¢o(zis1),, — ¢o(7),,

q.ﬁO(Ti)y» = ;

' Tit1 — 7T

. Ko(7it1),, — Ko(1:),,
Ko(ei)y, = Tit1 =7 ’

(5.40)

molTin)y, = mo(),, (5:41)

hO(Ti)y,-

Tit1 — T

Since Py(7), Ko(7), (7). and ¢, (7) are continuous at every z; [see Eq. (5.36)], when we insert the above approximation in
Eqgs. (5.37)—(5.39) and assume Py(7), K((7), 7o(7), ¢ gr), and () to be smooth functions in 7, the resulting EOMs can be

approximated by the following differential equations:

4% [=24(2)* \/Po(2)Ko(7) + sin* (Bu(2)Ko(v)) + Au(2)*Po(z)] _ sin® (2fu(z)Ky(7))

Py(7)

= kp2u(2)*\/ Po(7)[mo(2)* Po (7)™ = U(dho ()],

V/Po(2)[28” sin (2Bu(2)Ko (7)) = (B> + 1) sin (4Bu(1)Ko(7))] + 2Bu(7)Po(z) = 0,

Py()¥2y(7) — mo(7) =0,

Py(7)
(5.42)
(5.43)
Po(2)*2U' (o(7)) = —27(2). (5.44)

®Here, the interval [7;, 7, 1] has to be coarser than the steps &7 since the path integral formula (3.7) needs to be valid in each interval. 6z
is arbitrarily small so that the intervals can be sufficiently small to validate the approximation.
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These equations are defined for the entire time
evolution from 7 to 7. The choice of spacetime lattice

It is convenient to make a change of variable

bo(r) = Ko(7)//Po(7), since by(r) equals the Hubble

KC relates to the choice of function u(z) in  parameter H(z) in the semiclassical regime.
Egs. (5.42)—(5.44). Equations (5.42)—(5.44) become
|
bo(z) = _sin® (2Bby(0)u(r)\/Po(7))  sin* (Bby(2)u(z)\/Po(7))
! 8°u(7)* Py (1) 2u(z)*Py(7)
PBby(z) sin (2Bby(z)p(7)\/Po(7)) _ Pbo(z) sin (4pby(7)u(7) \/ Po(7))
2u(t)/ Po(7) 4u(7)/ Po(7)
_ bo(2) sin (4pby(2)u(z)\/ Po(z)) _ kmo(7)® | 1 A
TENGT po(ep <Pl H S 54
Po(z) _ psin (2pbo(0)u(2)/Po(z)) | Psin (2by(2)u(r)/Po(7)) cos (2fbo()u(z)/Po (7))
Po(7) (1) /Po(7) p(t)/Po(7)
0 (2o (©le)  Pofe]) o5 (2B (e)ur)/Pol) 546
Pu(z)\/Po(7)
¢o(7) = mo(7)/ Py (2)*/?, o(0) 12U (¢o()) = =210 (2). (5.47)
Given the choice of p(z), Egs. (5.45)—(5.47) uniquely bo(T) = 1.21 x 10~mp,
determine the solution Py(z), by(7), 7o(7), ¢po(z) provided _ 2
their initial condition at 100. Sin((:)e the Zolutio(;l depends on 7o(T) = =5.03 x 1072 mp Py ()2,
the function u(z), we denote the solution by ¢o(T) = 1.07mp. (6.2)

Polul,  bolul.  molul,

olul. (5.48)

Given the initial condition Py(zy), bo(7), 79 (70), ¢o(7g) OF
the final condition Po(T), bo(T), mo(T), ¢o(T), Egs. (5.45)—
(5.47) define a map  from the space F, of functions y(7) to
the space Fp of solutions Py(z), by(7), 7(7), ¢o(7), and
Polul, bolu], molu], dolp] is the image of this map from a
given function yu:

l:f-ﬂ _)]:51

p = (Polul, bolul, molpl, dolu]). — (5.49)

VL. UV CUTOFF AND p,,;,-SCHEME
EFFECTIVE DYNAMICS

First of all, we fix the final condition Py(T), by(T),
7o(T), ¢o(T) by letting T = 7,0, be the pivot time:

Polul(T),  bolul(T),  molpl(T),  dholpl(T)

(6.1)

are independent of u. Here, by(T), 7o(T'), and ¢o(T) have
been given in Sec. IV B:

Although Py(T) is ambiguous, we fix its value, e.g.,
Po(T) =1, and proceed, but we are going to show that
the effective dynamics obtained at the end of this section is
invariant under rescaling Py(T) — aPy(T) for all a € R.

At each time step, u parametrize the discreteness of the
theory and y — 0 is the continuum limit. We would like to
find a choice of u to minimize this discreteness while still
validating all the above discussions. Recall that the validity
of the semiclassical dynamics requires u*P} > 1p*¢} /1.
We impose a UV cutoff A (a small area scale) such that
A% > 1p*¢}/t, and we define py,(7) to saturate this UV
cutoff:

/"min(T)ZPO[)umin](T) =A. (63)

The geometrical volume at each lattice vertex g, (7)? %
Po[ptmin] (7)3/> = A3? is minimal. As a result, the semi-
classical approximation of the dynamics is valid throughout
the evolution, while higher-order corrections in 7 of
(| H|p%) give only relatively small corrections to the
predictions of the effective dynamics. Here, A has an
analog in the ji-scheme LQC. In the i-scheme LQC, A
relates to the minimal area gap and, thus, is a physical
quantity. A similar thing happens here since A effectively
relates to the minimal geometrical area of the lattice. The
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(regularized) effective dynamics coming from the critical
contribution of the coherent state path integral, it gives out
the evaluation of the leading-order expectation values of
phase space operators. As a result, in such treatment,
we ignore quantum fluctuations beyond the effective
dynamics.

Umin(7) satisfying Eq. (6.3) is unique. Pg[pp,](7) and
Umin(7) can be obtained as the following. We first recover
the original variables in Egs. (4.19) and (4.20):

0(z) = Pu(7)Ko (1),

+V2apr/BpU () + |

. ([ 2\ =z . 3mi a(Bp)**U (¢h)
b () o

Equation (6.3) implies p(z) = 2A/(Ba?) to be a constant
and p =0. Equations (6.5)—(6.7) become first-order
ordinary differential equations of u(7) = ppin(7),0(7),

n(7) = p(z)’mo(2). (6.4)
Equations (5.42)—(5.44) are rewritten as below:
. ” ) .
p - VEVBDSHCONP +1)e0s(20) =] 20—
aff H
|
.1 8v2ka*\/Bp  4V/2psin?(0) (=% + (B> + 1) cos(20) + 1)
0= 1_6 [4\/§aﬂ/\\/ﬁ_l7 - a5ﬂ2p3 - a(ﬂp)3/2
1604 (6.6)
42 i
(6.7)
—— Minimum
r Average
—— Symmetric g

¢o(7), (). The final condition of u.,(7) is given by

/"min(T) =V A/PO(T>‘

We make the following change of variable according to

Eq. (6.3):
A
() =By il (7)

Here, pu,,;, has the same expression as i in the improved
dynamics of LQC, if we identify A to the parameter A
(usually set to be the minimal area gap) in LQC. Changing
the variable and recovering b and 7, from Egs. (6.5)—(6.7)
give the effective EOMs:

(6.8)

BOL“min]
_ sin” (2v/ABbo fimin)) T sin® (v/ABbo i)
842 A 2A
 Bbosin 23/ ABbolpmin]) _ Bbo sin (43/ Ao |pmin))
2VA 4vA
sin ; K72
by <44ff§;owmm}>_8_1)%+%,d,(¢o)+g, (6.9)
Polpmin] __ B sin (23/ BBy [min]) , A5in (4v/BBbo min])
P [pmin] VA 2vVA
sin (4\/Z:Bb0 [.“min])
WY, , (6.10)

L — Unsymmetric g

| | |
-1.61330x10° -1.61325x108 -1.61320x10°

(a)
bo
— Minimum
Average
—— Symmetric g
— Unsymmetric g
‘ 0.0
. . -
-1.6136x10° ~1.6134x10° I -1.6132x10° -1.6130x10°

(o)

FIG. 4. The plot of the average effective dynamics given by
EOMs (7.7)—~(7.9) (orange) and comparison with g;,-scheme
effective dynamics (blue), the j-scheme LQC effective dyna-
mics in Refs. [14,39] with unsymmetric bounce (red), and
the traditional p-scheme LQC effective dynamics in Ref. [5]
with symmetric bounce (green). The upper panel plots
Vo(z) = Py(7)*/?, and the lower panel plots by(z). We set the
pivot time to be 7, = 0. The solution is determined by the
values at Tyivorr Bo(Tpivor) = 1.21 X 108mp,  Vo(tpiver) = 1,
¢O(Tpiv0l) = 1.07mp, and ”O(Tpivot) = -5.03 x 10_9m%,. The
parameters take values m = 2.44 x 10‘6mp, A=0,VA= 101p,
and f = 1.
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¢0 [”min] = Ty [;umin]/PO [”min]3/27

Po[llminP/ZU/(%[ﬂmin]) = _27.[0[”min]- (6-11)

These effective EOMs are equivalent to replacing p(z) by

Umin(7) = \/A/Py(7) in Egs. (5.45)—(5.47). We coin the
name of Eqgs. (6.9)-(6.11) as “u.-scheme effective
dynamics.”

