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We study the detection of a sparse change in a high-dimensional mean
vector as a minimax testing problem. Our first main contribution is to derive
the exact minimax testing rate across all parameter regimes for n indepen-
dent, p-variate Gaussian observations. This rate exhibits a phase transition
when the sparsity level is of order

√
p log log(8n) and has a very delicate de-

pendence on the sample size: in a certain sparsity regime, it involves a triple
iterated logarithmic factor in n. Further, in a dense asymptotic regime, we
identify the sharp leading constant, while in the corresponding sparse asymp-
totic regime, this constant is determined to within a factor of

√
2. Extensions

that cover spatial and temporal dependence, primarily in the dense case, are
also provided.

1. Introduction. The problem of change point detection has a long history (e.g., Page
(1955)), but has undergone a remarkable renaissance over the last 5–10 years. This has been
driven in part because these days sensors and other devices collect and store data on unprece-
dented scales, often at high frequency, which has placed a greater emphasis on the running
time of change point detection algorithms (Frick, Munk and Sieling (2014), Killick, Fearn-
head and Eckley (2012)). But it is also because nowadays these data streams are often mon-
itored simultaneously as a multidimensional process, with a change point in a subset of the
coordinates representing an event of interest. Examples include distributed denial of service
attacks as detected by changes in traffic at certain internet routers (Peng, Leckie and Ra-
mamohanarao (2004)) and changes in a subset of blood oxygen level dependent contrast in a
subset of voxels in fMRI studies (Aston and Kirch (2012)). Away from time series contexts,
the problem is also of interest, for instance in the detection of chromosomal copy number
abnormality (Wang and Samworth (2018), Zhang et al. (2010)). Key to the success of change
point detection methods in such settings is the ability to borrow strength across the differ-
ent coordinates, in order to be able to detect much smaller changes than would be possible
through observation of any single coordinate in isolation.

We initially consider a simple model where, for some n ≥ 2, we observe a p × n matrix X

that can be written as

(1) X = θ + E,

where θ ∈ R
p×n is deterministic and the entries of E are independent N(0,1) random vari-

ables. We wish to test the null hypothesis that the columns of θ are constant against the
alternative that there exists a time t0 ∈ {1, . . . , n − 1} at which these mean vectors change,
in at most s out of the p coordinates. The difficulty of this problem is governed by a signal
strength parameter ρ2 that measures the squared Euclidean norm of the difference between
the mean vectors, rescaled by t0(n−t0)

n
; this latter quantity can be interpreted as an effective
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sample size. The goal is to identify the minimax testing rate in ρ2 as a function of the prob-
lem parameters p, n and s, and we denote this by ρ∗(p,n, s)2; this is the signal strength at
which we can find a test making the sum of the Type I and Type II error probabilities arbi-
trarily small by choosing ρ2 to be an appropriately large multiple of ρ∗(p,n, s)2 (where the
multiple is not allowed to depend on p, n and s), and at which any test has error probability
sum arbitrarily close to 1 for a suitably small multiple of ρ∗(p,n, s)2.

Our first main contribution, in Theorem 1, is to reveal a particularly subtle form of the
exact minimax testing rate in the above problem, namely

ρ∗(p,n, s)2 �
⎧⎪⎨⎪⎩
√

p log log(8n) if s ≥
√

p log log(8n),

s log
(

ep log log(8n)

s2

)
∨ log log(8n) if s <

√
p log log(8n).

This result provides a significant generalization of two known special cases in the literature,
namely ρ∗(1, n,1)2 and ρ∗(p,2, s)2; see Section 2.1 for further discussion. Although our
initial optimal testing procedure depends on the sparsity level s, which would often be un-
known in practice, we show in Theorem 4 that it is possible to construct an adaptive test that
achieves exactly the same rate (but is a little more complicated to describe).

The theorem described above is a finite-sample result, but does not provide information at
the level of constants. By contrast, in Section 2.4, we study both dense and sparse asymptotic
regimes, and identify the optimal constants exactly, in the former case, and to within a factor
of

√
2 in the latter case. In combination with Theorem 1, then we are able to provide really

quite a precise picture of the minimax testing rate in this problem.
Sections 3 and 4 concern extensions of our results to more general data generating mecha-

nisms that allow for spatial and temporal dependence, respectively. In Section 3, we allow for
cross-sectional dependence across the coordinates through a nondiagonal covariance matrix
� for the (Gaussian) columns of E. We identify the sharp minimax testing rate when s = p,
though the optimal procedure depends on three functionals of �, namely its trace, as well as
its Frobenius and operator norms. Estimation of these quantities is confounded by the poten-
tial presence of the change point, but we are able to propose a robust method that retains the
same guarantee under a couple of additional conditions. As an example, we consider covari-
ance matrices that are a convex combination of the identity matrix and a matrix of ones; thus
each pair of distinct coordinates has the same (nonnegative) covariance. Interestingly, we find
here that this covariance structure can make the problem either harder or easier, depending
on the sparsity level of the change point. In Section 4, we also focus on the case s = p and
allow dependence across the columns of E (which are still assumed to be jointly Gaussian),
controlled through a bound B on the sum of the contributions of the operator norms of the
off-diagonal blocks of the np×np covariance matrix. Again, interesting phase transition phe-
nomena in the testing rate occur here, depending on the relative magnitudes of the parameters
B , p and n.

Most prior work on multivariate change point detection has proceeded without a sparsity
condition and in an asymptotic regime with n growing to infinity with the dimension fixed,
including Basseville and Nikiforov (1993), Csörgő and Horváth (1997), Ombao, von Sachs
and Guo (2005), Aue et al. (2009), Kirch, Muhsal and Ombao (2015), Zhang et al. (2010)
and Horváth and Hušková (2012). Bai (2010) studied the least squares estimator of a change
in mean for high-dimensional panel data. Jirak (2015), Cho and Fryzlewicz (2015), Cho
(2016) and Wang and Samworth (2018) have all proposed CUSUM-based methods for the
estimation of the location of a sparse, high-dimensional change point. Aston and Kirch (2018)
introduce a notion of efficiency that quantifies the detection power of different statistics in
high-dimensional settings. Chan and Walther (2015) propose a higher criticism-type testing
procedure for detecting sparse change points under a specific asymptotic scaling. Enikeeva
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and Harchaoui (2019) study the sparse change point detection problem in an asymptotic
regime in which p → ∞, and at the same time s → ∞ with s/p → ∞ and the sample size
not too large; we compare their results with ours in Section 2.3. Further related work on high-
dimensional change point problems include the detection of changes in covariance (e.g., Aue
et al. (2009), Cribben and Yu (2017), Wang, Yu and Rinaldo (2017)) and in sparse dynamic
networks (Wang, Yu and Rinaldo (2018)). We emphasize that in this work we focus entirely
on the offline version of the change point testing problem, where the entire data stream is
observed prior to the statistician attempting to determine whether or not a change in mean has
occurred. For recent work on the corresponding online problem, where the data are observed
sequentially and one wishes to declare a change as soon as possible after it has occurred; see,
for example, Xie and Siegmund (2013) and Chen, Wang and Samworth (2020).

Proofs of our results in Sections 2 and 3 are given in Section 5, while proofs of the results
in Section 4 and various auxiliary lemmas are provided in the Supplementary Material (Liu,
Gao and Samworth (2020)). We close this section by introducing some notation that will be
used throughout the paper. For d ∈ N, we write [d] := {1, . . . , d}. Given a, b ∈ R, we write
a ∨ b := max(a, b) and a ∧ b := min(a, b). We also write a � b to mean that there exists a
universal constant C > 0 such that a ≤ Cb; moreover, a � b means a � b and b � a. For a
set S, we use 1S and |S| to denote its indicator function and cardinality, respectively. For a
vector v = (v1, . . . , vd)T ∈ R

d , we define the norms ‖v‖1 :=∑d
�=1 |v�|, ‖v‖2 :=∑d

�=1 v2
� and

‖v‖∞ := max�∈[d] |v�|, and also define ‖v‖0 :=∑d
�=1 1{v� 
=0}. Given two vectors u, v ∈ R

d

and a positive definite matrix � ∈ R
d×d , we define 〈u, v〉−1

� := uT �−1v and ‖v‖�−1 :=
(vT �−1v)1/2 and omit the subscripts when � = Id . More generally, the trace inner prod-
uct of two matrices A,B ∈ R

d1×d2 is defined as 〈A,B〉 :=∑d1
�=1
∑d2

�′=1 A��′B��′ , while the
Frobenius and operator norms of A are given by ‖A‖F := √〈A,A〉 and ‖A‖op := smax(A)

respectively, where smax(·) denotes the largest singular value. The total variation distance
between two probability measures P and Q on a measurable space (X ,A) is defined as
TV(P,Q) := supA∈A |P(A) − Q(A)|. Moreover, if P is absolutely continuous with respect
to Q, then the Kullback–Leibler divergence is defined as D(P‖Q) := ∫X log dP

dQ
dP , and the

chi-squared divergence is defined as χ2(P‖Q) := ∫X ( dP
dQ

− 1)2 dQ. The notation P and E

are generic probability and expectation operators whose distribution is determined from the
context.

