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In the path integral formulation of the reduced phase space loop quantum gravity (LQG), we propose a
new approach to allow the spatial cubic lattice (graph) to change dynamically in the physical time
evolution. The equations of motion of the path integral derive the effective dynamics of cosmology from the
full LQG, when we focus on solutions with homogeneous and isotropic symmetry. The resulting
cosmological effective dynamics with the dynamical lattice improves the effective dynamics obtained
earlier from the path integral with a fixed spatial lattice: The improved effective dynamics recovers the
Friedmann-Lemaître-Robertson-Walker cosmology at low energy density and resolves the big-bang
singularity with a bounce. The critical density ρc at the bounce is Planckian ρc ∼ Δ−1, where Δ is a
Planckian area serving as a certain UV cutoff of the effective theory. The effective dynamics gives the
unsymmetric bounce and has the de Sitter (dS) spacetime in the past of the bounce. The cosmological
constant Λeff of the dS spacetime is emergent from the quantum effect Λeff ∼ Δ−1. These results are
qualitatively similar to the properties of μ̄-scheme loop quantum cosmology. Moreover, we generalize the
earlier path integral formulation of the full LQG by taking into account the coupling with an additional real
scalar field, which drives the slow-roll inflation of the effective cosmological dynamics. In addition, we
discuss the cosmological perturbation theory on the dynamical lattice and the relation to the Mukhanov-
Sasaki equation.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a candidate for a
background-independent and nonperturbative theory of
quantum gravity [1–4]. Among successful subareas in
LQG, applying LQG to cosmology is a fruitful direction
in which LQG gives physical predictions and phenomeno-
logical impacts. Most LQG literature on cosmology is
based on loop quantum cosmology (LQC): a LQG-like
quantization of symmetry-reduced model with homo-
geneity and isotropy (see, e.g., [5–7]). LQC leads to the
important prediction that the big-bang singularity is
resolved with a nonsingular bounce. However, the con-
nection between LQC and the full theory of LQG has been
a long-term open problem.
In recent progress [8–10], we developed the top-down

derivations of the effective dynamics of homogeneous-and-
isotropic cosmology and perturbations from the full theory
of LQG. The key tool in our approach is the path integral
formulation of the reduced phase space LQG on a fixed

spatial cubic lattice (graph) γ (see [8,11] for details). The
semiclassical dynamics from the path integral formulation
reproduces the effective dynamics of μ0-scheme LQC,
which recovers the Friedmann-Lemaître-Robertson-Walker
(FLRW) cosmology at low energy density. Although the
μ0-scheme effective dynamics resolves the big-bang singu-
larity with a bounce, it suffers the problem that the critical
density at the bounce depends on the initial condition of the
scale factor and is not always Planckian. In LQC, the μ0
scheme is replaced by the improved μ̄ scheme, which
guarantees the critical density to be constant and Planckian.
In this work, we propose a new strategy in the full theory

of the reduced phase space LQG for overcoming the pro-
blem of the μ0-scheme effective dynamics. The key point in
our strategy is to allow the spatial cubic lattice (graph) to
change in the time evolution. Indeed, we consider a large
number of discrete time steps τi with i ¼ 1;…; m in the
evolution, such that the spatial lattices γi at different time
steps may not be the same. We still assume all γi are cubic
lattices. The LQG Hilbert space Hγi are different if γi are
different. There are more degrees of freedom (DOFs) on a
finer lattice than DOFs on the coarser lattice. With the
coherent states, we define I γi;γi−1∶Hγi−1 → Hγi which is an
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embedding when γi−1 is coarser than γi and is a projec-
tion otherwise. Inserting I γi;γi−1 between unitary time
evolutions generated by the physical Hamiltonian Ĥ on

γi and γi−1, we construct the transition amplitude
A½Z�;½Z0�ðKÞ between initial and final semiclassical states
Ψℏ

½Z� and Ψℏ
½Z0�:

A½Z�;½Z0�ðKÞ ¼ hΨℏ
½Z�je−

i
ℏĤðT−τmÞI γm;γm−1

…e−
i
ℏĤðτiþ1−τiÞI γi;γi−1e

− i
ℏĤðτi−τi−1Þ � � � jΨℏ

½Z0�i: ð1:1Þ

The initial and final states Ψℏ
½Z� and Ψℏ

½Z0� are defined on
different spatial lattices. The spatial lattice changes from
γi−1 to γi at each instance τi (i ¼ 1;…; m), while the
unitary time evolution in every time interval ½τi; τiþ1� is on
the fixed spatial lattice γi. Furthermore, we follow the
coherent state path integral method in Ref. [8] to express
A½Z�;½Z0�ðKÞ as a path integral formula. In contrast to our
earlier path integral formulation which is defined on a
hypercubic lattice, A½Z�;½Z0�ðKÞ is defined on the spacetime
lattice K whose spatial lattices change in time, similar to
Fig. 1. A½Z�;½Z0�ðKÞ may be viewed as an analog of the spin
foam model.
Based on the lattice Fourier transform of the semi-

classical data Zγi on γi, I γi;γi−1 maps the coherent state
Ψℏ

½Zγi−1 �
∈ Hγi−1 to the coherent state Ψℏ

½Zγi
� ∈ Hγi , such that

the set of nonvanishing Fourier modes in Zγi are the same as
Zγi−1 (see Sec. V for details).
By the path integral formula ofA½Z�;½Z0�ðKÞ, the dominant

contribution to A½Z�;½Z0�ðKÞ comes from the trajectory

satisfying the semiclassical equations of motion
(EOMs) from the stationary phase approximation. We
assume each time interval ½τi−1; τi� is sufficiently small so
that the EOMs can be approximated by differential
equations with smooth time τ. We look for solutions
corresponding to the homogeneous and isotropic cosmol-
ogy. We find that, fixing the initial condition, different
solutions are determined by different choices of the
spacetime lattices K. The effect of K turns out to be
an analog of an external force in the effective EOMs of
cosmology.
Among choices of the spacetime lattices K, we

propose two preferred choices and call the resulting
cosmological effective dynamics the μmin-scheme effec-
tive dynamics and the average effective dynamics,
respectively. First, the μmin-scheme effective dynamics
is resulting from choosing the finest lattice Kmin such that
an UV cutoff Δ where Δ ∼ ðlengthÞ2 is saturated at all
time steps (see Sec. VI). The UV cutoff Δ validates the ℏ
expansion of the coherent state expectation value of the

FIG. 1. ð1þ 1Þd illustration of the lattice refinement during the time evolution: Each horizontal line is a lattice γi partitioning the
spatial slice at the time τi when the lattice refinement is carried out. Each vertical line is the time evolution of a vertex in the spatial
lattice. The unitary evolution is defined in the area between two horizontal lines.
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physical Hamiltonian,1 so that the derivation of the
effective dynamics from the path integral is valid
throughout the evolution. Δ is a Planckian area when
the Barbero-Immirzi parameter β is relatively small. Δ
plays the role of the minimal physical scale of the
lattice and is an analog of the minimal area gap in
the μ̄-scheme LQC. Second, the average effective dynam-
ics is resulting from taking K to be the random lattice
(see Sec. VII). We perform the disorder average over all
K which are coarser than Kmin. The μmin-scheme and
average effective dynamics have the following remarkable
features (see Sec. VIII for details).

(i) Both effective dynamics reduce to the classical
FLRW cosmology at low energy density.

(ii) Both effective dynamics resolve the problem of the
μ0-scheme dynamics; they both resolve the big-bang
singularity and lead to bounces where the critical
density ρc ∼ 1

16πGΔ is Planckian when Δ is set to be a
Planckian area scale. In particular, the critical
density of the μmin-scheme dynamics coincides with
the prediction from the LQC with unsymmetric
bounce [14] if Δ is identified with the minimal area
gap used in LQC.

(iii) Both effective dynamics give unsymmetric bounces
and have the asymptotic de Sitter (dS) spacetime on
the other side of the bounce, similar to Ref. [14]. The
asymptotic dS spacetime has the emergent cosmo-
logical constant Λeff ∼ Δ−1.

In Sec. IX, we extract the effective cosmological
Hamiltonian and Poisson bracket for homogeneous and
isotropic DOFs from the μmin-scheme effective dynamics.
Another new aspect of this paper is taking into account

the coupling to a real scalar field in the path integral
formulation,2 in contrast to the earlier works [8,10] where
we consider only pure gravity coupling to clock fields. The
scalar field with a suitable potential drives the slow-roll
inflation in our effective cosmological dynamics.3 The
inflation provides us another motivation for letting the
spatial lattice dynamical: Suppose we use a fixed cubic
lattice γ; the geometrical lengths of the lattice edges are
dynamical and describe the scale factor in cosmology. The
inflation causes both the scale factor and the extrinsic
curvature K0 to grow exponentially. The large K0 leads to
the failure in the approximation of the μ0-scheme effective
dynamics to the FLRW cosmology unless the lattice γ is
very fine. However, fixing a very fine γ would cause the
geometrical lengths of the lattice edges to be very small
before the inflation, so that the ℏ expansion of the coherent
state expectation value of Ĥ became invalid. To resolve this

tension, we have to let the spatial lattice dynamical be such
that we have the fine lattice during the inflation and coarser
lattice at early time.
We generalize our discussion to include perturbations on

the μmin-scheme or average effective cosmological back-
ground in Sec. X. The perturbations are derived from the path
integral formulation as the first principle. The effective
dynamics of the cosmological perturbations are obtained
by linearizing the EOMs of the full theory on the effective
cosmological background.Our analysismostly focuses on the
scalar-mode perturbation on the μmin-scheme background. In
particular, we obtain the consistency result that the scalar-
mode perturbation recovers the standard Mukhanov-Sasaki
equation at late time, e.g., at the pivot time and later.
Here are our conventions of constants frequently used in

this paper: κ¼ 16πG,l2
P ¼ ℏκ, l2P ¼ ℏG, andmP ¼ ffiffiffiffiffiffiffiffiffi

ℏ=G
p

.
This paper is organized as follows: Section II reviews

some preliminaries on the reduced phase space LQG
of gravity-scalar-dust, the coherent state of the coupled
system, and the physical Hamiltonian operator. Section III
extends the coherent state path integral formulation to the
reduced phase space LQG coupled to the scalar field.
Section IV derives the EOMs from the path integral on the
fixed lattice and discusses the cosmological solution.
Section V generalizes the formalism to allow the spatial
lattice to change in time and applies the formalism to the
cosmological effective dynamics. Section VI derives the
μmin-scheme effective dynamics of cosmology. Section VII
derives the average effective dynamics of cosmology.
Section VIII discusses the properties of the μmin-scheme
and average effective dynamics and compares them to the
μ̄-scheme LQC. Section IX extracts the effective cosmo-
logical Hamiltonian and Poisson bracket from the μmin-
scheme effective dynamics. Section X derives the cosmo-
logical perturbation theory on the effective background
from the path integral formulation and compares the late-
time behavior to the Mukhanov-Sasaki equation.

II. PRELIMINARIES

A. Reduced phase space formulation

The reduced phase space formulation couples gravity to
clock fields at the classical level. In this paper, we mainly
focus on the scenario of gravity coupled to Gaussian dust
[22,23] and a real scalar field. The Gaussian dust serves as
the clock fields. The total action is given by

S ¼ SGR þ SGD þ SScalar; ð2:1Þ

where SGR is the Holst action of gravity [24]

SGR½eμI ;ΩIJ
μν� ¼

1

16πG

Z
M
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðgÞj

p
×

�
eμI e

ν
J

�
ΩIJ

μνþ
1

2β
ϵIJKLΩKL

μν

�
þ 2Λ

�
; ð2:2Þ

1This ℏ expansion is first proposed in Ref. [12] and is
computed explicitly in Ref. [13] to the first order in ℏ.

2See, e.g., [15–20] for some earlier works on coupling a scalar
field to LQG.

3See [21] for recent results on the inflaton in the reduced phase
space LQC.
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where the tetrad eμI determines the 4-metric by gμν ¼
ηIJe

μ
I e

ν
J and ΩIJ

μν is the curvature of the so(1,3) connection
ωIJ
μ . β is the Barbero-Immirzi parameter. The scalar field

action reads

SScalar½ϕ; e� ¼
1

2

Z
M
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgÞj

p
½gμνð∂μϕÞ∂νϕþUðϕÞ�;

ð2:3Þ

where the scalar potential UðϕÞ is specified later. SGD is the
action of the Gaussian dust:

SGD½ρdust; gμν; T; Sj;Wj�

¼ −
Z
M
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgÞj

p �
ρdust
2

ðgμν∂μT∂νT þ 1Þ

þ gμν∂μTðWj∂νSjÞ
�
; ð2:4Þ

where T; Sj¼1;2;3 are clock fields and define time and space
coordinates in the dust reference frame. ρdust;Wj are
Lagrange multipliers. The energy-momentum tensor of
the Gaussian dust is

Tμν ¼ ρdustUμUν − UðμWνÞ; Uμ ¼ −∂μT; Wν ¼ Wj∂νSj;

ð2:5Þ

which indicates that ρdust is the energy density and Wμ

relates to the heat flow [22].
We assumeM ≃R × Σ and make Legendre transform of

dust variables:

P ≔
δSGD
δ _T

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
fρdust½LnT� þWj½LnSj�g;

Pj ≔
δSGD
δ _Sj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
Wj½LnT�;

π ≔
δSGD
δ_ρdust

¼ 0;

πj ≔
δSGD
δ _Wj

¼ 0; ð2:6Þ

where qαβ (α, β ¼ 1, 2, 3) is the 3-metric and Ln denotes
the Lie derivative along the normal to the hypersurface Σ.
The constraint analysis [22,23] results in Hamiltonian and
diffeomorphism constraints Ctot and Ctotα , which are first-
class constraints, and eight second-class constraints z, zj,
ζ1, ζ2, s, and K:

z ¼ π; zj ¼ πj; ζ1 ¼ W1P2 −W2P1;

ζ2 ≔ W1P3 −W3P1; ð2:7Þ

s¼−
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp P1
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
ðqαβT;αT;β þ 1ÞW1

2; ð2:8Þ

K ¼ −
PP1

2W1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp þ ρdustffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp P1
3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
W1

3qαβT;αðPjS
j
;βÞ; ð2:9Þ

where T;α ≡ ∂αT. Solving second-class constraints gives

Wj ¼
Pjffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp ðqαβT;αT;β þ 1Þ1=2 ; ð2:10Þ

ρdust ¼
Pffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp ðqαβT;αT;β þ 1Þ1=2

−
qαβT;αðPjS

j
;βÞffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp ðqαβT;αT;β þ 1Þ3=2 ð2:11Þ

by a choice of sign in the ratio between Wj and Pj. These
relations simplify Ctot and Ctotα to equivalent forms:

Ctot ¼ Pþ h; h ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qαβT;αT;β

q
− qαβT;αCβ;

ð2:12Þ

Ctotα ¼ Cα þ PT;α þ PjS
j
;α; ð2:13Þ

where C and Ca are the gravity-scalar Hamiltonian and
diffeomorphism constraints from SGR þ SScalar. Note that it
is possible to have a negative ρdust. However, we always
guarantee that the total energy density ρdust þ ρs (ρs is the
energy density of the scalar field) must be non-negative, in
order that the energy condition is satisfied.
We construct the Dirac observables based on the fields in

SGR and SScalar with the help of the clock fields.
Gravity.—We use Aa

αðxÞ and Eα
aðxÞ to be canonical

variables of gravity, where Aa
αðxÞ is the real Ashtekar-

Barbero connection with gauge group SU(2) and
Eα
aðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
det q

p
eαaðxÞ is the densitized triad. a ¼ 1,

2, 3 is the Lie algebra index of su2
4. We choose basis

τa ¼ −iσa (σ⃗ are Pauli matrices) in su2. Dirac
observables are constructed relationally by parame-
trizing ðA;EÞ with values of dust fields TðxÞ≡ τ and
SjðxÞ≡ σj, i.e., Aa

j ðσ; τÞ ¼ Aa
j ðxÞjTðxÞ≡τ;SjðxÞ≡σj and

Ej
aðσ; τÞ ¼ Ej

aðxÞjTðxÞ≡τ;SjðxÞ≡σj , where σ and τ are
physical space and time coordinates of the dust
reference frame. Here, j ¼ 1, 2, 3 is the dust coor-
dinate index (e.g., Aj ¼ AαSαj ).

Real scalar.—Canonical conjugate variables of the
real scalar field are ϕðxÞ and πðxÞ. Corresponding
Dirac observables are ϕðσ; τÞ ¼ ϕðxÞjTðxÞ≡τ;SjðxÞ≡σj

and πðσ; τÞ ¼ πðxÞjTðxÞ≡τ;SjðxÞ≡σj .

4½τa
2
; τ

b

2
� ¼ − 1

4
½σa; σb� ¼ −iεabcσc=2 ¼ εabc τc

2
and Trðτa

2
τb

2
Þ ¼

− 1
2
δab.
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All the above fields are Dirac observables weakly Poisson
commutative with diffeomorphism and Hamiltonian con-
straints. They satisfy the standard Poisson bracket in the
dust frame

fEi
aðσ; τÞ; Ab

j ðσ0; τÞg ¼ 1

2
κβδijδ

b
aδ

3ðσ; σ0Þ; ð2:14Þ

fπðσ; τÞ;ϕðσ; τÞg ¼ δ3ðσ; σ0Þ; ð2:15Þ

where β is the Barbero-Immirzi parameter, κ ¼ 16πGNewton.
The above conjugate pairs and Poisson brackets define the
reduced phase space P.
The evolution in physical time τ is generated by the

physical Hamiltonian H0 given by integrating h on the
constant TðxÞ ¼ τ slice S. The constant T slice S is coordi-
nated by the value of dust scalars Sj ¼ σj and, thus, is
referred to as the dust space [23,25]. T;α ¼ 0 on S leads to

H0 ¼
Z
S
d3σCðσÞ: ð2:16Þ

H0 formally coincides with smearing the gravity-scalar
Hamiltonian C with the unit lapse, while here CðσÞ is in
terms of Dirac observables:

C ¼ CGR þ CS; ð2:17Þ

Gravity∶CGR ¼ 1

κ
½Fa

jk − ðβ2 þ 1ÞεadeKd
jK

e
k�εabc

Ej
bE

k
cffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp
þ 2Λ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
; ð2:18Þ

Scalar∶CS ¼ π2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
qjkð∂jϕÞð∂kϕÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
UðϕÞ: ð2:19Þ

The τ evolution is governed by the Hamilton equation

df
dτ

¼ fH0; fg ð2:20Þ

for all functions f onP. This evolution is formally the same
as the evolution of a gravity scalar with unit lapse function
and zero shift vector.
In the gravity-scalar-dust model, we resolve the

Hamiltonian and diffeomorphism constraints classically,
while the SU(2) Gauss constraint

Ga ¼
1

βκ
DjE

j
a ¼ 0 ð2:21Þ

still has to be imposed to the phase space. The time evolu-
tion preserves the Gauss constraint since fGaðσ;τÞ;H0g¼0
by the gauge invariance of H0. Second, Cjðσ; τÞ is con-
served on the Gauss constraint surface [25]:

dCjðσ; τÞ
dτ

¼ fH0; Cjðσ; τÞg ¼ 0; ð2:22Þ

where

Cj ¼ CGRj þ CSj ; CGRj ¼ 2

κβ
Fb
jkE

k
b; CSj ¼ π∂jϕ;

ð2:23Þ

replaces the gravity-scalar diffeomorphism constraint by
the corresponding Dirac observable.

B. Quantization

We fix γ to be a cubic lattice which partitions the dust
space S. In this work, we assume S ≃ T3, and γ is a finite
lattice. We denote by EðγÞ and VðγÞ sets of (oriented) edges
and vertices, respectively, in γ. By the dust coordinate σj on
S, we assign every edge a constant coordinate length μ in
the dust frame. μ → 0; jVðγÞj → ∞ keeping μ3jVðγÞj fixed
is the lattice continuum limit. Every vertex v ∈ VðγÞ is
6-valent. At v there are three outgoing edges eiðvÞ (i ¼ 1,
2, 3) and three incoming edges eiðv − μîÞ, where μî is the
lattice vector along the ith direction. It is often convenient
to orient all six edges at v to be outgoing from v and denote
six edges by ev;i;s (s ¼ �):

ev;i;þ ¼ eiðvÞ; ev;i;− ¼ eIðv − μîÞ−1: ð2:24Þ
These notations are illustrated in Fig. 2.
Canonical Dirac observables of gravity and matters can

be discretized on the lattice γ and quantized as follows.

1. Gravity

Discretizations of gravity canonical pairAa
j ðσ; τÞ; Ej

aðσ; τÞ
gives holonomyhðeÞ andgauge covariant fluxpaðeÞ at every
e ∈ EðγÞ [26]:

hðeÞ ≔ P exp
Z
e
dσjAa

j τ
a=2;

paðeÞ ≔ −
1

2βa2
tr

�
τa
Z
Se

εijkdσi

∧ dσjhðρeðσÞÞEk
bðσÞτbhðρeðσÞÞ−1

�
; ð2:25Þ

where recall τa ¼ −iðPauli matrixÞa. Se is a 2-face intersect-
ing e in the dual lattice γ�. ρe is a path starting at the source of
e, traveling along e until e ∩ Se, and then running in Se until
σ⃗. a is a length unit for making paðeÞ dimensionless. Note
that, because paðeÞ is gauge covariant flux, we have

paðev;I;−Þ ¼
1

2
Tr½τahðev−Î;I;þÞ−1pbðev−Î;I;þÞτbhðev−Î;I;þÞ�:

ð2:26Þ
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The Poisson algebra of hðeÞ and paðeÞ are called the
holonomy-flux algebra:

fhðeÞ; hðe0Þg ¼ 0; ð2:27Þ

fpaðeÞ; hðe0Þg ¼ κ

a2
δe;e0

τa

2
hðe0Þ; ð2:28Þ

fpaðeÞ; pbðe0Þg ¼ −
κ

a2
δe;e0εabcpcðe0Þ: ð2:29Þ

The LQG quantization defines the Hilbert space of square-
integrable (complex-valued) functions of all hðeÞ’s on γ,
0HGR

γ ¼ L2ðSUð2Þ; dμHÞ⊗jEðγÞj, where dμH is the Haar mea-
sure. ĥðeÞ becomes multiplication operators on functions in
0HGR

γ . p̂aðeÞ ¼ itR̂a
e=2, where R̂

a
e is the right invariant vector

field on SU(2) associated to the edge e: R̂afðhÞ ¼ d
dε jε¼

0fðeετahÞ. t ¼ l2
p=a2 is a dimensionless semiclassicality

parameter (l2
p ¼ ℏκ). ĥðeÞ and p̂aðeÞ satisfy the commuta-

tion relations:

½ĥðeÞ; ĥðe0Þ� ¼ 0;

½p̂aðeÞ; ĥðe0Þ� ¼ itδe;e0
τa

2
hðe0Þ;

½p̂aðeÞ; p̂bðe0Þ� ¼ −itδe;e0εabcpcðe0Þ; ð2:30Þ
as quantization of the holonomy-flux algebra. Imposing the
Gaussian constraint at the quantum level reduces 0HGR

γ to the
Hilbert spaceHGR

γ of SU(2) gauge invariant functions ofhðeÞ.

2. Real scalar

Lattice scalars ϕðvÞ and πðvÞ ¼ R d3xχμðx; vÞπðxÞ are
located at vertices and satisfy the Poisson bracket

fπðvÞ;ϕðv0Þg ¼ δv;v0 : ð2:31Þ

The quantization defines HS
γ ¼ ⊗v∈VðγÞHv, where Hv ≃

L2ðR; dϕðvÞÞ is spanned by squared-integrable functions of
ϕðvÞ with the Lebesgue measure dϕðvÞ. Quantization of
scalar fields give ϕ̂ðvÞ and π̂ðvÞ whose actions on HS

γ are,
respectively,

ϕ̂ðvÞfðϕÞ ¼ ϕðvÞfðϕÞ; π̂ðvÞfðϕÞ ¼ iℏ½∂=∂ϕðvÞ�fðϕÞ
ð2:32Þ

for all functions fðϕÞ ∈ HS
γ . Both ϕ̂ðvÞ and π̂ðvÞ are self-

adjoint operators satisfying

½π̂ðvÞ; ϕ̂ðv0Þ� ¼ iℏδv;v0 : ð2:33Þ
The reduced phase space on the lattice, denoted by Pγ,

has coordinates hðeÞ; paðeÞ;ϕðvÞ; πðvÞ. As a result from
the quantization of Pγ , the LQG Hilbert space of gravity
coupled to the scalar is given by the tensor product:

Hγ ¼ HGR
γ ⊗HS

γ : ð2:34Þ
States in Hγ are SU(2) gauge invariant since the scalar is
SU(2) invariant. Hγ is the physical Hilbert space on γ free
of constraints because it comes from quantizing Dirac
observables.