Note that the p,;,-scheme effective dynamics is not the
same as the i scheme in LQC (see Fig. 4 for the curves
labeled by “minimum”), although there are several impor-
tant similarities which are discussed in Sec. VIII.

Equations (6.9)—(6.11) are invariant under the following
rescaling:

Poptinin] (7) = @Polptanin] (7). 70 tmin] (7) = @720 tmin] (7).

(6.12)

bo[pmin] (7) = bolttmin] (7),  dolimin] (T) = doltmin] (7).

(6.13)

Recall that the final condition Py(7') is ambiguous (defined
up to rescaling). If we rescale Py(T) — aPy(T) and
7o(T) = a*/27(T) of the final condition (by, ¢y, and
¢, are left invariant), the solution of Egs. (6.9)—(6.11) from
the rescaled final condition is the rescaling (6.13) of the
solution from the original final condition, since the solution
of the equations is uniquely determined by the final
condition. The dynamics of Hubble parameter H and scalar
field ¢ is rescaling invariant and, thus, is ambiguity-free.

VII. RANDOM LATTICE AND AVERAGE
EFFECTIVE DYNAMICS

The dynamics of Py(zy), bo(7o), 7o(70), Po (7o) depends
on the choice of u(z) or, equivalently, the choice of the
spacetime lattice K. Different spacetime lattices IC give
different definitions of transition amplitude Az 1(K) and
can be viewed as corresponding to different superselection
sectors. When we approximate the discrete y;—o___,, by the
smooth function y(7), the superselection sectors are 1abeled
by functions u(r). u(r) behaves as giving an “external
force” to the cosmological dynamics as shown in Egs. (6.5)
and (6.6).

We propose K to be a random lattice such that u(z) is
a random function with respect to certain probability
distribution on the ensemble F,. The random u(z) gives
a “random external force” in Egs. (6.5) and (6.6). The
probability distribution on F, is described as the following.

We again fix the final condition Py(T), by(T), 7o(T),
¢o(T) at T = 7y as (6.2) and Py(T) = 1 [the effective
dynamics obtained at the end of this section is invariant
under rescaling Py(7T) — aPy(T) for all « € R].

We take pinin (t) = /A/Po[pmin] (7) as the minimal p(7)
of the spatial lattice at the instance 7. Recall that a general
u(7) is an approximation of L/N(z) (or L/N; with earlier
notations), where the integer N(z) (or N;) is the number of
vertices along each direction on the spatial lattice y(z) (or
yi) at 7, and we have N(7) < N (7), where N (7)
satisfies L/Npax (7) & pmin (7). We let y(z) with N(z)?
vertices be a random sublattice of the finest one with
Nomax (7)? vertices. Randomly selecting N (z) out of N, (7
vertices along every direction gives a random sublattice.
Assuming all sublattices are democratic, the probability
p(u(7)) of having y(z) is proportional to the multiplicity®

p(u(e)) = {ﬁ <x,(n;;(r)>r'

This is the probability distribution of x(7) at the instance 7.
The probability of the function u is given by [[, p(u(7)),
where the product over 7 is essentially a finite product since
Az,1(K) assumes a finite number of lattice changes.
When N, (7) are large, P(u (7)) can be approximated by a
Gaussian function

(7.1)

1 _IN®-Nmax (1)/2)2

Plu()) = (m e

Jela)l)

It leads to the probability distribution on F, as

in(®) 1 3
H Q \/T ﬁ%”) . (73)

which indicates that the most probable u(z) is
fi(t) = 2pmin(7). We extend () to entire F, including
those p(r) even smaller than p;,(7) since they give
negligible probability.

The averaged dynamics of Py, Ky, ¢, 7, is given by the
ensemble average over F

Po(r) = / DusB () Poli) (0).

Fu

Bo(z) = / Dusp () bolu] (2). (7.4)

H

"We label vertices in the finest lattice by (i, j, k) where integer
i,j.k€{l,...,Np.}- We choose N vertices in each of three
directions iy, ....ix, Ji»---»jn> Ki»....ky where i, j,, k. €
{1, ..., Npax } with a,b,c €{l,...,N}. The choices make a
N x N x N sublattice whose vertices are (i, jj,k.) with
a,b,ce{l,....N

This probability distribution is different from the one in
Ref. [40], although the idea is similar.
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7o(z) = / Dy () ol (0).

u

Jole) = / DB () boli) (0).

I

(7.5)

where Dy = [ [, du(r). When N (7) is large, we have the
following approximation:
|

(Po. bo. 7o, o) = (Po[2btmin]» bo[2Hmin)
T [2ﬂmin]7 ¢O [ZﬂminD’

A
(™) = A Bl ()

The average effective dynamics is given by the EOMs
(5.45)—(5.47) with j(7) = 2upmin(7):

(7.6)

ll) _ sin? (4\/Zﬂ1_90\/ PO/POL“min]) n sin* (2\/Kﬁl_?0 V PO/PO[/"min])

o 3262 AP,/ PoHmin)

8AP0/P0[/’tmin]

+ﬁl_70 sin (4v/Apbo/Po/Poltmin]) _ Bbo sin (8V'ABby\/Po/Polpimin))

4\/Z\/ PO/PODlmin]

8\/K\/ PO/PO[”min]

Py

These equations are invariant by rescaling

Py(z) = aPy(z),

_I;OSin(g\/KﬂBO\/PO/POL“min])_K_ﬂ% lk y A
SVAIPol o] 873 87T 77
Py __psin (4V/Bbor/Po/Polumnl) , fsin (8YApBoy/Po/Po i)
2V AN/ Py / Po[pmin] 4v/ AN/ P/ Py pynin]
i sin (8\/—&/31_70\/ po/POUlmmD (7.8)
4\/Zﬁ\/ PO/POLMmin]
do=m/P).  BPU () = 2. (7.9)
P [pmin] (T) = aPopimin] (7), (1) = &7 (7). (7.10)
bo(z) = bo(z), () = ¢o(7), (7.11)

with constant a. If we rescale the final condition Py(T) — aPy(T) and 7(T) — a/2zy(T) (b, ¢y, and ¢, are left
invariant), the solution of Egs. (6.9)-(6.11) is rescaled as discussed above:

Polptmin] (T) = aPoptmin] (7),
bo[pmin] (7) = bo[pmin] (7),

When we insert this rescaling of Py[ppin] = aPolpmin) in
Egs. (7.7)-(7.9) and apply the rescaled final condition
Po(T) = aPy(T) and 7y(T) — a/*my(T), the solution of
the average effective dynamics is rescaled:

Py(7) = aPy(7).

7o(7) = a3/2ﬁ'0(7), (7.14)

bo(z) = bo(7), ho(z) = (7). (7.15)
due to the symmetry and the uniqueness of the solution.
The average effective dynamics of Hubble parameter H and

scalar field ¢ is free of the ambiguity of Py(T).

o [fmin] (7) = ‘13/27[0 [Hmin] (7)

(7.12)

boltmin] (7) = Polmin] (7). (7.13)

VIII. PROPERTIES OF p,,;,-SCHEME AND
AVERAGE EFFECTIVE DYNAMICS

The plot of y,;,-scheme and average effective dynamics
and comparison with ii schemes of LQC are given in Fig. 4
(we set A = 0 in the figures in this section). All effective
dynamics converge at late time while behaving differently
near and on the other side of the bounce. In Fig. 4, we have
identified our UV cutoff A to the parameter A (usually set
to be the minimal area gap) in LQC.