2. Main results. Recall that we consider the observation of a p × n matrix X = θ + E,
where n ≥ 2, where θ is deterministic and where each entry of the error matrix E is an
independent N(0,1) random variable. In other words, writing Xt and θt for the t th columns
of X and θ , respectively, we have Xt ∼ Np(θt , Ip). The goal of our paper is to test whether
or not the sequence {θt }t∈[n] has a change point. We define the parameter space of signals
without a change point by

�0(p,n) := {θ ∈ R
p×n : θt = μ for some μ ∈ R

p and all t ∈ [n]}.
For s ∈ [p] and ρ > 0, the space consisting of signals with a sparse structural change at time
t0 ∈ [n − 1] is defined by

�(t0)(p,n, s, ρ) :=
{
θ = (θ1, . . . , θn) ∈ R

p×n :
θt = μ1 for some μ1 ∈ R

p for all 1 ≤ t ≤ t0,

θt = μ2 for some μ2 ∈ R
p for all t0 + 1 ≤ t ≤ n,

‖μ1 − μ2‖0 ≤ s,
t0(n − t0)

n
‖μ1 − μ2‖2 ≥ ρ2

}
.
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In the definition of �(t0)(p,n, s, ρ), the parameters p and n determine the size of the problem,
while t0 is the location of the change point. The quantities s and ρ parametrize the sparsity
level and the magnitude of the structural change, respectively. It is worth noting that ‖μ1 −
μ2‖2 is normalized by the factor t0(n−t0)

n
, which plays the role of the effective sample size of

the problem. To understand this, consider the problem of testing the change point at location
t0 when p = 1. Then the natural test statistic is

1

t0

t0∑
t=1

Xt − 1

n − t0

n∑
t=t0+1

Xt,

whose variance is n
t0(n−t0)

. Hence the difficulty of change point detection problem depends on

the location of the change point. Through the normalization factor t0(n−t0)
n

, we can define a
common signal strength parameter ρ across different possible change point locations. Taking
a union over all such change point locations, the alternative hypothesis parameter space is
given by

�(p,n, s, ρ) :=
n−1⋃
t0=1

�(t0)(p,n, s, ρ).

We will address the problem of testing the two hypotheses

(2) H0 : θ ∈ �0(p,n), H1 : θ ∈ �(p,n, s, ρ).

To this end, we let � denote the class of possible test statistics, that is, measurable functions
ψ : Rp×n → [0,1]. We also define the minimax testing error by

R(ρ) := inf
ψ∈�

{
sup

θ∈�0(p,n)

Eθψ(X) + sup
θ∈�(p,n,s,ρ)

Eθ

(
1 − ψ(X)

)}
,

where we use Pθ and Eθ to denote probabilities and expectations under the data generating
process (1). Our goal is to determine the order of the minimax rate of testing in this problem,
as defined below.

DEFINITION 1. We say ρ∗ = ρ∗(p,n, s) is the minimax rate of testing if the following
two conditions are satisfied:

1. For any ε ∈ (0,1), there exists Cε > 0, depending only on ε, such that R(Cρ∗) ≤ ε

for any C > Cε .
2. For any ε ∈ (0,1), there exists cε > 0, depending only on ε, such that R(cρ∗) ≥ 1− ε

for any c ∈ (0, cε).

2.1. Special cases. Special cases of ρ∗(p,n, s) are well understood in the literature. For
instance, when p = s = 1, we recover the one-dimensional change point detection problem.
Arias-Castro, Candès and Durand (2011) showed that

(3) ρ∗(1, n,1)2 � log log(8n).

The rate (3) involves an iterated logarithmic factor, in constrast to a typical logarithmic factor
in the minimax rate of sparse signal detection (e.g., Arias-Castro, Donoho and Huo (2005),
Berthet and Rigollet (2013), Donoho and Jin (2004)).

Another solved special case is when n = 2. In this setting, we observe X1 ∼ Np(μ1, Ip)

and X2 ∼ Np(μ2, Ip), and the problem is to test whether or not μ1 = μ2. Since X1 − X2 is a
sufficient statistic for μ1 −μ2, the problem can be further reduced to a sparse signal detection
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problem in a Gaussian sequence model. For this problem, Collier, Comminges and Tsybakov
(2017) established the minimax detection boundary

(4) ρ∗(p,2, s)2 �
⎧⎨⎩

√
p if s ≥ √

p,

s log
(

ep

s2

)
if s <

√
p.

It is interesting to notice the elbow effect in the rate (4). Above the sparsity level of
√

p, one
obtains the parametric rate that can be achieved using the test that rejects H0 if ‖X1 −X2‖2

2 >

2p + c
√

p for an appropriate c > 0.
It is straightforward to extend both rates (3) and (4) to cases where either p or n is of a

constant order. However, the general form of ρ∗(p,n, s) is unknown in the statistical litera-
ture.

2.2. Minimax detection boundary. The main result of the paper is given by the following
theorem.

THEOREM 1. The minimax rate of the detection boundary of the problem (2) is given by

(5) ρ∗(p,n, s)2 �
⎧⎪⎨⎪⎩
√

p log log(8n) if s ≥
√

p log log(8n),

s log
(

ep log log(8n)

s2

)
∨ log log(8n) if s <

√
p log log(8n).

It is important to note that the minimax rate (5) is not a simple sum or multiplication of the
rates (3) and (4) for constant p or n. The high-dimensional change point detection problem
differs fundamentally from both its low-dimensional version and the sparse signal detection
problem.

We observe that the minimax rate exhibits the two regimes in (5) only when p ≥
log log(8n), since if p < log log(8n), then the condition s ≥ √

p log log(8n) is empty, and
(5) has just one regime. Compared with the rate (4), the phase transition boundary for the
sparsity s becomes

√
p log log(8n). In fact, the minimax rate (5) can be obtained by first

replacing the p in (4) with p log log(8n), and then adding the extra term (3).
The dependence of (5) on n is very delicate. Consider the range of sparsity where

log log(8n)

log(e log log(8n))
∨

√
p

(log log(8n))C
� s �

√
p log log(8n),

for some universal constant C > 0. The rate (5) then becomes

ρ∗(p,n, s)2 � s log
(
e log log(8n)

)
.

That is, it grows with n at a log log log(·) rate. To the best of our knowledge, such a triple
iterated logarithmic rate has not been found in any other problem before in the statistical
literature.

Last but not least, we remark that when p or n is a constant, the rate (5) recovers (3) and
(4) as special cases.

2.2.1. Upper bound. To derive the upper bound, we need to construct a testing procedure.
We emphasize that the goal of hypothesis testing is to detect the existence of a change point;
this is in contrast to the problem of change point estimation (Cho and Fryzlewicz (2015),
Wang and Samworth (2018), Wang, Yu and Rinaldo (2020)), where the goal is to find the
change point’s location.
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If we knew that the change point were between t and n − t + 1, it would be natural to
define the Cumulative Sum (CUSUM)-type statistic

(6) Yt := (X1 + · · · + Xt) − (Xn−t+1 + · · · + Xn)√
2t

.

Note that the definition of Yt does not use the observations between t + 1 and n − t . This
allows Yt to detect any change point in this range, regardless of its location. The existence of
a change point implies that Eθ (Yt ) 
= 0. Since the structural change only occurs in a sparse set
of coordinates, we threshold the magnitude of each coordinate Yt (j) at level a ≥ 0 to obtain

At,a :=
p∑

j=1

{
Yt (j)2 − νa

}
1{|Yt (j)|≥a},

where νa := E(Z2
∣∣ |Z| ≥ a) is the conditional second moment of Z ∼ N(0,1), given that its

magnitude is at least a. See Collier, Comminges and Tsybakov (2017) for a similar strategy
for the sparse signal detection problem. Note that At,0 =∑p

j=1{Yt (j)2 − 1} has a centered

χ2
p distribution under H0.

Since the range of the potential change point locations is unknown, a natural first thought
is to take a maximum of At,a over t ∈ [n/2]. It turns out, however, that in high-dimensional
settings it is very difficult to control the dependence between these different test statistics
at the level of precision required to establish the minimax testing rate. A methodological
contribution of this work, then is the recognition that it suffices to compute a maximum of
At,a over a candidate set T of locations, because if there exists a change point at time t0
and t0/2 < t̃ ≤ t0 for some t̃ ∈ T , then ‖Eθ (Yt̃ )‖ and ‖Eθ (Yt0)‖ are of the same order of
magnitude. This observation reflects a key difference between the change point testing and
estimation problems. To this end, we define

T := {1,2,4, . . . ,2�log2(n/2)�},
so that |T | = 1 + �log2(n/2)�. Then, for a given r ≥ 0, the testing procedure we consider is
given by

(7) ψ ≡ ψa,r(X) := 1{maxt∈T At,a>r}.

The theoretical performance of the test (7) is given by the following theorem. We use the
notation r∗(p,n, s) for the rate function on the right-hand side of (5).

PROPOSITION 2. For any ε ∈ (0,1), there exists C > 0, depending only on ε, such that
the testing procedure (7) with a2 = 4 log(

ep log log(8n)

s2 )1{s<√
p log log(8n)} and r = Cr∗(p,n, s)

satisfies

sup
θ∈�0(p,n)

Eθψ + sup
θ∈�(p,n,s,ρ)

Eθ (1 − ψ) ≤ ε,

as long as ρ2 ≥ 32Cr∗(p,n, s).

Just as the minimax rate (5) has two regimes, the testing procedure (7) also uses two differ-
ent strategies. In the dense regime s ≥ √

p log log(8n), we have a2 = 0, and thus (7) becomes
simply ψ = 1{maxt∈T ‖Yt‖2−p>r}. In the sparse regime s <

√
p log log(8n), a thresholding rule

is applied at level a, where a2 = 4 log(
ep log log(8n)

s2 ). We discuss adaptivity to the sparsity level
s in Section 2.3.
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2.2.2. Lower bound. We show that the testing procedure (7) is minimax optimal by stat-
ing a matching lower bound.

PROPOSITION 3. For any ε ∈ (0,1), there exists c > 0, depending only on ε, such that
R(ρ) ≥ 1 − ε whenever ρ2 ≤ cr∗(p,n, s).

2.3. Adaptation to sparsity. The testing procedure (7) that achieves the minimax detec-
tion rate depends on knowledge of the sparsity s. In this section, we present an alternative
procedure that is adaptive to s. The idea is to take supremum over a grid of sparsity levels.
Recall the definition of the testing procedure ψa,r in (7), and let us makes the dependence on
s explicit by writing

ψ(s) := ψa(s),r(s),

where a2(s) := 4 log(
ep log log(8n)

s2 )1{s<√
p log log(8n)} and r(s) := Cr∗(p,n, s) as in Proposi-

tion 2. Then our adaptive test is defined by

ψadaptive := max
s∈S ψ(s),

where

S := {1,2,4, . . . ,2�log2(
√

p log log(8n))�−1}∪ {p}.
The choice of this particular grid for S is not essential (we could also take S := [p]), but it
reduces computation.

THEOREM 4. For any ε ∈ (0,1), there exists C > 0, depending only on ε, such that the
testing procedure ψadaptive satisfies

sup
θ∈�0(p,n)

Eθψadaptive + sup
θ∈�(p,n,s,ρ)

Eθ (1 − ψadaptive) ≤ ε,

as long as ρ2 ≥ 64Cr∗(p,n, s).