C. Coherent states

1. Gravity

The coherent state for gravity, ψ t
g ∈ HGR

γ , is defined by

ψ t
g ¼

Y
e∈EðγÞ

ψ t
gðeÞ; ψ t

gðeÞðhðeÞÞ

¼
X

je∈Zþ=2∪f0g
ð2je þ 1Þe−tjeðjeþ1Þ=2χjeðgðeÞhðeÞ−1Þ:

ð2:35Þ

FIG. 2. (a) Notations of edges and vertices when all six edges are oriented toward positive directions of coordinates. (b) Notations of
edge and vertices when all six edges are oriented outgoing from v.
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Here χj is the SU(2) character of the spin-j irrep. gðeÞ ∈
SLð2;CÞ is the complex parametrization of the gravity
sector in the reduced phase space and relates to the classical
flux paðeÞ and holonomy eθ

aðeÞτa=2 by

gðeÞ ¼ e−ip
aðeÞτa=2eθaðeÞτa=2; paðeÞ; θaðeÞ ∈ R3:

ð2:36Þ
The coherent state ψ t

g is labeled by the dimensionless
semiclassicality parameter

t ¼ l2
P

a2
; ð2:37Þ

which is the value of l2
P measured by the length

unit a2. The semiclassical limit ℏ → 0 implies t → 0

or l2
P ≪ a2.

The above coherent state is not normalized; the
normalized coherent state (on a single edge) is deno-
ted by

ψ̃ t
gðeÞ ¼

ψ t
gðeÞ

kψ t
gðeÞk

: ð2:38Þ

It is useful to review the overlap of two normalized
coherent states ψ̃ t

g2ðeÞ and ψ̃ t
g1ðeÞ [1,27]:

hψ̃ t
g2ðeÞjψ̃ t

g1ðeÞi ¼ e
Kðg2ðeÞ;g1ðeÞÞ

t

�
ξ21ðeÞ

sinhðξ21ðeÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ðp1ðeÞÞ sinh ðp2ðeÞÞ

p1ðeÞp2ðeÞ

s
þOðt∞Þ

�
; ð2:39Þ

Kðg2ðeÞ; g1ðeÞÞ ¼ ξ21ðeÞ2 −
1

2
p2ðeÞ2 −

1

2
p1ðeÞ2; ξ21ðeÞ ¼ arccosh

�
1

2
tr½g2ðeÞ†g1ðeÞ�

�
; ð2:40Þ

where Oðt∞Þ stands for contributions that are suppressed

exponentially as t → 0. p1;2ðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa
1;2ðeÞpa

1;2ðeÞ
q

¼
arccoshð1

2
Tr½g1;2ðeÞ†g1;2ðeÞ�Þ. hψ̃ t

g2ðeÞjψ̃ t
g1ðeÞi is invariant

under ξ21 ↦ −ξ21 which relates to the Weyl refection of
SU(2). We fix the sign ambiguity of ξ21 by using the inverse
hyperbolic cosine function, so Reðξ21Þ ≥ 0. Our conven-
tion for the inverse hyperbolic cosine is arccoshðxÞ ¼
lnðxþ ffiffiffiffiffiffiffiffiffiffiffi

xþ 1
p ffiffiffiffiffiffiffiffiffiffiffi

x − 1
p Þ. jhψ̃ t

g2ðeÞjψ̃ t
g1ðeÞij behaves as a Gaus-

sian sharply peaked at g1ðeÞ ¼ g2ðeÞ with the width given
by jpa

1ðeÞ − pa
2ðeÞj ∼ jθa1ðeÞ − θa2ðeÞj ∼

ffiffi
t

p
[27].

It is important that, at every edge e, the normalized
coherent states form an overcomplete basis in L2ðSUð2ÞÞ
[27]:Z

SLð2;CÞ
dgðeÞjψ̃ t

gðeÞihψ̃ t
gðeÞj ¼ 1L2ðSUð2ÞÞ;

dgðeÞ ¼ c
t3
dμHðhðeÞÞd3pðeÞ; c ¼ 2

π
þOðt∞Þ; ð2:41Þ

where dμHðhÞ is the Haar measure on SU(2).

2. Scalar

Coherent states in HS
γ are similar to coherent states of a

simple harmonic oscillator. We define annihilation and
creation operators

ÂðvÞ ¼ affiffiffiffiffiffi
2ℏ

p
�
ϕ̂ðvÞ − i

a2
π̂ðvÞ

�
;

ÂðvÞ† ¼ affiffiffiffiffiffi
2ℏ

p
�
ϕ̂ðvÞ þ i

a2
π̂ðvÞ

�
; ð2:42Þ

where a2 appears to balance the dimensions between
ϕðvÞ ∼ ðlengthÞ−1 and πðvÞ ∼ ðlengthÞ1. We have the
following commutation relations of ÂðvÞ and ÂðvÞ†:

½ÂðvÞ; Âðv0Þ†� ¼ δv;v0 ; ð2:43Þ

which give harmonic oscillators at all v. Annihilation
operators ÂðvÞ define a “ground state” j0i in HS

γ by

ÂðvÞj0i ¼ 0. Coherent states are defined by

ÂðvÞjψℏ
z i ¼

zðvÞffiffiffi
ℏ

p jψℏ
z i; jψℏ

z i ¼
Y
v;r

e
1ffiffi
ℏ

p zðvÞÂðvÞ† j0i;

ð2:44Þ

where zðvÞ and z̄ðvÞ give the complex parametrization of
the scalar sector in the reduced phase space:

zðvÞ ¼ affiffiffi
2

p
�
ϕðvÞ − i

a2
πðvÞ

�
;

z̄ðvÞ ¼ affiffiffi
2

p
�
ϕðvÞ þ i

a2
πðvÞ

�
: ð2:45Þ

jψℏ
z i can be expressed as a function of ϕðvÞ:

ψℏ
z ðϕÞ ¼

Y
v;r

�
a2

ℏ

�1
2

e
1
2ℏzðvÞ2− 1

2ℏ½aϕðvÞ−
ffiffi
2

p
zðvÞ�2 : ð2:46Þ

The inner product between two coherent states jψℏ
z i and

jψℏ
z0 i is given by
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hψℏ
z0 jψℏ

z i ¼ e
1
ℏ

P
v
z̄0ðvÞzðvÞ: ð2:47Þ

The normalization jψ̃ℏ
z i ¼ jψℏ

z i=kψℏ
zk satisfies the over-

completeness relationZ Y
v;r

d2zðvÞ
πℏ

jψ̃ℏ
z ihψ̃ℏ

z j ¼ 1HS
γ
;

d2zðvÞ ¼ dRe½zðvÞ�dIm½zðvÞ�: ð2:48Þ

For any normal ordered polynomial operator OðÂðvÞ†;
ÂðvÞÞ,

hψℏ
z0 jOðÂðvÞ†; ÂðvÞÞjψℏ

z i ¼ Oðz̄ðvÞ; zðvÞÞhψℏ
z0 jψℏ

z i:
ð2:49Þ

Coherent states in the Hilbert space H0
γ ¼ 0HGR

γ ⊗HS
γ

are given by the tensor product:

ψℏ
Z ¼ ψ t

g ⊗ ψℏ
z ; Z≡ ðg; zÞ: ð2:50Þ

Z is the complex parametrization of the reduced phase
space on the lattice γ. The normalization ψ̃ℏ

Z ¼ ψℏ
Z=kψℏ

Zk
satisfies the overcompleteness relationZ

dZjψ̃ℏ
Zihψ̃ℏ

Zj ¼ 1H0
γ
; dZ ¼

Y
e

dgðeÞ
Y
v

�
d2zðvÞ
πℏ

�
:

ð2:51Þ

The gauge transformation uv ∈ SUð2Þ transforms coher-
ent states as

u∶ ψ t
g →

Y
e

X
je∈Zþ=2∪f0g

ð2je þ 1Þe−tjeðjeþ1Þ=2χjeðgðeÞutðeÞhðeÞ−1u−1sðeÞÞ

¼
Y
e

X
je∈Zþ=2∪f0g

ð2je þ 1Þe−tjeðjeþ1Þ=2χjeðu−1sðeÞgðeÞutðeÞhðeÞ−1Þ

¼ ψ t
gu ; where guðeÞ ¼ u−1sðeÞgðeÞutðeÞ; ð2:52Þ

ψℏ
z → ψℏ

z : ð2:53Þ

Gauge invariant coherent states Ψℏ
½Z� ∈ Hγ are defined by group averaging

Ψℏ
½Z� ¼

Z
SUð2ÞjVðγÞj

Y
v∈VðγÞ

dμHðuvÞψ t
gu ⊗ ψℏ

z ; where ½Z�≡ ð½g�; zÞ: ð2:54Þ

We denote by [g] the gauge equivalence class of g ∼ gu.

D. Physical Hamiltonian operator

We quantize the physical Hamiltonian H0 to be a non-
graph-changing Hamiltonian operator Ĥ on the Hilbert
space Hγ of gauge invariant states [25,28]:

Ĥ ¼ 1

2

X
v∈VðγÞ

ðĈv þ Ĉ†
vÞ: ð2:55Þ

There exist self-adjoint extensions of Ĥ [29,30], so we
choose an extension and define the self-adjoint
Hamiltonian, which is still denoted by Ĥ. Ĉv sums the
contributions from gravity and scalar:

Ĉv ¼ ĈGR
v þ ĈS

v: ð2:56Þ

ĈGR
v and ĈS

v are listed below (see Appendix A for details
of ĈS

v).

1. Gravity

ĈGR
0;v ¼ −

2

iβκl2
p

X
s1;s2;s3¼�1

s1s2s3εi1i2i3Trðĥðαv;i1s1;i2s2Þĥðev;i3s3Þ½ĥðev;i3s3Þ−1; V̂v�Þ; ð2:57Þ
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ĈGR
v ¼ ĈGR

0;v þ ð1þ β2ÞĈGR
L;v þ

2Λ
κ
V̂v; K̂ ¼ i

ℏβ2

� X
v∈VðγÞ

Ĉ0;v;
X

v∈VðγÞ
Vv

�
; ð2:58Þ

ĈGR
L;v ¼

16

κðiβl2
pÞ3

X
s1;s2;s3¼�1

s1s2s3εi1i2i3

× Trðĥðev;i1s1Þ½ĥðev;i1s1Þ−1; K̂�ĥðev;i2s2Þ½ĥðev;i2s2Þ−1; K̂�ĥðev;i3s3Þ½ĥðev;i3s3Þ−1; V̂v�Þ; ð2:59Þ
where directions i1; i2; i3 ¼ 1, 2, 3 are summed in the above formulas. ĈGR

0;v and ĈGR
L;v are the Euclidean and Lorentzian

terms, respectively, in the Hamiltonian constraint operator ĈGR
v by Giesel and Thiemann [28,31]. 2Λ

κ V̂v quantizes the
cosmological constant term. V̂v is the volume operator at v:

V̂v ¼ ðQ̂2
vÞ1=4; ð2:60Þ

Q̂v ¼ −i
�
βl2

P

4

�
3

εabc
Ra
ev;1þ − Ra

ev;1−

2

Rb
ev;2þ − Rb

ev;2−

2

Rc
ev;3þ − Rc

ev;3−

2

¼ β3a6εabc
p̂aðev;1þÞ − p̂aðev;1−Þ

4

p̂bðev;2þÞ − p̂bðev;2−Þ
4

p̂cðev;3þÞ − p̂cðev;3−Þ
4

: ð2:61Þ

ĈGR
v jΛ¼0 is the quantization of sgnðeÞCGRjΛ¼0, where sgnðeÞ is the sign of detðeaj Þ [1], because the quantization uses

Thiemann’s trick:

sgnðeÞ
Z
e

½Ej; Ek�ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ≃

8

κβ
hðeÞfhðeÞ−1; Vvgεijk: ð2:62Þ

The right-hand side is quantized to be ĥðeÞfĥðeÞ−1; V̂vg. Equation (2.59) quantizes the cosmological constant term
2Λ
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

to be the volume operator 2Λ
κ V̂v without involving sgnðeÞ. Therefore, flipping sgnðeÞ effectively flips the

cosmological constant from Λ to −Λ in Ĥ. As a result, even if we fix Λ > 0 in the definition of ĈGR
v and Ĥ, both positive

and negative cosmological constants can appear from the theory [9].

2. Scalar

We consider the following real scalar field contribution in C:

CS ¼ π2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
qjkð∂jϕÞð∂kϕÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
U1ðϕÞ þ detðeaj ÞU2ðϕÞ; ð2:63Þ

where we take into account both parity-even and parity-odd potential terms
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

U1ðϕÞ and detðeaj ÞU2ðϕÞ.
We define a family of essentially self-adjoint operators parametrized by r > 0 [19]:

Q̂a
r ðeÞ ¼ iTrðτaĥðeÞ½ĥðeÞ−1; V̂r

v�Þ; Q̂rðeÞ ¼ Q̂a
rðeÞ

τa

2
¼ −iĥðeÞ½ĥðeÞ−1; V̂r

v�: ð2:64Þ

We define the quantization of sgnðeÞffiffiffiffiffiffiffiffiffi
detðqÞ

p :

d�
sgnðeÞ
V

�
v
¼ −

�
18 × 64

l6
Pβ

3

�X
s1s2s3

s1s2s3
X
i;j;k

ϵijkTr½Q̂1=3ðev;is1ÞQ̂1=3ðev;js2ÞQ̂1=3ðev;ks3Þ�: ð2:65Þ

ĈS
v is the quantization of sgnðeÞCS:

ĈS
v ¼

1

2

d�
sgnðeÞ
V

�
v
π̂ðvÞ2 þ 1

2

d�
sgnðeÞ
V

�
v

a4β2

8

X
s1s2s3

X
j;k

sjX
j
aðvÞskXk

aðvÞðδj;sj ϕ̂ðvÞÞðδk;sk ϕ̂ðvÞÞ

−
2

3

82

ðl2
PβÞ3

X
s1s2s3

s1s2s3ϵijkTr½Q̂1ðev;is1ÞQ̂1ðev;js2ÞQ̂1ðev;ks3Þ�U1ðϕ̂Þ þ V̂vU2ðϕ̂Þ; ð2:66Þ
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where δj;sj ϕ̂ðvÞ is the lattice derivative:

δj;sj ϕ̂ðvÞ ¼ ϕ̂ðtðev;jsjÞÞ − ϕ̂ðvÞ; ð2:67Þ

Xk
a ¼

p̂aðev;kþÞ − p̂aðev;k−Þ
4

: ð2:68Þ

III. COHERENT STATE PATH INTEGRAL OF
GRAVITY-SCALAR-DUST

An interesting quantity for quantum dynamics is the
transition amplitude

A½Z�;½Z0� ¼ hΨℏ
½Z�j exp

�
i
ℏ
TĤ

�
jΨℏ

½Z0�i: ð3:1Þ

For the purpose of semiclassical analysis, we focus on the
initial and final gauge invariant coherent states Ψℏ

½Z0�;Ψ
ℏ
½Z�.

Recall that ½Z� ¼ ð½g�; zÞ, where [g] is the SU(2) gauge orbit
with

gðeÞ ¼ e−ipaðeÞτa=2hðeÞ ¼ e−ip
aðeÞτa=2eθaðeÞτa=2;

paðeÞ; θaðeÞ ∈ R3: ð3:2Þ

Applying Eq. (2.54) and a discretization of time T ¼
Nδτ with large N and infinitesimal δτ, followed by
inserting N þ 1 overcompleteness relations of normalized
coherent state ψ̃ℏ

Z in Eq. (2.51):

A½Z�;½Z0� ¼
Z

duhψℏ
Zj½ei

ℏδτĤ�N jψℏ
Z0ui ð3:3Þ

¼
Z

du
YNþ1

i¼1

dZihψℏ
Zjψ̃ℏ

ZNþ1
ihψ̃ℏ

ZNþ1
jeiδτ

ℏ Ĥjψ̃ℏ
ZN
i

× hψ̃ℏ
ZN
jeiδτ

ℏ Ĥjψ̃ℏ
ZN−1

i � � � hψ̃ℏ
Z2
je−iδτ

ℏ Ĥjψ̃ℏ
Z1
ihψ̃ℏ

Z1
jψℏ

Z0ui;
ð3:4Þ

where
R
du≡Qv∈VðγÞ

R
SUð2Þ dμHðuvÞ and Z0u ≡ ðg0u; zÞ.

Following the standard coherent state functional inte-
gral method, we let N arbitrarily large and, thus, δτ
arbitrarily small. UðδτÞ is a strongly continuous unitary
group and ½UðδτÞjψi − jψi�=δτ → i

ℏ Ĥjψi, so ε̂ðδτℏÞ ≔
ℏ
δτ ½UðδτÞ − 1 − iδτ

ℏ Ĥ� satisfies the strong limit ε̂ðδτℏÞjψi →
0 as δτ → 0 for all ψ in the domain of Ĥ. The coherent state
ψ̃ℏ
Z belongs to the domain of Ĥ; thus, εiþ1;iðδτℏÞ ¼

hψ̃ℏ
Ziþ1

jε̂ðδτℏÞjψ̃ℏ
Zi
i satisfies limδτ→0 εiþ1;iðδτℏÞ ¼ 0. We obtain

the following relation:

hψ̃ℏ
Ziþ1

j exp
�
i
ℏ
δτĤ

�
jψ̃ℏ

Zi
i

¼ hψ̃ℏ
Ziþ1

j1þ iδτ
ℏ

Ĥjψ̃ℏ
Zi
i þ δτ

ℏ
εiþ1;i

�
δτ

ℏ

�
¼ hψ̃ℏ

Ziþ1
jψ̃ℏ

Zi
i
�
1þ iδτ

ℏ

hψ̃ℏ
Ziþ1

jĤjψ̃ℏ
Zi
i

hψ̃ℏ
Ziþ1

jψ̃ℏ
Zi
i
�
þ δτ

ℏ
εiþ1;i

�
δτ

ℏ

�

¼ hψ̃ℏ
Ziþ1

jψ̃ℏ
Zi
ie

iδτ
ℏ

hψ̃ℏ
Ziþ1

jĤjψ̃ℏ
Zi

i

hψ̃ℏ
Ziþ1

jψ̃ℏ
Zi

i þ
δτ
ℏ ε̃iþ1;iðδτℏÞ

; ð3:5Þ

where

δτ

ℏ
ε̃iþ1;i

�
δτ

ℏ

�
¼ ln

�
1þ iδτ

ℏ

hψ̃ℏ
Ziþ1

jĤjψ̃ℏ
Zi
i

hψ̃ℏ
Ziþ1

jψ̃ℏ
Zi
i þ δτ

ℏ
εiþ1;iðδτ=ℏÞ
hψ̃ℏ

Ziþ1
jψ̃ℏ

Zi
i
�
−
iδτ
ℏ

hψ̃ℏ
Ziþ1

jĤjψ̃ℏ
Zi
i

hψ̃ℏ
Ziþ1

jψ̃ℏ
Zi
i ð3:6Þ

is arbitrarily small and satisfies limδτ→0 ε̃iþ1;iðδτℏÞ ¼ 0.
By Eq. (3.5) and expressions of overlaps between coherent states Eqs. (2.39) and (2.47), a path integral formula can be

derived for A½g�;½g0�:

A½Z�;½Z0� ¼ kψℏ
Zkkψℏ

Z0k
Z

du
YNþ1

i¼1

dZiν½Z�eS½Z;u�=t; ð3:7Þ

where the action S½Z; u� is given by

S½Z; u� ¼
XNþ1

i¼0

KðZiþ1; ZiÞ −
iκ
a2
XN
i¼1

δτ

�
−
hψℏ

Ziþ1
jĤjψℏ

Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i þ iε̃iþ1;i

�
δτ

ℏ

��
: ð3:8Þ
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The “kinetic term” KðZiþ1; ZiÞ reads

KðZiþ1; ZiÞ ¼
X
e∈EðγÞ

�
ξiþ1;iðeÞ2 −

1

2
piþ1ðeÞ2 −

1

2
piðeÞ2

�
ð3:9Þ

þ κ

a2
X

v∈VðγÞ

�
z̄iþ1ðvÞziðvÞ −

1

2
z̄iþ1ðvÞziþ1ðvÞ −

1

2
z̄iðvÞziðvÞ

�
; ð3:10Þ

where Z0 ≡ Z0u, ZNþ2 ≡ Z, and ξiþ1;iðeÞ are given by

ξiþ1;iðeÞ ¼ arccoshðxiþ1;iðeÞÞ; xiþ1;iðeÞ ¼
1

2
tr½giþ1ðeÞ†giðeÞ�: ð3:11Þ

ν½Z� is a measure factor from Eq. (2.39):

ν½Z� ¼ ν½g� ¼
YNþ1

i¼0

Y
e∈EðγÞ

"
arccoshðxiþ1;iðeÞÞ

sinh ðarccoshðxiþ1;iðeÞÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ðpiþ1ðeÞÞ

piþ1ðeÞ
sinh ðpiðeÞÞ

piðeÞ

s
þOðt∞Þ

#
: ð3:12Þ

The path integral Eq. (3.7) is constructed with discrete
time and space and is a well-defined integration formula for
the transition amplitude A½g�;½g0� as long as δτ is arbitrarily
small but finite. The time translation of γ with finite δτ
makes a hypercubic lattice in four dimensions, on which
the path integral is defined. There is no issue of any
divergence in this path integral formulation of LQG, since it
is derived from a well-defined transition amplitude.

IV. SEMICLASSICAL DYNAMICS ON
FIXED LATTICE

A. Equations of motion of the full theory

The semiclassical limit ℏ → 0 (or t → 0) of the transition
amplitude A½Z�;½Z0� can be studied by the stationary phase
analysis. Dominant contributions to A½Z�;½Z0� as ℏ → 0

come from semiclassical trajectories satisfying the EOMs
δS½Z; u� ¼ 0. We neglect ε̃iþ1;iðδτ=ℏÞ in the following
derivations of the EOMs, since we will be interested in
the time continuum limit δτ → 0 of the EOMs, where the
contribution of ε̃iþ1;iðδτ=ℏÞ is negligible (see Appendix B
for details).
EOMs from δgS½Z; u� ¼ δuS½Z; u� ¼ 0 have been

derived in Ref. [8].
(i) The variation with respect to gi using the holomor-

phic deformation

giðeÞ → gεi ðeÞ ¼ giðeÞeεai ðeÞτa ; εai ðeÞ ∈ C; ð4:1Þ

leads to the following equations from derivatives of
εai ðeÞ and ε̄ai ðeÞ, respectively.