Let us focus on the bounce in the p,;,-scheme effective

dynamics, PO(T%mim) =0 at the bounce, and Eq. (6.10)

gives
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7 min 1 2
Bho(zi"™)VA = Ecos‘1 Qzﬁ—i- 1), (8.1)

min) . . .
where T,(_,; ) is the instance when the bounce occurs in the

Umin-Scheme effective dynamics. Recall Egs. (4.25) and
(4.26) for the Hamiltonian H; the total matter density
(including cosmological constant) p = pgu + 25 + Pa at
the bounce is given by the critical density

3

Peltimin) = m )

(8.2)

which is constant. This expression is the same as in
Refs. [14,39].
For the bounce in the average effective dynamics,

Py(t5) = 0 at the bounce, and Eq. (7.8) gives

2
/”;0(73)\/ Py(zp)i(tp) = %COS_I <ﬂzﬂ+ 1)’ (8.3)

where 7 is the instance when the bounce occurs in the
average effective dynamics. The critical density is given by

3
B+ )Py (p)i(tp)*

Pe :p(TB) :2< (84)

Note that here ji(7) = 2upin(z), and Py(z) shares the
same final condition Py(T) as the one used for solving

A(r)2Po(r) _ Polr)

1/4

Umin(7). Recall that Py(T) is the squared scale factor
and defined only up to a scaling. We are going to show
that p. does not change by rescaling Py(7). Indeed,
if we rescale Py(T) — aPy(T) and zy(T) — & ?ny(T)
of the final condition (b, (i)o, and ¢, are left invariant),
the solution of the average effective dynamics is
rescaled by

Py(r) = aPy(z).  m(r) > alio(z)  (8.5)

by(z) — 50(7)7 97)0(7) - 4;50(7),

by the discussion below Eqs. (7.7)—(7.9). This indicates
that the average effective dynamics of H and ¢, is free of
the ambiguity of Py(T), and the following quantity is
invariant under the rescaling:

(8.6)

fi(2)*Po(7) = 4ptnin(7)*Po(7) = 4AP(2)/ Po[ptmin (7),
(8.7)

whose values are plotted in Fig. 5 with # = 1, /A = 101,.
Therefore,

o 3
Pe = R+ Pebolen) Polmnles) o)

is not affected by the rescaling and, thus, is ambiguity-free.
Py(t5)/ Polptmin] (t5) =~ 1.6 when = 1,v/A = 101, and it

~1.6136x10°  —1.6135x10° -1.6134x10° -16133x10° -1.6132x10° —-16131x10° -1.6130x10°

B

FIG.5. The plotof Py(z)/Popmin](7) at f = 1,/A = 101,. The vertical dashed line is at 7 of the bounce. The horizontal dashed line

is at Py = A.
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A(T)*Po(r) _ Po(r)

4A PO [ﬂmin] (T)

B=0.2
B=0.4
B=0.6
B=0.8
B=1

-1.6134 x 10°

1(7)*Po(7) Py(7)
4A Fo [Nmin] (T)

0.5

-1.6133x10°

-1.6132x10° -1.6131x10° -1.6130 x 10°

(@)

A=4
A=16
A=36
A=64
A=100

-1.6134x 108

-1.6133x 108

-1.6132x 108 -1.6131x 108 -1.6130x 108

(b)

FIG. 6. (a) The plots of Py(7)/Pg[umin](7) for VA = 101, and several different values of # and (b) the plots of P (z)/Pg[pmin] (7) for

p =1 and several different values of A.

has mild dependence on f and A (see Figs. 6-8). More
precisely, Fig. 7 shows that at =1

fi(7p) Py (75) ~ 4A(1.60854 + 3.1840 x 104, (z5)VA),
(8.9)

where ¢ (7p) is the value of scalar field at the bounce (of
the averaged dynamics). ¢(z5) ~ O(1) (see Fig. 10) is

determined by the final condition (6.2) and relates to the
subleading correction. It implies

- 3 (8.10)
P kA (1.60854 + 3.1840 x 10~ (c5)VA)

for p=1. p. is close to Planckian when A is close to
Planckian. The numerics shows that the Kretschmann
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A(r8)*Po(78)
4A

1.622
1.620

1.618

1.616
1.60854 4 3.1840 x 10~* Go(m5) VA
1.614

1.612

1.610

do(tB)VA

10 20 30 40

FIG. 7. The plot of ji(t5)?Py(z5)/(4A) versus ¢y (z5)v/A with
p =1 and different values of A.

#(r8)*Po(7)
4A

1.70

1.68

1.66

1.64

1.62

1.60

1.58

2.0B

0.5 1.0 15

FIG. 8. The plot of fi(r5)?Py(zp)/(4A) versus B with
VA = 101,.

scalar at the bounce /C(zz) ~ A=2 and more precisely, as
shown in Fig. 9,

0.17397 = 1.2554 x 10~*¢hy (z5) VA

IC(TB) =~ A2 s (811)
which includes the subleading correction.
K(7s)

0.010¢

0.001f

1074 — 1

K(rg) ~ 0.173312 (F)
1075}
1076
105 0 0.001 0.010 A

On the other hand, as illustrated by Figs. 5 and 6,
Po(7)/Poltmin)(t) = 1 after the bounce [approximately
j(7) 224/A/Py(7)], the average dynamics converges
t0 pmin-scheme dynamics. by(z) - 0 at late time [see
Fig. 4(b)], so at late time the quantities inside sine functions
in Egs. (7.7) and (7.8) are small enough to validate
sin(x) ~x, which reduce Egs. (7.7) and (7.8) to the
classical cosmology. The classical limit at late time is
also illustrated in Fig. 4(a). Particularly, the deviation
from classical cosmology is negligible during the inflation.
The plot of slow-roll parameter e; has a negligible
difference from Fig. 3. The plot of b, during the inflation
is given in Fig. 14 (the difference between the average
and p,;,-scheme dynamics is negligible). fv/Ab, < 1 and
Py(7)/Polpmin](t) =~ 1 guarantee that the cosmological
dynamics is semiclassical during the inflation (for both
the average and ,,;,-scheme dynamics), as promised at the
end of Sec. VA.

We notice that, on the other side of the bounce, there
exists a short time period having ji(7)*Py(7)/A slightly
smaller than 1. ji(7)*Py(z) even below the UV cutoff A
might seem to be problematic for the effective dynamics
on the other side of the bounce. However, this issue
happens in the Universe on the other side of the bounce,
so it does not affect our predictions at and after the
bounce, given that we have fixed the final condition at T
and evolved back in time. Second, ji(7)*Py(z)/A is only
slightly below 1, and we always have the averaged i =
2Umin all the time. It may be still acceptable if we
view the UV cutoff (6.3) to be not restrictive but
approximate.

As is demonstrated in Fig. 4, b, approaches a constant
value on the other side of the bounce as 7 — —o0. Figure 5
shows that Py(7)/Po[pmin](t) ~ 1/4 as 7 — —co. Then
Eqgs. (7.8) and (6.10) imply that the Hubble parameter H =
Py/(2P,) approaches a constant in both the average and
Umin-Scheme effective dynamics. H in both cases can be
shown to be negative and coincide by numerics (see

]C(TB)A2

0.173

0.172

0.171

0.170

0.169

K(78)A% = 0.17397 — 1.2554 x 104 g (15)VA

¢o(7'3)\/K

0.168

10 20 30 40

FIG. 9. The left panel plots the Kretschmann scalar K(z) versus A and finds the leading-order behavior K ~ A=2 (with g = 1). The
right panel plots KC(z3)A? versus ¢ (z5)v/A and finds the subleading correction.
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T
-1.6132x10° -1.6130x10° -1.6128x10°

-1.6134x 106 !
B

-1.6136x10°

T
-1.6136x10° -1.6134x10° -1.6132x10° -1.6130x10° -1.6128x10°

FIG. 10. The left panel plots ¢ (7) in the case of # = 1, /A = 10lp. The right panel plots ¢(z5) in the case of # = 1 and different

values of A.

Fig. 11). The effective spacetime is asymptotically de Sitter
(dS) in the infinitely past to the bounce

ds? = —d7? + 27 (dx® + dy? +dz?).  (8.12)
Here H is negative and 7 is running to the past in the
emergent de Sitter spacetime. Figures 11-13 plot the
Hubble parameter H, the Kretschmann scalar &, and
the scalar curvature R of the averaged and p,;,-scheme
dynamics and compare with the i schemes in LQC. By
Eqgs. (7.8) and (6.10) and the facts that by approaches
constant and Py/Py[pmin] ~1/4 in the dS phase, the

emergent cosmological constant in both the averaged
and ptp;,-scheme dynamics,

Aegr = 3H?> ~ A7, (8.13)
is an effect from the UV cutoff A. The emergent dS phase
and cosmological constant Ay are consequences from
including the Lorentzian term in H [see Eq. (2.58)], similar
to the situation in Ref. [14].

Table I summarizes some key properties of the average

and pi,-scheme effective dynamics and compare with two
p-scheme effective dynamics in LQC (the effective

0.04

Average

Minimum

Unsymmetric I-scheme
Symmetric fi-scheme

0.02

T
-1.6132x 108 -1.6131x 108 -1.6130x 108

FIG. 11.
the LQC ji schemes with unsymmetric and symmetric bounces.

The Hubble parameter H of the averaged dynamics (average) and comparison with the dynamics with ,;, (minimum) and
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K

0.001+

Average

Minimum

Unsymmetric fi-scheme
Symmetric fi-scheme

-1.6136x10° -1.6135x108 -1.6134x10°

T
-1.6132x10° -1.6131x10° -1.6130x10°

FIG. 12. The Kretschmann scalar K of the averaged dynamics and comparison with the dynamics with y;,, and the LQC fz schemes
with unsymmetric and symmetric bounces.

R
0.0
0.0:
0-0
0.0
0.01

Average

Minimum

Unsymmetric -scheme
Symmetric i-scheme

-1.6138x108 -1.6136x10° -1.6134x10

-0.01

T
7 -1.6132x108 -1.6130x10°

FIG. 13. Plots of the scalar curvature R of the averaged dynamics and comparison with the dynamics with y;, and the LQC z schemes

with unsymmetric and symmetric bounces.

TABLE I. Comparing effective dynamics.