Theorem 4 shows that the minimax detection boundary (1) can be achieved adaptively
without the knowledge of the sparsity level s. In the literature, change point detection with
unknown sparsity was also investigated by Enikeeva and Harchaoui (2019). Their procedure
has a vanishing testing error as long as

(8) ρ2 � min
(√

p logp +
√

p log logn, s log
p

s

)
,

under the additional assumptions that p, s → ∞, s/p → 0, and logn
s log(p/s)

→ 0. Comparing (8)
with the optimal rate (1), we see that Enikeeva and Harchaoui (2019) successfully identified
the

√
p log logn term in the dense regime and the s logp term in the sparse regime. However,

we can also observe that the
√

p logp term is not necessary, and the rate (8) is in general not
sharp without the assumption logn

s log(p/s)
→ 0, especially when the sparsity level s is around√

p log logn.

2.4. Asymptotic constants. A notable feature of our minimax detection boundary derived
in Theorem 1 is that the rate is nonasymptotic, meaning that the result holds for arbitrary
n ≥ 2, p ∈ N and s ∈ [p]. On the other hand, if we are allowed to make a few asymptotic as-
sumptions, we can give explicit constants for the lower and upper bounds. In this subsection,
therefore, we let both the dimension p and the sparsity s be functions of n, and we consider
asymptotics as n → ∞.
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THEOREM 5 (Dense regime). Assume that s2/(p log logn) → ∞ as n → ∞. Then, with

ρ = ξ(p log logn)1/4,

we have R(ρ) → 0 when ξ >
√

2 and R(ρ) → 1 when ξ <
√

2.

THEOREM 6 (Sparse regime). Assume that s2/p → 0 and s/ log logn → ∞ as n → ∞.
Then, with

ρ = ξ

√
s log

(
p log logn

s2

)
,

we have R(ρ) → 0 when ξ >
√

2 and R(ρ) → 1 when ξ < 1.

These two theorems characterize the asymptotic minimax upper and lower bounds of the
change point detection problem under dense and sparse asymptotics respectively. While we
are able to nail down the exact asymptotic constant in the dense regime, the optimal asymp-
totic constant in the sparse regime is a more involved problem (indeed, it appears to depend on
more refined aspects of the asymptotic regime), and we therefore leave it as an open problem
for future research.

3. Spatial dependence. In this section, we consider change point detection in settings
with cross-sectional dependence in the p coordinates. To be specific, we now relax our pre-
vious assumption on the cross-sectional distribution by supposing only that Xt ∼ Np(θt ,�)

for some general positive definite covariance matrix � ∈ R
p×p; the goal remains to solve the

testing problem (2). We retain the notation Pθ and Eθ for probabilities and expectations, with
the dependence on � suppressed. Similar to Definition 1, we use the notation ρ∗

�(p,n, s) for
the minimax rate of testing in this problem with cross-sectional covariance �.

Our first result provides the minimax rate of the detection boundary in the dense case
where s = p. This sets up a useful benchmark on the difficulty of the problem depending on
the covariance structure.

THEOREM 7. In the case s = p, the minimax rate of testing is given by

(9) ρ∗
�(p,n,p)2 � ‖�‖F

√
log log(8n) ∨ ‖�‖op log log(8n).

For � = Ip , Theorem 7 yields ρ∗
�(p,n,p)2 � √

p log log(8n) ∨ log log(8n), which re-
covers the result of Theorem 1 when s = p. The more general result for s < p with a non-
diagonal � is hard to obtain. This is because the proof of Theorem 7 relies on a diagonaliza-
tion argument of the covariance matrix, which can affect the sparsity pattern of the change in
the mean unless additional assumptions on � similar to Hall and Jin (2010) are imposed.

A test that achieves the optimal rate (9) is given by

(10) ψ := 1{maxt∈T ‖Yt‖2−Tr(�)>C(‖�‖F
√

log log(8n)∨‖�‖op log log(8n))},

for an appropriate choice of C > 0. Though optimal, the procedure (10) relies on knowledge
of �. In fact, one only needs to know Tr(�), ‖�‖F and ‖�‖op, rather than the entire covari-
ance matrix �. To be even more specific, from a careful examination of the proof, we see
that we only need to know Tr(�) up to an additive error that is at most of the same order
as the cut-off, whereas knowledge of the orders of ‖�‖F and ‖�‖op, up to multiplication by
universal constants, is enough.

We now discuss how to use X to estimate the three quantities Tr(�), ‖�‖F and ‖�‖op.
The solution would be straightforward if we knew the location of the change point, but in
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more typical situations where the change point location is unknown, this becomes a robust
covariance functional estimation problem. We assume that n ≥ 6 and that n/3 is an integer,
since a simple modification can be made if n/3 is not a integer. We can then divide [n] into
three consecutive blocks D1, D2, D3, each of whose cardinalities is n/3 ≥ 2. For j ∈ [3], we
compute the sample covariance matrix

�̂Dj
:= 1

|Dj | − 1

∑
t∈Dj

(Xt − X̄Dj
)(Xt − X̄Dj

)T ,

where X̄Dj
:= |Dj |−1∑

t∈Dj
Xt . We can then order these three estimators according to their

trace, and Frobenius and operator norms, yielding

Tr(�̂)(1) ≤ Tr(�̂)(2) ≤ Tr(�̂)(3),

‖�̂‖(1)
F ≤ ‖�̂‖(2)

F ≤ ‖�̂‖(3)
F ,

‖�̂‖(1)
op ≤ ‖�̂‖(2)

op ≤ ‖�̂‖(3)
op .

The idea is that at least two of the three covariance matrix estimators �̂D1 , �̂D2 , �̂D3 should
be accurate, because there is at most one change point location. This motivates us to take
the medians Tr(�̂)(2), ‖�̂‖(2)

F and ‖�̂‖(2)
op with respect to the three functionals as our robust

estimators. It is convenient to define �(p,n, s,0) := �0(p,n) ∪ (
⋃

ρ>0 �(p,n, s, ρ)).

PROPOSITION 8. Assume p ≤ cn for some c > 0, and fix an arbitrary positive definite
� ∈ R

p×p and θ ∈ �(p,n,p,0). Then given ε > 0, there exists C > 0, depending only on c

and ε, such that ∣∣Tr(�̂)(2) − Tr(�)
∣∣≤ C

(√
p‖�‖F√

n
+ p‖�‖op

n

)
,

∣∣‖�̂‖(2)
F − ‖�‖F

∣∣≤ C‖�‖op

√
p2

n
,

∣∣‖�̂‖(2)
op − ‖�‖op

∣∣≤ C‖�‖op

√
p

n
,

with Pθ -probability at least 1 − ε/4.

With the help of Proposition 8, we can plug the estimators Tr(�̂)(2), ‖�̂‖(2)
F and ‖�̂‖(2)

op
into the procedure (10). This test is adaptive to the unknown covariance structure, and comes
with the following performance guarantee.

COROLLARY 9. Assume that
√

p‖�‖op ≤ A‖�‖F for some A > 0. Then given ε > 0,
there exist c,C > 0, depending only on A and ε, such that if p ≤ cn, then the testing proce-
dure

ψCov := 1{maxt∈T ‖Yt‖2−Tr(�̂)(2)>C(‖�̂‖(2)
F

√
log log(8n)∨‖�̂‖(2)

op log log(8n))}
satisfies

sup
θ∈�0(p,n)

EθψCov + sup
θ∈�(p,n,p,ρ)

Eθ (1 − ψCov) ≤ ε,

as long as ρ2 ≥ 64C(‖�‖F
√

log log(8n) ∨ ‖�‖op log log(8n)).
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REMARK 1. The conditions p � n and
√

p‖�‖op � ‖�‖F guarantee that |‖�̂‖(2)
F −

‖�‖F| � ‖�‖F and |‖�̂‖(2)
op −‖�‖op| � ‖�‖op with high probability, by Proposition 8. Note

that
√

p‖�‖op � ‖�‖F will be satisfied if all eigenvalues of � are of the same order. In fact,
it is possible to weaken the condition

√
p‖�‖op � ‖�‖F using the notion of effective rank

(Koltchinskii and Lounici (2017)); however, this greatly complicates the analysis, and we do
not pursue this here. Alternatively, Corollary 9 also holds without the

√
p‖�‖op ≤ A‖�‖F

condition but under the stronger dimensionality restriction p2 ≤ cn; this then allows for an
arbitrary covariance matrix �.

To better understand the influence of the covariance structure, consider, for γ ∈ [0,1), the
covariance matrix

�(γ ) := (1 − γ )Ip + γ 1p1T
p ,

which has diagonal entries 1 and off-diagonal entries γ . The parameter γ controls the
pairwise spatial dependence; moreover, ‖�(γ )‖2

F = (1 − γ 2)p + p2γ 2 and ‖�(γ )‖op =
1 + (p − 1)γ . By Theorem 7, we have

(11) ρ∗
�(γ )(p,n,p)2 �

√{(
1 − γ 2

)
p + p2γ 2

}
log log(8n) ∨ {1 + (p − 1)γ

}
log log(8n).

Thus the spatial dependence significantly increases the difficulty of the testing problem. In
particular, if γ is of a constant order, then the minimax rate is p log log(8n), which is much
larger than the rate (9) for � = Ip .

However, the increased difficulty of testing in this example is just one part of the story.
When we consider the sparsity factor s, the influence of the covariance structure can be the
other way around. To illustrate this interesting phenomenon, we discuss a situation where
s is small. Since Xt ∼ Np(θt ,�(γ )), we have that Yt ∼ Np(�t ,�(γ )) for t < n/2, where

�t := (θ1+···+θt )−(θn−t+1+···+θn)√
2t

. Hence, the distribution of Yt can be expressed in terms of a
factor model. That is,

(12) Yt (j) = �t(j) + √
γWt +

√
1 − γZtj ,

where Wt,Zt1, . . . ,Ztp
iid∼ N(0,1). When there is no change point, we have �t = 0, so

Yt (j)|Wt
iid∼ N(

√
γWt,1 − γ ) for all j ∈ [p]. When there is a change point between t and

n − t + 1, we have ‖�t‖0 ≤ s. In either case, then, we can estimate
√

γWt by Median(Yt ).
This motivates the new statistic

(13) Ỹt := Yt − Median(Yt )1p√
1 − γ

.