For i ¼ 1;…; N, at every edge e ∈ EðγÞ,

1

δτ

�
arccoshðxiþ1;iðeÞÞtr½τagiþ1ðeÞ†giðeÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ1;iðeÞ − 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ1;iðeÞ þ 1
p −

piðeÞtr½τagiðeÞ†giðeÞ�
sinhðpiðeÞÞ

�

¼ −
iκ
a2

∂
∂εai ðeÞ

hψ t
gεiþ1

⊗ ψℏ
ziþ1

jĤjψ t
gεi
⊗ ψℏ

zii
hψ t

gεiþ1
⊗ ψℏ

ziþ1
jψ t

gεi
⊗ ψℏ

zii
				
ε⃗¼0

: ð4:2Þ

For i ¼ 2;…; N þ 1, at every edge e ∈ EðγÞ,

1

δτ

�
arccoshðxi;i−1ðeÞÞtr½τagiðeÞ†gi−1ðeÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi;i−1ðeÞ − 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi;i−1ðeÞ þ 1
p −

piðeÞtr½τagiðeÞ†giðeÞ�
sinhðpiðeÞÞ

�

¼ iκ
a2

∂
∂ε̄ai ðeÞ

hψ t
gεi
⊗ ψℏ

zi jĤjψ t
gεi−1

⊗ ψℏ
zi−1i

hψ t
gεi
⊗ ψℏ

zi jψ t
gεi−1

⊗ ψℏ
zi−1i

				
ε⃗¼0

: ð4:3Þ
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(ii) The variation with respect to uv leads to the closure
condition at every vertex v ∈ VðγÞ for initial data:

−
X

e;sðeÞ¼v

pa
1ðeÞ þ

X
e;tðeÞ¼v

Λa
bðθ⃗1ðeÞÞpb

1ðeÞ ¼ 0; ð4:4Þ

whereΛa
bðθ⃗Þ ∈ SOð3Þ is given by eθcτc=2τae−θcτc=2 ¼

Λa
bðθ⃗Þτb.

The initial and final conditions for gi are given by g1 ¼ g0u
and gNþ1 ¼ g.
We compute the variation of S½Z; u�with respect to scalar

DOFs ziðvÞ and z̄iðvÞ.
(i) For i ¼ 1;…; N, at every v ∈ VðγÞ,

½z̄iþ1ðvÞ − z̄iðvÞ�
δτ

¼ −i
∂

∂ziðvÞ
hψℏ

Ziþ1
jĤjψℏ

Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i : ð4:5Þ

(ii) For i ¼ 2;…; N þ 1, at every v ∈ VðγÞ,

½ziðvÞ − zi−1ðvÞ�
δτ

¼ i
∂

∂z̄iðvÞ
hψℏ

Zi
jĤjψℏ

Zi−1
i

hψℏ
Zi
jψℏ

Zi−1
i : ð4:6Þ

The initial and final conditions for ziðvÞ and z̄iðvÞ
are given by z1ðvÞ ¼ z0ðvÞ and zNþ1ðvÞ ¼ zðvÞ,
respectively.
Semiclassical EOMs (4.2)–(4.4) are derived with finite

δτ. We prefer to derive EOMs from the path integral
Eq. (3.7) with discrete time and space, because Eq. (3.7)
is a well-defined integration formula for the transition
amplitude.
The right-hand sides of Eqs. (4.5) and (4.6) can be

expressed explicitly by relations ∂ziðvÞjψℏ
zii ¼ AðvÞ†jψℏ

zii
and ∂ z̄iðvÞhψℏ

zi j ¼ hψℏ
zi jAðvÞ:

∂
∂ziðvÞ

hψℏ
Ziþ1

jĤjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i ¼ hψℏ

Ziþ1
jĤÂ†ðvÞjψℏ

Zi
ihψℏ

Ziþ1
jψℏ

Zi
i − hψℏ

Ziþ1
jĤjψℏ

Zi
ihψℏ

Ziþ1
jÂ†ðvÞjψℏ

Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i2 ; ð4:7Þ

∂
∂z̄iðvÞ

hψℏ
Zi
jĤjψℏ

Zi−1
i

hψℏ
Zi
jψℏ

Zi−1
i ¼ hψℏ

Zi
jÂðvÞĤjψℏ

Zi−1
ihψℏ

Zi
jψℏ

Zi−1
i − hψℏ

Zi
jĤjψℏ

Zi−1
ihψℏ

Zi
jÂðvÞjψℏ

Zi−1
i

hψℏ
Zi
jψℏ

Zi−1
i2 : ð4:8Þ

The time continuous limit δτ → 0 gives Zi → Ziþ1 ≡ Z. By the above relations,5

lim
δτ→0

∂
∂ziðvÞ

hψℏ
Ziþ1

jĤjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i ¼ hψℏ

ZjĤÂ†ðvÞjψℏ
Zihψℏ

Zjψℏ
Zi − hψℏ

ZjĤjψℏ
Zihψℏ

ZjÂ†ðvÞjψℏ
Zi

hψℏ
Zjψℏ

Zi2

¼ ∂
∂zðvÞ

hψℏ
ZjĤjψℏ

Zi
hψℏ

Zjψℏ
Zi

; ð4:9Þ

lim
δτ→0

∂
∂z̄iðvÞ

hψℏ
Zi
jĤjψℏ

Zi−1
i

hψℏ
Zi
jψℏ

Zi−1
i ¼ hψℏ

ZjÂðvÞĤjψℏ
Zihψℏ

Zjψℏ
Zi − hψℏ

ZjĤjψℏ
Zihψℏ

ZjÂðvÞjψℏ
Zi

hψℏ
Zjψℏ

Zi2

¼ ∂
∂z̄ðvÞ

hψℏ
ZjĤjψℏ

Zi
hψℏ

Zjψℏ
Zi

; ð4:10Þ

which are finite. The left-hand sides of Eqs. (4.5) and (4.6) are finite as δτ → 0 if and only if ziðvÞ and z̄iðvÞ admit
approximations zðτ; vÞ and z̄ðτ; vÞwhich are differentiable in τ. All solutions ziðvÞ and z̄iðvÞ of Eqs. (4.5) and (4.6) must give
finite left- and right-hand sides in Eqs. (4.5) and (4.6). Therefore, for all solutions, we can take the time continuous limit:

dz̄ðvÞ
dτ

¼ −i
∂

∂zðvÞ hψ̃
ℏ
ZjĤjψ̃ℏ

Zi;
dzðvÞ
dτ

¼ i
∂

∂z̄ðvÞ hψ̃
ℏ
ZjĤjψ̃ℏ

Zi: ð4:11Þ

Recall Eq. (2.45); the above continuous-time EOMs can bewritten as Hamilton’s equations with the Hamiltonian hψ̃ℏ
ZjĤjψ̃ℏ

Zi:
dϕðvÞ
dτ

¼ ∂
∂πðvÞ hψ̃

ℏ
ZjĤjψ̃ℏ

Zi;
dπðvÞ
dτ

¼ −
∂

∂ϕðvÞ hψ̃
ℏ
ZjĤjψ̃ℏ

Zi: ð4:12Þ

5limzi→z

R
dϕf̄ðϕÞψ ziðϕÞ ¼

R
dϕf̄ðϕÞψzðϕÞ, ∀ f ∈ HS

γ by the dominated convergence, since jψ ziðϕÞj is uniformly bounded by an
integrable function when zi is in a finite neighborhood U at z. Similarly, ∂z

R
dϕf̄ðϕÞψzðϕÞ ¼

R
dϕf̄ðϕÞ∂zψzðϕÞ, since j∂zψzðϕÞj is

uniformly bounded by an integrable function in a finite neighborhood U at z. Note that ψ z and ∂zψ z are Schwarz functions on R: jψ zj or
j∂zψ zj ≤ CkðzÞð1þ jxjÞ−k ≤ Maxz∈UðCkÞð1þ jxjÞ−k for all k ∈ Zþ.
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Similarly, Refs. [8,11] prove that Eqs. (4.2) and
(4.3) also admit the continuous-time approximation
and can be expressed in terms of pðeÞ ¼ ðp1ðeÞ;
p2ðeÞ; p3ðeÞÞT and θðeÞ ¼ ðθ1ðeÞ; θ2ðeÞ; θ3ðeÞÞT and their
time derivatives: dpðeÞ

dτ

dθðeÞ
dτ

!
¼ −

iκ
a2

Tðp; θÞ−1
 ∂

∂pðeÞ hψ̃ℏ
ZjĤjψ̃ℏ

Zi
∂

∂θðeÞ hψ̃ℏ
ZjĤjψ̃ℏ

Zi

!
; ð4:13Þ

where Tðp; θÞ (whose explicit express is given in Ref. [32])
is a 6 × 6 matrix satisfying

−
ia2

κ
Pðp; θÞTðp; θÞ ¼ 16×6;

Pðp; θÞ ¼
� fpaðeÞ; pbðeÞg fpaðeÞ; θbðeÞg
fθaðeÞ; pbðeÞg 0

�
: ð4:14Þ

Equation (4.13) is equivalent to Hamilton’s equations:

dhðeÞ
dτ

¼ fhψ̃ℏ
ZjĤjψ̃ℏ

Zi; hðeÞg;
dpaðeÞ
dτ

¼ fhψ̃ℏ
ZjĤjψ̃ℏ

Zi; paðeÞg: ð4:15Þ
The coherent state expectation value of Ĥ has the correct

semiclassical limit

hψ̃ℏ
ZjĤjψ̃ℏ

Zi ¼ H½Z; Z̄� þOðℏÞ; ð4:16Þ

where H½Z; Z̄� is the classical discrete Hamiltonian evalu-
ated at paðeÞ, hðeÞ, πðvÞ, and ϕðvÞ determined by Z ¼
ðg; zÞ in Eqs. (3.2) and (2.45). Note that the above semi-
classical behavior of hψ̃ t

gjĤjψ̃ t
gi relies on the following

semiclassical expansion of volume operator V̂v [12]:

V̂v ¼ hQ̂vi12
�
1þ

X2kþ1

n¼1

ð−1Þnþ1
qð1 − qÞ…ðn − 1þ qÞ

n!

�
Q̂2

v

hQ̂vi2
− 1

�n�
q¼1

4

þOðℏkþ1Þ; ð4:17Þ

where hQ̂vi ¼ hψ t
gjQ̂vjψ t

gi. When we apply this expansion
to, e.g., the expectation value of V̂v, using hQ̂Ni ¼
hQ̂viN ½1þ 3t

8p2 NðN − 1Þ� [33], we can see that the expan-

sion is valid in the regime p2 ≫ t. When Eq. (4.17) is
actually applied to compute perturbatively hψ̃ t

gjĤjψ̃ t
gi, the

validation of the expansion and, in particular, Eq. (4.16) use
the same requirement p2 ≫ t (see [13] for details).
The EOMs derived from the semiclassical approximation

are not sensitive to OðℏÞ. Neglecting OðℏÞ in Eqs. (4.15)
and (4.12) imply that, for function f on the reduced phase
space Pγ , its τ evolution is given by the Hamiltonian flow
generated by the classical discrete Hamiltonian H:

df
dτ

¼ fH; fg: ð4:18Þ

The closure condition is preserved by τ evolution
by fGa

v;Hg ¼ 0.

B. Homogeneous and isotropic cosmological
dynamics on the fixed lattice

We would like to find the solution of Eq. (4.18)
describing the homogeneous and isotropic cosmology.
For this purpose, we apply the following homogeneous
and isotropic ansatz to the semiclassical EOMs:

θaðeiðvÞÞ ¼ θδaI ¼ μβK0δ
a
i ;

paðeiðvÞÞ ¼ pδai ¼
2μ2

βa2
P0δ

a
i ; ð4:19Þ

ϕðvÞ ¼ ϕ ¼ ϕ0; πðvÞ ¼ π ¼ μ3π0: ð4:20Þ
HereK0 ¼ K0ðτÞ,P0 ¼ P0ðτÞ,ϕ0 ¼ ϕ0ðτÞ, and π0 ¼ π0ðτÞ
are constant on γ but evolve with the dust time τ. This ansatz
is a simple generalization of the one used in Refs. [8,34].
Inserting the ansatz, equations in (4.13) with e ¼ eIðvÞ

are split into two sets: (i) dpaðeiðvÞÞ=dτ ¼ � � � and
dθaðeiðvÞÞ=dτ ¼ � � � with a ¼ i: Left-hand sides of these
six equations are proportional to _P0 ¼ dP0=dτ and
_K0 ¼ dK0=dτ. They reduce to

4β2½−2μ2 ffiffiffiffiffiffi
P0

p
_K0 þ sin4 ðβμK0Þ þ Λμ2P0� − sin2 ð2βμK0Þffiffiffiffiffiffi

P0

p

¼ κβ2μ2
ffiffiffiffiffiffi
P0

p
ðπ20P−3

0 −UÞ; ð4:21Þffiffiffiffiffiffi
P0

p
½2β2 sin ð2βμK0Þ − ðβ2 þ 1Þ sin ð4βμK0Þ�

þ 2βμ _P0 ¼ 0; ð4:22Þ
where U ¼ U1 þU2, and (ii) equations of dpaðeiðvÞÞ=
dτ ¼ � � � and dθaðeiðvÞÞ=dτ ¼ � � � with a ≠ i: Left-hand
sides of these 12 equations are zero.We explicitly check that
the ansatz also reduces their right-hand sides to zero, so that
these equations are trivial. Note that this check and
Eqs. (4.21) and (4.22) are nontrivial, since they involve
brute-force computation of right-hand sides of (4.13) or
Poisson bracket in (4.15) in the full theory before reducing
with the ansatz. Detailed computations and Mathematica
files are given in Ref. [35]. See also [36] for a recent more
abstract argument about obtaining Eqs. (4.21) and (4.22)
from Eqs. (4.15).
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For the scalar field, (4.12) reduces to

P3=2
0

_ϕ0 − π0 ¼ 0; P0
3=2U0ðϕ0Þ ¼ −2_π0: ð4:23Þ

In the following discussion, we set Uðϕ0Þ to be the
Starobinsky inflationary potential

Uðϕ0Þ ¼
3m2

κ

�
1 − exp

�
−

ffiffiffi
κ

3

r
ϕ0

��
2

; ð4:24Þ

where m is the mass parameter.
The physical Hamiltonian H is conserved by the time

evolution governed by Eqs. (4.21)–(4.23):

H
jVðγÞj ¼ Cv ¼ −μ3

�
3

β2κμ2
P1=2
0 sin2ðβμK0Þ½−β2 þ ðβ2 þ 1Þ cosð2βμK0Þ þ 1�

−
1

2κ
P3=2
0 ð4Λþ κUðϕ0ÞÞ −

π20
2P3=2

0

�
: ð4:25Þ

The dust density ρdust relates to H by [recall Eqs. (2.11) and (2.12)]

ρdust ¼ −
Cv

P3=2
0 μ3

: ð4:26Þ

_P0 ¼ 0 gives the bounce, and the matter density ρ ¼ ρdust þ ρs þ ρΛ ¼ ρdust þ π2
0

2P3
0

þ 1
2
Uðϕ0Þ þ 2Λ

κ at the bounce is the

critical density:

ρc ¼
3

2β2ðβ2 þ 1ÞκP0ðbounceÞμ2
: ð4:27Þ

When βμK0 ≪ 1, by sinðβμK0Þ ≃ βμK0, Eqs. (4.21)–(4.23) reduce to the classical cosmological dynamics:

8P5=2
0

_K0 þ 4K2
0P

2
0 þ κπ20 ¼ P3

0ð4Λþ κUðϕ0ÞÞ; 2K0

ffiffiffiffiffiffi
P0

p
¼ _P0; ð4:28Þ

π0 ¼ P3=2
0

_ϕ0; P
3=2
0 U0ðϕ0Þ þ 2_π0 ¼ 0; ð4:29Þ

Equations (4.29) give the classical EOM of ϕ0:

2ϕ̈0 þ 6H _ϕ0 þ U0ðϕ0Þ ¼ 0; where H ¼
_P0

2P0

is the Hubble parameter with respect to τ: ð4:30Þ

Equation (4.28) can reduce to

H0 ¼ −
4πG
3

P0ðρþ 3PÞ; where H ¼ P0
0

2P0

is the Hubble parameter with respect to η; ð4:31Þ

where η is the conformal time (dη ¼ 1ffiffiffiffi
P0

p dτ)

f0 ¼
ffiffiffiffiffiffi
P0

p
_f: ð4:32Þ

ρ and P are total matter density and pressure (including cosmological constant), respectively:

ρ ¼ ρdust þ ρs þ ρΛ; ð4:33Þ

ρdust ¼ −
2Λ
κ

þ 6K2
0

κP0

−
π20
2P3

0

−
1

2
Uðϕ0Þ ¼ −

2Λ
κ

þ 6H2

κP0

−
ðϕ0

0Þ2
2P0

−
1

2
Uðϕ0Þ; ð4:34Þ

ρs ¼
π20
2P3

0

þ 1

2
Uðϕ0Þ ¼

ðϕ0
0Þ2

2P0

þ 1

2
Uðϕ0Þ; ð4:35Þ
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ρΛ ¼ 2Λ
κ
; ð4:36Þ

P ¼ −
2Λ
κ

þ π20
2P3

0

−
1

2
Uðϕ0Þ ¼ −

2Λ
κ

−
1

2
Uðϕ0Þ þ

ðϕ0
0Þ2

2P0

: ð4:37Þ

We have the relation

H2 ¼ 8πG
3

P0ρ: ð4:38Þ

In order to demonstrate the inflation from Eqs. (4.21)–
(4.23) or classical counterparts (4.28) and (4.29), we define
the slow-roll parameters

εH ≔ −
_H
H2

; δH ≔
Ḧ
_HH

: ð4:39Þ

The inflation corresponds to 0 < εH < 1. Figure 3 plots εH
of a solution and demonstrates the inflation. When practi-
cally solving EOMs (4.21)–(4.23) or other versions of
EOMs to be discussed later, we use values of dynamical
variables at pivot time τpivot to uniquely determine the
solution. We require that the dynamics at τpivot and later
must be well approximated by the classical dynamics of
cosmology Eqs. (4.28)–(4.30) (this requirement is always
fulfilled by our model as discussed later). The values of
ϕ0ðτpivotÞ and HðτpivotÞ, as well as the value of the
parameter m in Uðϕ0Þ, are determined by the observational
values of As and ns (here we use the same data as in
Ref. [21]):

As ¼ 2.10 × 10−9; ns ¼ 0.96; ð4:40Þ

where As is the amplitude of the scalar power spectrum at
the pivot mode kpivot ¼ 0.002 Mpc−1 and ns is the spectral
index of scalar perturbations. Following the procedure
described in Ref. [37], we obtain that

HðτpivotÞ ¼ 1.21 × 10−6mP; ϕ0ðτpivotÞ ¼ 1.07mP;

m ¼ 2.44 × 10−6mP: ð4:41Þ

In principle, this derivation is based on zero dust density,
but numerical errors in the above numbers give tiny but
nonzero dust density. In this paper, we work with non-
zero dust density, but we always consider the dust den-
sity to be very small in numerical studies. Classically,
K0ðτpivotÞ ¼ HðτpivotÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0ðτpivotÞ

p
, so

K0ðτpivotÞ ¼ 1.21 × 10−6mP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0ðτpivotÞ

q
: ð4:42Þ

The values of ϕ0ðτpivotÞ and HðτpivotÞ determine _ϕ0ðτpivotÞ
by Eq. (4.30) (ϕ̈0 is negligible by the slow-roll approxi-
mation) and further determine π0ðτpivotÞ by Eq. (4.23) up to
a choice of P0ðτpivotÞ:

π0ðτpivotÞ ¼ −5.03 × 10−9m2
PP0ðτpivotÞ3=2: ð4:43Þ

P0ðτpivotÞ is not determined, since P0 is the square of scale
factor which is defined up to rescaling.
We are going to take the above values of ϕ0ðτpivotÞ,

K0ðτpivotÞ, and π0ðτpivotÞ to determine the cosmological
dynamics, while P0ðτpivotÞ is left undetermined. The
classical cosmological dynamics (of H and ϕ0) is free of
the ambiguity, since Eqs. (4.28) and (4.29) are invariant
under the constant rescaling

P0ðτÞ → αP0ðτÞ; K0ðτÞ → α1=2K0ðτÞ;
π0ðτÞ → α3=2π0ðτÞ: ð4:44Þ

But this invariance is broken by Eqs. (4.21) and (4.22) due
to the length scale μ. Consequently, the dynamics of
Eqs. (4.21) and (4.22) on the fixed spatial lattice is
ambiguous due to the dependence on the choice of
P0ðτpivotÞ. In particular, the critical density ρc at the bounce
is ambiguous and may be even very small if P0ðτpivotÞ is
large. The bounce occurring at low density is not physically

FIG. 3. The inflation is in the period with 0 < εH < 1 (before
t ¼ 5 × 107). τpivot ¼ 0 is the pivot time. Parameters in
this solution are m¼2.44×10−6mP, HðτpivotÞ¼1.21×10−6mP,
ϕ0ðτpivotÞ ¼ 1.07mP, π0ðτpivotÞ¼−5.03×10−9m2

P, P0ðτpivotÞ¼1,
and Λ ¼ 0. For very small μ, the difference in εH is negli-
gible between solutions of (4.21)–(4.23) and of (4.28)
and (4.29).
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sound. This is considered as a problem of the cosmological
dynamics from LQG on the fixed spatial lattice.

V. DYNAMICAL LATTICE REFINEMENT

A. Motivation

The cosmological dynamics described above coincides
with the μ0-scheme effective dynamics of LQC. However, it
is not the popular scheme in LQC. The preferred scheme in
LQG is the improved dynamics, or, namely, the μ̄ scheme,
in which μ is not a constant but set to be dynamical
μ → μðτÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ=P0ðτÞ
p

; in other words, the spatial lattice
changes during the time evolution. The μ̄ scheme has the
advantage that the critical density ρc ¼ ρðbounceÞ at the
bounce depends only on constants κ, Δ, and β and is
Planckian if Δ ∼ l2

P, in contrast to the μ0 scheme where

ρc ¼
3

2β2ðβ2 þ 1ÞκP0ðbounceÞμ2
: ð5:1Þ

P0ðbounceÞ depends on the initial or final condition, e.g.,
P0ðτpivotÞ, which does not guarantee ρc to be Planckian.
It turns out that the existence of inflation leads to a

difficulty if the spatial lattice γ is fixed. The reason is the
following: First of all, the path integral (3.7) and the
approximation to classical gravity on the continuum rely
on two requirements.

(i) As a key step in deriving the EOMs (4.18), the
semiclassical approximation of hψ̃ℏ

ZjĤjψ̃ℏ
Zi in

Eq. (4.16) uses the expansion of volume operator
as in Eq. (4.17). This expansion requires p2 ≫ t or

4μ4P2
0 ≫ β2l2

Pa
2 ¼ β2l4

P=t: ð5:2Þ

(ii) θaðeÞ has to be sufficiently small in order to
approximate the classical theory on the continuum,
namely, the background EOMs (4.21) and (4.22),
where βμK0 ¼ θðeÞ has to be small enough to
validate sinðθÞ ≃ θ and reduce these EOMs to the
ones in classical cosmology.

However, requirement (i) can contradict requirement (ii) if
we fix the lattice γ throughout the cosmological evolution
including the inflation. Indeed, if we construct the lattice γ

such that p
∘ aðeÞ and θ

∘aðeÞ satisfy requirement (i) before
inflation, during the inflation, the classical cosmology gives

P0 ¼ e2χðtf−tiÞP
∘
0 and K0 ¼ χeχðtf−tiÞP

∘ 1=2
0 [ti or tf is the

time of starting or ending the inflation, and P
∘
0 is deter-

mined by p
∘ aðeÞ]. The classical solution with large K0

cannot approximately satisfy (4.21)–(4.23), unless we set μ
to be extremely small. But an extremely small μ makes
requirement (i) hard to be satisfied at the early time. For
example, if we set eχðtf−tiÞ ∼ 1024 and χ ∼ 10−6l−1P
(l2P ¼ ℏG ¼ 1

16π l
2
P), we have to set μ extremely small such

that βμP
∘ 1=2
0 ∼ 10−20lP or less to validate sinðβμK0Þ ≃ βμK0

and fulfill requirement (ii). However, by requirement

(i) μ4P
∘ 2
0 ∼ 10−80l4P=β

4 ≫ 1
4
β2l4

P=t ⇔ t ≫ 1
4ð16πÞ2 10

80β6,

which violates the semiclassical limit t → 0 unless β is
extremely small (or β → 0 even much faster than t → 0).
For not so small β, setting μ extremely small results in that

p
∘ aðeÞ violates requirement (i) before inflation. This would
not be in favor, since the semiclassical approximation is
expected to be valid before and during the inflation.
Away to resolve the tension between requirements (i) and

(ii) is to refine the spatial lattice during the time evolution, as
suggested by the μ̄ scheme in LQC. We are going to ask the
lattice to be finer at a late time while coarser at an early time,
so that we have a small enough μ to satisfy requirement (ii) in
the inflation while having a large enough μ to satisfy
requirement (i) at an early time before the inflation.