Hinin Unsymmetric j Symmetric
Asymptotic FRW at late time Yes Yes Yes
Singularity resolution and bounce Yes Yes Yes
. . 3 _ 3 3 16
Critical density at the bounce TN NEAN/S) (for p=1) SFF A Y TERIITN Pax
dS phase in the past to the bounce Yes Yes No
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bo

3.x107°
2.5%x1078
2.x107°

1.5x1078

1.x1078

5.x1077

T
0 1x107 2x107 3x107 4x107 5x107

FIG. 14. The plot of by during the inflation. 7 = 0 is the pivot
time. During the inflation by ~ 10~%mp, so fv/Aby ~ 107 (we
set # = 1 and v/A = 10/, in this solution) in sines and cosines in
Eqgs. (7.7)—~7.9).

dynamics in Refs. [14,39] with an unsymmetric bounce and
the traditional LQC effective dynamics in Ref. [5] with a
symmetric bounce). We observe that the u,,,-scheme
effective dynamics share the same features as the ji-scheme
LQC with unsymmetric bounce, although A in their dS
phases take different values.

For both the p,,,;,-scheme and average effective dynamics,
Paust DECOmMes negative near the bounce, but the total density p
is positive. Thus, the energy density of the scalar field plays
the dominant role in the critical density p,. In the dS phase,
both p and pg, are positive and approximately coincide,
while the energy density of the scalar field becomes
negligible. Figure 15 plots the evolution of p and pg, in
both the p,;,-scheme and average effective dynamics.
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IX. EFFECTIVE HAMILTONIAN AND
POISSON BRACKET

The effective dynamics of the LQC iz scheme are given
by the Hamilton’s equations from the LQC Hamiltonian

which replace y by 1/A/Py(7) at the level of Hamiltonian.
The average and pu,,;,-scheme effective dynamics analyzed
here are given by imposing certain dynamical p(z) at the
level of EOMs (5.45)—(5.47), so they give different dynam-
ics comparing to the LQC z scheme. However, we can
extract the effective Hamiltonian H . and effective Poisson
bracket {-, - }.¢ for the u,;,, scheme, such that the zi-scheme
dynamics is equivalent to the Hamilton’s equations from
Hegr and {-, -}y

We turn off the scalar fields ¢, and 7, and cosmological
constant A for simplicity. It turns out to be convenient

to use by and Vy = P?)/ ? to express Hqg. Our aim is to
find {Vy, bo}er and H(bg, Vo) to write Egs. (6.9) and
(6.10) as

bO = _{VO’ bO}effaVUHeff'
(9.1)

VO = {VO’ bO}effaboHefﬁ

These equations imply that

i’oaboHeff + VoaVoHeff =0, (9.2)

which is the conservation of H ;. Here 1'90 and V,, are given
by Egs. (6.9) and (6.10). The general solution of this
equation is

Average

sgn(p)

—— Pdust
Protal

e 4

-1

T
B

The evolution of p and py, in both the y,;,-scheme and average effective dynamics. The solid curves plot p, while the dashed

horizontal lines plot sgn(p). The vertical orange dashed lines label the instance of bounce 7.
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by
H = ]—'(VO exp {/ dx&(p, A,x)] >,

6vV/Ap cos(fVAx) (B> — (1 + f*) cos(2pv/Ax))

E=

where F is an arbitrary single-variable function. To determine F, we take the limit A — O:

H — F(b§Vy).

—6

Comparing to the classical Hamiltonian of FRW cosmology, we obtain F(b3V,) = $b3V, and, therefore,

K

b{]
H. st :gvo exp {/ dx&(p, Avx):|'
1

Its expansion in A gives

6 1
H = p Vo |bE - §Aﬁ2bg(bg -1)(38* +4)

1
405

which can be compared with the ji-scheme Hamiltonian in LQC:

6y sin® (BVAby) (=5 + (° + 1) cos (2BV/Aby) + 1)
LQe = 7o 202A

6
K

Hg and Hyoc share the same classical limit as A — 0, while having different O(A) corrections.
The effective Poisson bracket is given by

{Vo.bolegs = Vo _ Vo {—/bndxé(/}Ax)]
070 elt OpHeit  SVoE(B. A, by) P 1 U

V() - K

SVoE(B. A by)  96pA
— 4% cos (2BboV/A) + (B2 + 1) cos (4byV/A) — 1).

(3% + 4bg VA2 sin (2BbyVA) — (B + B) sin (48byV/A)]

We can expand {V, by} in A:

K K K
- A2 2 4 42 1) — AZ 44 2
1 3 M+ + 1) — o p(458* + 758

+ (458% — 15087 — 208)b3 — 10(34% + 4)2b% + 32) + O(A?),

{Vo, bO}eff =

which reduces to the classical limit (equivalent to {P, K }ejassical = 5) a8 & = 0.

B — DVA cos(pvAx)x — (1 + 2)VA cos(3pv/Ax)x — cos(fv/Ax)? sin(fv/Ax) + 2 sin(fv/Ax)>

A2BD3 (D3 — 1)(135(8% + 2)p% + 2(458% + T54% + 32)b3 + 144) + O(A%) |,

1 2
=-V, bg—gAﬁ2(3ﬂ2+4)bg+Eﬁ4(15ﬂ2+16)b8A2+0(A3)}

(9.3)

(9.4)

(9.10)

(9.11)

The above H.; is for the u.;,-scheme effective dynamics. Unfortunately, we are not able to obtain the effective
Hamiltonian for the average effective dynamics since (Po[#min]» bo|ftmin]) are complicated functions of (P, by).” However,

% (Po[pmin] bo[pmin]) and (Py, by) evolve from the same final condition with different EOMS, 0 (Pg[tmin]. bo[tmin]) can be seen as

functions of (P, by).
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Fig. 5 indicates that the average effective dynamics
coincides with the u,,;, scheme in both the dS and FRW
phases, so the above H . should approximate the effective
Hamiltonian of the averaged effective dynamics in these
two phases.

X. COSMOLOGICAL PERTURBATIONS

A. Linearization of EOMs

We insert perturbations Egs. (5.3) and (5.4) in the EOMs
(4.18) and linearize, followed by the Fourier transform
(5.7) on the fixed lattice (with fixed x). We consider both
situations of the average and u,,;,-scheme cosmological
dynamics as the background. These two situations corre-

spond to the replacements y — fi(7) = 21/A/Py|pmin] (7)
and p = ppin(7) = \/A/Polpmin] (7), respectively. Again

due to that all intervals [z;,7;.,] are very small, we

approximate V”(r, 1?) as a smooth function [allowed by
Eq. (5.33)] and

".‘/P(T' I_(') ~ Vp(Ti+1’ k)y,- - Vp(Ti’ k)y,-
v Tit1 — T 7

(10.1)

similar to the approximation for Eqs. (5.42)—(5.44). We

obtain the following linearized EOMs for each mode k:
|

V(0. 8) = U2, (A, . ) V(1. ), (10.2)
where U, depends on 7 through the background fields
Py(7), Ko(7), ¢o(r), and my(r). For simplicity, we are
going to assume that k has only one nonzero component
k* =k, ie.,

k = (k,0,0). (10.3)
The derivation of Eq. (10.2) is carried out by expanding
S[Z, u] up to quadratic order in perturbations followed by
variations. The Mathematica code of the derivation can be
downloaded in Ref. [35], where one can find the explicit

expression of the 20 x 20 matrix U?, (A, 7, k).

The path integral (5.24) needs to integrate over SU(2)
gauge transformation u(?) at every z; of changing the lattice.
The variation of u(®) gives the closure condition (4.4) at z;.
When [z;,7;,;] are small, we make the continuous-time
approximation as the above. Then the closure condition is
imposed approximately at all time through out the evolu-
tion. Because of the spatial homogeneity, the closure
condition is satisfied exactly for both the p;,-scheme
and average effective cosmological backgrounds. For
cosmological perturbations, the linearized closure condi-
tion (4.4) reads

0 = Pol(7 — V%) sin(BuKo) — (V15 + 717) cos(FuKo) — 1)
+ BKo[=iV"' sin(kpu) + V' cos(kpu) — VO sin(f2uK,) + VO sin(f*ukK,)
+ V7 cos(BPuKy) + V& cos(fPuky) — VI = V7 — V8,
0 = Pofcos(kf) (714 sin(FuKo) + 717 cos(FKo) — V1%) — i sin(kfi) (V14 sin( Ko )
+ VB3 cos(fPuK o) — V13) = V' sin(f2uK,) + V'8 cos(f*uKo) — V']
+ PRoliVS (ki) sin(FKo) — cos(kpu) (79 sin(FuKo) + T cos(FuKo))
+ (=V? + iV*sin(kpu)) cos(f*uKy) + V8 sin(uk,) + V4 + V°,
0 = Py~ cos(kpu) (V" sin(fuKo) — V'*(cos(fuK) — 1)) + i sin(kfpu) (V" sin(f*uK)
— V! cos(B2uKo) + V') + V'O sin(fuK,) + V' cos(BuKo) — V]
+ BKocos (kpu) (V* sin(B*uK) — V? cos(f*uK,)) — i sin(kpu) (V* sin(f*uK,)