To construct a scalar summary of Ỹt , we define the functions fa(x) := (x2 − νa)1{|x|≥a} for
x ∈ R and, for C′ ≥ 0, set

(14) ga(x) ≡ ga,C′(x) := inf
{
fa(y) : |y − x| ≤ C′

√
log log(8n)

p

}
.

Note that ga(x) = fa(x) when C′ = 0. The use of a positive C′ > 0 in (14) is to tolerate the
error of Median(Yt ) as an estimator of

√
γWt . The new testing procedure is then

(15) ψa,r,C′ := 1{maxt∈T
∑p

j=1 ga(Ỹt (j))>r}.
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THEOREM 10. Assume that γ ∈ [0,1) and s ≤ (p log log(8n))1/5. Then there exist uni-
versal constants c,C′ > 0 such that if log log(8n)

p
≤ c, then for any ε ∈ (0,1), we can find

C > 0 and n0 ∈ N, both depending only on ε, such that the testing procedure (15) with
a2 = 4 log(

ep log log(8n)

s2 ) and r = C(1 − γ )(s log(
ep log log(8n)

s2 ) ∨ log log(8n)) satisfies

sup
θ∈�0(p,n)

Eθψa,r,C′ + sup
θ∈�(p,n,s,ρ)

Eθ (1 − ψa,r,C′) ≤ ε,

for n ≥ n0, provided ρ2 ≥ 32C(1 − γ ){s log(eps−2 log log(8n)) ∨ log log(8n)}.
Surprisingly, in the sparse regime, the spatial correlation helps change point detection, and

the required signal strength for testing consistency decreases as γ increases. This is in stark
contrast to (11) for the same covariance structure when s = p.

REMARK 2. The testing procedure considered in Theorem 10 can be easily made adap-
tive to the unknown γ by taking advantage of Proposition 8. Since Tr(�(γ )) = p+(p2 −p)γ ,

when p ≥ 2 the estimator γ̂ := Tr(�̂)(2)−p

p2−p
satisfies

|γ̂ − γ | �
√

(1 − γ 2)p + p2γ 2

p3/2
√

n
+ 1 + (p − 1)γ

pn
,

with probability at least 1 − 2e−p . Then, the procedure with γ replaced by γ̂ enjoys the same
guarantee of Theorem 10 under mild extra conditions.

The next theorem shows that the rate achieved by Theorem 10 is minimax optimal.

THEOREM 11. Assume that γ ∈ [0,1) and s ≤ √
p log logn. Then

(16) ρ∗
�(γ )(p,n, s)2 � (1 − γ )

{
s log

(
ep log log(8n)

s2

)
∨ log log(8n)

}
.

To conclude this section, we remark that the dependence on γ of the minimax testing rate
arises in part due to our choice of measuring departures from the null hypothesis in terms
of a rescaled squared Euclidean distance. Other natural choices, such as a rescaled squared
supremum norm distance (Jirak (2015)) may well lead to different phenomena.

4. Temporal dependence. In this section, we consider the situation where X1, . . . ,Xn

form a multivariate time series. To be specific, in our model Xt = θt + Et for t ∈ [n], we
now assume that the random vectors E1, . . . ,En are jointly Gaussian but not necessarily in-
dependent. The covariance structure of the error vectors can be parametrized by a covariance
matrix � ∈R

pn×pn, and for B ≥ 0, we write � ∈ C(p,n,B) if:

1. Cov(Et ) = Ip for all t ∈ [n];
2.
∑

s∈[n]\{t} ‖Cov(Es,Et)‖op ≤ B for all t ∈ [n].
Thus the data generating process of X is completely determined by its mean matrix θ and
covariance matrix � ∈ C(p,n,B), and we use the notion Pθ,� and Eθ,� for the correspond-
ing probability and expectation. The case B = 0 reduces to the situation of observations at
different time points being independent. Time series dependence in high-dimensional change
point problems has also been considered by Wang and Samworth (2018); their condition
‖∑n

s=1 Cov(Es,Et )‖op ≤ B for all t ∈ [n] is only slightly different from ours. We also men-
tion here the work of Horváth and Hušková (2012), who study the asymptotic distributions
of change point test statistics with dependent data, in a regime in which p/

√
n → 0.
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We focus on the case s = p and do not consider the effect of sparsity. The minimax testing
error is defined by

R(ρ) := inf
ψ∈�

{
sup

θ∈�0(p,n)
�∈C(p,n,B)

Eθ,�ψ + sup
θ∈�(p,n,p,ρ)
�∈C(p,n,B)

Eθ,�(1 − ψ)
}
.

We also define the corresponding minimax rate of detection boundary ρ∗
Temp(p,n,p,B) sim-

ilarly to Definition 1. The testing procedure

(17) ψTemp := 1{maxt∈T ‖Yt‖2−p>r}
has the following property.

THEOREM 12. For any ε ∈ (0,1), there exists C > 0, depending only on ε, such that the
test (17) with r = C{Bp + (1 + B)(

√
p log log(8n) + log log(8n))} satisfies

sup
θ∈�0(p,n)

�∈C(p,n,B)

Eθ,�ψTemp + sup
θ∈�(p,n,p,ρ)
�∈C(p,n,B)

Eθ,�(1 − ψTemp) ≤ ε,

as long as ρ2 ≥ 32C{Bp + (1 + B)(
√

p log log(8n) + log log(8n))}.

Our final result provides the complementary lower bound.

THEOREM 13. Assume that B ≤ D
√

n/p for some D > 0, and let

(18) ρ∗2
Temp ≡ ρ∗

Temp(p,n,p,B)2 := Bp + (1 + B)
{√

p log log(8n) ∨ log log(8n)
}
.

Then given ε > 0, there exist cε,D > 0, depending only on ε and D, and pε ∈ N, depending
only on ε, such that R(cρ∗

Temp) ≥ 1 − ε whenever c ∈ (0, cε,D) and p ≥ pε .

Together, Theorems 12 and 13 reveal the rate of the minimax detection boundary when
B � √

n/p. Observe that when B = 0, the rate (18) becomes
√

p log log(8n) ∨ log log(8n),
which matches (5) when s = p. When B > 0, the rate (18) has an extra multiplicative factor
1 + B and an extra additive factor Bp, which are present for different reasons. Due to the
dependence of the time series, one can think of n/(1 + B) and ρ2/(1 + B) as being the
effective sample size and signal strength, respectively, instead of n and ρ2 for the independent
case, and this leads to the presence of the multiplicative factor 1 + B . On the other hand, the
additive term Bp arises from the fact that Eθ,�‖Yt‖2 − p under the null hypothesis is not
known completely due to the unknown covariance structure � ∈ C(p,n,B). In fact, in the
construction of the lower bound, the relevant zero mean Gaussian distribution with unknown
covariance can be approximated by a location mixture of Gaussians with known identity
covariance. This allows us to relate the difficulties of the two problems. When B = 0, the
class C(p,n,B) becomes a singleton, and we know that Eθ,�‖Yt‖2 = p under the null, so
this additional term disappears.

5. Proofs.

5.1. Proofs of results in Section 2.

PROOF OF PROPOSITION 2. In this proof, we seek to control Type I and Type II er-
rors using tail probability bounds for chi-squared random variables and a version with trun-
cated summands; these are given as Lemmas 1 and 5, respectively. Fixing ε ∈ (0,1), set
C = C(ε) := 50C1/ε, where the universal constant C1 ≥ 1 is taken from Lemma 7. We first
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consider the case where s ≥ √
p log log(8n). Then a = 0, so that At,a =∑p

j=1 Yt (j)2 − p.

Therefore, for any θ ∈ �0(p,n), we have At,a ∼ χ2
p − p. Then, by a union bound and

Lemma 1, we obtain that with x := C
9 log log(8n),

Eθψ = Pθ

(
max
t∈T At,0 > C

√
p log log(8n)

)
≤ Pθ

(
max
t∈T At,0 > 2

√
px + 2x

)
(19)

≤ 2 log(en)e−x ≤ ε

2
,

where the final inequality holds because C ≥ 9 + 9 log(4/ε).
Now suppose that θ ∈ �(p,n, s, ρ). For any θ ∈ �(p,n, s, ρ), there exists some t0 ∈ [n−

1] such that X1, . . . ,Xt0

iid∼ Np(μ1, Ip) and Xt0+1, . . . ,Xn
iid∼ Np(μ2, Ip), where the vectors

μ1 and μ2 satisfy t0(n−t0)
n

‖μ1 − μ2‖2 ≥ ρ2. Without loss of generality, we may assume that
t0 ≤ n/2, since the case t0 > n/2 can be handled by a symmetric argument. By the definition
of T , there exists a unique t̃ ∈ T such that t0/2 < t̃ ≤ t0. Now At̃,a ∼ χ2

p,δ2 − p, where the

non-centrality parameter δ2 satisfies

δ2 = t̃‖μ1 − μ2‖2

2
≥ t0‖μ1 − μ2‖2

4
≥ t0(n − t0)

4n
‖μ1 − μ2‖2 ≥ ρ2

4
.

Therefore, by Chebychev’s inequality,

Eθ (1 − ψ) ≤ Pθ

(
max
t∈T ‖Yt‖2 − p ≤ ρ2

32

)

≤ Pθ

(
‖Yt̃‖2 − p ≤ δ2

8

)
≤ 2(p + 2δ2)

(7/8)2δ4(20)

≤ 2(p + ρ2/2)

(7/32)2ρ4 ≤ 2

49C2 log log(8n)
+ 32

49C
√

p log log(8n)
≤ ε

2
,

since C ≥ 49/(68ε).
We now consider the case where s <

√
p log log(8n), and first suppose that θ ∈ �0(p,n).

By Lemma 5 and a union bound, we have

Eθψ = Pθ

(
max
t∈T At,a > Cr∗)

≤ Pθ

(
max
t∈T At,a >

√
pe−a2/2x + x

)
(21)

≤ 2 log(en)e−x ≤ ε

2
,

where we still take x = C
9 log log(8n).