B. Transition amplitude with dynamical
lattice refinement

First, as the setup, we write the lattice variables θaðeÞ,
paðeÞ, ϕðvÞ, and πðvÞ generally as below:

θaðeIðvÞÞ ¼ μ½βK0δ
a
I þ XaðeIðvÞÞ�;

paðeIðvÞÞ ¼
2μ2

βa2
P0½δaI þ YaðeIðvÞÞ�; ð5:3Þ

ϕðvÞ ¼ ϕ0 þ δφðvÞ; πðvÞ ¼ μ3½π0 þ δπðvÞ�; ð5:4Þ

where P0, K0, ϕ0, and π0 are the homogeneous and
isotropic DOFs. YaðeIðvÞÞ, XaðeIðvÞÞ, WðvÞ, and ZðvÞ
are DOFs beyond the homogeneous and isotropic
sector. Their dimensions are Xa, δφ ∼ ðlengthÞ−1, δπ ∼
ðlengthÞ−2, and Ya ∼ ðlengthÞ0. We introduce a vector
VρðvÞ as shorthand notation for nonhomogeneous and
nonisotropic DOFs:

VρðvÞ ¼ ðYaðeIðvÞÞ;XaðeIðvÞÞ; δπðvÞ; δϕðvÞÞT;
ρ ¼ 1;…20: ð5:5Þ

The dictionary between VρðvÞ and XaðeIðvÞÞ;YaðeIðvÞÞ is
given below:

V1 ¼ Y1ðe1Þ; V2 ¼ Y2ðe2Þ; V3 ¼ Y3ðe3Þ;
V4 ¼ Y2ðe1Þ; V5 ¼ Y3ðe1Þ; V6 ¼ Y3ðe2Þ;
V7 ¼ Y1ðe2Þ; V8 ¼ Y1ðe3Þ; V9 ¼ Y2ðe3Þ;
V10 ¼ X1ðe1Þ; V11 ¼ X2ðe2Þ; V12 ¼ X3ðe3Þ;
V13 ¼ X2ðe1Þ; V14 ¼ X3ðe1Þ; V15 ¼ X3ðe2Þ;
V16 ¼ X1ðe2Þ; V17 ¼ X1ðe3Þ; V18 ¼ X2ðe3Þ;
V19 ¼ δπ; V20 ¼ δφ: ð5:6Þ
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Equations (5.3) and (5.4) do not lose any generality of the
lattice variables. All θaðeÞ, paðeÞ, ϕðvÞ, and πðvÞ in Pγ

can be expressed as Eqs. (5.3) and (5.4), while Vρ may be
large for phase space points far away from being homo-
geneous and isotropic. When we discuss cosmological
perturbation theory, we are going to assume Vρ to be small
and linearize the EOMs.
Because we work with cubic lattice γ with constant

coordinate spacing μ and periodic boundary, it is conven-
ient to make the following lattice Fourier transformation:

Vρðτ; vÞ ¼ Vρðτ; σ⃗Þ ¼ 1

L3

X
k⃗∈ð2πLZÞ3;jkI j≤π

μ

eik⃗·σ⃗Ṽρðτ; k⃗Þ;

σI ∈ μZ; ð5:7Þ

where both σ⃗ and k⃗ have periodicity σI ∼ σI þ L and kI ∼
kI þ 2π

μ (I ¼ 1, 2, 3), so the sum
P

k⃗ has the UV cutoff

jkIj ≤ π
μ (L=μ is assumed to be an integer). Equation (5.7)

can also be expressed as below when we write k⃗ ¼ 2π
L m⃗,

σI ¼ μnI , and L ¼ μN, where N is the total number of
vertices along each direction:

Vρðτ; vÞ ¼ Vρðτ; n⃗Þ ¼ 1

L3

X
m⃗∈ZðNÞ3

Y3
I¼1

e
2πi
N mInI Ṽρðτ; m⃗Þ;

ð5:8Þ

Ṽρðτ; m⃗Þ ¼ L3

N3

X
n⃗∈ZðNÞ3

Y3
I¼1

e−
2πi
N mInIVρðτ; n⃗Þ; ð5:9Þ

whereZðNÞ are integers in ½−N=2; N=2 − 1� if N is even or
in ½−ðN − 1Þ=2; ðN − 1Þ=2� if N is odd.
We may absorb the homogeneous and isotropic DOFs in

zero modes and define

ΦρðvÞ ¼
�
βa2

2μ2
paðeIðvÞÞ;

1

μ
θaðeIðvÞÞ;ϕðvÞ;

1

μ3
πðvÞ

�
ð5:10Þ

≡ðPa
I ðvÞ; Ca

I ðvÞ;ϕðvÞ;ΠðvÞÞ; ð5:11Þ

Φρðτ; vÞ ¼ Φρðτ; n⃗Þ ¼ 1

L3

X
m⃗∈ZðNÞ3

Y3
I¼1

e
2πi
N mInI Φ̃ρðτ; m⃗Þ;

ð5:12Þ

where Φ̃ρðτ; 0⃗Þ contains the homogeneous and isotropic
DOFs ðP0ðτÞ; βK0ðτÞ;ϕ0ðτÞ; π0ðτÞÞ, e.g.,

P̃a
I ðτ; 0⃗Þ ¼ P0ðτÞ½δaI L3 þ Ṽρ¼1;…;9ðτ; 0⃗Þ�: ð5:13Þ

We propose a linear map I γi;γi−1∶Hγi−1 → Hγi to map
states on the coarser lattice γi−1 to a finer lattice γi. The total

number of vertices in γi; γi−1 are N3
i ; N

3
i−1, and here

Ni > Ni−1. I γi;γi−1 is going to be inserted in the middle
of the Hamiltonian evolution by Ĥ, to refine the lattice
during the evolution and relate the dynamics on different
lattices.
The formal definition of I γi;γi−1 is given as the following:

First, we denote the lattice Fourier transformation
Eq. (5.12) by

F γ∶fΦ̃ρðτ; m⃗Þgm⃗∈ZðNÞ3 ↦ fΦρðτ; n⃗Þgn⃗∈ZðNÞ3 : ð5:14Þ

At a given instance τi where we apply I γi;γi−1 to change γi−1
to γi, the Fourier transformations on γi and γi−1 are given,
respectively, by

Φρðτi; n⃗Þγi ¼ F γiΦ̃
ρðτi; m⃗Þγi

¼ 1

L3

X
m⃗∈ZðNiÞ3

Y3
I¼1

e
2πi
Ni
mInI Φ̃ρðτi; m⃗Þγi ; ð5:15Þ

Φρðτi; n⃗Þγi−1 ¼ F γi−1Φ̃
ρðτi; m⃗Þγi−1

¼ 1

L3

X
m⃗∈ZðNi−1Þ3

Y3
I¼1

e
2πi
Ni−1

mInI Φ̃ρðτi; m⃗Þγi−1 ;

ð5:16Þ

where we have added the label γi toΦρðτi; n⃗Þ to manifest its
corresponding lattice. Recall that the coherent states Ψℏ

½Z�
are labeled by Z ¼ ðg; zÞ depending on both μ and Φρ:

Ψℏ
½ZðγiÞ� ¼ Ψℏ

½Zðμi;Φγi
Þ� ¼ Ψℏ

½Zðμi;F γi
Φ̃γi

Þ�; ð5:17Þ

Ψℏ
½Zðγi−1Þ� ¼ Ψℏ

½Zðμi−1;Φγi−1 Þ�
¼ Ψℏ

½Zðμi−1;F γi−1 Φ̃γi−1 Þ�
: ð5:18Þ

Given Φ̃γi−1 on the coarser lattice γi−1, we determine Φ̃γi ¼
Φ̃γi ½Φ̃γi−1 � on the finer lattice γi by simple relations

Φ̃ρðτi; m⃗Þγi ¼ Φ̃ρðτi; m⃗Þγi−1 ; m⃗ ∈ ZðNi−1Þ3; ð5:19Þ

Φ̃ρðτi; m⃗Þγi ¼ 0; m⃗ ∈ ZðNiÞ3nZðNi−1Þ3: ð5:20Þ

Given Φ̃γi ½Φ̃γi−1 � determined by Φ̃γi−1 with the above
relations, we define the linear embedding map I γi;γi−1 :
Hγi−1 → Hγi by

I γi;γi−1 ¼
Z

dZðγi−1Þ
jΨℏ

½Zðγi;γi−1Þ�ihΨℏ
½Zðγi−1Þ�j

kψℏ
Zðγi;γi−1Þkkψℏ

Zðγi−1Þk
; ð5:21Þ

Zðγi; γi−1Þ ¼ Zðμi;F γiΦ̃γi ½Φ̃γi−1 �Þ;
Zðγi−1Þ ¼ Zðμi−1;F γi−1Φ̃γi−1Þ ð5:22Þ
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Given the parameters μi and μi−1, Zðγi; γi−1Þ is determined
by Zðγi−1Þ since Φ̃γi ½Φ̃γi−1 � is determined by Φ̃γi−1. ZðγiÞ is a
representative in the gauge equivalence class ½ZðγiÞ�.
kψℏ

Zk ¼ kψℏ
Zuk is SU(2) gauge invariant. If both γi and

γi−1 have large numbers of vertices Ni; Ni−1 ≫ 1 and Ni −
Ni−1 is small (e.g., Ni − Ni−1 ¼ 1), I γi;γi−1 approximates to
an isometry from Hγi−1 to Hγi (see Appendix C).

We assume the Hamiltonian evolution on the fixed lattice
γi−1 to occur in the time interval ½τi−1; τi�, and then we
apply I γi;γi−1 at τi at the end of this Hamiltonian evolution to
map the state to a refined lattice γi, followed by the
Hamiltonian evolution on γi in the time interval
½τi; τiþ1�. By iteration, we define the transition amplitude
with a dynamically changing lattice:

A½Z�;½Z0�ðKÞ ¼ hΨℏ
½Z�je−

i
ℏĤðT−τmÞI γm;γm−1

…e−
i
ℏĤðτiþ1−τiÞI γi;γi−1e

− i
ℏĤðτi−τi−1Þ…jΨℏ

½Z0�i

¼ kψℏ
Zkkψℏ

Z0 k
Z Ym

i¼0

dZðγi−1Þ
Ymþ1

i¼0

hΨℏ
½ZðγiÞ�je−

i
ℏĤðτiþ1−τiÞjΨℏ

½Zðγi;γi−1Þ�i
kψℏ

ZðγiÞkkψℏ
Zðγi;γi−1Þk

ð5:23Þ

¼ kψℏ
Zkkψℏ

Z0 k
Z Ym

i¼0

dZðγi−1Þ
Ymþ1

i¼0

Z
dZðiÞduðiÞν½ZðiÞ�eS½ZðiÞ;uðiÞ�=t; ð5:24Þ

where ½Zðγmþ1Þ�≡ ½Z� and ½Zðγ0; γ−1Þ�≡ ½Z0�. The initial
time is τ0, and the final time is T. Each factor in the
integrand is the Hamiltonian evolution from τi to τiþ1 and
has been expressed as a path integral as in Eq. (3.7).
The initial and final conditions of ZðiÞ are ZðγiÞ and
Zðγi; γi−1ÞuðiÞ , respectively, and integrating uðiÞ implements
the SU(2) gauge invariance. The path integral gives the
EOMs (4.18) in every time interval ½τi; τiþ1�. A½Z�;½Z0�ðKÞ
can be understood as a discrete path integral formula
defined on the spacetime lattice K as in Fig. 1.
A½Z�;½Z0�ðKÞ is similar to spin foam models which are
defined on spacetime lattices. The set of Ni or μi ¼
L=Ni ði ¼ 0;…; mÞ is determined by the choice of space-
time lattice K.
Intuitively, in the semiclassical time evolution in each

½τi; τiþ1� the initial data ½Zðγi; γi−1Þ� uniquely determine the
final data ½ZðγiÞ� [11]. The map I γiþ1;γi glues the final data
½ZðγiÞ� to the initial data ½Zðγiþ1; γiÞ� for the time evolution
in ½τiþ1; τiþ2�, while the data ½ZðγiÞ� and ½Zðγiþ1; γiÞ� share
the same infrared Fourier modes Φ̃ðmÞ with m⃗ ∈ ZðNiÞ3.
The gluing at all τi connects the semiclassical trajectories of
Hamiltonian evolutions in all intervals ½τi; τiþ1� and makes
the semiclassical trajectories of the entire time evolution
from τ0 to T.
Indeed, as is shown in Appendix D, when we study the

variational principle of A½Z�;½Z0�ðKÞ by taking into account
variations of Zðγi−1Þ ði ¼ 0;…; mÞ in the definitions of
I γi;γi−1 , these variations give some EOMs which are auto-
matically satisfied approximately by solutions of EOMs in
every ½τi; τiþ1�, at least for the homogenous and isotropic
cosmological evolution and perturbations. The approxima-
tion is up to an arbitrary small error of Oð1=NiÞ as Ni is
arbitrarily large. Connecting by I γiþ1;γi the semiclassical
trajectories in all ½τi; τiþ1� makes the solutions satisfying
approximately the variational principle of A½Z�;½Z0�ðKÞ up to

an arbitrarily small error of Oð1=NiÞ. The resulting
solutions describe the semiclassical dynamics on the
spacetime lattice K which relates to the choice of the
sequence of spatial lattices γi¼0;…;m and correspond-
ing μi¼0;…;m.
When the initial state Ψℏ

½Z0� is labeled by the homo-

geneous and isotropic ½Z0�, both the Hamiltonian evolution
and I γi;γi−1 preserve the homogeneity and isotropy. I γiþ1;γi
glues the final data ½ZðγiÞ� to the initial data ½Zðγiþ1; γiÞ�
sharing the same zero modes P0, K0, ϕ0, and π0. When the
initial state Ψℏ

½Z0� has cosmological perturbations Vρ, at each

step of the lattice refinement, I γi;γi−1 identifies

Ṽρðτi; m⃗Þγi ¼ Ṽρðτi; m⃗Þγi−1 ; m⃗ ∈ ZðNi−1Þ3; ð5:25Þ

Ṽρðτi; m⃗Þγi ¼ 0; m⃗ ∈ ZðNiÞ3nZðNi−1Þ3; ð5:26Þ

by Eqs. (5.19) and (5.20). This prescription freezes ultra-
violet modes on the finer lattice while identifying infrared
modes with the ones on the coarser lattice. Our study of
cosmological perturbations focuses only on long-wave-
length perturbations, so Eq. (5.32) is sufficient for our
purpose.
A½Z�;½Z0� has the limitation that I γi;γi−1 identifies only the

infrared modes when refining the lattice, while the ultra-
violet modes are lost. When we discuss cosmological
perturbations Ṽρðτ; m⃗Þ, the spatial momentum k⃗ ¼ 2π

L m⃗
is conserved, and then the EOMs fromA½Z�;½Z0� can describe
only the dynamics of the modes Ṽρðτ; m⃗Þ with
m⃗ ∈ ZðN0Þ3; i.e., their momenta are bounded by the
ultraviolet cutoff on the coarsest lattice γ0 where the initial
state is placed, while these modes are infrared at late time in
the sense that their momenta are much smaller than the
ultraviolet cutoff on the refined lattice. EOMs from A½Z�;½Z0�
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are not able to predict the dynamics of ultraviolet modes at
late time if the initial state is placed at the early time. This
feature suggests that A½Z�;½Z0� is likely to be a low-energy
effective theory, and the early-time dynamics on the coarser
lattice is expected to be the coarse-grained model obtained
from the full quantum dynamics by integrating out ultra-
violet modes [beyond ZðN0Þ3]. In this work, we focus only
on A½Z�;½Z0� understood as the low-energy effective theory.
The time evolution inA½Z�;½Z0� is not unitary. The numbers

of DOFs are not equal between early time and late time, and
there are ultraviolet modes at late time not predictable by
the initial state at early time. But it is possible that the
unitarity may be hidden by the coarse graining, if we view
the dynamics on the coarser lattice as the coarse grain of the
dynamics on the finer lattice. Ultimately, in more complete
treatment, quantum states and dynamics on the coarser
lattice should contain the information of ultraviolet modes,

although this information is still missing in our effective
approach. Standard examples in the Wilsonian renormaliza-
tion show that, when integrating out ultraviolet modes, their
effects are not lost but encoded in higher-order and higher-
derivative interaction terms in the effective Lagrangian. Here
we have ignored the correction to S½Z; u� from coarse
graining since we focus only on long-wavelength modes.
Our expectation regarding the unitarity in the effective theory
is somewhat similar to the one proposed in Ref. [38].
A½Z�;½Z0�ðKÞ in Eq. (5.24) requires μi¼0;…;m is a mono-

tonically decreasing sequence from early to late time. We
can generalize the formulation by relaxing this require-
ment. When the spacetime lattice K is such that, at the
instance τj, the lattice γj in the future of τj is coarser than
the lattice γj−1 in the past, i.e., μj > μj−1, we insert I

†
γj−1;γj

in A½Z�;½Z0�ðKÞ (recall that I γj−1;γj∶Hγj → Hγj−1 from the
coarser lattice to the finer):

A½Z�;½Z0�ðKÞ ¼ hΨℏ
½Z�je−

i
ℏĤðT−τmÞI γm;γm−1

…e−
i
ℏĤðτjþ1−τjÞI†

γj−1;γje
− i
ℏĤðτj−τj−1Þ…jΨℏ

½Z0�i; ð5:27Þ

where I†
γj−1;γj∶Hγj−1 → Hγj is defined by

I†
γj−1;γj ¼

Z
dZðγjÞ

jΨℏ
½ZðγjÞ�ihΨℏ

½Zðγj−1;γjÞ�j
kψℏ

ZðγjÞkkψℏ
Zðγj−1;γjÞk

; ð5:28Þ

Zðγj−1; γjÞ ¼ Zðμj−1;F γj−1Φ̃γj−1 ½Φ̃γj �Þ; ZðγjÞ ¼ Zðμj;F γjΦ̃γjÞ: ð5:29Þ

Inserting this expression of I†
γj−1;γj in A½Z�;½Z0�ðKÞ and denoting Ψ̃ℏ

½Z� ¼ Ψℏ
½Z�=kψℏ

Zk, we obtain

A½Z�;½Z0�ðKÞ ¼
Z

dZðγjÞhΨℏ
½Z�j…e−

i
ℏĤðτjþ1−τjÞjΨ̃ℏ

½ZðγjÞ�ihΨ̃ℏ
½Zðγj−1;γjÞ�je−

i
ℏĤðτj−τj−1Þ…jΨℏ

½Z0�i:

Then the path integral expression of general A½Z�;½Z0�ðKÞ is

A½Z�;½Z0�ðKÞ ¼ kψℏ
Zkkψℏ

Z0 k
Z Ym

i¼0

dZðγi−1=iÞ
Ymþ1

i¼0

hΨ̃ℏ
½Z−ðγiÞ�je−

i
ℏĤðτiþ1−τiÞjΨ̃ℏ

½ZþðγiÞ�i ð5:30Þ

¼ kψℏ
Zkkψℏ

Z0 k
Z Ym

i¼0

dZðγi−1=iÞ
Ymþ1

i¼0

Z
dZðiÞduðiÞν½ZðiÞ�eS½ZðiÞ;uðiÞ�=t: ð5:31Þ

Our notation is ZþðγiÞ ¼ Zðγi; γi−1Þ, Z−ðγi−1Þ ¼ Zðγi−1Þ, and dZðγi−1=iÞ ¼ dZðγi−1Þ when γi is finer than γi−1 but
ZþðγiÞ ¼ ZðγiÞ, Z−ðγi−1Þ ¼ Zðγi−1; γiÞ, and dZðγi−1=iÞ ¼ dZðγiÞ when γi is coarser than γi−1.
The semiclassical dynamics is still obtained by connecting semiclassical trajectories in ½τi−1; τi�. But we generalize from

monotonically decreasing μi¼0;…;m to arbitrary sequence μi¼1;…;m; in other words, we allow more general spacetime lattice
K. For the cosmological perturbation theory, Eqs. (5.25) and (5.26) are generalized to be

Ṽρðτi; m⃗Þγi ¼ Ṽρðτi; m⃗Þγi−1 ; m⃗ ∈ ZðMinðNi; Ni−1ÞÞ3; ð5:32Þ

Ṽρðτi; m⃗Þγi or γi−1 ¼ 0; m⃗ ∈ ZðMaxðNi; Ni−1ÞÞ3nZðMinðNi; Ni−1ÞÞ3; ð5:33Þ

respectively. Equations (5.19) and (5.20) are generalized similarly. The modes captured by the semiclassical dynamics
correspond to the ones on the coarsest lattice:
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m⃗ ∈ ZðMinðfNigi¼0;…;mÞÞ3: ð5:34Þ

In general, the coarsest lattice is not necessarily at the initial
time τ0.

C. Homogeneous and isotropic cosmological
dynamics on dynamical lattice

We impose the initial state Ψℏ
½Z0� labeled by the homo-

geneous and isotropic ½Z0�. The Hamiltonian evolution on
the fixed lattice γi determines the unique semiclassical
trajectory from the initial data [11]. The homogeneity and
isotropy are preserved by the semiclassical dynamics.

I γiþ1;γi glues the final data ½ZðγiÞ� to the initial data
½Zðγiþ1; γiÞ� sharing the same zero modes P0, K0, ϕ0,
and π0. All nonzero Fourier modes vanish.
Given a choice of the spacetime latticeK, or, equivalently,

a sequence of γi¼0;…;m with μi¼0;…;m, the following variables
are continuous at each instance τi where I γi;γi−1 is inserted:

P0ðτiÞγi ¼ P0ðτiÞγi−1 ; K0ðτiÞγi ¼ K0ðτiÞγi−1 ; ð5:35Þ
ϕ0ðτiÞγi ¼ ϕ0ðτiÞγi−1 ; π0ðτiÞγi ¼ π0ðτiÞγi−1 : ð5:36Þ

On the other hand, the semiclassical time evolution within
½τi; τiþ1� is on a fixed spatial lattice γi and is governed by

4β2½−2μ2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞγi

q
_K0ðτÞγi þ sin4 ðβμiK0ðτÞγiÞ þ Λμ2i P0ðτÞγi � − sin2 ð2βμiK0ðτÞγiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0ðτÞγi
q

¼ κβ2μ2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞγi

q
½π0ðτÞ2γiP0ðτÞ−3γi −Uðϕ0ðτÞγiÞ�; ð5:37Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0ðτÞγi
q

½2β2 sin ð2βμiK0ðτÞγiÞ − ðβ2 þ 1Þ sin ð4βμiK0ðτÞγiÞ� þ 2βμi _P0ðτÞγi ¼ 0; ð5:38Þ

P0ðτÞ3=2γi
_ϕ0ðτÞγi − π0ðτÞγi ¼ 0; P0ðτÞ3=2γi U0ðϕ0ðτÞγiÞ ¼ −2_π0ðτÞγi ; ð5:39Þ

which add lattice labels to Eqs. (4.21)–(4.23).
We assume every interval ½τi; τiþ1� is sufficiently small, and for every Ni ≫ 1 and Ni − Ni−1 ∼Oð1Þ (μi=μi−1 ∼ 1), we

can approximate the sequence of μi by a smooth function μðτÞ (approximating the step function by a smooth function).
Moreover, we make the following approximations for time derivatives in Eqs. (5.37)–(5.39):

_P0ðτiÞγi ≃
P0ðτiþ1Þγi − P0ðτiÞγi

τiþ1 − τi
; _K0ðτiÞγi ≃

K0ðτiþ1Þγi − K0ðτiÞγi
τiþ1 − τi

; ð5:40Þ

_ϕ0ðτiÞγi ≃
ϕ0ðτiþ1Þγi − ϕ0ðτiÞγi

τiþ1 − τi
; _π0ðτiÞγi ≃

π0ðτiþ1Þγi − π0ðτiÞγi
τiþ1 − τi

: ð5:41Þ

Since P0ðτÞ, K0ðτÞ, π0ðτÞ, and ϕ0ðτÞ are continuous at every τi [see Eq. (5.36)], when we insert the above approximation in
Eqs. (5.37)–(5.39) and assume P0ðτÞ, K0ðτÞ, π0ðτÞ, ϕ0ðτÞ, and μðτÞ to be smooth functions in τ, the resulting EOMs can be
approximated by the following differential equations:6

4β2½−2μðτÞ2 ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p
_K0ðτÞ þ sin4 ðβμðτÞK0ðτÞÞ þ ΛμðτÞ2P0ðτÞ�ffiffiffiffiffiffiffiffiffiffiffi

P0ðτÞ
p −

sin2 ð2βμðτÞK0ðτÞÞffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p
¼ κβ2μðτÞ2

ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p
½π0ðτÞ2P0ðτÞ−3 − Uðϕ0ðτÞÞ�; ð5:42Þ

ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p
½2β2 sin ð2βμðτÞK0ðτÞÞ − ðβ2 þ 1Þ sin ð4βμðτÞK0ðτÞÞ� þ 2βμðτÞ _P0ðτÞ ¼ 0; ð5:43Þ

P0ðτÞ3=2 _ϕ0ðτÞ − π0ðτÞ ¼ 0; P0ðτÞ3=2U0ðϕ0ðτÞÞ ¼ −2_π0ðτÞ: ð5:44Þ

6Here, the interval ½τi; τiþ1� has to be coarser than the steps δτ since the path integral formula (3.7) needs to be valid in each interval. δτ
is arbitrarily small so that the intervals can be sufficiently small to validate the approximation.