— V3 cos(fPukKy)) — V7 sin(p?uk ) — VO cos(puky) + V° + VO,

(10.4)

where V7 = V?(z, k). is ji or piy, for the average or i -scheme backgrounds. In both Egs. (10.2) and (10.4), u appears in

two types of combinations in sines and cosines:

[
/'lminKO = \/Zb()[ﬂmin](f)’ ﬂmink = \/Kk m’
Py(7) _ 1
Pl @ P YA Bl

Ky = 2v/Aby(t)

(10.5)

(10.6)
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Linearized Closure
Condition

0 Minimum
10" [ Average

—5

107

10_15 | \\
1070k \

—25 |,
10 —1613323

. " n T
—1613322 —1613321 -1613320

TB

FIG. 16. Writing the linearized closure condition Egs. (10.4) as
0= Gj_i,3, this figure plots the average of absolute values,
%Zizl |G|, in the time evolution. The green vertical line is the
instance of the bounce 75 ~ —1.6133221 x 10°. The initial data
determining this solution are set at 7y = 0. Nonzero values
of perturbations at 7, are V!9 = —6.8565 x 10732-6.4871 x
107324, VI = V12 = —8.0409 x 1073 4 8.1062 x 10734, 67 =
—1.2980 x 10727-1.2568 x 10727i, and 6 = —1.2723 x 1073—
1.2826 x 10723, The values of parameters are VA=7¢ Ps
p=1073, and k= 10"%I;'. The average and p,-scheme
cosmological background are the same as in Fig. 4.

For the average or yu,,;,-scheme backgrounds, respectively,
Egs. (10.2) and (10.4) are invariant under the rescaling
(7.11) or (6.13) complemented by

k — a'/’k, on — oa’/*om. (10.7)
In particular, the momentum k is rescaled when the initial
or final condition of P, is rescaled and can be seen from the
expression of the pivot mode Kyivor = \/Po(Zpivor) H (Tpivor)-

Equations (10.2) and (10.4), derived from the full LQG,
govern the dynamics of cosmological perturbations. Given
initial conditions of V7=1-20 satisfying the closure con-
dition (10.4), the 7 evolution of V*’s can be computed by
numerically solving Egs. (10.2).

The linearized closure condition is not exactly satisfied
due to the dynamical Ilattice refinement (note that
{G%,H} =0 is satisfied only on the fixed lattice). But
the numerics demonstrates that the linearized closure
condition is approximately satisfied with high accuracy
near and in the future of the bounce (see Fig. 16 for
illustration). On the other side of the bounce, the perturba-
tion grows significantly, which causes the linearized
closure condition to be violated. For the initial condition
used in plotting Fig. 16, we have to exclude from the path
integral the part of the evolution which violates the closure
condition, in order that the path integral is not exponentially
suppressed.

B. Late-time behavior: Classical limit

Particularly at late time, the large Pg[un,] causes
Hmins  — 0 so that the continuum limit gives a good
approximation to the dynamics on the lattice. We focus
on the long-wavelength modes with |k| < 103kpiVot
within the observational range. The pivot scale kpiyo =

PO(Tpiv0t>H(Tpivot>’ where H(Tpivot> =121 x 10_61;1 =
9.37 x 1078751,

/‘min(’[pivot)|k‘ < 103kpivot/’lmin(7pivot> =9.37x 10_3{;1@7
(10.8)

F(Tpivor) k| < 10%kpioifi(Tpiver) = 18.74 x 1073¢51V/A,
(10.9)

where we have used ji = 2;,. Recall that A > 1241 /1,
and it is possible to have A ~ £3 when we set 152/t < 1;
e.g., we can set #= 10" and t = 107*. A ~ £% implies
that, for both the average and pu,,;, scheme,

fimin (Tpivor) [k| <937 x 1073 < 1 and

(Tpivor) [k <1874 x 107 < 1. (10.10)

The linearized EOMs (10.2) and closure condition (10.4)
depend on k through sin(uk) and cos(uk). Given the above
bound of k in the observational range, they can be
approximated by the expansion

. 1
sin(uk) = puk + = (uk)* + O (),

1
cos(uk) =~ 1+ 5 (uk)> + O(u*), (10.11)
at the pivot time (4 = I OF piyin). ptk < p(Tpivor)k is even
smaller after the pivot time. On the other hand, recall that

the background by = K/+/Py is small at and after the
pivot time, so that

I
sin(fuKo) = fuKo + ¢ (fuKo)* + O(w?),

cos(Puko) = 1+ 3 (Buko ) + O(u), (10.12)

and the cosmological background is approximately
classical. The small puk and fuK, permit us to make a
power series expansion in y of the linearized EOMs and
closure condition, whose leading-order approximation
gives the continuum limit of the effective dynamics, at
and after the pivot time.

By Egs. (10.8) and (10.9) and A% > 14%#} /1, a small
is needed in order that the semiclassical approximation is
valid for all k within the observational range [k| < 10°kiyor.
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The continuum limit allows us to organize perturbations
of holonomies and fluxes, V#=!---13_into scalar, tensor, and
vector modes [10], consistent with the scalar-tensor-vector
decomposition in the standard cosmological perturbation
theory. These three different modes are decoupled in the
linearized EOMs in the limit that (10.11) and (10.12)
are valid.

In the following, we focus only on the sector of scalar
mode perturbations which contain the scalar field ¢, 6z
different from the discussion in Ref. [10]. The discussion of
tensor and vector modes is identical to Ref. [10].

The scalar mode contains four DOFs V!, V2 = V3,
Vo = —V° and 6 = V*°, while V?=*>78 are set to vanish.
VP=10.--19 can be eliminated by algebraically solving ten
linear EOMs in Eq. (10.2). It reduces Eq. (10.2) to ten
differential equations of second order in z. Following the
standard cosmological perturbation theory, we define the
following variables:

1~
W= EVI’ (10.13)
=2V + (V2 4+ V)
E=- Yo , (10.14)
3/2) on f .
B —— 2P0 (X0 j‘“”) —  (10.15)
[4A +&(U(¢o) + #0)]P§ — 3P5
and Bardeen potentials
®=—-(HB-E&)+(B-£))=HE+£&",
Y=y+HB-E). (10.16)

Note that all the above perturbative variables are defined at
a given momentum k which is conserved in the evolution.
H = P},/(2Py) is the Hubble parameter with respect to the
conformal time #, and &’ is the derivative with respect to 7.
By using the background EOMs and the conservation of C;
and £, it is straightforward to check that the continuum limit
of the linearized EOMs implies the following equations:

- =0, (10.17)
29" +2(2H + H*)® + H(2Y + @)’
- _4_’; 26 [® + Z'] = U' (o) PoZ). (10.18)
where
Z=6p+dh(B-E). (10.19)

This result coincides with the classical dynamics of the scalar
mode perturbations; see, e.g., (3.48) and (3.49) in Ref. [41].

On the other hand, the linearized closure condition gives
only one nontrivial equation:

(10.20)

The dynamics of the scalar field d¢p can be conveniently
studied with the Mukhanov-Sasaki variable [42]

Q:= 5@—456%. (10.21)

A closely related quantity is the perturbation of the scalar
curvature:

H(H® + )
which relates to Q by
(6R = ) Popause + SR> = ~HOy,. (10.23)

It recovers the standard relation between Q and 6R when
Paust = 0. The linear EOMs implies the following modified
Mukhanov-Sasaki equation:

IAVAN
Q" +2HQ' + 120 + BPOU”((;&O) _x <P0(¢o) > ]Q

2P, \ " H
2\ /
KPdust <Po(¢6) > ( —1
=- TP (B 4+ yH )
245 H
kP, 0¢/
- . (5pdust + 3pdustl//)’ (1024)
4H
10—1945k
10—20.0k
10705}
10—21.0k
l; 5.0>‘<105 1.0>;1o6 1.5>;1o6 2.0;1067-
FIG. 17. Plot of the right-hand side of Eq. (10.24) in the

late-time evolution: 7 =0 is the pivot time. The nonzero
initial perturbations at 7=0 are V'0=8.7864 x 10717+
(3.7087 x 107 13)i, V1 = V12 =4.4689 x 1013, V!9 = 8.5206x
1071 + (7.0711 x 107%)i, and V** = 0.000070711 (pure scalar-
mode perturbation with dpg,c = B = 0). The values of param-
eters are A = ¢3, = 1072, and k = 107!
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The modification from the standard Mukhanov-Sasaki
equation is the right-hand side (see also Refs. [43,44]
for a Mukhanov-Sasaki equation in the presence of dusts).
Equation (10.24) reduces to the standard Mukhanov-Sasaki
equation when the right-hand side of Eq. (10.24) is
negligible. Indeed, we show that, with the suitable initial
condition, evolution by Eq. (10.2) gives the negligible
right-hand side of Eq. (10.24) after the pivot time: The
right-hand side of Eq. (10.24) is ~107'3 (see Fig. 17), while
terms in the left-hand side are much larger than 107'3,
Therefore, in the late-time evolution after the pivot time,
Eq. (10.2) can be well approximated by the standard
Mukhanov-Sasaki equation with a vanishing right-hand
side in Eq. (10.24).