Finally, for θ ∈ �(p,n, s, ρ), we define t̃ , μ1, μ2 as in the dense case. Now

max
t∈T At,a ≥ At̃,a =

p∑
j=1

(
Yt̃ (j)2 − νa

)
1{|Yt̃ (j)|≥a},

where Yt̃ (j) ∼ N(�j ,1), with �j :=
√

t̃
2{μ1(j) − μ2(j)}. By Lemma 6,

EAt̃,a ≥ 1

2

∑
j :|�j |≥8a

�2
j = 1

2

( p∑
j=1

�2
j − ∑

j :0<|�j |<8a

�2
j

)
≥ 1

2

(
δ2 − 64sa2)≥ δ2

4
,
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where the last inequality uses the fact that 4δ2 ≥ ρ2 ≥ 8Csa2. Moreover, by Lemma 7, we
have

Var(At̃,a) =
p∑

j=1

Var
{(

Yt̃ (j)2 − νa

)
1{|Yt̃ (j)|≥a}

}≤ C1
(
pe−a2/4 + sa4 + δ2).

By Chebychev’s inequality, we deduce that

Eθ (1 − ψ) = Pθ

(
max
t∈T At,a ≤ ρ2

32

)
≤ Pθ

(
At̃,a ≤ δ2

8

)

≤ Var(At̃,a)

(EAt̃,a − δ2/8)2 ≤ C1(pe−a2/4 + sa4 + δ2)

δ4/26(22)

≤ C1pe−a2/4 + C1sa
4 + C1ρ

2/4

ρ4/210 ≤ C1

C2 + 16C1

C2 + 8C1

C
≤ ε

2
,

as required. �

The proof of Proposition 3 below is based on the lower bound technique that involves
bounding the chi-squared divergence.

PROOF OF PROPOSITION 3. We only need to derive the lower bound for n that is suffi-
ciently large. This is because when n is bounded, the minimax rate is reduced to the formula
(4), and the derivation of the lower bound follows the same argument as in Collier, Com-
minges and Tsybakov (2017). The strategy for our lower bound is to construct a suitable
prior distribution on the alternative hypothesis parameter space and to bound the total varia-
tion distance between the null distribution and the mixture distribution induced by the prior.
More precisely, by Lemmas 8 and 10, given η > 0, it suffices to find a probability measure ν

with supp(ν) ⊆ �(p,n, s, ρ) and a universal constant c > 0 such that

(23) E(θ1,θ2)∼ν⊗ν exp
(〈θ1, θ2〉)≤ 1 + η,

whenever ρ = cρ∗.
We first consider the case when s ≥ √

p log log(8n). We define ν to be the distribution
of θ = (θj�) ∈ �(p,n, s, ρ) with ρ := √

sβ/
√

2 for some β = β(p,n, s) to be defined later,
generated according to the following sampling process:

1. Uniformly sample a subset S ⊆ [p] of cardinality s;
2. Independently of S, generate k ∼ Unif{0,1,2, . . . , �log2(n/2)�};
3. Independently of (S, k), sample u = (u1, . . . , up) ∈ R

p , where u1, . . . , up
iid∼

Unif({−1,1});
4. Given the triplet (S, k, u) sampled in the previous steps, define θj� := β√

2k
uj for all

(j, �) ∈ S × [2k] and θj� := 0 otherwise.

Since

2k(n − 2k)

n

β2

2k

∑
j∈S

u2
j = sβ2 n − 2k

n
≥ sβ2

2
,

we have supp(ν) ⊆ �(p,n, s, ρ) with ρ2 = sβ2/2. Suppose we independently sample triplets
(S, k, u) and (T , l, v) from the first three steps and use these two triplets to construct θ1 and
θ2 according to the fourth step. Then

〈θ1, θ2〉 = (2k ∧ 2l) β2
√

2k+l

∑
j∈S∩T

ujvj = β2

2|l−k|/2

∑
j∈S∩T

ujvj .
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Thus

E(θ1,θ2)∼ν⊗ν exp
(〈θ1, θ2〉)= E exp

(
β2

2|l−k|/2

∑
j∈S∩T

ujvj

)
,

where the expectation is over the joint distribution of (S, k, u,T , l, v). But we also have that

ujvj
iid∼ Unif({−1,1}), so

E(θ1,θ2)∼ν⊗ν exp
(〈θ1, θ2〉)= E

{
E

(
1

2
eβ2/2|l−k|/2 + 1

2
e−β2/2|l−k|/2

)}|S∩T |

≤ E exp
(
|S ∩ T | β4

2|l−k|+1

)
,

where the final inequality uses the fact that (ex + e−x)/2 ≤ ex2/2 for x ∈ R and Jensen’s
inequality. Note that |S ∩ T | is distributed according to the hypergeometric distribution1

Hyp(p, s, s). By the fact that the Hyp(p, s, s) distribution is no larger, in the convex ordering
sense, that the binomial distribution Bin(s, s/p) (Hoeffding (1963), Theorem 4), we have

E exp
(
|S ∩ T | β4

2|l−k|+1

)
≤
{
E

(
1 − s

p
+ s

p
eβ4/2|l−k|+1

)}s

≤ E

{(
1 + s

2p

β4

2|l−k| e
β4/2|l−k|+1

)s}
(24)

=: EL(l, k),

say, where we have used ex − 1 ≤ xex for all x ≥ 0 and Jensen’s inequality to derive the last
inequality above. From now on, we set β := {c1ps−2 log log(8n)}1/4, where c1 = c1(η) ∈
(0,1/4] will be chosen to be sufficiently small. The condition s ≥ √

p log log(8n) ensures
that β ≤ 1. We first claim that

(25) E
{
L(l, k)1{l=k}

}≤ {(1 + η

4

)
P(l = k)

}
∨ η

4
,

provided that c1 ≤ η log(1 + η
4 )/8. To see this, first note that for n ≥ exp(exp(8/η))/8, we

have

E
{
L(l, k)1{l=k}

}≤ (1 + c1

s
log log(8n)

)s

P(l = k)

≤ log1/4(8n)

1 + �log2(n/2)�

≤ η

8
log log(8n)

log1/4(8n)

1 + �log2(n/2)� ≤ η

4
.

On the other hand, when n < exp(exp(8/η))/8, we have

E
{
L(l, k)1{l=k}

}≤ logc1(8n)P(l = k) ≤ e8c1/ηP(l = k) ≤
(

1 + η

4

)
P(l = k).

1The Hyp(p, s, r) distribution models the number of white balls drawn when sampling r balls without replace-
ment from an urn containing p balls, s of which are white.



1096 H. LIU, C. GAO AND R. J. SAMWORTH

Moreover,

E
{
L(l, k)1{0<|l−k|≤(η/8) log log(8n)}

}
≤
(

1 + c1

s
log log(8n)

)s

P

(
0 < |l − k| ≤ η

8
log log(8n)

)
(26)

≤ log1/4(8n)
η log log(8n)

4(1 + �log2(n/2)�) ≤ η

2
.

For the third term, we write aη := supn≥2
log log(8n)

log(η/8) log(2)(8n)
. By reducing η > 0 and c1 = c1(η) if

necessary, we may assume that c1aη ≤ η/8 ≤ 1/2, so that

E
{
L(l, k)1{|l−k|>(η/8) log log(8n)}

}
≤
(

1 + c1aη

s

)s

P
{|l − k| > (η/8) log log(8n)

}
≤ (1 + 2c1aη)P

{|l − k| > (η/8) log log(8n)
}

≤
(

1 + η

4

)
P
{|l − k| > (η/8) log log(8n)

}
.

(27)

From (25), (26) and (27), we conclude that

E
{
L(l, k)

}≤ 1 + η,

which establishes (23) in the case s ≥ √
p log log(8n).

We now consider the case s <
√

p log log(8n) and s log(
ep log log(8n)

s2 ) ≥ log log(8n). The

goal is to derive a lower bound with rate s log(
ep log log(8n)

s2 ). We use the same ν specified
in the previous case except that in the third step, we set uj = 1 for all j ∈ S. With this

modification of ν, we have 〈θ1, θ2〉 = |S ∩ T | β2

2|l−k|/2 . Again, |S ∩ T | is distributed according
to the hypergeometric distribution Hyp(p, s, s), and

E(θ1,θ2)∼ν⊗ν exp
(〈θ1, θ2〉)= E exp

(
|S ∩ T | β2

2|l−k|/2

)
(28)

≤
{
E

(
1 − s

p
+ s

p
eβ2/2|l−k|/2

)}s

≤ E

{(
1 + s

p
eβ2/2|l−k|/2

)s}
=: ER(l, k),

(29)

say. We take β := log1/2(
c2p log log(8n)

s2 ), where c2 = c2(η) ∈ (0,1/4] will be chosen suffi-
ciently small. Parallel to the bounds for EL(l, k), we will split into three terms. For the first
term, we have

E
{
R(l, k)1{l=k}

}≤ (1 + c2

s
log log(8n)

)s

P(l = k)

≤
{(

1 + η

4

)
P(l = k)

}
∨ η

4
,
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as before, as long as c2 ≤ η log(1 + η
4 )/8. For the second term,

E
{
R(l, k)1{0<|l−k|≤(η/8) log log(8n)}

}
≤
(

1 + s

p
eβ2
)s

P

(
0 < |l − k| ≤ η

8
log log(8n)

)

≤
(

1 + log log(8n)

4s

)s η log log(8n)

4(1 + �log2(n/2)�) ≤ η

2
.

For the third term, define bη := supn≥2 exp(
log log log(8n)

log(η/16) log 2(8n)
). By reducing c2 = c2(η) if neces-

sary, we may assume that c2 ≤ log(1 + η/4)/bη. Then

E
{
R(l, k)1{|l−k|>(η/8) log log(8n)}

}
≤
{

1 + s

p
exp
(

log(c2p/s2) + log log log(8n)

log(η/16) log 2(8n)

)}s

× P
{|l − k| > (η/8) log log(8n)

}
≤ ec2bηP

{|l − k| > (η/8) log log(8n)
}

≤
(

1 + η

4

)
P
{|l − k| > (η/8) log log(8n)

}
,

which establishes (23) when s <
√

p log log(8n) and s log(
ep log log(8n)

s2 ) ≥ log log(8n).