MUXIN HAN and HONGGUANG LIU PHYS. REV. D 104, 024011 (2021)

024011-20



These equations are defined for the entire time
evolution from τ0 to T. The choice of spacetime lattice
K relates to the choice of function μðτÞ in
Eqs. (5.42)–(5.44).

It is convenient to make a change of variable
b0ðτÞ ¼ K0ðτÞ=

ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p
, since b0ðτÞ equals the Hubble

parameter HðτÞ in the semiclassical regime.
Equations (5.42)–(5.44) become

_b0ðτÞ ¼ −
sin2 ð2βb0ðτÞμðτÞ

ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p Þ
8β2μðτÞ2P0ðτÞ

þ sin4 ðβb0ðτÞμðτÞ
ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p Þ
2μðτÞ2P0ðτÞ

þ βb0ðτÞ sin ð2βb0ðτÞμðτÞ
ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p Þ
2μðτÞ ffiffiffiffiffiffiffiffiffiffiffi

P0ðτÞ
p −

βb0ðτÞ sin ð4βb0ðτÞμðτÞ
ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p Þ
4μðτÞ ffiffiffiffiffiffiffiffiffiffiffi

P0ðτÞ
p

−
b0ðτÞ sin ð4βb0ðτÞμðτÞ

ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p Þ
4βμðτÞ ffiffiffiffiffiffiffiffiffiffiffi

P0ðτÞ
p −

κπ0ðτÞ2
8P0ðτÞ3

þ 1

8
κUðϕ0ðτÞÞ þ

Λ
2
; ð5:45Þ

_P0ðτÞ
P0ðτÞ

¼ −
β sin ð2βb0ðτÞμðτÞ

ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p Þ
μðτÞ ffiffiffiffiffiffiffiffiffiffiffi

P0ðτÞ
p þ β sin ð2βb0ðτÞμðτÞ

ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p Þ cos ð2βb0ðτÞμðτÞ
ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p Þ
μðτÞ ffiffiffiffiffiffiffiffiffiffiffi

P0ðτÞ
p

þ sin ð2βb0ðτÞμðτÞ
ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p Þ cos ð2βb0ðτÞμðτÞ
ffiffiffiffiffiffiffiffiffiffiffi
P0ðτÞ

p Þ
βμðτÞ ffiffiffiffiffiffiffiffiffiffiffi

P0ðτÞ
p ; ð5:46Þ

_ϕ0ðτÞ ¼ π0ðτÞ=P0ðτÞ3=2; P0ðτÞ3=2U0ðϕ0ðτÞÞ ¼ −2_π0ðτÞ: ð5:47Þ

Given the choice of μðτÞ, Eqs. (5.45)–(5.47) uniquely
determine the solution P0ðτÞ; b0ðτÞ; π0ðτÞ;ϕ0ðτÞ provided
their initial condition at τ0. Since the solution depends on
the function μðτÞ, we denote the solution by

P0½μ�; b0½μ�; π0½μ�; ϕ0½μ�: ð5:48Þ

Given the initial condition P0ðτ0Þ; b0ðτ0Þ; π0ðτ0Þ;ϕ0ðτ0Þ or
the final conditionP0ðTÞ; b0ðTÞ; π0ðTÞ;ϕ0ðTÞ, Eqs. (5.45)–
(5.47) define a map ι from the spaceF μ of functions μðτÞ to
the space FB of solutions P0ðτÞ; b0ðτÞ; π0ðτÞ;ϕ0ðτÞ, and
P0½μ�; b0½μ�; π0½μ�;ϕ0½μ� is the image of this map from a
given function μ:

ι∶F μ → FB;

μ ↦ ðP0½μ�; b0½μ�; π0½μ�;ϕ0½μ�Þ: ð5:49Þ

VI. UV CUTOFF AND μmin-SCHEME
EFFECTIVE DYNAMICS

First of all, we fix the final condition P0ðTÞ; b0ðTÞ;
π0ðTÞ;ϕ0ðTÞ by letting T ¼ τpivot be the pivot time:

P0½μ�ðTÞ; b0½μ�ðTÞ; π0½μ�ðTÞ; ϕ0½μ�ðTÞ
ð6:1Þ

are independent of μ. Here, b0ðTÞ, π0ðTÞ, and ϕ0ðTÞ have
been given in Sec. IV B:

b0ðTÞ ¼ 1.21 × 10−6mP;

π0ðTÞ ¼ −5.03 × 10−9m2
PP0ðTÞ3=2;

ϕ0ðTÞ ¼ 1.07mP: ð6:2Þ

Although P0ðTÞ is ambiguous, we fix its value, e.g.,
P0ðTÞ ¼ 1, and proceed, but we are going to show that
the effective dynamics obtained at the end of this section is
invariant under rescaling P0ðTÞ → αP0ðTÞ for all α ∈ R.
At each time step, μ parametrize the discreteness of the

theory and μ → 0 is the continuum limit. We would like to
find a choice of μ to minimize this discreteness while still
validating all the above discussions. Recall that the validity
of the semiclassical dynamics requires μ4P2

0 ≫ 1
4
β2l4

P=t.
We impose a UV cutoff Δ (a small area scale) such that
Δ2 ≫ 1

4
β2l4

P=t, and we define μminðτÞ to saturate this UV
cutoff:

μminðτÞ2P0½μmin�ðτÞ ¼ Δ: ð6:3Þ

The geometrical volume at each lattice vertex μminðτÞ3 ×
P0½μmin�ðτÞ3=2 ¼ Δ3=2 is minimal. As a result, the semi-
classical approximation of the dynamics is valid throughout
the evolution, while higher-order corrections in ℏ of
hψ̃ℏ

ZjĤjψ̃ℏ
Zi give only relatively small corrections to the

predictions of the effective dynamics. Here, Δ has an
analog in the μ̄-scheme LQC. In the μ̄-scheme LQC, Δ
relates to the minimal area gap and, thus, is a physical
quantity. A similar thing happens here since Δ effectively
relates to the minimal geometrical area of the lattice. The
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(regularized) effective dynamics coming from the critical
contribution of the coherent state path integral, it gives out
the evaluation of the leading-order expectation values of
phase space operators. As a result, in such treatment,
we ignore quantum fluctuations beyond the effective
dynamics.
μminðτÞ satisfying Eq. (6.3) is unique. P0½μmin�ðτÞ and

μminðτÞ can be obtained as the following. We first recover
the original variables in Eqs. (4.19) and (4.20):

pðτÞ ¼ 2μðτÞ2
βa2

P0ðτÞ; θðτÞ ¼ βμðτÞK0ðτÞ;

πðτÞ ¼ μðτÞ3π0ðτÞ: ð6:4Þ

Equations (5.42)–(5.44) are rewritten as below:

_p¼
ffiffiffi
2

p ffiffiffiffiffiffi
βp

p
sinð2θÞ½ðβ2 þ 1Þ cosð2θÞ− β2�

aβ2
þ 2p _μ

μ
; ð6:5Þ

_θ ¼ 1

16

�
4
ffiffiffi
2

p
aβΛ

ffiffiffiffiffiffi
βp

p
−
8
ffiffiffi
2

p
κπ2

ffiffiffiffiffiffi
βp

p
a5β2p3

−
4
ffiffiffi
2

p
psin2ðθÞð−β2 þ ðβ2 þ 1Þ cosð2θÞ þ 1Þ

aðβpÞ3=2

þ
ffiffiffi
2

p
aβκ

ffiffiffiffiffiffi
βp

p
Uðϕ0Þ þ

16θ _μ

μ

�
; ð6:6Þ

_ϕ0 ¼
�

2

a2β

�
3=2 π

p3=2 ; _π ¼ 3π _μ

μ
−
a3ðβpÞ3=2U0ðϕ0Þ

4
ffiffiffi
2

p :

ð6:7Þ
Equation (6.3) implies pðτÞ ¼ 2Δ=ðβa2Þ to be a constant
and _p ¼ 0. Equations (6.5)–(6.7) become first-order
ordinary differential equations of μðτÞ ¼ μminðτÞ; θðτÞ;
ϕ0ðτÞ; πðτÞ. The final condition of μminðτÞ is given by
μminðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ=P0ðTÞ

p
.

We make the following change of variable according to
Eq. (6.3):

μminðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
P0½μmin�ðτÞ

s
: ð6:8Þ

Here, μmin has the same expression as μ̄ in the improved
dynamics of LQC, if we identify Δ to the parameter Δ
(usually set to be the minimal area gap) in LQC. Changing
the variable and recovering b0 and π0 from Eqs. (6.5)–(6.7)
give the effective EOMs:

_b0½μmin�

¼ −
sin2 ð2 ffiffiffiffi

Δ
p

βb0½μmin�Þ
8β2Δ

þ sin4 ð ffiffiffiffi
Δ

p
βb0½μmin�Þ
2Δ

þ βb0 sin ð2
ffiffiffiffi
Δ

p
βb0½μmin�Þ

2
ffiffiffiffi
Δ

p −
βb0 sin ð4

ffiffiffiffi
Δ

p
βb0½μmin�Þ

4
ffiffiffiffi
Δ

p

−
b0 sin ð4

ffiffiffiffi
Δ

p
βb0½μmin�Þ

4
ffiffiffiffi
Δ

p
β

−
κπ20
8P3

0

þ 1

8
κUðϕ0Þ þ

Λ
2
; ð6:9Þ

_P0½μmin�
P0½μmin�

¼ −
β sin ð2 ffiffiffiffi

Δ
p

βb0½μmin�Þffiffiffiffi
Δ

p þ β sin ð4 ffiffiffiffi
Δ

p
βb0½μmin�Þ

2
ffiffiffiffi
Δ

p

þ sin ð4 ffiffiffiffi
Δ

p
βb0½μmin�Þ

2
ffiffiffiffi
Δ

p
β

; ð6:10Þ

(a)

(b)

FIG. 4. The plot of the average effective dynamics given by
EOMs (7.7)–(7.9) (orange) and comparison with μmin-scheme
effective dynamics (blue), the μ̄-scheme LQC effective dyna-
mics in Refs. [14,39] with unsymmetric bounce (red), and
the traditional μ̄-scheme LQC effective dynamics in Ref. [5]
with symmetric bounce (green). The upper panel plots
V0ðτÞ ¼ P0ðτÞ3=2, and the lower panel plots b0ðτÞ. We set the
pivot time to be τpivot ¼ 0. The solution is determined by the
values at τpivot: b0ðτpivotÞ ¼ 1.21 × 10−6mP, V0ðτpivotÞ ¼ 1,
ϕ0ðτpivotÞ ¼ 1.07mP, and π0ðτpivotÞ ¼ −5.03 × 10−9m2

P. The

parameters take values m ¼ 2.44 × 10−6mP, Λ ¼ 0,
ffiffiffiffi
Δ

p ¼ 10lP,
and β ¼ 1.
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_ϕ0½μmin� ¼ π0½μmin�=P0½μmin�3=2;
P0½μmin�3=2U0ðϕ0½μmin�Þ ¼ −2_π0½μmin�: ð6:11Þ

These effective EOMs are equivalent to replacing μðτÞ by
μminðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ=P0ðτÞ

p
in Eqs. (5.45)–(5.47). We coin the

name of Eqs. (6.9)–(6.11) as “μmin-scheme effective
dynamics.”
Note that the μmin-scheme effective dynamics is not the

same as the μ̄ scheme in LQC (see Fig. 4 for the curves
labeled by “minimum”), although there are several impor-
tant similarities which are discussed in Sec. VIII.
Equations (6.9)–(6.11) are invariant under the following

rescaling:

P0½μmin�ðτÞ→ αP0½μmin�ðτÞ; π0½μmin�ðτÞ→ α3=2π0½μmin�ðτÞ;
ð6:12Þ

b0½μmin�ðτÞ → b0½μmin�ðτÞ; ϕ0½μmin�ðτÞ → ϕ0½μmin�ðτÞ:
ð6:13Þ

Recall that the final condition P0ðTÞ is ambiguous (defined
up to rescaling). If we rescale P0ðTÞ → αP0ðTÞ and
π0ðTÞ → α3=2π0ðTÞ of the final condition (b0, _ϕ0, and
ϕ0 are left invariant), the solution of Eqs. (6.9)–(6.11) from
the rescaled final condition is the rescaling (6.13) of the
solution from the original final condition, since the solution
of the equations is uniquely determined by the final
condition. The dynamics of Hubble parameterH and scalar
field ϕ0 is rescaling invariant and, thus, is ambiguity-free.

VII. RANDOM LATTICE AND AVERAGE
EFFECTIVE DYNAMICS

The dynamics of P0ðτ0Þ; b0ðτ0Þ; π0ðτ0Þ;ϕ0ðτ0Þ depends
on the choice of μðτÞ or, equivalently, the choice of the
spacetime lattice K. Different spacetime lattices K give
different definitions of transition amplitude A½Z�;½Z0�ðKÞ and
can be viewed as corresponding to different superselection
sectors. When we approximate the discrete μi¼0;…;m by the
smooth function μðτÞ, the superselection sectors are labeled
by functions μðτÞ. μðτÞ behaves as giving an “external
force” to the cosmological dynamics as shown in Eqs. (6.5)
and (6.6).
We propose K to be a random lattice such that μðτÞ is

a random function with respect to certain probability
distribution on the ensemble F μ. The random μðτÞ gives
a “random external force” in Eqs. (6.5) and (6.6). The
probability distribution onF μ is described as the following.
We again fix the final condition P0ðTÞ; b0ðTÞ; π0ðTÞ;

ϕ0ðTÞ at T ¼ τpivot as (6.2) and P0ðTÞ ¼ 1 [the effective
dynamics obtained at the end of this section is invariant
under rescaling P0ðTÞ → αP0ðTÞ for all α ∈ R].

We take μminðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ=P0½μmin�ðτÞ

p
as the minimal μðτÞ

of the spatial lattice at the instance τ. Recall that a general
μðτÞ is an approximation of L=NðτÞ (or L=Ni with earlier
notations), where the integer NðτÞ (or Ni) is the number of
vertices along each direction on the spatial lattice γðτÞ (or
γi) at τ, and we have NðτÞ < NmaxðτÞ, where NmaxðτÞ
satisfies L=NmaxðτÞ ≃ μminðτÞ. We let γðτÞ with NðτÞ3
vertices be a random sublattice of the finest one with
NmaxðτÞ3 vertices. Randomly selecting NðτÞ out of NmaxðτÞ
vertices along every direction gives a random sublattice.7

Assuming all sublattices are democratic, the probability
pðμðτÞÞ of having γðτÞ is proportional to the multiplicity8

pðμðτÞÞ ¼
�

1

2NmaxðτÞ

�
NmaxðτÞ
NðτÞ

��
3

: ð7:1Þ

This is the probability distribution of μðτÞ at the instance τ.
The probability of the function μ is given by

Q
τ pðμðτÞÞ,

where the product over τ is essentially a finite product since
A½Z�;½Z0�ðKÞ assumes a finite number of lattice changes.
WhenNmaxðτÞ are large,PðμðτÞÞ can be approximated by a
Gaussian function

pðμðτÞÞ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πNmaxðτÞ=2

p e−
½NðτÞ−NmaxðτÞ=2�2

NmaxðτÞ=2

×

�
1þO

�
1ffiffiffiffiffiffiffiffiffiffi
Nmax

p
���

3

: ð7:2Þ

It leads to the probability distribution on F μ as

PðμÞ ≃
Y
τ

�
L

μðτÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μminðτÞ

πL

r
e−

2L
μminðτÞð

μminðτÞ
μðτÞ −1

2
Þ2
�3

; ð7:3Þ

which indicates that the most probable μðτÞ is
μ̄ðτÞ ¼ 2μminðτÞ. We extend PðμÞ to entire F μ including
those μðτÞ even smaller than μminðτÞ since they give
negligible probability.
The averaged dynamics of P0; K0;ϕ0; π0 is given by the

ensemble average over F μ:

P̄0ðτÞ ¼
Z
F μ

DμPðμÞP0½μ�ðτÞ;

b̄0ðτÞ ¼
Z
F μ

DμPðμÞb0½μ�ðτÞ; ð7:4Þ

7We label vertices in the finest lattice by ði; j; kÞ where integer
i; j; k ∈ f1;…; Nmaxg. We choose N vertices in each of three
directions i1;…; iN , j1;…; jN , k1;…; kN where ia; jb; kc ∈f1;…; Nmaxg with a; b; c ∈ f1;…; Ng. The choices make a
N × N × N sublattice whose vertices are ðia; jb; kcÞ with
a; b; c ∈ f1;…; Ng.

8This probability distribution is different from the one in
Ref. [40], although the idea is similar.
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π̄0ðτÞ ¼
Z
F μ

DμPðμÞπ0½μ�ðτÞ;

ϕ̄0ðτÞ ¼
Z
F μ

DμPðμÞϕ0½μ�ðτÞ; ð7:5Þ

whereDμ ¼Qτ dμðτÞ. WhenNmaxðτÞ is large, we have the
following approximation:

ðP̄0; b̄0; π̄0; ϕ̄0Þ ≃ ðP0½2μmin�; b0½2μmin�;
π0½2μmin�;ϕ0½2μmin�Þ;

μminðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
P0½μmin�ðτÞ

s
: ð7:6Þ

The average effective dynamics is given by the EOMs
(5.45)–(5.47) with μ̄ðτÞ ¼ 2μminðτÞ:

_̄b0 ¼ −
sin2 ð4 ffiffiffiffi

Δ
p

βb̄0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p
Þ

32β2ΔP̄0=P0½μmin�
þ sin4 ð2 ffiffiffiffi

Δ
p

βb̄0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p
Þ

8ΔP̄0=P0½μmin�

þ βb̄0 sin ð4
ffiffiffiffi
Δ

p
βb̄0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0=P0½μmin�

p Þ
4
ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p −
βb̄0 sin ð8

ffiffiffiffi
Δ

p
βb̄0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p
Þ

8
ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p
−
b̄0 sin ð8

ffiffiffiffi
Δ

p
βb̄0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p
Þ

8
ffiffiffiffi
Δ

p
β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p −
κπ20
8P3

0

þ 1

8
κUðϕ̄0Þ þ

Λ
2
; ð7:7Þ

_̄P0

P̄0

¼ −
β sin ð4 ffiffiffiffi

Δ
p

βb̄0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p
Þ

2
ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p þ β sin ð8 ffiffiffiffi
Δ

p
βb̄0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p
Þ

4
ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p
þ sin ð8 ffiffiffiffi

Δ
p

βb̄0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p
Þ

4
ffiffiffiffi
Δ

p
β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0=P0½μmin�

p ; ð7:8Þ

_̄ϕ0 ¼ π̄0=P̄
3=2
0 ; P̄0

3=2U0ðϕ̄0Þ ¼ −2 _̄π0: ð7:9Þ

These equations are invariant by rescaling

P̄0ðτÞ → αP̄0ðτÞ; P0½μmin�ðτÞ → αP0½μmin�ðτÞ; π̄0ðτÞ → α3=2π̄0ðτÞ; ð7:10Þ

b̄0ðτÞ → b̄0ðτÞ; ϕ̄0ðτÞ → ϕ̄0ðτÞ; ð7:11Þ

with constant α. If we rescale the final condition P0ðTÞ → αP0ðTÞ and π0ðTÞ → α3=2π0ðTÞ (b0, _ϕ0, and ϕ0 are left
invariant), the solution of Eqs. (6.9)–(6.11) is rescaled as discussed above:

P0½μmin�ðτÞ → αP0½μmin�ðτÞ; π0½μmin�ðτÞ → α3=2π0½μmin�ðτÞ; ð7:12Þ

b0½μmin�ðτÞ → b0½μmin�ðτÞ; ϕ0½μmin�ðτÞ → ϕ0½μmin�ðτÞ: ð7:13Þ

When we insert this rescaling of P0½μmin� → αP0½μmin� in
Eqs. (7.7)–(7.9) and apply the rescaled final condition
P0ðTÞ → αP0ðTÞ and π0ðTÞ → α3=2π0ðTÞ, the solution of
the average effective dynamics is rescaled:

P̄0ðτÞ → αP̄0ðτÞ; π̄0ðτÞ → α3=2π̄0ðτÞ; ð7:14Þ

b̄0ðτÞ → b̄0ðτÞ; ϕ̄0ðτÞ → ϕ̄0ðτÞ; ð7:15Þ

due to the symmetry and the uniqueness of the solution.
The average effective dynamics of Hubble parameterH and
scalar field ϕ0 is free of the ambiguity of P0ðTÞ.