XI. OUTLOOK

Finally, we would like to mention a few future perspec-
tives of our program: First, given our proposal of the LQG
evolution with dynamical lattice, the map 7, , trans-
forming between different spatial lattices should be better
understood in the future, especially in the aspect of the
relation with coarse grain and renormalization. As men-
tioned in Sec. V B, the transformation between different
lattices might relate to the Wilsonian renormalization
procedure of integrating out high-frequency modes on
the lattice. This procedure should provide the correction
to the action in the lattice path integral. We expect that this
procedure should closely relate to the Hamiltonian renorm-
alization program in Refs. [29,45]. The study of Z, ,  is
expected to understand how to restore the unitarity in the
path integral (5.24).

Moreover, the choices of Z,, ,  are totally free as long as
they satisfy requirements (i) and (ii) in Sec. VA. Such
ambiguities come from the freedom of selecting the
spacetime lattice. The lattice dependence always happens
in the path integral approach in LQG, such as spin foam
models and the path integral formulation that we start from.
We would expect these ambiguities should be removed by

|

the renormalization of the theory, where a unique well-
defined continuum limit of the theory can be derived as in
Ref. [29]. Nonetheless, the nonrenormalized theory already
can reveal some qualitative features for us. For example, as
shown in the paper, the appearance of the bounce and dS
region happens for both schemes. By taking into account
the requirement for selecting the spacetime lattice or the
improved lattice dynamics, we would like to view these
results as a general feature of the theory.

Second, on the cosmological perturbation theory, some
future research should be spent on understanding the initial
state of cosmology. One advantage of our result is the dS
phase on the other side of the bounce. There is the preferred
Bunch-Davies vacuum state from the viewpoint of quantum
field theories on curved spacetime. There have been studies
of applying the Bunch-Davies vacuum as the initial state of
LQC [46]. We have to understand how to translate the
Bunch-Davies vacuum state to the framework of the full
LQG, in order to apply to the initial state in our program. A
related perspective is the O(£%) correction to the cosmo-
logical perturbation theory. The recent work in Ref. [13]
computes the O(¢£%) correction to the expectation value of
the physical Hamiltonian at the coherent state peaked at the
homogeneous and isotropic data. The next step is to
generalize the O(¢%) computation to include cosmological
perturbations.
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APPENDIX A: DISCRETIZING AND
QUANTIZING SCALAR-FIELD CONTRIBUTIONS
OF CONSTRAINTS

The following discretization of cotriad e{ is frequently
used in this Appendix:

A o )e“bCeijkE;;E’gTa I n(e) [E/, EX|
el:ei*:* ) — — — — eei.i
2 2 el 2 2N )

1 ey [ dx'dxE], [ dx'dx/EE ¢
x/ dx’ei:—sgn(e)e €]kf.x.x p J dx'dxEg 7 (A1)
Cuis; 2 [ dx'dxidx*/det(q) 2
(Q) a4ﬂ2s €uh6€ijksisk Pb(ev:ﬂ)zpb(@v;j—) Sis]_ Ph(ez';k+)4_Ph(ezv;k—) 74
~ sgn : : r
2 isjskvv 2
— Sgn(Q) a4ﬁ2si abe g iph(eijL) - pb(e%‘lj—) pb(ev;kJr) - pb(ev;k—)
2V, L) 4 4
8
= _h(ev;isi>{h(eﬂ;isi)_lv VL} (A2)

Pk
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In this Appendix, we denote by x' the coordinate along e, s,- Moreover, we have the following relations of z%:

a b 1 c a b 1 b
|:%7%:| :_Z[aa’ab] :_ié'abc(ic/2:€“bC%, Tr <T272> :_Eéab’ Tr(r“%) :_5ab’
(T — pygagtory — Lo ! (A3)
T S = —2i€upe = — = €ape-
2292 8 6°6°0 8 abc 4 abc
What to be quantized is not C5 but sgn(e)C5. sgn(e) can be discretized in the cube [, . bounded by e, ,, €,2.,,
and e, .:
Jo.  dxdetet [ dxgielfe ahce“ehek 4 Jo.  dPxe*Tr(e;eje;)
Sgn(e)l/ — .YIS2.Y3 3 g — S].Y2S3 — g] YZT’;
EY]
fDx,w d*x\/det(q) fDm . d*x+/det(q) fDmm xy/det(q)
_ >% kT ( (h(e s ) {h(eys,)™ h Vv}h(ep,jxj){h(ey;js/_) ,Vv}h(ev;ksk){h(ek)_l, V.
S185283 11;/3V11)/3Vi/3

- slszs3€”k
K

Tr(h(e,, ,s>{h< i)™ Vi (e jo ) {h(ey s )71 Vi (e, ) (e s )™ V)
16

2 >3<ﬂ3 >s1s2s3€”k

h(eblﬁ){h<evjﬁ)_lvv€/3}h(evjw){h(evjﬁ)_lvvﬁ/3}h(eukn){h<emkn)_lvv%/3})

_2
3 \«xp
2
3
-8

We average the above result over all eight cubes at » (summing over s, s,, 53 and divide by 8) and quantize:

— 9x16 .
sgn(e), = (W> ZS152S3€”k

518783
Tr(h(eyis, ) (e pis, )™ Ve herys, ) (e rs,) ™ VP 1R(e i) [ (errs,) ™ V7))
9x 16

= 56—/};> Z S1S2S3€ijkTr<Q2/3(ev;isl)QZ/B(e@;jsz)Q2/3<ev;ks3))7
P

$15283

where
Qf(e) = iTr(z*h(e)[h(e)™", V3]),  Q,(e) = Q“(e)—: —ih(e)[h(e)™", V). (A4)

The scalar Hamiltonian constraint reads

CS = dl o) an’ —|— \/det )q'*(D; p) VIDip + \/det(q)[U, () + sgn(e)Us ()]
et
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Discretization of sgn(e)CS gives

/ d*xsgn(e)CS
O

S15293

n(e n(e) ELEF
-/ d3x[ sente) o se0e) Eabi  py 1010 4 + son(e)/@ot@)Us (¢) + /aU(@) Us (@)
Oy eyss det(q) 2 det(q)

BPxa’

sgn / /
5753 x \% det S19253 S19253
sgn(e) / 'kj/ ~ k(/ : )T/ K
+ dx'dx"E; | dx'dx'Ej, dx'D;¢ dx*Dy¢p
szlsl,\-m d’xy/det(q) ’

4 N
+ [_§/D d3xe‘1kTr(e,-ejek)] Ui(¢) + 515253V, Us(¢h)

515253

= casam ()T + 51523 D (025X 1), X0 61 () 6 g0
3
+ |:_§ (%) eijkTr(h(ev;is,-){h(ev;is,-)_] ’ Vv}h(ev;jsj){h<ev;jsj)_1’ Vv}h(ev;ksk){h<€v;ksk)_] ’ Vv}) Ul (¢)
+ S1S2S3V,}U2(¢),

where [ d’xm = sys5537(v) and

S15293

Rx
[ @D Ry(htes biaCerss)) = #(0) = 50,
Averaging %lesm 515,53... followed by quantization, we obtain

éﬁ:%(—sgnv(e))n<v>n<v>f+;(—Sg“( Ni@srg 5 S st 6l 600 o o10)

s,szx; J.k
2/ 8 \31
“<m> D sisysyel

s 5253

Tr(h(ev;isl)[h(ev;isl)_l ’ Vv]h(ev jsz)[h(ev jsz)_] ’ V@]h( €y, ks;)[h( v; ks;)_l ’ V@])Ul (¢) + V?/U2(¢)

on(e n(e)\ a*p? R) 3, T s(R) A
:%<sgv( )> #(0)#(0)" + 5 (sg ) T S S X (s X)) 5 o)

$18283 j.k

R D st T, v i) (e L) + V.U
7

S15253

sgn(e sgn(e)) a*p? , R A R s
= % (—gv( )) a(v)a(v)" +% ( gv( )) Tﬁ > Zsté(v)st];(v)(5§.VS‘;)¢(11))T5,(H“,‘)¢(1})
2

@ >
ﬁ
©
o
©
~
=
S
=
+
<
<

-
=
&

82
(f%ﬁf Zs]s2s3€”kTr[

$15253

APPENDIX B: CORRECTIONS OF &, ,,(%) IN EOMS

We show below the variation of &, | ,(‘;’) vanishes in the time continuous limit 67 — 0. We denote by 6, the holomorphic
derivative g,y or 9, (,) (the antiholomorphic derivative 67, = Jg(,) or J;(,) can be derived similarly):
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B ot
52,~£i+l.i (ﬁ)

_ng ior (wh [Hwh) sc(wh [2CHIwE) s (wh, Hlyh)
=570z T T ok Ao + 10z, ——
T <Wz,.+] |ll/z,.> <WZM |l//z,-> <l//z,»+l |Wz,.>
G A wh 2GS R
T A O AP U ML 7
| ioe W MWL) L wh, el Zi (wh lwh)
hewy, ) h g )
2 ph who|e(%) |yl R h
a—iéZW—i—hméZ[K i (h)l Z’>+i52 <”’Z|h |‘fz>, (67 — 0), (B1)
Wilwy) o0 s lvs) W2lwz)
s (wh, [8(5)|wh,)
= ;moz, R yh
4 <‘l/zi+||’//zi>
i (wh [BCDI6w 5 ) wh lwh) — (wh  [BGwh ) (wh  162wh)
570 w3, lwh)?
=0, (B2)

where in step (B1) we denote Z,,| — Z;, = Z and apply
Egs. (4.9) and (4.10) for z(v) and analogs for g(e) in
Ref. [8]. We use the strong limit &()|y) — 0 as 67 — 0
(for all w in the domain of H) in the last step.