The final case is s <
√

p log log(8n) and s log(
ep log log(8n)

s2 ) < log log(8n). Notice that in

our definition of the parameter space �(t0)(p,n, s, ρ), if we restrict μ1 and μ2 to agree in all
coordinates except perhaps the first, then the testing problem is equivalent to testing between
�0(1, n) and �(1, n,1, ρ). Therefore, the lower bound construction in Gao, Han and Zhang
(2020) applies directly here and we obtain the rate log log(8n).

The result follows. �

The proof of Theorem 4 uses several arguments from the proof of Proposition 2.

PROOF OF THEOREM 4. We first bound Eψadaptive for any θ ∈ �0(p,n), and let ε ∈
(0,1). By a union bound, we have

(30) Eθψadaptive ≤ ∑
s∈S:s<√

p log log(8n)

Eθψ
(s) +Eθψ

(p).

By the same argument as that used in the proof of Proposition 2, we have Eθψ
(p) ≤ ε/4 as

long as C = C(ε) > 0 is chosen sufficiently large (in particular, it will need to be at least as
large as the choice of C in the proof of Proposition 2).

For s <
√

p log log(8n), we recall that a2 = a2(s) = 4 log(
ep log log(8n)

s2 ). As in (21), we
have

Eθψ
(s) ≤ 2 log(en)e−x,

for any x such that √√√√ s4

e2p log2 log(8n)
x + x ≤ Cr∗(p,n, s).
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The choice

x = C

2

(
p log2 log(8n)

s2 ∧ r∗(p,n, s)

)
satisfies this condition provided that C ≥ 2. This choice of x gives the tail bound

Eθψ
(s) ≤ 2 log(en) exp

(
−C

2

p log2 log(8n)

s2

)
+ 2 log(en) exp

(
−C

2
r∗(p,n, s)

)
.

Moreover, provided we choose C = C(ε) > 0 sufficiently large, we have

2 log(en)
∑

s∈S:s<√
p log log(8n)

exp
(
−C

2

p log2 log(8n)

s2

)

≤ 2 log(en)

∞∑
k=0

exp
(
−C

2
4k log log(8n)

)
≤ ε

8
.

Similarly,

2 log(en)
∑

s∈S:s<√
p log log(8n)

exp
(
−C

2
r∗(p,n, s)

)

≤ 2 log(en)
∑

s∈S:s<√
p log log(8n)

exp
{
−C

4
s log

(
ep log log(8n)

s2

)
− C

4
log log(8n)

}

≤ ε

8

∑
s∈[p]:s<√

p log log(8n)

exp
{
−C

4
s log

(
ep log log(8n)

s2

)}
≤ ε

8
.

Therefore, we have Eθψadaptive ≤ ε/2 by (30).
Finally, for θ ∈ �(p,n, s, ρ), we bound Eθ (1 − ψadaptive). By the definition of S , there

exists a unique s̃ ∈ S such that s/2 < s̃ ≤ s. Moreover, �(p,n, s, ρ) ⊆ �(p,n,p ∧ 2̃s, ρ),
so by the same argument used in the proof of Proposition 2, we have

Eθ (1 − ψadaptive) ≤ Eθ

(
1 − ψ(̃s))≤ ε

2
,

as long as ρ2 ≥ 32Cr∗(p,n,p ∧ 2̃s). But s̃ ≤ s, so r∗(p,n,p ∧ 2̃s) ≤ 2r∗(p,n, s), which
implies that ρ2 ≥ 64Cr∗(p,n, s) is a sufficient condition for controlling the error under the
alternative. �

For Theorem 5 and Theorem 6, we will prove lower and upper bounds separately.

PROOF OF THEOREM 5 (LOWER BOUND). Since this proof is asymptotic, we assume in
many places and without further comment (both here and in the upper bound proof that fol-
lows) that n is sufficiently large in developing our bounds. Let f0n := φ be the density func-
tion of the standard normal distribution on R

p×n. Define f1n(x) := ∫supp(νn) φ(x − θ) dνn(θ),
where νn is the distribution of θ when θ is generated according to the following sampling
process:

1. Uniformly sample a subset S ⊆ [p] of cardinality s;
2. Independently of S, generate k ∼ Unif(Gn) where

Gn := {0, �c log log logn�,2�c log log logn�, . . . ,
�c log log logn�⌊log2(

√
n)/�c log log logn�⌋},

for some constant c > 0 to be chosen later;
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3. Independently of (S, k), sample u = (u1, . . . , up) ∈ R
p , where u1, . . . , up

iid∼
Unif({−1,1});

4. Given the triplet (S, k, u) sampled in the previous steps, define θj� := β√
2k

uj for

all (j, �) ∈ S × [2k] and θj� := 0 otherwise, where β2 = (2 − ε)
√

p log logn

s2 for some small,
constant ε > 0.

Since

2k(n − 2k)

n
· β2

2k

∑
j∈S

u2
j ≥ n − √

n

n
(2 − ε)

√
p log logn,

we have supp(νn) ⊆ �(p,n, s, ρ) with ρ2 = (2 − 2ε)
√

p log logn, which, following the ar-
gument in the proof of Lemma 8, yields that

R(ρ) ≥
∫
Rp×n

f0n ∧ f1n.

Therefore, in order to show that R(ρ) → 1, it suffices to establish that f1n

f0n
→ 1 in f0n-

probability as n → ∞. By a truncated second moment argument, given as Lemma 9, it suf-
fices to choose some measurable set An ⊆R

p×n and establish the following two conditions:

1. EX∼f0n
{f1n(X)
f0n(X)

1{X∈An}} → 1;

2. EX∼f0n
{(f1n(X)

f0n(X)
)21{X∈An}} → 1.

By definition of f1n and Lemma 10, the above two conditions are equivalent to:

1. PX∼f1n
(X ∈ An) → 1;

2. E(θ1,θ2)∼νn⊗νn{PX∼Np×n(θ1+θ2,I )(X ∈ An) exp(〈θ1, θ2〉)} → 1.

Fix ε1 > 0 and define In := {2i : i ∈ Gn}. Then we choose the truncation set to be

An :=
{
X ∈ R

p×n : max
t∈In

‖X1 + · · · + Xt‖2
2/t ≤ p + (2 + ε1)

√
p log logn

}
.

Proof of Condition 1. To prove that PX∼f1n
(X ∈ An) → 1, it suffices to show that

supθ∈supp(νn) Pθ (X /∈ An) → 0. Assume that the true change point location in θ is t0. Then

‖X1 + · · · + Xt‖2
2/t follows a non-central chi-squared distribution with degrees of freedom

p and noncentrality parameter

(2 − ε)
√

p log logn

(t/t0) ∨ (t0/t)
.

We therefore divide the time grid into two parts In = I1
n ∪ I2

n , where I1
n := {t0} and I2

n :=
In \ {t0}. Since �c log log logn� → ∞, the noncentrality parameter for t ∈ I2

n is smaller than
ε1
2

√
p log logn. Then

Pθ (X /∈ An) ≤ ∑
t∈I1

n∪I2
n

Pθ

(‖X1 + · · · + Xt‖2
2

t
> p + (2 + ε1)

√
p log logn

)

≤ P
(
χ2

p,(2−ε)
√

p log logn
> p + (2 + ε1)

√
p log logn

)
+ (logn)P

(
χ2

p,ε1
√

p log logn/2 > p + (2 + ε1)
√

p log logn
)

→ 0,
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where the last line is by by Lemma 2, and we have used the fact that log logn√
p log logn

→ 0 as n → ∞
by assumption. Moreover, the bound we just obtained is uniform over all θ ∈ supp(νn), so
PX∼f1n

(X ∈ An) → 1.
Proof of Condition 2. We independently sample (S, k, u) and (T , l, v) with distribution νn,

and define θ1 using (S, k, u) and θ2 using (T , l, v). Then

E(θ1,θ2)∼νn⊗νn

{
PX∼Np×n(θ1+θ2,I )(X ∈ An) exp

(〈θ1, θ2〉)}
≤ Ek,l

[
ES,u,T ,v

{
PX∼Np×n(θ1+θ2,I )(X ∈ An) exp

(〈θ1, θ2〉)}1{k=l}
]

+Ek,l

[
ES,u,T ,v

{
exp
(〈θ1, θ2〉)}1{k 
=l}

]
.

By the same calculation as in the proof of Proposition 3, the second term above can be
bounded as follows:

Ek,l

{
ES,u,T ,v

(
e〈θ1,θ2〉)1{k 
=l}

}≤ Ek,l

{(
1 + s

2p

β4

2|l−k| e
β4/2|l−k|+1

)s

1{k 
=l}
}

≤ Ek,l

{
exp
(

s2

2p

β4

2|l−k| e
β4/2|l−k|+1

)
1{k 
=l}

}
.

Notice that β → 0 in our asymptotic regime and, therefore, eβ4/2|l−k|+1 → 1 uniformly for any
k, l ∈ Gn. Further notice that when k, l ∈ Gn satisfy l 
= k, we have |l − k| ≥ �c log log logn�
and, therefore, when c is sufficiently large,

s2β4

2p2|l−k| ≤ (2 − ε)2

2

log logn

2�c log log logn� → 0.

Thus we have shown that

lim sup
n→∞

Ek,l

{
ES,u,T ,v

(
e〈θ1,θ2〉)1{k 
=l}

}≤ 1.

Next, we need to show that

Ek,l

[
ES,u,T ,v

{
PX∼Np×n(θ1+θ2,I )(X ∈ An) exp

(〈θ1, θ2〉)}1{k=l}
]→ 0.

We let ũ ∈ R
p be the vector that equals to u on S and 0 otherwise and we define ṽ in the same

way for v. Then

Ek,l

[
ES,u,T ,v

{
PX∼Np×n(θ1+θ2,I )(X ∈ An)e

〈θ1,θ2〉}1{k=l}
]

= Ek,l

[
ES,u,T ,v

{
PX∼Np×n(θ1+θ2,I )(X ∈ An)e

〈θ1,θ2〉1{‖ũ+ṽ‖2≤(2−ε2)s}
}
1{k=l}

]
(31)

+Ek,l

[
ES,u,T ,v

{
PX∼Np×n(θ1+θ2,I )(X ∈ An)e

〈θ1,θ2〉1{‖ũ+ṽ‖2>(2−ε2)s}
}
1{k=l}

]
.