VIII. PROPERTIES OF μmin-SCHEME AND
AVERAGE EFFECTIVE DYNAMICS

The plot of μmin-scheme and average effective dynamics
and comparison with μ̄ schemes of LQC are given in Fig. 4
(we set Λ ¼ 0 in the figures in this section). All effective
dynamics converge at late time while behaving differently
near and on the other side of the bounce. In Fig. 4, we have
identified our UV cutoff Δ to the parameter Δ (usually set
to be the minimal area gap) in LQC.
Let us focus on the bounce in the μmin-scheme effective

dynamics, _P0ðτðminÞ
B Þ ¼ 0 at the bounce, and Eq. (6.10)

gives
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βb̄0ðτðminÞ
B Þ

ffiffiffiffi
Δ

p
¼ 1

2
cos−1

�
β2

β2 þ 1

�
; ð8:1Þ

where τðminÞ
B is the instance when the bounce occurs in the

μmin-scheme effective dynamics. Recall Eqs. (4.25) and
(4.26) for the Hamiltonian H; the total matter density
(including cosmological constant) ρ ¼ ρdust þ ρs þ ρΛ at
the bounce is given by the critical density

ρc½μmin� ¼
3

2β2ðβ2 þ 1ÞκΔ ; ð8:2Þ

which is constant. This expression is the same as in
Refs. [14,39].
For the bounce in the average effective dynamics,

_P0ðτBÞ ¼ 0 at the bounce, and Eq. (7.8) gives

βb̄0ðτBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0ðτBÞ

q
μ̄ðτBÞ ¼

1

2
cos−1

�
β2

β2 þ 1

�
; ð8:3Þ

where τB is the instance when the bounce occurs in the
average effective dynamics. The critical density is given by

ρ̄c ¼ ρðτBÞ ¼
3

2ðβ4 þ β2ÞκP̄0ðτBÞμ̄ðτBÞ2
: ð8:4Þ

Note that here μ̄ðτÞ ¼ 2μminðτÞ, and P0ðτÞ shares the
same final condition P0ðTÞ as the one used for solving

μminðτÞ. Recall that P0ðTÞ is the squared scale factor
and defined only up to a scaling. We are going to show
that ρ̄c does not change by rescaling P0ðTÞ. Indeed,
if we rescale P0ðTÞ → αP0ðTÞ and π0ðTÞ → α3=2π0ðTÞ
of the final condition (b0, _ϕ0, and ϕ0 are left invariant),
the solution of the average effective dynamics is
rescaled by

P̄0ðτÞ → αP̄0ðτÞ; π̄0ðτÞ → α3=2π̄0ðτÞ ð8:5Þ

b̄0ðτÞ → b̄0ðτÞ; ϕ̄0ðτÞ → ϕ̄0ðτÞ; ð8:6Þ

by the discussion below Eqs. (7.7)–(7.9). This indicates
that the average effective dynamics of H and ϕ0 is free of
the ambiguity of P0ðTÞ, and the following quantity is
invariant under the rescaling:

μ̄ðτÞ2P̄0ðτÞ ¼ 4μminðτÞ2P̄0ðτÞ ¼ 4ΔP̄0ðτÞ=P0½μmin�ðτÞ;
ð8:7Þ

whose values are plotted in Fig. 5 with β ¼ 1;
ffiffiffiffi
Δ

p ¼ 10lP.
Therefore,

ρ̄c ¼
3

8ðβ4 þ β2ÞκΔP̄0ðτBÞ=P0½μmin�ðτBÞ
ð8:8Þ

is not affected by the rescaling and, thus, is ambiguity-free.
P̄0ðτBÞ=P0½μmin�ðτBÞ ≃ 1.6 when β ¼ 1;

ffiffiffiffi
Δ

p ¼ 10lP, and it

FIG. 5. The plot of P̄0ðτÞ=P0½μmin�ðτÞ at β ¼ 1;
ffiffiffiffi
Δ

p ¼ 10lP. The vertical dashed line is at τB of the bounce. The horizontal dashed line
is at μ̄2P̄0 ¼ Δ.
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has mild dependence on β and Δ (see Figs. 6–8). More
precisely, Fig. 7 shows that at β ¼ 1

μ̄ðτBÞ2P̄0ðτBÞ ≃ 4Δð1.60854þ 3.1840 × 10−4ϕ̄0ðτBÞ
ffiffiffiffi
Δ

p
Þ;

ð8:9Þ

where ϕ̄0ðτBÞ is the value of scalar field at the bounce (of
the averaged dynamics). ϕ̄0ðτBÞ ∼Oð1Þ (see Fig. 10) is

determined by the final condition (6.2) and relates to the
subleading correction. It implies

ρ̄c ≃
3

16κΔð1.60854þ 3.1840 × 10−4ϕ̄0ðτBÞ
ffiffiffiffi
Δ

p Þ ð8:10Þ

for β ¼ 1. ρ̄c is close to Planckian when Δ is close to
Planckian. The numerics shows that the Kretschmann

(a)

(b)

FIG. 6. (a) The plots of P̄0ðτÞ=P0½μmin�ðτÞ for
ffiffiffiffi
Δ

p ¼ 10lP and several different values of β and (b) the plots of P̄0ðτÞ=P0½μmin�ðτÞ for
β ¼ 1 and several different values of Δ.
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scalar at the bounce K̄ðτBÞ ∼ Δ−2 and more precisely, as
shown in Fig. 9,

K̄ðτBÞ ≃
0.17397 − 1.2554 × 10−4ϕ̄0ðτBÞ

ffiffiffiffi
Δ

p

Δ2
; ð8:11Þ

which includes the subleading correction.

On the other hand, as illustrated by Figs. 5 and 6,
P̄0ðτÞ=P0½μmin�ðτÞ ≃ 1 after the bounce [approximately
μ̄ðτÞ ≃ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ=P̄0ðτÞ

p
], the average dynamics converges

to μmin-scheme dynamics. b0ðτÞ → 0 at late time [see
Fig. 4(b)], so at late time the quantities inside sine functions
in Eqs. (7.7) and (7.8) are small enough to validate
sinðxÞ ≃ x, which reduce Eqs. (7.7) and (7.8) to the
classical cosmology. The classical limit at late time is
also illustrated in Fig. 4(a). Particularly, the deviation
from classical cosmology is negligible during the inflation.
The plot of slow-roll parameter εH has a negligible
difference from Fig. 3. The plot of b0 during the inflation
is given in Fig. 14 (the difference between the average
and μmin-scheme dynamics is negligible). β

ffiffiffiffi
Δ

p
b0 ≪ 1 and

P̄0ðτÞ=P0½μmin�ðτÞ ≃ 1 guarantee that the cosmological
dynamics is semiclassical during the inflation (for both
the average and μmin-scheme dynamics), as promised at the
end of Sec. VA.
We notice that, on the other side of the bounce, there

exists a short time period having μ̄ðτÞ2P̄0ðτÞ=Δ slightly
smaller than 1. μ̄ðτÞ2P̄0ðτÞ even below the UV cutoff Δ
might seem to be problematic for the effective dynamics
on the other side of the bounce. However, this issue
happens in the Universe on the other side of the bounce,
so it does not affect our predictions at and after the
bounce, given that we have fixed the final condition at T
and evolved back in time. Second, μ̄ðτÞ2P̄0ðτÞ=Δ is only
slightly below 1, and we always have the averaged μ̄ ¼
2μmin all the time. It may be still acceptable if we
view the UV cutoff (6.3) to be not restrictive but
approximate.
As is demonstrated in Fig. 4, b̄0 approaches a constant

value on the other side of the bounce as τ → −∞. Figure 5
shows that P̄0ðτÞ=P0½μmin�ðτÞ ∼ 1=4 as τ → −∞. Then
Eqs. (7.8) and (6.10) imply that the Hubble parameter H ¼
_P0=ð2P0Þ approaches a constant in both the average and
μmin-scheme effective dynamics. H in both cases can be
shown to be negative and coincide by numerics (see

FIG. 7. The plot of μ̄ðτBÞ2P̄0ðτBÞ=ð4ΔÞ versus ϕ̄0ðτBÞ
ffiffiffiffi
Δ

p
with

β ¼ 1 and different values of Δ.

FIG. 8. The plot of μ̄ðτBÞ2P̄0ðτBÞ=ð4ΔÞ versus β withffiffiffiffi
Δ

p ¼ 10lP.

FIG. 9. The left panel plots the Kretschmann scalar KðτBÞ versus Δ and finds the leading-order behavior K ∼ Δ−2 (with β ¼ 1). The
right panel plots KðτBÞΔ2 versus ϕ0ðτBÞ

ffiffiffiffi
Δ

p
and finds the subleading correction.
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Fig. 11). The effective spacetime is asymptotically de Sitter
(dS) in the infinitely past to the bounce

ds2 ¼ −dτ2 þ e2Hτðdx2 þ dy2 þ dz2Þ: ð8:12Þ

Here H is negative and τ is running to the past in the
emergent de Sitter spacetime. Figures 11–13 plot the
Hubble parameter H, the Kretschmann scalar K, and
the scalar curvature R of the averaged and μmin-scheme
dynamics and compare with the μ̄ schemes in LQC. By
Eqs. (7.8) and (6.10) and the facts that b̄0 approaches
constant and P̄0=P0½μmin� ∼ 1=4 in the dS phase, the

emergent cosmological constant in both the averaged
and μmin-scheme dynamics,

Λeff ¼ 3H2 ∼ Δ−1; ð8:13Þ

is an effect from the UV cutoff Δ. The emergent dS phase
and cosmological constant Λeff are consequences from
including the Lorentzian term in Ĥ [see Eq. (2.58)], similar
to the situation in Ref. [14].
Table I summarizes some key properties of the average

and μmin-scheme effective dynamics and compare with two
μ̄-scheme effective dynamics in LQC (the effective

FIG. 10. The left panel plots ϕ0ðτBÞ in the case of β ¼ 1;
ffiffiffiffi
Δ

p ¼ 10lP. The right panel plots ϕ0ðτBÞ in the case of β ¼ 1 and different
values of Δ.

FIG. 11. The Hubble parameter H of the averaged dynamics (average) and comparison with the dynamics with μmin (minimum) and
the LQC μ̄ schemes with unsymmetric and symmetric bounces.
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FIG. 12. The Kretschmann scalar K of the averaged dynamics and comparison with the dynamics with μmin and the LQC μ̄ schemes
with unsymmetric and symmetric bounces.

FIG. 13. Plots of the scalar curvature R of the averaged dynamics and comparison with the dynamics with μmin and the LQC μ̄ schemes
with unsymmetric and symmetric bounces.

TABLE I. Comparing effective dynamics.

Average μmin Unsymmetric μ̄ Symmetric μ̄

Asymptotic FRW at late time Yes Yes Yes Yes
Singularity resolution and bounce Yes Yes Yes Yes
Critical density at the bounce 3

16κΔð1.6þ3×10−4ϕ̄0ðτBÞ
ffiffiffi
Δ

p Þ (for β ¼ 1) 3
2β2ðβ2þ1ÞκΔ

3
2β2ðβ2þ1ÞκΔ

16
β2Δκ

dS phase in the past to the bounce Yes Yes Yes No
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dynamics in Refs. [14,39] with an unsymmetric bounce and
the traditional LQC effective dynamics in Ref. [5] with a
symmetric bounce). We observe that the μmin-scheme
effective dynamics share the same features as the μ̄-scheme
LQC with unsymmetric bounce, although Λeff in their dS
phases take different values.
For both the μmin-scheme and average effective dynamics,

ρdust becomes negative near thebounce, but the total densityρ
is positive. Thus, the energy density of the scalar field plays
the dominant role in the critical density ρc. In the dS phase,
both ρ and ρdust are positive and approximately coincide,
while the energy density of the scalar field becomes
negligible. Figure 15 plots the evolution of ρ and ρdust in
both the μmin-scheme and average effective dynamics.

IX. EFFECTIVE HAMILTONIAN AND
POISSON BRACKET

The effective dynamics of the LQC μ̄ scheme are given
by the Hamilton’s equations from the LQC Hamiltonian
which replace μ by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ=P0ðτÞ

p
at the level of Hamiltonian.

The average and μmin-scheme effective dynamics analyzed
here are given by imposing certain dynamical μðτÞ at the
level of EOMs (5.45)–(5.47), so they give different dynam-
ics comparing to the LQC μ̄ scheme. However, we can
extract the effective HamiltonianHeff and effective Poisson
bracket f·; ·geff for the μmin scheme, such that the μ̄-scheme
dynamics is equivalent to the Hamilton’s equations from
Heff and f·; ·geff .
We turn off the scalar fields ϕ0 and π0 and cosmological

constant Λ for simplicity. It turns out to be convenient
to use b0 and V0 ¼ P3=2

0 to express Heff . Our aim is to
find fV0; b0geff and Heffðb0; V0Þ to write Eqs. (6.9) and
(6.10) as

_V0 ¼ fV0; b0geff∂b0Heff ; _b0 ¼ −fV0; b0geff∂V0
Heff :

ð9:1Þ

These equations imply that

_b0∂b0Heff þ _V0∂V0
Heff ¼ 0; ð9:2Þ

which is the conservation ofHeff . Here _b0 and _V0 are given
by Eqs. (6.9) and (6.10). The general solution of this
equation is

FIG. 14. The plot of b0 during the inflation. τ ¼ 0 is the pivot
time. During the inflation b0 ∼ 10−6mP, so β

ffiffiffiffi
Δ

p
b0 ∼ 10−5 (we

set β ¼ 1 and
ffiffiffiffi
Δ

p ¼ 10lP in this solution) in sines and cosines in
Eqs. (7.7)–(7.9).

FIG. 15. The evolution of ρ and ρdust in both the μmin-scheme and average effective dynamics. The solid curves plot ρ, while the dashed
horizontal lines plot sgnðρÞ. The vertical orange dashed lines label the instance of bounce τB.
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Heff ¼ F
�
V0 exp

�Z
b0

1

dxξðβ;Δ; xÞ
��

;

ξ ¼ 6
ffiffiffiffi
Δ

p
β cosðβ ffiffiffiffi

Δ
p

xÞðβ2 − ð1þ β2Þ cosð2β ffiffiffiffi
Δ

p
xÞÞ

βðβ2 − 1Þ ffiffiffiffi
Δ

p
cosðβ ffiffiffiffi

Δ
p

xÞx − βð1þ β2Þ ffiffiffiffi
Δ

p
cosð3β ffiffiffiffi

Δ
p

xÞx − cosðβ ffiffiffiffi
Δ

p
xÞ2 sinðβ ffiffiffiffi

Δ
p

xÞ þ β2 sinðβ ffiffiffiffi
Δ

p
xÞ3 ; ð9:3Þ

where F is an arbitrary single-variable function. To determine F , we take the limit Δ → 0:

Heff → F ðb20V0Þ: ð9:4Þ

Comparing to the classical Hamiltonian of FRW cosmology, we obtain F ðb20V0Þ ¼ 6
κ b

2
0V0 and, therefore,

Heff ¼
6

κ
V0 exp

�Z
b0

1

dxξðβ;Δ; xÞ
�
: ð9:5Þ

Its expansion in Δ gives

Heff ¼
6

κ
V0

�
b20 −

1

9
Δβ2b20ðb20 − 1Þð3β2 þ 4Þ

−
1

405
Δ2β4b20ðb20 − 1Þð135ðβ2 þ 2Þβ2 þ 2ð45β4 þ 75β2 þ 32Þb20 þ 144Þ þOðΔ3Þ

�
; ð9:6Þ

which can be compared with the μ̄-scheme Hamiltonian in LQC:

HLQC ¼ 6

κ
V0

sin2 ðβ ffiffiffiffi
Δ

p
b0Þð−β2 þ ðβ2 þ 1Þ cos ð2β ffiffiffiffi

Δ
p

b0Þ þ 1Þ
2β2Δ

ð9:7Þ

¼ 6

κ
V0

�
b20 −

1

3
Δβ2ð3β2 þ 4Þb40 þ

2

45
β4ð15β2 þ 16Þb60Δ2 þOðΔ3Þ

�
: ð9:8Þ

Heff and HLQC share the same classical limit as Δ → 0, while having different OðΔÞ corrections.
The effective Poisson bracket is given by

fV0; b0geff ¼
_V0

∂b0Heff
¼

_V0

6
κ V0ξðβ;Δ; b0Þ

exp

�
−
Z

b0

1

dxξðβ;Δ; xÞ
�
; ð9:9Þ

_V0

6
κ V0ξðβ;Δ; b0Þ

¼ −
κ

96β2Δ
ð3β2 þ 4b0

ffiffiffiffi
Δ

p
½2β3 sin ð2βb0

ffiffiffiffi
Δ

p
Þ − ðβ3 þ βÞ sin ð4βb0

ffiffiffiffi
Δ

p
Þ�

− 4β2 cos ð2βb0
ffiffiffiffi
Δ

p
Þ þ ðβ2 þ 1Þ cos ð4βb0

ffiffiffiffi
Δ

p
Þ − 1Þ: ð9:10Þ

We can expand fV0; b0geff in Δ:

fV0; b0geff ¼
κ

4
−

κ

36
Δβ2ð3β2 þ 4Þð4b20 þ 1Þ − κ

810
Δ2β4ð45β4 þ 75β2

þ ð45β4 − 150β2 − 208Þb40 − 10ð3β2 þ 4Þ2b20 þ 32Þ þOðΔ3Þ; ð9:11Þ

which reduces to the classical limit (equivalent to fP0; K0gclassical ¼ κ
6
) as Δ → 0.

The above Heff is for the μmin-scheme effective dynamics. Unfortunately, we are not able to obtain the effective
Hamiltonian for the average effective dynamics since ðP0½μmin�; b0½μmin�Þ are complicated functions of ðP̄0; b̄0Þ.9 However,

9ðP0½μmin�; b0½μmin�Þ and ðP̄0; b̄0Þ evolve from the same final condition with different EOMs, so ðP0½μmin�; b0½μmin�Þ can be seen as
functions of ðP̄0; b̄0Þ.
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Fig. 5 indicates that the average effective dynamics
coincides with the μmin scheme in both the dS and FRW
phases, so the above Heff should approximate the effective
Hamiltonian of the averaged effective dynamics in these
two phases.

X. COSMOLOGICAL PERTURBATIONS

A. Linearization of EOMs

We insert perturbations Eqs. (5.3) and (5.4) in the EOMs
(4.18) and linearize, followed by the Fourier transform
(5.7) on the fixed lattice (with fixed μ). We consider both
situations of the average and μmin-scheme cosmological
dynamics as the background. These two situations corre-
spond to the replacements μ → μ̄ðτÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ=P0½μmin�ðτÞ

p
and μ → μminðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ=P0½μmin�ðτÞ

p
, respectively. Again

due to that all intervals ½τi; τiþ1� are very small, we
approximate Vρðτ; k⃗Þ as a smooth function [allowed by
Eq. (5.33)] and

_̃V
ρðτi; k⃗Þ ≃

Ṽρðτiþ1; k⃗Þγi − Ṽρðτi; k⃗Þγi
τiþ1 − τi

; ð10:1Þ

similar to the approximation for Eqs. (5.42)–(5.44). We
obtain the following linearized EOMs for each mode k⃗:

_̃V
ρðτ; k⃗Þ ¼ Uρ

νðΔ; τ; k⃗ÞṼνðτ; k⃗Þ; ð10:2Þ

where Uρ
ν depends on τ through the background fields

P0ðτÞ, K0ðτÞ, ϕ0ðτÞ, and π0ðτÞ. For simplicity, we are
going to assume that k⃗ has only one nonzero component
kx ¼ k, i.e.,

k⃗ ¼ ðk; 0; 0Þ: ð10:3Þ
The derivation of Eq. (10.2) is carried out by expanding
S½Z; u� up to quadratic order in perturbations followed by
variations. The Mathematica code of the derivation can be
downloaded in Ref. [35], where one can find the explicit
expression of the 20 × 20 matrix Uρ

νðΔ; τ; k⃗Þ.
The path integral (5.24) needs to integrate over SU(2)

gauge transformation uðiÞ at every τi of changing the lattice.
The variation of uðiÞ gives the closure condition (4.4) at τi.
When ½τi; τiþ1� are small, we make the continuous-time
approximation as the above. Then the closure condition is
imposed approximately at all time through out the evolu-
tion. Because of the spatial homogeneity, the closure
condition is satisfied exactly for both the μmin-scheme
and average effective cosmological backgrounds. For
cosmological perturbations, the linearized closure condi-
tion (4.4) reads

0 ¼ P0½ðṼ15 − Ṽ18Þ sinðβ2μK0Þ − ðṼ16 þ Ṽ17Þðcosðβ2μK0Þ − 1Þ�
þ βK0½−iṼ1 sinðkβμÞ þ Ṽ1 cosðkβμÞ − Ṽ6 sinðβ2μK0Þ þ Ṽ9 sinðβ2μK0Þ
þ Ṽ7 cosðβ2μK0Þ þ Ṽ8 cosðβ2μK0Þ − Ṽ1 − Ṽ7 − Ṽ8;

0 ¼ P0½cosðkβμÞðṼ14 sinðβ2μK0Þ þ Ṽ13 cosðβ2μK0Þ − Ṽ13Þ − i sinðkβμÞðṼ14 sinðβ2μK0Þ
þ Ṽ13 cosðβ2μK0Þ − Ṽ13Þ − Ṽ17 sinðβ2μK0Þ þ Ṽ18 cosðβ2μK0Þ − Ṽ18�
þ βK0½iṼ5 sinðkβμÞ sinðβ2μK0Þ − cosðkβμÞðṼ5 sinðβ2μK0Þ þ Ṽ4 cosðβ2μK0ÞÞ
þ ð−Ṽ9 þ iṼ4 sinðkβμÞÞ cosðβ2μK0Þ þ Ṽ8 sinðβ2μK0Þ þ Ṽ4 þ Ṽ9;

0 ¼ P0½− cosðkβμÞðṼ13 sinðβ2μK0Þ − Ṽ14ðcosðβ2μK0Þ − 1ÞÞ þ i sinðkβμÞðṼ13 sinðβ2μK0Þ
− Ṽ14 cosðβ2μK0Þ þ Ṽ14Þ þ Ṽ16 sinðβ2μK0Þ þ Ṽ15 cosðβ2μK0Þ − Ṽ15�
þ βK0½cosðkβμÞðṼ4 sinðβ2μK0Þ − Ṽ5 cosðβ2μK0ÞÞ − i sinðkβμÞðṼ4 sinðβ2μK0Þ
− Ṽ5 cosðβ2μK0ÞÞ − Ṽ7 sinðβ2μK0Þ − Ṽ6 cosðβ2μK0Þ þ Ṽ5 þ Ṽ6; ð10:4Þ

where Ṽρ ¼ Ṽρðτ; kÞ. μ is μ̄ or μmin for the average or μmin-scheme backgrounds. In both Eqs. (10.2) and (10.4), μ appears in
two types of combinations in sines and cosines:

μminK0 ¼
ffiffiffiffi
Δ

p
b0½μmin�ðτÞ; μmink ¼

ffiffiffiffi
Δ

p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P0½μmin�ðτÞ

s
; ð10:5Þ

μ̄K0 ¼ 2
ffiffiffiffi
Δ

p
b̄0ðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄0ðτÞ

P0½μmin�ðτÞ

s
; μ̄k ¼ 2

ffiffiffiffi
Δ

p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P0½μmin�ðτÞ

s
: ð10:6Þ
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For the average or μmin-scheme backgrounds, respectively,
Eqs. (10.2) and (10.4) are invariant under the rescaling
(7.11) or (6.13) complemented by

k → α1=2k; δπ → α3=2δπ: ð10:7Þ

In particular, the momentum k is rescaled when the initial
or final condition of P0 is rescaled and can be seen from the
expression of the pivot mode kpivot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0ðτpivotÞ

p
HðτpivotÞ.

Equations (10.2) and (10.4), derived from the full LQG,
govern the dynamics of cosmological perturbations. Given
initial conditions of Ṽρ¼1;…;20 satisfying the closure con-
dition (10.4), the τ evolution of Ṽρ ’s can be computed by
numerically solving Eqs. (10.2).
The linearized closure condition is not exactly satisfied

due to the dynamical lattice refinement (note that
fGa

v;Hg ¼ 0 is satisfied only on the fixed lattice). But
the numerics demonstrates that the linearized closure
condition is approximately satisfied with high accuracy
near and in the future of the bounce (see Fig. 16 for
illustration). On the other side of the bounce, the perturba-
tion grows significantly, which causes the linearized
closure condition to be violated. For the initial condition
used in plotting Fig. 16, we have to exclude from the path
integral the part of the evolution which violates the closure
condition, in order that the path integral is not exponentially
suppressed.

B. Late-time behavior: Classical limit

Particularly at late time, the large P0½μmin� causes
μmin; μ̄ → 0 so that the continuum limit gives a good
approximation to the dynamics on the lattice. We focus
on the long-wavelength modes with jkj ≤ 103kpivot
within the observational range. The pivot scale kpivot ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0ðτpivotÞ

p
HðτpivotÞ, where HðτpivotÞ ¼ 1.21 × 10−6l−1P ¼

9.37 × 10−6l−1
P ,

μminðτpivotÞjkj ≤ 103kpivotμminðτpivotÞ ¼ 9.37× 10−3l−1
P

ffiffiffiffi
Δ

p
;

ð10:8Þ

μ̄ðτpivotÞjkj ≤ 103kpivotμ̄ðτpivotÞ ¼ 18.74 × 10−3l−1
P

ffiffiffiffi
Δ

p
;

ð10:9Þ

where we have used μ̄ ¼ 2μmin. Recall that Δ2 ≫ 1
4
β2l4

P=t,
and it is possible to have Δ ∼ l2

P when we set 1
4
β2=t ≪ 1;

e.g., we can set β ¼ 10−3 and t ¼ 10−4. Δ ∼ l2
P implies

that, for both the average and μmin scheme,

μminðτpivotÞjkj ≤ 9.37 × 10−3 ≪ 1 and

μ̄ðτpivotÞjkj ≤ 18.74 × 10−3 ≪ 1: ð10:10Þ

The linearized EOMs (10.2) and closure condition (10.4)
depend on k through sinðμkÞ and cosðμkÞ. Given the above
bound of k in the observational range, they can be
approximated by the expansion

sinðμkÞ ≃ μkþ 1

6
ðμkÞ3 þOðμ5Þ;

cosðμkÞ ≃ 1þ 1

2
ðμkÞ2 þOðμ4Þ; ð10:11Þ

at the pivot time (μ ¼ μ̄ or μmin). μk ≤ μðτpivotÞk is even
smaller after the pivot time. On the other hand, recall that
the background b0 ¼ K0=

ffiffiffiffiffiffi
P0

p
is small at and after the

pivot time, so that

sinðβμK0Þ ≃ βμK0 þ
1

6
ðβμK0Þ3 þOðμ5Þ;

cosðβμK0Þ ≃ 1þ 1

2
ðβμK0Þ2 þOðμ4Þ; ð10:12Þ

and the cosmological background is approximately
classical. The small μk and βμK0 permit us to make a
power series expansion in μ of the linearized EOMs and
closure condition, whose leading-order approximation
gives the continuum limit of the effective dynamics, at
and after the pivot time.
By Eqs. (10.8) and (10.9) and Δ2 ≫ 1

4
β2l4

P=t, a small β
is needed in order that the semiclassical approximation is
valid for all kwithin the observational range jkj ≤ 103kpivot.