APPENDIX C: PROPERTIES OF T, :
I. APPROXIMATE ISOMETRY

Given f17f2 (S H
by Z,,

s._,» the inner product of their images

_, is given by the following integral:

<I7'is7i—1f2 |IJ/[’7[—1f1 >Hh.

— [ 4202 s [,

n h
% <f2|WZ;‘2(Vf_1)> <wzl](l(7i—1)|f1> (Cl)
||W§2(7i—1)|| ||ll/gl(7i—l)||

where du, du;, and du, are Haar integrals of SU(2) gauge
transformations. When f; = f, is any coherent state
li/go(yi_]) € H,_,, Eq. (C3) integrates three Gaussian-like
functions peaked at Z,(y;_;) = Z(yi—1) = Zo(yi—1) up to
gauge transformations, so Eq. (C3) is finite. The coherent
states and their finite linear combinations are dense in H
soZ, , . is densely defined on H, .

Vi-1?

-1
|

& (e)

In order to show 7, to approximate an isometry from
H,_, = H,, [of SU(2) gauge invariant states], it is suffi-
cient to show that

Ty, = [ 920l )0, (€2)
approximates an isometry from H(y),_l - H?i, since the
(group averaging) projection from H,(,) to H, preserves
the inner product. Given f,, f, € H"_, the inner product

Yi-1?
of their images by 7 (y’i%,_l is given by the following integral:

<I§’)ix7i—lf2 I(y)isyi—lfl >H(,)l.
— [ 42002211 )

<f2|w§2(7[71)> <w§l(7i—l)|fl>
02l W26l

(C3)

Recalling Eqs. (2.39) and (2.47), the overlap between
two coherent states labeled by Z; = (¢;,z;) and Z, =

(92, 22) is given by

<l/~/§2|‘i’§,> = H(l/?;z(e)|1/~/;1(6)>H<li’?2(1,)|¢’?](y)>’ (C4)

e v

~ - K(g2(e).91(e)
Wyl e)) =€ {

sinh(&,;(e))

= erK(@:(e) 1)+ (ga(e).1(e))

\/sinh (pi(e))sinh (pz(e))}
1

pi(e)pa(e)
(Cs)
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(7 ) = PRI ), (co
A T B 1 .
K(ga(e), gi(e)) = &xe) —Epz(e) _Epl(e> ) &21(e) = arccosh 5“[92(6) gi(e)] ). (C7)
sinh (p; (e)) sinh (py(e))]'/? 23 (e)
J(g.(e), g1(e :1n<[ - . C8
(2(0)-91()) Pie)ps(e) Sinh (231()) “
The norm of w2 is given by
w3l =TT I T vkl (C9)
2 /7e! 4\ 12 p(e) o 2 /Te!l4\ 12
t S el e PN s = (Y mpy(g(e))
Wil = (35) || = () e 10
Iy, | = B0zt (1)
_p(e)* | [sinh(p(e))]"/?
m,(g(e)) = o ln[ ) . (C12)

We have neglected contributions of O(7®). We write explicitly the integration measure dZ,(y,_;)dZ,(y,_1) =
dgi (ri=1)dga (rim1)dzi (i1)dza(viz1):

dgy(ri-1)dg2(vi1) (C13)

= H d pi(e)d’ py(e)dup(hi(e))duy (hy(e))

eCyiy

- sin?(6, (e)/2)sin?(0,(e)/2
el;[ 1621 P1 d Pz(e)d391(€)d392(€) 0 é ) 922 )

= H % pl d pz(e)d361 d392 H eMo(gi(e))+mqy(ga(e ))
= 1674t
eCri- eCyi
d?z; (v)d%z,(v d¢py (v)dzy (v)dep (v)dm; (v
dzy (yi-1)dza(rio1) = H 1(7[3712 o) _ H 1(2) lz(az)”zhlz( )i (2) (C14)
VEY;_1 VEY_

In addition, we write f(Z) = (y2|f ) as a holomorphic function on the phase space.
Applying the above formulas, (Z9 ,  f,|Z9 ,  f1) can be expressed as

v, | [ @pile)dpa(e)d0,(e)d0,(e) [] depi(v)da,(v)dep, (v)day(v)
/

eCyiy VEYi-

x efririet f5(Zy(rin ) F1(Z1(7ich)). (C15)

where

21320114\ 3N, 1 Ny,
Ny = 3271-9/2[6 2612ﬂ2h2 | (C16)
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€ = 32 LK 0(00.1(6) + (02,1 (6))]

eCy;

+ Z [mo(g1(€)) + mg(g2(e)) —m,(g1(e)) —m,(g2(e))]

hz{@ V(o z<v>zZ<v>—§zl<v>z1<v>}—%Z[zz<v>Z2<v>+zl<v>zl<v>1. (c17)

N3 | and 3N3 | are the total number of vertices and edges, respectively, in y;_;
We make the following change of variables:

- 2u? -

0“(e;(v)) = uCi(i).  ple(v)) = 2510 f(), (o) =p'OGE),  p=
where we have set L = 1 and y is either y; or u;_; (N is either N; or N;_;). 7i € Z(N)? labels the vertices. In the continuum
limit as u — 0, C¢(n), P¢(in), ¢(n), and I1(77) approach the continuous fields, when C¢(#), P§(7i), ¢(7i), and I1(7i) are the
corresponding continuous fields evaluated at the vertices {7}.

Both N; and N;_; can be arbitrarily large. We expand the exponent &, .

v (C18)

_, in u; and p,_; (the expansions are analytic):

&2
Eypy = —12NL 11112_4_ Z (1 (71)* + (7 Zﬂz 1€, ()7 + C5,(71)?]
ne€y;_, "GJ’z
(7) - . 1—6 - - - -
+ S e )~y - zgmmcw — CY NP () + P4 ()]
ney; ney;
[ (1) — hZﬂ [Ty (72)¢py (77) — TL, (i) o (7)) + O (u*). (C19)
ney, ney;

We assume N,, N,_; > 1. Truncating £, ,_ to u* gives a polynomial of C (i), P§ (i), ¢ (i), and II(#). For finite C{ (i),
P (i), ¢(7i), and T1(7i) (with upper bound independent of y), Y ; #3(...) is a Riemann sum and approximates the finite

integral of a bounded function over the compact T3, while O(u*) ~ > p*(...) ~ O(1/N) is small.
Recall the Fourier transformation

o), = > &Td(m), (C20)

where ®(7i) = {C§(ii), P§ (i), ¢(ii),T1(71) } and (/) = O for m € Z(N;)*\Z(N,_,)>. We obtain that

Zm [y (7) = C5,(A)]* = Z UIN(Cl (=) = C(=m)][C, (i) — C5; ()]
ney; N;)?
= Z puiN3(Cy (=) = €, (=m)][C; () = €5, ()]
meZ(N; )3
a (712
= Zﬂz 3 1, (1) = C5,(n)]
HEYioy Ni-
_ Hi1 ca (i
l Zﬂz €5 () = €5, (), (C21)
Hi €y

where we have used that C¢ (i) = 0 for 7 € Z(N;)*\Z(N;_,)? in the second step. Similarly, we have the following
examples:
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D ) = CIPL (R + Py ()] = 32 ilCt() = CmIPH () + Py
> [ (7) = o) = ”’ 3 )~ ) (C22)

As a result, £ transforms to

VisVi-1
a2
€y = —12N7, 1n2—4— D i) + i) Zu, J[Ca, ()2 + €8,(7)]
1€y neyl
—6u; a () - €8 (i) . o
24; Mﬂ l Z Hia [C1y (1) = €3 (7)) 6t zﬂ Z/h 1€, () = €3, ()] [P, (1) + P, (7))
U ojeyi ey,
ffh”,i ST — ha + 5 S Mol (7) = Ty R ()] + O, (C23)
i ey ne}/,

where all quantities are on the coarser lattice y;_; and all sums are over 7 € y;_;. The constant
Hi-1/Hi =1+ O(1/N) (C24)

is close to 1, when N;,N,_; > 1 and N; is close to N;_; (e.g., N; = N;_; + 1).
The computation in Eq. (C21) can be generalize to higher order in yu:

Z/‘i‘cfm ..... p,q)/)l (ﬁ) g (ﬁ) = Z N3fp, ..... Pl m1+ iy, Oq) : (ml) (I)m(ml)

= Z N3f/)| ..... Pl m,+ +m,0q) ( )"'q)pl(’/h)l)

k N13 21 (7 217
= ZﬂiNTfp, ..... @7 (7). 07 (1)

HEY,’—] i1
..... @71 (). D (1), (C25)
ﬂl ney,
where f, , are some numerical coefficients.