We first deal with the second term. When k = l, we let t0 = 2k = 2l . When ‖ũ + ṽ‖2 >

(2 − ε2)s, the noncentrality parameter of ‖X1 + · · · + Xt0‖2/t0 is

β2‖ũ + ṽ‖2 > (2 − ε)(2 − ε2)
√

p log logn.

By Lemma 2, on the event that k = l and ‖ũ + ṽ‖2 > (2 − ε2)s, we have

PX∼Np×n(θ1+θ2,I )(X ∈ An) ≤ P
(
χ2

p,(2−ε)(2−ε2)
√

p log logn
≤ p + (2 + ε1)

√
p log logn

)
≤ exp

{
−(1 + o(1)

)((2 − ε)(2 − ε2) − (2 + ε1)

2

)2
log logn

}

=
(

1

logn

)(1+o(1))(
(2−ε)(2−ε2)−(2+ε1)

2 )2

.
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In addition, we also have

P(k = l) = 1

�log2(
√

n)/�c log log logn�� + 1
.

Therefore,

Ek,l

[
ES,u,T ,v

{
PX∼Np×n(θ1+θ2,I )(X ∈ An)e

〈θ1,θ2〉1{‖ũ+ṽ‖2>(2−ε2)s}
}
1{k=l}

]
≤
(

1

logn

)(1+o(1))(
(2−ε)(2−ε2)−(2+ε1)

2 )2

exp
(

s2β4

2p
eβ4
)
P(k = l)

= (logn)(1+o(1))
(2−ε)2

2

(logn)(1+o(1))[( (2−ε)(2−ε2)−(2+ε1)

2 )2+1]
.

By choosing ε1, ε2 > 0 sufficiently small, we can ensure that the power of the logn factor in
the denominator is arbitrarily close to 2 − 2ε + ε2, while the power of the logn factor in the
numerator is arbitrarily close to 2 − 2ε + ε2/2. We deduce that

Ek,l

[
ES,u,T ,v

{
PX∼Np×n(θ1+θ2,I )(X ∈ An)e

〈θ1,θ2〉1{‖ũ+ṽ‖2>(2−ε2)s}
}
1{k=l}

]→ 0.

Finally, we analyze the first term on the right-hand side of (31). By the Cauchy–Schwarz
inequality, we first obtain the bound

Ek,l

[
ES,u,T ,v

{
PX∼Np×n(θ1+θ2,I )(X ∈ An)e

〈θ1,θ2〉1{‖ũ+ṽ‖2≤(2−ε2)s}
}
1{k=l}

]
≤ (Ee2〈θ1,θ2〉)1/2

√
P
(‖ũ + ṽ‖2 ≤ (2 − ε2)s

)
.

Now, by construction,

Ee2〈θ1,θ2〉 ≤ Ee‖θ1‖2
F+‖θ2‖2

F ≤ e2sβ2 = e2(2−ε)
√

p log logn.

To bound P(‖ũ + ṽ‖2 ≤ (2 − ε2)s), we condition on the event that |S ∩ T | = a ≤ s and
|S \ T | = |T \ S| = s − a. Denoting the distribution of a by r , we then have by Hoeffding’s
inequality that

P
(‖ũ + ṽ‖2 ≤ (2 − ε2)s

)= Ea∼rP
(
2(s − a) + 4 · Bin(a,1/2) ≤ (2 − ε2)s|a)

≤ max
a≤s

P

(∣∣Bin(a,1/2) − a/2
∣∣≥ ε2

4
s|a
)

≤ max
a≤s

2e− ε2
2 s2

8a = 2e−ε2
2 s/8.

Therefore,

Ek,l

[
ES,u,T ,v

{
PX∼Np×n(θ1+θ2,I )(X ∈ An)e

〈θ1,θ2〉1{‖ũ+ṽ‖2≤(2−ε2)s}
}
1{k=l}

]
≤ 2e2(2−ε)

√
p log logn−ε2

2s/8 → 0.

This verifies Condition 2, and hence concludes our lower bound calculation. �

PROOF OF THEOREM 5 (UPPER BOUND). For the upper bound, define

(32) Ỹt :=
√

t (n − t)

n

(
1

t
(X1 + · · · + Xt) − 1

n − t
(Xt+1 + · · · + Xn)

)
.
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Assume that ρ2 ≥ 2
√

(1 + ε)p log logn for some constant ε ∈ (0,1]. For δ1, δ2 > 0, consider
the test

ψ := 1{maxt∈Tδ2
‖Ỹt‖2

2−p≥2
√

(1+δ1)p log logn},

where Tδ2 := T 1
δ2

∪ T 2
δ2

with

T 1
δ2

:= {1, �1 + δ2�, ⌊(1 + δ2)
2⌋, . . . , ⌊(1 + δ2)

�log1+δ2
(n/2)�⌋}

,

and T 2
δ2

= {n − t : t ∈ T 1
δ2

}. Under the null hypothesis, for a fixed t , we have ‖Ỹt‖2
2 ∼ χ2

p .
Therefore, by Lemma 1 a union bound argument, we have

sup
θ∈�0(p,n)

Pθ

(
max
t∈Tδ2

‖Ỹt‖2 − p ≥ 2
√

(1 + δ1)p log logn
)

≤ 2
⌊
log1+δ2

(n/2)
⌋
e−(1+o(1))(1+δ1) log logn → 0.

Under the alternative hypothesis, for θ ∈ �(p,n, s, ρ), assume that the true change point is
at t0 and that the mean vector before and after the change point is μ1 and μ2, respectively.
Assume t0 ≤ n/2 without loss of generality. Let t̃0 = t̃0(θ) be the closest point in Tδ2 to t0 such
that t̃0 ≤ t0. Then t̃0 ≤ t0 ≤ (1 + δ2)t̃0. By the assumption that ρ2 ≥ 2

√
(1 + ε)p log logn, we

have ‖Ỹt̃0
‖2

2 ∼ χ2
p,λ, where

λ = t̃0(n − t̃0)

n

∥∥∥∥n − t0

n − t̃0
(μ1 − μ2)

∥∥∥∥2
≥ t̃0(n − t0)

n
‖μ1 − μ2‖2

≥ t̃0

t0
ρ2(33)

≥ ρ2

1 + δ2
≥ 2
√

(1 + ε/2)p log logn

if we choose δ2 = ε/8. By Lemma 2, we therefore have

sup
θ∈�(p,n,s,ρ)

Pθ

(‖Ỹt̃0
‖2 − p ≤ 2

√
(1 + δ1)p log logn

)≤ e−(1+o(1))(
√

1+ε/2−√
1+δ1)

2 log logn

→ 0,

as long as δ1 ∈ (0, ε/2). This completes the proof of the upper bound. �

PROOF OF THEOREM 6 (LOWER BOUND). As in the proof of Theorem 5, we will allow
n to be sufficiently large. Let f0n := φ be the density function of the standard normal distri-
bution on R

p×n. Define f1n(x) := ∫supp(νn) φ(x − θ) dνn(θ), where νn is the distribution of θ

when θ is generated according to the following sampling process:

1. Uniformly sample a subset S ⊆ [p] of cardinality s;
2. Independently of S, generate k ∼ Unif(Gn) where

Gn := {0, �log log logn�,2�log log logn�, . . . ,
�log log logn�⌊log2(

√
n)/�log log logn�⌋};

3. Given (S, k) sampled in the previous steps, define θj� := β√
2k

for all (j, �) ∈ S × [2k]
and θj� := 0 otherwise, where β2 = (1 − ε) log(

p log logn

s2 ) for some ε ∈ (0,1).
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Similar to our previous arguments, we let (S, k) and (T , l) be independent with dis-

tribution νn. Since 2k(n−2k)
n

· β2

2k |S| ≥ n−√
n

n
(1 − ε)s log(

p log logn

s2 ), we have supp(νn) ⊆
�(p,n, s, ρ) with ρ2 = (1 − 2ε)s log(

p log logn

s2 ). Therefore, by Lemmas 8 and 10, it is suffi-
cient to show

lim sup
n→∞

E(θ1,θ2)∼νn⊗νn exp
(〈θ1, θ2〉)≤ 1.

By the same calculation that leads to (29), we have

E(θ1,θ2)∼νn⊗νn

{
exp
(〈θ1, θ2〉)}≤ E(l,k)

{
exp
(

s2

p
eβ2/2|l−k|/2

)}
.

We split the right-hand side above into two terms according to whether or not l = k. When
l 
= k, we have |l − k| ≥ �log log logn� due to the definition of νn. Therefore,

E(l,k)

{
exp
(

s2

p
eβ2/2|l−k|/2

)
1{l 
=k}

}
≤ exp

(
s2

p

(
p log logn

s2

)1/2�log log logn�/2)
→ 1,

where we have used s2/p → 0 and (log logn)1/ log logn → 1. When l = k, we have

E(l,k)

{
exp
(

s2

p
eβ2/2|l−k|/2

)
1{l=k}

}
≤ 1

�log2(
√

n)/�log log logn�� exp
(

s2

p
eβ2
)

→ 0,

according to the definition of β . Combining the two bounds, we have obtained the desired
conclusion. �

PROOF OF THEOREM 6 (UPPER BOUND). Consider the statistic

Ãt,a =
p∑

j=1

(
Ỹ 2

t (j ) − νa

)
1{|Ỹt (j)|≥a},

where the definition of Ỹt is given by (32). Recall the definition of Tδ2 in the upper bound
proof of Theorem 5. We then consider the testing procedure

ψ̃ := 1{maxt∈Tδ2
Ãt,a≥C∗(

√
pe−a2/22 log logn+2 log logn)},

where a =
√

2 log(
p log logn

s2 ), and the constant C∗ > 0 is taken from Lemma 5. Under the null
hypothesis, that is, for any θ ∈ �0(p,n), by Lemma 5 and a union bound argument, we have

sup
θ∈�0(p,n)

Eθ ψ̃ ≤ 2
(⌊

log1+δ2
(n/2)

⌋+ 1
)

exp(−2 log logn) → 0.