FIG. 16. Writing the linearized closure condition Eqs. (10.4) as
0 ¼ Gj¼1;2;3, this figure plots the average of absolute values,
1
3

P
3
j¼1 jGjj, in the time evolution. The green vertical line is the

instance of the bounce τB ≃ −1.6133221 × 106. The initial data
determining this solution are set at τ0 ¼ 0. Nonzero values
of perturbations at τ0 are V10 ¼ −6.8565 × 10−32–6.4871×
10−32i, V11 ¼ V12 ¼ −8.0409 × 10−34 þ 8.1062 × 10−34i, δπ ¼
−1.2980 × 10−27–1.2568 × 10−27i, and δφ ¼ −1.2723 × 10−23–
1.2826 × 10−23i. The values of parameters are

ffiffiffiffi
Δ

p ¼ lP,
β ¼ 10−3, and k ¼ 10−4l−1P . The average and μmin-scheme
cosmological background are the same as in Fig. 4.
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The continuum limit allows us to organize perturbations
of holonomies and fluxes, Vρ¼1;…;18, into scalar, tensor, and
vector modes [10], consistent with the scalar-tensor-vector
decomposition in the standard cosmological perturbation
theory. These three different modes are decoupled in the
linearized EOMs in the limit that (10.11) and (10.12)
are valid.
In the following, we focus only on the sector of scalar

mode perturbations which contain the scalar field δφ; δπ
different from the discussion in Ref. [10]. The discussion of
tensor and vector modes is identical to Ref. [10].
The scalar mode contains four DOFs Ṽ1, Ṽ2 ¼ Ṽ3,

Ṽ6 ¼ −Ṽ9, and δφ̃≡ Ṽ20, while Ṽρ¼4;5;7;8 are set to vanish.
Ṽρ¼10;…;19 can be eliminated by algebraically solving ten
linear EOMs in Eq. (10.2). It reduces Eq. (10.2) to ten
differential equations of second order in τ. Following the
standard cosmological perturbation theory, we define the
following variables:

ψ ¼ 1

2
Ṽ1; ð10:13Þ

E ¼ −
−2Ṽ1 þ ðṼ2 þ Ṽ3Þ

2k2
; ð10:14Þ

B ¼ −
2P3=2

0 ðκδφ̃ _ϕ0þ4 _ψÞ
½4Λþ κðUðϕ0Þ þ _ϕ2

0Þ�P2
0 − 3 _P2

0

ð10:15Þ

and Bardeen potentials

Φ ¼ −ðHðB − E0Þ þ ðB − E0Þ0Þ ¼ HE0 þ E00;

Ψ ¼ ψ þHðB − E0Þ: ð10:16Þ

Note that all the above perturbative variables are defined at
a given momentum k which is conserved in the evolution.
H ¼ P0

0=ð2P0Þ is the Hubble parameter with respect to the
conformal time η, and E0 is the derivative with respect to η.
Byusing the backgroundEOMsand the conservationofCj

and h, it is straightforward to check that the continuum limit
of the linearized EOMs implies the following equations:

Φ −Ψ ¼ 0; ð10:17Þ

½2Ψ00 þ 2ð2H0 þH2ÞΦþHð2ΨþΦÞ0�
¼ −

κ

4λ
½2ϕ0

0½Φþ Z0� −U0ðϕ0ÞP0Z�; ð10:18Þ

where

Z ¼ δφ̃þ ϕ0
0ðB − E0Þ: ð10:19Þ

This result coincideswith the classical dynamics of the scalar
mode perturbations; see, e.g., (3.48) and (3.49) in Ref. [41].

On the other hand, the linearized closure condition gives
only one nontrivial equation:

d
dτ

Ṽ9 ¼ 0: ð10:20Þ

The dynamics of the scalar field δφ can be conveniently
studied with the Mukhanov-Sasaki variable [42]

Q ≔ δφ̃ − ϕ0
0

ψ

H
: ð10:21Þ

A closely related quantity is the perturbation of the scalar
curvature:

δR ¼ Ψ −
HðHΦþΨ0Þ
H0 −H2

; ð10:22Þ

which relates to Q by

ðδR − ψÞP0ρdust þ δRϕ0 2
0 ¼ −HQϕ0

0: ð10:23Þ

It recovers the standard relation between Q and δR when
ρdust → 0. The linear EOMs implies the following modified
Mukhanov-Sasaki equation:

Q00 þ 2HQ0 þ k2Qþ
�
1

2
P0U00ðϕ0Þ −

κ

2P0

�
P0ðϕ0

0Þ2
H

�0�
Q

¼ −
κρdust
2ϕ0

0

�
P0ðϕ0

0Þ2
H

�0
ðBþ ψH−1Þ

−
κP0ϕ

0
0

4H
ðδρdust þ 3ρdustψÞ: ð10:24Þ

FIG. 17. Plot of the right-hand side of Eq. (10.24) in the
late-time evolution: τ ¼ 0 is the pivot time. The nonzero
initial perturbations at τ ¼ 0 are Ṽ10 ¼ 8.7864 × 10−15þ
ð3.7087 × 10−13Þi, Ṽ11 ¼ Ṽ12 ¼ 4.4689× 10−15, Ṽ19 ¼ 8.5206×
10−11 þ ð7.0711 × 10−9Þi, and Ṽ20 ¼ 0.000070711 (pure scalar-
mode perturbation with δρdust ¼ B ¼ 0). The values of param-
eters are Δ ¼ l2

P, β ¼ 10−3, and k ¼ 10−4l−1P .
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The modification from the standard Mukhanov-Sasaki
equation is the right-hand side (see also Refs. [43,44]
for a Mukhanov-Sasaki equation in the presence of dusts).
Equation (10.24) reduces to the standard Mukhanov-Sasaki
equation when the right-hand side of Eq. (10.24) is
negligible. Indeed, we show that, with the suitable initial
condition, evolution by Eq. (10.2) gives the negligible
right-hand side of Eq. (10.24) after the pivot time: The
right-hand side of Eq. (10.24) is ∼10−18 (see Fig. 17), while
terms in the left-hand side are much larger than 10−18.
Therefore, in the late-time evolution after the pivot time,
Eq. (10.2) can be well approximated by the standard
Mukhanov-Sasaki equation with a vanishing right-hand
side in Eq. (10.24).

XI. OUTLOOK

Finally, we would like to mention a few future perspec-
tives of our program: First, given our proposal of the LQG
evolution with dynamical lattice, the map I γi;γi−1 trans-
forming between different spatial lattices should be better
understood in the future, especially in the aspect of the
relation with coarse grain and renormalization. As men-
tioned in Sec. V B, the transformation between different
lattices might relate to the Wilsonian renormalization
procedure of integrating out high-frequency modes on
the lattice. This procedure should provide the correction
to the action in the lattice path integral. We expect that this
procedure should closely relate to the Hamiltonian renorm-
alization program in Refs. [29,45]. The study of I γi;γi−1 is
expected to understand how to restore the unitarity in the
path integral (5.24).
Moreover, the choices of I γi;γi−1 are totally free as long as

they satisfy requirements (i) and (ii) in Sec. VA. Such
ambiguities come from the freedom of selecting the
spacetime lattice. The lattice dependence always happens
in the path integral approach in LQG, such as spin foam
models and the path integral formulation that we start from.
We would expect these ambiguities should be removed by

the renormalization of the theory, where a unique well-
defined continuum limit of the theory can be derived as in
Ref. [29]. Nonetheless, the nonrenormalized theory already
can reveal some qualitative features for us. For example, as
shown in the paper, the appearance of the bounce and dS
region happens for both schemes. By taking into account
the requirement for selecting the spacetime lattice or the
improved lattice dynamics, we would like to view these
results as a general feature of the theory.
Second, on the cosmological perturbation theory, some

future research should be spent on understanding the initial
state of cosmology. One advantage of our result is the dS
phase on the other side of the bounce. There is the preferred
Bunch-Davies vacuum state from the viewpoint of quantum
field theories on curved spacetime. There have been studies
of applying the Bunch-Davies vacuum as the initial state of
LQC [46]. We have to understand how to translate the
Bunch-Davies vacuum state to the framework of the full
LQG, in order to apply to the initial state in our program. A
related perspective is the Oðl2

PÞ correction to the cosmo-
logical perturbation theory. The recent work in Ref. [13]
computes the Oðl2

PÞ correction to the expectation value of
the physical Hamiltonian at the coherent state peaked at the
homogeneous and isotropic data. The next step is to
generalize the Oðl2

PÞ computation to include cosmological
perturbations.
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APPENDIX A: DISCRETIZING AND
QUANTIZING SCALAR-FIELD CONTRIBUTIONS

OF CONSTRAINTS

The following discretization of cotriad eai is frequently
used in this Appendix:

ei ¼ eai
τa

2
¼ 1

2
sgnðeÞ ϵ

abcϵijkE
j
bE

k
cffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp τa

2
¼ 1

2
sgnðeÞϵijk

½Ej; Ek�ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

×
Z
ev;isi

dxiei ≃
1

2
sgnðeÞ ϵ

abcϵijk
R
dxidxkEj

b

R
dxidxjEk

cR
dxidxjdxk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp τa

2
ðA1Þ

≃ sgnðQÞ a
4β2s
2

ϵabcϵijksisk
pbðev;jþÞ−pbðev;j−Þ

4
sisj

pbðev;kþÞ−pbðev;k−Þ
4

sisjskVv

τa

2

¼ sgnðQÞ a
4β2si
2Vv

ϵabcϵijk
τa

2

pbðev;jþÞ − pbðev;j−Þ
4

pbðev;kþÞ − pbðev;k−Þ
4

¼ 8

βκ
hðev;isiÞfhðev;isiÞ−1; Vvg: ðA2Þ
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In this Appendix, we denote by xi the coordinate along ev;i;si . Moreover, we have the following relations of τa:�
τa

2
;
τb

2

�
¼ −

1

4
½σa; σb� ¼ −iεabcσc=2 ¼ εabc

τc

2
; Tr

�
τa

2

τb

2

�
¼ −

1

2
δab; Tr

�
τa

τb

2

�
¼ −δab;

Tr

�
τa

2

τb

2

τc

2

�
¼ i

8
TrðσaσbσcÞ ¼ i

8
2iϵabc ¼ −

1

4
ϵabc: ðA3Þ

What to be quantized is not CS but sgnðeÞCS. sgnðeÞ can be discretized in the cube □s1s2s3 bounded by ev;1;s1, ev;2;s2 ,
and ev;3;s3 :

sgnðeÞv ¼
R
□s1s2s3

d3x det eajR
□s1s2s3

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ¼

R
□s1s2s3

d3x 1
3!
ϵijkϵabceai e

b
j e

c
kR

□s1s2s3
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ¼ −

4

3!

R
□s1s2s3

d3xϵijkTrðeiejekÞR
□s1s2s3

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

¼ −
2

3

�
8

κβ

�
3 ϵijkTrðhðev;isiÞfhðev;isiÞ−1; Vvghðev;jsjÞfhðev;jsjÞ−1; Vvghðev;kskÞfhðekÞ−1; VvgÞ

s1s2s3V
1=3
v V1=3

v V1=3
v

¼ −
2

3

�
8

κβ

�
3
�
3

2

�
3

s1s2s3ϵijk;

Trðhðev;isiÞfhðev;isiÞ−1; V2=3
v ghðev;jsjÞfhðev;jsjÞ−1; V2=3

v ghðev;kskÞfhðev;kskÞ−1; V2=3
v gÞ

¼ −8
�
9 × 16

κ3β3

�
s1s2s3ϵijk;

Trðhðev;isiÞfhðev;isiÞ−1; V2=3
v ghðev;jsjÞfhðev;jsjÞ−1; V2=3

v ghðev;kskÞfhðev;kskÞ−1; V2=3
v gÞ:

We average the above result over all eight cubes at v (summing over s1, s2, s3 and divide by 8) and quantize:

dsgnðeÞv ¼ �9 × 16

il6
Pβ

3

�X
s1s2s3

s1s2s3ϵijk

Trðĥðev;is1Þ½ĥðev;is1Þ−1; V̂2=3
v �ĥðev;js2Þ½ĥðev;js2Þ−1; V̂2=3

v �ĥðev;ks3Þ½ĥðev;ks3Þ−1; V̂2=3
v �Þ

¼ −
�
9 × 16

l6
Pβ

3

�X
s1s2s3

s1s2s3ϵijkTrðQ̂2=3ðev;is1ÞQ̂2=3ðev;js2ÞQ̂2=3ðev;ks3ÞÞ;

where

Q̂a
r ðeÞ ¼ iTrðτaĥðeÞ½ĥðeÞ−1; V̂r

v�Þ; Q̂rðeÞ ¼ Q̂a
rðeÞ

τa

2
¼ −iĥðeÞ½ĥðeÞ−1; V̂r

v�: ðA4Þ

The scalar Hamiltonian constraint reads

CS ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ππT þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
qjkðDjϕÞTDkϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
½U1ðϕÞ þ sgnðeÞU2ðϕÞ�:
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Discretization of sgnðeÞCS givesZ
□s1s2s3

d3xsgnðeÞCS

¼
Z
□s1s2s3

d3x

�
sgnðeÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ππT þ sgnðeÞ

2

Ej
aEk

affiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ðDjϕÞTDkϕþ sgnðeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
U1ðϕÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
U2ðϕÞ

�
¼ sgnðeÞ

2
R
□s1s2s3

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp Z

□s1s2s3

d3xπ
Z
□s1s2s3

d3xπT

þ sgnðeÞ
2
R
□s1s2s3

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp Z

dxidxkEj
a

Z
dxidxjEk

a

�Z
dxjDjϕ

�
T
Z

dxkDkϕ

þ
�
−
4

3!

Z
□s1s2s3

d3xϵijkTrðeiejekÞ
�
U1ðϕÞ þ s1s2s3VvU2ðϕÞ

¼ sgnðeÞ
2V

s1s2s3πðvÞπðvÞT þ s1s2s3
sgnðeÞ
2V

ða2βÞ2siskXj
aðvÞsisjXk

aðvÞðδðRsÞ
j;sj

ϕðvÞÞTδðRsÞ
k;sk

ϕðvÞ

þ
�
−
2

3

�
8

κβ

�
3

ϵijkTrðhðev;isiÞfhðev;isiÞ−1; Vvghðev;jsjÞfhðev;jsjÞ−1; Vvghðev;kskÞfhðev;kskÞ−1; VvgÞ
�
U1ðϕÞ

þ s1s2s3VvU2ðϕÞ;

where
R
□s1s2s3

d3xπ ¼ s1s2s3πðvÞ andZ
dxjDjϕ ≃ Rsðhðev;jsjÞÞϕðtðev;jsjÞÞ − ϕðvÞ≡ δðRsÞ

j ϕðvÞ:

Averaging 1
8

P
s1s2s3 s1s2s3… followed by quantization, we obtain

ĈS
v ¼

1

2

d�
sgnðeÞ
V

�
πðvÞπðvÞT þ 1

2

d�
sgnðeÞ
V

�
ða2βÞ2 1

8

X
s1s2s3

X
j;k

sjX
j
aðvÞskXk

aðvÞðδðRsÞ
j;sj

ϕðvÞÞTδðRsÞ
k;sk

ϕðvÞ

−
2

3

�
8

iℏκβ

�
3 1

8

X
s1s2s3

s1s2s3ϵijk

Trðhðev;is1Þ½hðev;is1Þ−1; Vv�hðev;js2Þ½hðev;js2Þ−1; Vv�hðev;ks3Þ½hðev;ks3Þ−1; Vv�ÞU1ðϕÞ þ VvU2ðϕÞ

¼ 1

2

d�
sgnðeÞ
V

�
π̂ðvÞπ̂ðvÞT þ 1

2

d�
sgnðeÞ
V

�
a4β2

8

X
s1s2s3

X
j;k

sjX
j
aðvÞskXk

aðvÞðδðRsÞ
j;sj

ϕ̂ðvÞÞTδðRsÞ
k;sk

ϕ̂ðvÞ

−
2

3

82

ðil2
PβÞ3

X
s1s2s3

s1s2s3ϵijkTrðiQ1ðev;is1ÞiQ1ðev;js2ÞiQ1ðev;ks3ÞÞU1ðϕÞ þ VvU2ðϕÞ

¼ 1

2

d�
sgnðeÞ
V

�
π̂ðvÞπ̂ðvÞT þ 1

2

d�
sgnðeÞ
V

�
a4β2

8

X
s1s2s3

X
j;k

sjX
j
aðvÞskXk

aðvÞðδðRsÞ
j;sj

ϕ̂ðvÞÞTδðRsÞ
k;sk

ϕ̂ðvÞ

−
2

3

82

ðl2
PβÞ3

X
s1s2s3

s1s2s3ϵijkTr½Q̂1ðev;is1ÞQ̂1ðev;js2ÞQ̂1ðev;ks3Þ�U1ðϕ̂Þ þ V̂vU2ðϕ̂Þ:

APPENDIX B: CORRECTIONS OF ε̃i + 1;iðδτℏ Þ IN EOMS

We show below the variation of ε̃iþ1;iðδτℏÞ vanishes in the time continuous limit δτ → 0. We denote by δZi
the holomorphic

derivative ∂εai ðeÞ or ∂ziðvÞ (the antiholomorphic derivative δZ̄i
¼ ∂ ε̄ai ðeÞ or ∂ z̄iðvÞ can be derived similarly):
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δZi
ε̃iþ1;i

�
δτ

ℏ

�
¼ ℏ

δτ
δZi

ln
�
1 −

iδτ
ℏ

hψℏ
Ziþ1

jĤjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i þ δτ

ℏ

hψℏ
Ziþ1

jε̂ðδτℏÞjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i
�
þ iδZi

hψℏ
Ziþ1

jĤjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i

¼
−iδZi

hψℏ
Ziþ1

jĤjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i þ δZi

hψℏ
Ziþ1

jε̂ðδτℏÞjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i

1 − iδτ
ℏ

hψℏ
Ziþ1

jĤjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i þ δτ

ℏ

hψℏ
Ziþ1

jε̂ðδτℏÞjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i

þ iδZi

hψℏ
Ziþ1

jĤjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i

→ −iδZ
hψℏ

ZjĤjψℏ
Zi

hψℏ
Zjψℏ

Zi
þ lim

δτ→0
δZi

hψℏ
Ziþ1

jε̂ðδτℏÞjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i þ iδZ

hψℏ
ZjĤjψℏ

Zi
hψℏ

Zjψℏ
Zi

; ðδτ → 0Þ; ðB1Þ

¼ lim
δτ→0

δZi

hψℏ
Ziþ1

jε̂ðδτℏÞjψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i

¼ lim
δτ→0

hψℏ
Ziþ1

jε̂ðδτℏÞjδZi
ψℏ
Zi
ihψℏ

Ziþ1
jψℏ

Zi
i − hψℏ

Ziþ1
jε̂ðδτℏÞjψℏ

Zi
ihψℏ

Ziþ1
jδZi

ψℏ
Zi
i

hψℏ
Ziþ1

jψℏ
Zi
i2

¼ 0; ðB2Þ

where in step (B1) we denote Ziþ1 → Zi ≡ Z and apply
Eqs. (4.9) and (4.10) for zðvÞ and analogs for gðeÞ in
Ref. [8]. We use the strong limit ε̂ðδτℏÞjψi → 0 as δτ → 0

(for all ψ in the domain of Ĥ) in the last step.

APPENDIX C: PROPERTIES OF I γiγi − 1 :
I. APPROXIMATE ISOMETRY

Given f1; f2 ∈ Hγi−1 , the inner product of their images
by I γi;γi−1 is given by the following integral:

hI γi;γi−1f2jI γi;γi−1f1iHγi

¼
Z

dZ1ðγi−1ÞdZ2ðγi−1Þdudu1du2hψ̃ℏ
Z2ðγiÞjψ̃ℏ

Zu
1
ðγiÞi

×
hf2jψℏ

Z
u2
2
ðγi−1Þi

kψℏ
Z2ðγi−1Þk

hψℏ
Z
u1
1
ðγi−1Þjf1i

kψℏ
Z1ðγi−1Þk

; ðC1Þ

where du, du1, and du2 are Haar integrals of SU(2) gauge
transformations. When f1 ¼ f2 is any coherent state
ψ̃ℏ
Z0ðγi−1Þ ∈ Hγi−1 , Eq. (C3) integrates three Gaussian-like

functions peaked at Z1ðγi−1Þ ¼ Z2ðγi−1Þ ¼ Z0ðγi−1Þ up to
gauge transformations, so Eq. (C3) is finite. The coherent
states and their finite linear combinations are dense inHγi−1 ,
so I γi;γi−1 is densely defined on Hγi−1 .