Viewing ,u,, p;—1 as continuous parameters of £, , , when we take the limit yt; — p;_y, pf = /ut= — 1 reduces &, ,  to
the function of C{ (i), P{(ii), ¢ (i), I1(77) on the coarser lattice y;_,. Given that the y; dependence of £, , = comes from
<1/122 |V’z~ ) in the integrand of Eq. (C3), we obtain

o lh |k
M12E71<W22(Yi) Wzl(%‘)> < |WZ] (ric1 > (C26)

In other words, due to the constraint Egs. (5.19) and (5.20), the overlap (17/22 ) |1,7/§1 (r)> of coherent states on the finer lattice

y; is a deformation of <17/§ () \lpg ) on the coarser lattice y;_,
In the integral (C3), all 1ngredlents other than <‘//z |‘/’z“ > depend only on y,_;; therefore,

lim (Z0 . fo|Z).,, f1>Ho —/dzl(yi—l)dZZ(Yi—l)ﬂhm VY L LB V&Y

Hi—Hi-1 i~ Hi-1
— [ o) W 9 VS D)

= <f2|f1>H9iil- (C27)
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Interchanging the limit and integral in the first step follows
from the dominated convergence theorem, with the domi-
nating function

g(ZZ(Yi)’Zl(Yi)) =

A

Sup lllzz (vi)

Hi€luisi—e.pini]

(C28)

which is a Gaussian-type function peaked at Z(y;) =
Zy(ri)-

When both N; and N;_; are large and N; — N;_; = O(1),
we have y;/u;_; = 1+ O(1/N); thus, Eq. (C27) implies

< Viie f2|Iy, Vi f1>H(y)1 = <f2|f1>H(r)l_1 [1 + 0<1/N)]
(C29)

Thus, 79 ,

isometry from H)

(and, therefore, 7, , ) approximates to an
0

to H, (from H, to H,).

|

= N |h

APPENDIX D: PROPERTIES OF T, :
II. EQUATIONS OF MOTION

Recall the definition of the linear map 7, , :

HJ’H - HYi:
h \_Ph
I}’h?ifl = /dzo(yi—l)| [Zo ) ]>< [ZO(YI )]| ’ (Dl)
[z 7 |
Zo(ri) = Z(ui- F(, @), Zo(vimr) = Z(pier . Fy, @y, ),
(D2)
where (i)y,- and d~>yH are constrained by
(ip(’l'i, 77’1)},1_ = (i)p(Ti, i’?l)yi_] s 77’1 S Z(Ni_1)3, (D3)
(i)p(Tivr?l)yi = 0, 77’1 S Z(Ni)3\Z(Ni—l)3' (D4)

When inserting Z, , , in Ajzz and considering the
variation with respect to Zy(y;), the integral of Zy(y;)
involves [recall Eq. (3.4)]

fl ~h
(Zo(7:) ]>< [Zo(riz l]|l//ZN(7i—l)>...

wh ¥
[ oty P

(7

N

= /dZO(}'i—l)dulduzl/[Z] oo K2 D) Zor) /1A KA(Zo (v ) Zu(rima)) T L L

(D5)

where IC(Z,Z') is expressed in Eq. (3.10). The exponent contains two C’s on y; and y;_;, respectively.

We focus on cosmological perturbations (5.3) and (5.4) applied to Z,(v;), Zo(7:), Zo(yi-1), Zy(ri—1) and expand
K(Z\(y:), Zo(yi)) + K(Zo(yiz1), Zn(7i—1)) to quadratic order in V7. The expansion to quadratic order is sufficient for

studying the linear perturbation theory:

K(Zi (i) Zo(v:)) + K(Zo(¥i=1), Zn(viz1)) =

+ Z ,Cpa

veV(y;)

:KO}' +]C07 |

P

meZ(N;_,)3

where Ky, depend on yu; and u; ; and the homoge-
neous-isotropic backgrounds in Z,(y;), Zo(7i), Zo(7i-1),
and Zy(yi—y). V°(v), , and V°(v), are perturbations
in Zy(y;) and Zy(y,_1), and --- contains linear and
quadratic terms involving perturbations in Z,(y;) and
Zyn(rvic1)- Zo(y;) and Zy(y,—;) have the same back-
ground Py, K, ¢, and 7z, and nonzero Fourier modes

Zylut

KO%‘ + ]CO’VI'—I + Z ’Cfl)yivp(v)yi + Z K:ll)}’ 1Vﬂ(v)}’i—1 +-

vEV(r:) vEV(ri1)
VG 1}> + Z IC/ZM}’, Vp U)}’f—l VG(U)VH +
vEV(rio1)
(ICP 3+K1y ]Ml 1) p( )
+ K, )V (=) Ve (i) + - (D6)
|
Ve(m) = V”(n?)h = V”(ﬁi)m of perturbations on y; and

Yi-1 by the definition of 7, , .

Considering ¢ — 0 and the stationary phase approxima-
tion of the integral in Eq. (DS5), the variations with respect
to the background 68 = (6P, 5Ky, 8¢y, 57y) and pertur-
bations 8V” (i) and 7 € Z(N,_,) of Zy(y,_,) give
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1)
2 (Ko, + Ky, (07)
(’qu;lui_3 + ,Cll)y,v,lﬂi_—?’l)5r71,0
+2(K7, ui? + K7, i)V (=) +---. (D8)

The variational principle for integrals over Z,(y;) and
Zn(riz1) in Az z) gives Zi(y;) = Zo(y:) and Zy(yio1) =
Zo(yi—1) (as the initial and final conditions for the

(P, Ko, ¢po, mp) are the background data in Zy(y,_,) and
Zo(y;) and are the final (initial) data of the evolution
of the background before (after) z;. Although Eq. (D7)
is not precisely zero due to u; # u;_;, it is arbitrarily
small when N;, N;_; > 1, and N, —N,_; ~ O(1), since
it =y = (1= NY/NZ) ~ i20(1/N,). The assump-
tions N;, N;_; > 1, and N; — N;_; ~ O(1) also qualify the
continuous approximation in, e.g., Eqgs. (5.42)—(5.44).

In Eq. (D8), (K7 ui>+ K7, i) vanishes by

Hamiltonian evolutions after and before z; [8]). applying  Z,(y;) :ZO(%’) and  Zy(yi-1) = Zo(ri-1)-
Applying this result to Eq. (D7) gives 2K, ui? + K57, ui?)Vo(=ii) 4---- in Eq. (D8) is
reduced to the following by Z(y;) = Zy(y;) and
2iP, ikmy ikgg Zn(ric1) = Zo(yisy):
33 (o0, 220 270 ) D9 N\Yi-1 o\Vi-1)
(/’lz ﬂl—l)( aQﬂ 2612 2a2 ( )
|
P (i)
00 0 O 0 0 0 0
4i(pi—y sin(u;BKo)—p; sin(u;-1 fKy)) 4i(pi—y cos(pipKo)—p; cos(pi fKo) —pti1 +42)
0000 a*PuiipifKo a*PuiipifKo 00
4i(pi (= cos(uiBKo))+n; cos(ui1SKo) i —Hi) 4i(pizy sin(uiPKo)—p; sin(u;i_1 fKy))
0000 a*Pui_ipifKo a*PuiipifKo 00
0 0 0 O 0 0 0 0
4iPo (p; sin(u;_1 fKo ) =pi sin(piBKo)) _ 4iPo(piy cos(uiPKo)—pi cos(pi—1BKo)—pi_1+4:)
0000 a*Puii K a*PuiifKG 00
4iPo(piy cos(uipKo)—p; cos(pi 1 fKo) =1 +4i) 4iPo(u; sin(u; 1 fKo)—pi- sin(u;fKy))

0 0 O 0 uzﬁ”i—lﬂiﬂK(z) uzﬁﬂ,-fmi/”KS O 0

0 0 0 O 0 0 0 0

0 0 0 O 0 0 0 0
~ O(1/N;), (D10)

where V7 (i) are the final (initial) data of the Hamiltonian
evolution before (after) z;.

Given the Hamiltonian evolution in [z;_;, 7;] and [z;, 7,,{]
and their solutions which are connected by identifying
the final and initial data at z;, the variations (D7) and (D8)
vanish approximately up to errors bounded by O(1/N;).

[

These errors can be arbitrarily small if sizes of lattices
are arbitrarily large. Connecting solutions from the
Hamiltonian evolution on different lattices gives the

approximate solutions satisfying the variational principle
of the path integral Az 71(K), up to O(1/N;).
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