In order to show I γi;γi−1 to approximate an isometry from
Hγi−1 → Hγi [of SU(2) gauge invariant states], it is suffi-
cient to show that

I0
γi;γi−1 ¼

Z
dZðγi−1Þjψ̃ℏ

ZðγiÞihψ̃ℏ
Zðγi−1Þj ðC2Þ

approximates an isometry from H0
γi−1 → H0

γi , since the
(group averaging) projection from H0

γ to Hγ preserves
the inner product. Given f1; f2 ∈ H0

γi−1 , the inner product
of their images by I0

γi;γi−1 is given by the following integral:

hI0
γi;γi−1f2jI0

γi;γi−1f1iH0
γi

¼
Z

dZ1ðγi−1ÞdZ2ðγi−1Þhψ̃ℏ
Z2ðγiÞjψ̃ℏ

Z1ðγiÞi

×
hf2jψℏ

Z2ðγi−1Þi
kψℏ

Z2ðγi−1Þk
hψℏ

Z1ðγi−1Þjf1i
kψℏ

Z1ðγi−1Þk
: ðC3Þ

Recalling Eqs. (2.39) and (2.47), the overlap between
two coherent states labeled by Z1 ¼ ðg1; z1Þ and Z2 ¼
ðg2; z2Þ is given by

hψ̃ℏ
Z2
jψ̃ℏ

Z1
i ¼

Y
e

hψ̃ t
g2ðeÞjψ̃ t

g1ðeÞi
Y
v

hψ̃ℏ
z2ðvÞjψ̃ℏ

z1ðvÞi; ðC4Þ

hψ̃ t
g2ðeÞjψ̃ t

g1ðeÞi ¼ e
Kðg2ðeÞ;g1ðeÞÞ

t

�
ξ21ðeÞ

sinhðξ21ðeÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ðp1ðeÞÞ sinh ðp2ðeÞÞ

p1ðeÞp2ðeÞ

s �
¼ e

1
tKðg2ðeÞ;g1ðeÞÞþJðg2ðeÞ;g1ðeÞÞ; ðC5Þ
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hψ̃ℏ
z2ðvÞjψ̃ℏ

z1ðvÞi ¼ e
1
ℏz̄2ðvÞz1ðvÞ− 1

2ℏz̄2ðvÞz2ðvÞ− 1
2ℏz̄1ðvÞz1ðvÞ; ðC6Þ

Kðg2ðeÞ; g1ðeÞÞ ¼ ξ21ðeÞ2 −
1

2
p2ðeÞ2 −

1

2
p1ðeÞ2; ξ21ðeÞ ¼ arccosh

�
1

2
tr½g2ðeÞ†g1ðeÞ�

�
; ðC7Þ

Jðg2ðeÞ; g1ðeÞÞ ¼ ln

��
sinh ðp1ðeÞÞ sinh ðp2ðeÞÞ

p1ðeÞp2ðeÞ
�
1=2 z21ðeÞ

sinh ðz21ðeÞÞ
�
: ðC8Þ

The norm of ψℏ
Z is given by

kψℏ
Zk ¼

Y
e

kψ t
gðeÞk

Y
v

kψℏ
zðvÞk; ðC9Þ

kψ t
gðeÞk ¼

�
2
ffiffiffi
π

p
et=4

t3=2

�
1=2
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðeÞ
sinh ðpðeÞÞ

s #
e
pðeÞ2
2t ¼

�
2
ffiffiffi
π

p
et=4

t3=2

�
1=2

empðgðeÞÞ; ðC10Þ

kψℏ
zðvÞk ¼ e

1
2ℏz̄ðvÞzðvÞ; ðC11Þ

mpðgðeÞÞ ¼
pðeÞ2
2t

− ln

�
sinh ðpðeÞÞ

pðeÞ
�
1=2

: ðC12Þ

We have neglected contributions of Oðt∞Þ. We write explicitly the integration measure dZ1ðγi−1ÞdZ2ðγi−1Þ ¼
dg1ðγi−1Þdg2ðγi−1Þdz1ðγi−1Þdz2ðγi−1Þ:

dg1ðγi−1Þdg2ðγi−1Þ ðC13Þ

¼
Y
e⊂γi−1

c2

t6
d3p1ðeÞd3p2ðeÞdμHðh1ðeÞÞdμHðh2ðeÞÞ

¼
Y
e⊂γi−1

c2

16π4t6
d3p1ðeÞd3p2ðeÞd3θ1ðeÞd3θ2ðeÞ

sin2ðθ1ðeÞ=2Þ
θ1ðeÞ2

sin2ðθ2ðeÞ=2Þ
θ2ðeÞ2

; θðeÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
a¼1

θaðeÞθaðeÞ
vuut ;

¼
Y
e⊂γi−1

c2

16π4t6
d3p1ðeÞd3p2ðeÞd3θ1ðeÞd3θ2ðeÞ

Y
e⊂γi−1

emθðg1ðeÞÞþmθðg2ðeÞÞ; mθðg1ðeÞÞ¼ ln

�
sin2ðθ1ðeÞ=2Þ

θ1ðeÞ2
�
;

dz1ðγi−1Þdz2ðγi−1Þ¼
Y
v∈γi−1

d2z1ðvÞd2z2ðvÞ
π2ℏ2

¼
Y
v∈γi−1

dϕ1ðvÞdπ1ðvÞdϕ1ðvÞdπ1ðvÞ
2a2π2ℏ2

ðC14Þ

In addition, we write fðZÞ ¼ hψℏ
Zjfi as a holomorphic function on the phase space.

Applying the above formulas, hI0
γi;γi−1f2jI0

γi;γi−1f1i can be expressed as

cNi−1

Z Y
e⊂γi−1

d3p1ðeÞd3p2ðeÞd3θ1ðeÞd3θ2ðeÞ
Y
v∈γi−1

dϕ1ðvÞdπ1ðvÞdϕ1ðvÞdπ1ðvÞ

× eEγi ;γi−1f2ðZ2ðγi−1ÞÞf1ðZ1ðγi−1ÞÞ; ðC15Þ

where

cNi−1
¼
�
c2t3=2e−t=4

32π9=2t6

�
3N3

i−1
�

1

2a2π2ℏ2

�
N3

i−1
; ðC16Þ
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Eγi;γi−1 ¼
X
e⊂γi

�
1

t
Kðg2ðeÞ; g1ðeÞÞ þ Jðg2ðeÞ; g1ðeÞÞ

�
þ
X
e⊂γi−1

½mθðg1ðeÞÞ þmθðg2ðeÞÞ −mpðg1ðeÞÞ −mpðg2ðeÞÞ�

þ 1

ℏ

X
v∈γi

�
z̄2ðvÞz1ðvÞ −

1

2
z̄2ðvÞz2ðvÞ −

1

2
z̄1ðvÞz1ðvÞ

�
−

1

2ℏ

X
v∈γi−1

½z̄2ðvÞz2ðvÞ þ z̄1ðvÞz1ðvÞ�: ðC17Þ

N3
i−1 and 3N3

i−1 are the total number of vertices and edges, respectively, in γi−1.
We make the following change of variables:

θaðeIðvÞÞ ¼ μCa
I ðn⃗Þ; paðeIðvÞÞ ¼

2μ2

a2β
Pa
I ðn⃗Þ; πðvÞ ¼ μ3Πðn⃗Þ; μ ¼ 1

N
; ðC18Þ

where we have set L ¼ 1 and μ is either μi or μi−1 (N is either Ni or Ni−1). n⃗ ∈ ZðNÞ3 labels the vertices. In the continuum
limit as μ → 0, Ca

I ðn⃗Þ, Pa
I ðn⃗Þ, ϕðn⃗Þ, and Πðn⃗Þ approach the continuous fields, when Ca

I ðn⃗Þ, Pa
I ðn⃗Þ, ϕðn⃗Þ, and Πðn⃗Þ are the

corresponding continuous fields evaluated at the vertices fn⃗g.
Both Ni and Ni−1 can be arbitrarily large. We expand the exponent Eγi;γi−1 in μi and μi−1 (the expansions are analytic):

Eγi;γi−1 ¼ −12N3
i−1 ln 2 −

a2

4ℏ

X
n⃗∈γi−1

½ϕ1ðn⃗Þ2 þ ϕ2ðn⃗Þ2� −
1

12

X
n⃗∈γi−1

μ2i−1½Ca
1Iðn⃗Þ2 þ Ca

2Iðn⃗Þ2�

þ t − 6

24t

X
n⃗∈γi

μ2i ½Ca
1Iðn⃗Þ − Ca

2Iðn⃗Þ�2 − i
t − 6

6ta2β

X
n⃗∈γi

μ3i ½Ca
1Iðn⃗Þ − Ca

2Iðn⃗Þ�½Pa
1Iðn⃗Þ þ Pa

2Iðn⃗Þ�

−
a2

4ℏ

X
n⃗∈γi

½ϕ1ðn⃗Þ − ϕ2ðn⃗Þ�2 þ
i
2ℏ

X
n⃗∈γi

μ3i ½Π2ðn⃗Þϕ1ðn⃗Þ − Π1ðn⃗Þϕ2ðn⃗Þ� þOðμ4Þ: ðC19Þ

We assume Ni; Ni−1 ≫ 1. Truncating Eγi;γi−1 to μk gives a polynomial of Ca
I ðn⃗Þ, Pa

I ðn⃗Þ, ϕðn⃗Þ, and Πðn⃗Þ. For finite Ca
I ðn⃗Þ,

Pa
I ðn⃗Þ, ϕðn⃗Þ, and Πðn⃗Þ (with upper bound independent of μ),

P
n⃗ μ

3ð…Þ is a Riemann sum and approximates the finite
integral of a bounded function over the compact T3, while Oðμ4Þ ∼Pn⃗ μ

4ð…Þ ∼Oð1=NÞ is small.
Recall the Fourier transformation

Φðn⃗Þγi ¼
X

m⃗∈ZðNiÞ3
e
2πi
Ni
m⃗·n⃗Φ̃ðm⃗Þ;

Φðn⃗Þγi−1 ¼
X

m⃗∈ZðNi−1Þ3
e

2πi
Ni−1

m⃗·n⃗Φ̃ðm⃗Þ; ðC20Þ

where Φðn⃗Þ ¼ fCa
I ðn⃗Þ; Pa

I ðn⃗Þ;ϕðn⃗Þ;Πðn⃗Þg and Φ̃ðm⃗Þ ¼ 0 for m⃗ ∈ ZðNiÞ3nZðNi−1Þ3. We obtain thatX
n⃗∈γi

μ2i ½Ca
1Iðn⃗Þ − Ca

2Iðn⃗Þ�2 ¼
X

m⃗∈ZðNiÞ3
μ2i N

3
i ½C̃a

1Ið−m⃗Þ − C̃a
2Ið−m⃗Þ�½C̃a

1Iðm⃗Þ − C̃a
2Iðm⃗Þ�

¼
X

m⃗∈ZðNi−1Þ3
μ2i N

3
i ½C̃a

1Ið−m⃗Þ − C̃a
2Ið−m⃗Þ�½C̃a

1Iðm⃗Þ − C̃a
2Iðm⃗Þ�

¼
X
n⃗∈γi−1

μ2i
N3

i

N3
i−1

½Ca
1Iðn⃗Þ − Ca

2Iðn⃗Þ�2

¼ μi−1
μi

X
n⃗∈γi−1

μ2i−1½Ca
1Iðn⃗Þ − Ca

2Iðn⃗Þ�2; ðC21Þ

where we have used that C̃a
I ðm⃗Þ ¼ 0 for m⃗ ∈ ZðNiÞ3nZðNi−1Þ3 in the second step. Similarly, we have the following

examples:
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X
n⃗∈γi

μ3i ½Ca
1Iðn⃗Þ − Ca

2Iðn⃗Þ�½Pa
1Iðn⃗Þ þ Pa

2Iðn⃗Þ� ¼
X
n⃗∈γi−1

μ3i−1½Ca
1Iðn⃗Þ − Ca

2Iðn⃗Þ�½Pa
1Iðn⃗Þ þ Pa

2Iðn⃗Þ�;

X
n⃗∈γi

½ϕ1ðn⃗Þ − ϕ2ðn⃗Þ�2 ¼
μ3i−1
μ3i

X
n⃗∈γi−1

½ϕ1ðn⃗Þ − ϕ2ðn⃗Þ�2: ðC22Þ

As a result, Eγi;γi−1 transforms to

Eγi;γi−1 ¼ −12N3
i−1 ln 2 −

a2

4ℏ

X
n⃗∈γi−1

½ϕ1ðn⃗Þ2 þ ϕ2ðn⃗Þ2� −
1

12

X
n⃗∈γi−1

μ2i−1½Ca
1Iðn⃗Þ2 þ Ca

2Iðn⃗Þ2�

þ t − 6

24t
μi−1
μi

X
n⃗∈γi−1

μ2i−1½Ca
1Iðn⃗Þ − Ca

2Iðn⃗Þ�2 − i
t − 6

6ta2β

X
n⃗∈γi−1

μ3i−1½Ca
1Iðn⃗Þ − Ca

2Iðn⃗Þ�½Pa
1Iðn⃗Þ þ Pa

2Iðn⃗Þ�

−
a2

4ℏ
μ3i−1
μ3i

X
n⃗∈γi−1

½ϕ1ðn⃗Þ − ϕ2ðn⃗Þ�2 þ
i
2ℏ

X
n⃗∈γi−1

μ3i−1½Π2ðn⃗Þϕ1ðn⃗Þ − Π1ðn⃗Þϕ2ðn⃗Þ� þOðμ4Þ; ðC23Þ

where all quantities are on the coarser lattice γi−1 and all sums are over n⃗ ∈ γi−1. The constant

μi−1=μi ¼ 1þOð1=NÞ ðC24Þ

is close to 1, when Ni; Ni−1 ≫ 1 and Ni is close to Ni−1 (e.g., Ni ¼ Ni−1 þ 1).
The computation in Eq. (C21) can be generalize to higher order in μ:X

n⃗∈γi

μki fρ1;…;ρlΦ
ρ1ðn⃗Þ…Φρlðn⃗Þ ¼

X
m⃗1;…;m⃗l∈ZðNiÞ3

μki N
3
i fρ1;…;ρlδm⃗1þ���þm⃗l;0Φ

ρ1ðm⃗1Þ…Φρlðm⃗lÞ

¼
X

m⃗1;…;m⃗l∈ZðNi−1Þ3
μki N

3
i fρ1;…;ρlδm⃗1þ���þm⃗l;0Φ

ρ1ðm⃗1Þ…Φρlðm⃗lÞ

¼
X
n⃗∈γi−1

μki
N3

i

N3
i−1

fρ1;…;ρlΦ
ρ1ðn⃗Þ…Φρlðn⃗Þ

¼ μk−3i

μk−3i−1

X
n⃗∈γi−1

μki−1fρ1;…;ρlΦ
ρ1ðn⃗Þ…Φρlðn⃗Þ; ðC25Þ

where fρ1;…;ρl are some numerical coefficients.
Viewing μi; μi−1 as continuous parameters of Eγi;γi−1 , when we take the limit μi → μi−1, μk−3i =μk−3i−1 → 1 reduces Eγi;γi−1 to

the function of Ca
I ðn⃗Þ; Pa

I ðn⃗Þ;ϕðn⃗Þ;Πðn⃗Þ on the coarser lattice γi−1. Given that the μi dependence of Eγi;γi−1 comes from
hψ̃ℏ

Z2ðγiÞjψ̃ℏ
Zu
1
ðγiÞi in the integrand of Eq. (C3), we obtain

lim
μi→μi−1

hψ̃ℏ
Z2ðγiÞjψ̃ℏ

Z1ðγiÞi ¼ hψ̃ℏ
Z2ðγi−1Þjψ̃ℏ

Z1ðγi−1Þi: ðC26Þ

In other words, due to the constraint Eqs. (5.19) and (5.20), the overlap hψ̃ℏ
Z2ðγiÞjψ̃ℏ

Z1ðγiÞi of coherent states on the finer lattice
γi is a deformation of hψ̃ℏ

Z2ðγi−1Þjψ̃ℏ
Z1ðγi−1Þi on the coarser lattice γi−1.

In the integral (C3), all ingredients other than hψ̃ℏ
Z2ðγiÞjψ̃ℏ

Zu
1
ðγiÞi depend only on γi−1; therefore,

lim
μi→μi−1

hI0
γi;γi−1f2jI0

γi;γi−1f1iH0
γi
¼
Z

dZ1ðγi−1ÞdZ2ðγi−1Þ lim
μi→μi−1

hψ̃ℏ
Z2ðγiÞjψ̃ℏ

Z1ðγiÞihf2jψ̃ℏ
Z2ðγi−1Þihψ̃ℏ

Z1ðγi−1Þjf1i

¼
Z

dZ1ðγi−1ÞdZ2ðγi−1Þhψ̃ℏ
Z2ðγi−1Þjψ̃ℏ

Z1ðγi−1Þihf2jψ̃ℏ
Z2ðγi−1Þihψ̃ℏ

Z1ðγi−1Þjf1i

¼ hf2jf1iH0
γi−1

: ðC27Þ
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Interchanging the limit and integral in the first step follows
from the dominated convergence theorem, with the domi-
nating function

GðZ2ðγiÞ; Z1ðγiÞÞ ¼ sup
μi∈½μi−1−ϵ;μi−1�

jhψ̃ℏ
Z2ðγiÞjψ̃ℏ

Z1ðγiÞij; ðC28Þ

which is a Gaussian-type function peaked at Z1ðγiÞ ¼
Z2ðγiÞ.
When bothNi andNi−1 are large andNi − Ni−1 ¼ Oð1Þ,

we have μi=μi−1 ¼ 1þOð1=NÞ; thus, Eq. (C27) implies

hI0
γi;γi−1f2jI0

γi;γi−1f1iH0
γi
¼ hf2jf1iH0

γi−1
½1þOð1=NÞ�:

ðC29Þ

Thus, I0
γi;γi−1 (and, therefore, I γi;γi−1) approximates to an

isometry from H0
γi−1 to H0

γi (from Hγi−1 to Hγi).

APPENDIX D: PROPERTIES OF I γiγi − 1 :
II. EQUATIONS OF MOTION

Recall the definition of the linear map I γi;γi−1 :
Hγi−1 → Hγi :

I γi;γi−1 ¼
Z

dZ0ðγi−1Þ
jΨℏ

½Z0ðγiÞ�ihΨℏ
½Z0ðγi−1Þ�j

kψℏ
Z0ðγiÞkkψℏ

Z0ðγi−1Þk
; ðD1Þ

Z0ðγiÞ ¼ Zðμi;F γiΦ̃γiÞ; Z0ðγi−1Þ ¼ Zðμi−1;F γi−1Φ̃γi−1Þ;
ðD2Þ

where Φ̃γi and Φ̃γi−1 are constrained by

Φ̃ρðτi; m⃗Þγi ¼ Φ̃ρðτi; m⃗Þγi−1 ; m⃗ ∈ ZðNi−1Þ3; ðD3Þ

Φ̃ρðτi; m⃗Þγi ¼ 0; m⃗ ∈ ZðNiÞ3nZðNi−1Þ3: ðD4Þ

When inserting I γi;γi−1 in A½Z�;½Z0� and considering the
variation with respect to Z0ðγiÞ, the integral of Z0ðγiÞ
involves [recall Eq. (3.4)]

Z
dZ0ðγi−1Þ � � �

hψ̃ℏ
Z1ðγiÞjΨℏ

½Z0ðγiÞ�ihΨℏ
½Z0ðγi−1Þ�jψ̃ℏ

ZNðγi−1Þi
kψℏ

Z0ðγiÞkkψℏ
Z0ðγi−1Þk

� � �

¼
Z

dZ0ðγi−1Þdu1du2ν½Z� � � � eKðZ1ðγiÞ;Z0ðγiÞÞ=tþKðZ0ðγi−1Þ;ZNðγi−1ÞÞ=t � � � ; ðD5Þ

where KðZ; Z0Þ is expressed in Eq. (3.10). The exponent contains two K’s on γi and γi−1, respectively.
We focus on cosmological perturbations (5.3) and (5.4) applied to Z1ðγiÞ; Z0ðγiÞ; Z0ðγi−1Þ; ZNðγi−1Þ and expand

KðZ1ðγiÞ; Z0ðγiÞÞ þKðZ0ðγi−1Þ; ZNðγi−1ÞÞ to quadratic order in Vρ. The expansion to quadratic order is sufficient for
studying the linear perturbation theory:

KðZ1ðγiÞ; Z0ðγiÞÞ þKðZ0ðγi−1Þ; ZNðγi−1ÞÞ ¼ K0;γi þK0;γi−1 þ
X

v∈VðγiÞ
Kρ

1 γi
VρðvÞγi þ

X
v∈Vðγi−1Þ

Kρ
1 γi−1

VρðvÞγi−1 þ � � �

þ
X

v∈VðγiÞ
Kρσ

2 γi
VρðvÞγiVσðvÞγi þ

X
v∈Vðγi−1Þ

Kρσ
2 γi−1

VρðvÞγi−1VσðvÞγi−1 þ � � �

¼ K0;γi þK0;γi−1 þ ðKρ
1γi
μ−3i þKρ

1γi−1
μ−3i−1ÞṼρð0Þ þ � � �

þ
X

m⃗∈ZðNi−1Þ3
ðKρσ

2 γi
μ−3i þKρσ

2 γi−1
μ−3i−1ÞṼρð−m⃗ÞṼσðm⃗Þ þ � � � ; ðD6Þ

where K0;1;2 depend on μi and μi−1 and the homoge-
neous-isotropic backgrounds in Z1ðγiÞ, Z0ðγiÞ, Z0ðγi−1Þ,
and ZNðγi−1Þ. VσðvÞγi−1 and VσðvÞγi are perturbations
in Z0ðγiÞ and Z0ðγi−1Þ, and � � � contains linear and
quadratic terms involving perturbations in Z1ðγiÞ and
ZNðγi−1Þ. Z0ðγiÞ and Z0ðγi−1Þ have the same back-
ground P0, K0, ϕ0, and π0 and nonzero Fourier modes

Ṽσðm⃗Þ ¼ Ṽσðm⃗Þγi ¼ Ṽσðm⃗Þγi−1 of perturbations on γi and
γi−1 by the definition of I γi;γi−1 .
Considering t → 0 and the stationary phase approxima-

tion of the integral in Eq. (D5), the variations with respect
to the background δB ¼ ðδP0; δK0; δϕ0; δπ0Þ and pertur-
bations δṼρðm⃗Þ and m⃗ ∈ ZðNi−1Þ of Z0ðγi−1Þ give
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δ

δB
ðK0;γi þK0;γi−1Þ; ðD7Þ

ðKρ
1γi
μ−3i þKρ

1γi−1
μ−3i−1Þδm⃗;0

þ 2ðKρσ
2 γi

μ−3i þKρσ
2 γi−1

μ−3i−1ÞṼσð−m⃗Þ þ � � � : ðD8Þ

The variational principle for integrals over Z1ðγiÞ and
ZNðγi−1Þ in A½Z�;½Z0� gives Z1ðγiÞ ¼ Z0ðγiÞ and ZNðγi−1Þ ¼
Z0ðγi−1Þ (as the initial and final conditions for the
Hamiltonian evolutions after and before τi [8]).
Applying this result to Eq. (D7) gives

ðμ3i − μ3i−1Þ
�
0;
2iP0

a2β
;−

iκπ0
2a2

;
iκϕ0

2a2

�
: ðD9Þ

ðP0; K0;ϕ0; π0Þ are the background data in Z0ðγi−1Þ and
Z0ðγiÞ and are the final (initial) data of the evolution
of the background before (after) τi. Although Eq. (D7)
is not precisely zero due to μi ≠ μi−1, it is arbitrarily
small when Ni; Ni−1 ≫ 1, and Ni − Ni−1 ∼Oð1Þ, since
μ3i − μ3i−1 ¼ μ3i ð1 − N3

i =N
3
i−1Þ ∼ μ3i Oð1=NiÞ. The assump-

tions Ni; Ni−1 ≫ 1, and Ni − Ni−1 ∼Oð1Þ also qualify the
continuous approximation in, e.g., Eqs. (5.42)–(5.44).
In Eq. (D8), ðKρ

1γi
μ−3i þKρ

1γi−1
μ−3i−1Þ vanishes by

applying Z1ðγiÞ ¼ Z0ðγiÞ and ZNðγi−1Þ ¼ Z0ðγi−1Þ.
2ðKρσ

2 γi
μ−3i þKρσ

2 γi−1
μ−3i−1ÞṼσð−m⃗Þ þ � � � in Eq. (D8) is

reduced to the following by Z1ðγiÞ ¼ Z0ðγiÞ and
ZNðγi−1Þ ¼ Z0ðγi−1Þ:

Ṽð−m⃗ÞT ·0BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0
4iðμi−1 sinðμiβK0Þ−μi sinðμi−1βK0ÞÞ

a2βμi−1μiβK0

4iðμi−1 cosðμiβK0Þ−μi cosðμi−1βK0Þ−μi−1þμ2Þ
a2βμi−1μiβK0

0 0

0 0 0 0
4iðμi−1ð− cosðμiβK0ÞÞþμi cosðμi−1βK0Þþμi−1−μiÞ

a2βμi−1μiβK0

4iðμi−1 sinðμiβK0Þ−μi sinðμi−1βK0ÞÞ
a2βμi−1μiβK0

0 0

0 0 0 0 0 0 0 0

0 0 0 0
4iP0ðμi sinðμi−1βK0Þ−μi−1 sinðμiβK0ÞÞ

a2βμi−1μiβK2
0

− 4iP0ðμi−1 cosðμiβK0Þ−μi cosðμi−1βK0Þ−μi−1þμiÞ
a2βμi−1μiβK2

0

0 0

0 0 0 0
4iP0ðμi−1 cosðμiβK0Þ−μi cosðμi−1βK0Þ−μi−1þμiÞ

a2βμi−1μiβK2
0

4iP0ðμi sinðμi−1βK0Þ−μi−1 sinðμiβK0ÞÞ
a2βμi−1μiβK2

0

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCA
∼Oð1=NiÞ; ðD10Þ

where Ṽρðm⃗Þ are the final (initial) data of the Hamiltonian
evolution before (after) τi.
Given the Hamiltonian evolution in ½τi−1; τi� and ½τi; τiþ1�

and their solutions which are connected by identifying
the final and initial data at τi, the variations (D7) and (D8)
vanish approximately up to errors bounded by Oð1=NiÞ.

These errors can be arbitrarily small if sizes of lattices
are arbitrarily large. Connecting solutions from the
Hamiltonian evolution on different lattices gives the
approximate solutions satisfying the variational principle
of the path integral A½Z�;½Z0�ðKÞ, up to Oð1=NiÞ.
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