Next, we study Eθ (1 − ψ̃) under the alternative hypothesis. For θ ∈ �(p,n, s, ρ) with ρ

satisfying ρ2 ≥ 2(1 + ε)s log(
p log logn

s2 ), we denote the change point of θ by t0, and the mean
vector before and after the change point by μ1 and μ2, respectively. Assume that t0 ≤ n/2
without loss of generality. Let t̃0 = t̃0(θ) be the closest point in Tδ2 to t0 such that t̃0 ≤ t0.
Then we have t̃0 ≤ t0 ≤ (1 + δ1)̃t0. Write �j := E{Ỹt̃0(j)} as shorthand. By the assumption

that ρ2 ≥ 2(1 + ε)s log(
p log logn

s2 ) and the same argument we have used in (33), we have

p∑
j=1

�2
j ≥ ρ2

1 + δ2
≥ 2(1 + ε/2)s log

(
p log logn

s2

)
,
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by choosing δ2 = ε/8. By (S3) of Lemma 6, for any δ1 > 0, there exists c∗
1 = c∗

1(δ1) > 0 such
that

Eθ Ãt̃0,a ≥ c∗
1

p∑
j=1

�2
j1{|�j |≥(1+δ1)a}

= c∗
1

( p∑
j=1

�2
j −

p∑
j=1

�2
j1{|�j |<(1+δ1)a}

)

≥ c∗
1

{
2(1 + ε/2)s log

(
p log logn

s2

)
− (1 + δ1)

2sa2
}

= c∗
1ε

2
s log

(
p log logn

s2

)
,

by choosing δ1 such that 2(1 + δ1)
2 = 1 + ε/2. For the variance, due to Lemma 7, we have

Varθ (Ãt̃0,a) = O
(
pa3e−a2/2 + sa4).

Hence, following the same argument used in (22), we have

sup
θ∈�(p,n,s,ρ)

Eθ (1 − ψ̃) ≤ sup
θ∈�(p,n,s,ρ)

Pθ

(
Ãt̃0,a < C∗(√pe−a2/22 log logn + 2 log logn

))
→ 0,

which leads to the desired conclusion. �

5.2. Proofs of results in Section 3.

PROOF OF THEOREM 7. For any θ ∈ �(p,n,p,ρ), there exist μ1,μ2 ∈ R
p and

t ∈ [n], such that X1, . . . ,Xt
iid∼ Np(μ1,�) and Xt+1, . . . ,Xn

iid∼ Np(μ2,�). The covari-
ance matrix � admits the eigenvalue decomposition � = U�UT for some orthogonal
U ∈ R

p×p and � = diag(λ) ∈ R
p×p , where λ := (λ1, . . . , λp)T and λ1 ≥ · · · ≥ λp > 0. Then

UT X1, . . . ,U
T Xt

iid∼ Np(UT μ1,�) and UT Xt+1, . . . ,U
T Xn

iid∼ Np(UT μ2,�). Moreover,
‖UT (μ1 − μ2)‖ = ‖μ1 − μ2‖, so we can consider a diagonal � without loss of generality.
From now on, we assume that � = �.

We first derive the upper bound. Consider the testing procedure

ψ = 1{maxt∈T ‖Yt‖2−Tr(�)>r},

with r = C(
√

‖�‖2
F log log(8n) + ‖�‖op log log(8n)) for some appropriate C > 0. Then the

same argument in the proof of Proposition 2 together with Lemma 1 leads to the desired
result.

We now derive the lower bound. We first seek to apply Lemmas 8 and 10 and given η > 0,
find a probability measure ν with supp(μ) ⊆ �(p,n,p,ρ) and a universal constant c > 0
such that

(34) E(θ1,θ2)∼ν⊗ν exp
(〈θ1, θ2〉�−1

)≤ 1 + η,

whenever ρ = cρ∗
� . We define ν to be the distribution of θ = (θj�) ∈ �(p,n,p,ρ), sampled

according to the following process:

1. Uniformly sample k ∈ {0,1,2, . . . , �log2(n/2)�};
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2. Independently of k, sample u = (u1, . . . , up)T ∈ R
p with independent coordinates,

and with uj ∼ Unif({−aj , aj }) for j ∈ [p];
3. Given (k, u) sampled in the previous steps, define θj� := 2−k/2uj for all (j, �) ∈

[p] × [2k] and θj� := 0 otherwise.

If θ ∼ ν, then θ ∈ �(p,n,p,ρ) with ρ2 = 1
2
∑p

j=1 a2
j . Suppose that we independently sample

(k, u) and (l, v) from the first two steps and use these to construct θ1 and θ2, respectively,
according to the third step. Then, by direct calculation, we obtain

〈θ1, θ2〉�−1 = (2k ∧ 2l) 1√
2k+l

p∑
j=1

ujvj

λj

= 1

2|k−l|/2

p∑
j=1

ujvj

λj

.

Observe that ujvj ∼ Unif({−a2
j , a

2
j }), so

E(θ1,θ2)∼ν⊗ν exp
(〈θ1, θ2〉�−1

)= E exp

(
1

2|k−l|/2

p∑
j=1

ujvj

λj

)

= E

p∏
j=1

{
1

2
exp
( a2

j

2|k−l|/2λj

)
+ 1

2
exp
(
− a2

j

2|k−l|/2λj

)}

≤ E exp

(
1

2|k−l|
p∑

j=1

a4
j

λ2
j

)
,

where the last inequality above uses the fact that (ex + e−x)/2 ≤ ex2
. We take a2

j =√
c1

λ4
j log log(8n)

‖λ‖2 for some sufficiently small c1 = c1(η) > 0. Then it can be shown that

E exp

(
1

2|k−l|
p∑

j=1

a4
j

λ2
j

)
= E exp

(
c1

log log(8n)

2|k−l|
)

≤ 1 + η

using very similar arguments to those employed in the proof of Proposition 2. We have
therefore established (34), which implies the desired lower bound ρ2 = 1

2
∑p

j=1 a2
j �√

‖�‖2
F log log(8n).

We also need to prove the lower bound ‖�‖op log log(8n). Recall that we have assumed
without loss of generality that � is diagonal with nonincreasing diagonal elements. Then
in our definition of the parameter space �(t0)(p,n, s, ρ), if we restrict μ1 and μ2 to agree
in all coordinates except perhaps the first, then the testing problem is equivalent to testing
between �0(1, n) and �(1, n,1, ρ) with variance λ1 = ‖�‖op. Therefore, the lower bound
construction in Gao, Han and Zhang (2020) directly applies here and we obtain the desired
rate ‖�‖op log log(8n). �

PROOF OF PROPOSITION 8. Suppose the index set D does not include the change point.
Then, by Lemma 3, we have that for every x > 0,

(35)
∣∣Tr(�̂D) − Tr(�)

∣∣≤ 4
(√

x‖�‖F√
n

+ x‖�‖op

n

)
,

with probability at least 1 − 2e−x (notice that substituting n for n − 1 means we multiply the
right-hand side by at most 2). We will take x = p log(32/ε), which guarantees that e−x ≤
ε/32. Moreover, there exists a universal constant C̃ > 0, such that for all x ≥ 1,

(36) ‖�̂D − �‖op ≤ C̃‖�‖op

(√
p

n
∨ p

n
∨
√

x

n
∨ x

n

)
,
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with probability at least 1 − e−x (Koltchinskii and Lounici (2017), Theorem 1). Here, we
will take x = p log(16/ε). From this, we immediately have the error bounds for ‖�̂D‖F and
‖�̂D‖op, because ∣∣‖�̂D‖op − ‖�‖op

∣∣≤ ‖�̂D − �‖op,

and ∣∣‖�̂D‖F − ‖�‖F
∣∣≤ ‖�̂D − �‖F ≤ √

p‖�̂D − �‖op.

Since there is only one change point, there exists an event of probability at least 1 − ε/8
on which at least two blocks among D1, D2, D3 satisfy (35), and an event of probability at
least 1 − ε/8 on which at least two blocks satisfy (36). The result therefore follows on taking
C = 4 log(32/ε) + C̃(c1/2 ∨ 1) log(16/ε). �

PROOF OF COROLLARY 9. Define a set of good events

G := {∣∣Tr(�̂)(2) − Tr(�)
∣∣≤ (‖�‖F + ‖�‖op

)
/4,∣∣‖�̂‖(2)

F − ‖�‖F
∣∣≤ ‖�‖F/4,

∣∣‖�̂‖(2)
op − ‖�‖op

∣∣≤ ‖�‖op/4
}
.

As a direct application of Proposition 8, given ε > 0, there exists c > 0, depending only on
A and ε, such that Pθ (G

c) ≤ ε/4 for any θ ∈ �(p,n,p,0). Hence, for θ ∈ �0(p,n), when
C ≥ 1, we have

EθψCov ≤ Pθ

({
max
t∈T ‖Yt‖2 − Tr(�̂)(2)

> C
(‖�̂‖(2)

F

√
log log(8n) + ‖�̂‖(2)

op log log(8n)
)}∩ G

)
+ Pθ

(
Gc)

≤ Pθ

(
max
t∈T ‖Yt‖2 − Tr(�) >

C

2

(‖�‖F

√
log log(8n) + ‖�‖op log log(8n)

))+ ε

4
.

Therefore, by Theorem 7, we can choose C = C(ε) ≥ 1 large enough that the error un-
der the null is at most ε/2. A very similar argument also applies to Eθ (1 − ψCov) for
θ ∈ �(p,n,p,ρ) with ρ > 0: when ρ2 ≥ 64C(‖�‖F

√
log log(8n) ∨ ‖�‖op log log(8n)) and

after increasing C = C(ε) if necessary, the error under the alternative is at most ε/2, as re-
quired. �

PROOF OF THEOREM 10. Recalling the representation of Yt (j) in (12), we define an
oracle version of Ỹt in (13) by

Ȳt := Yt − √
γWt1p√

1 − γ
.

Then

(37) ‖Ỹt − Ȳt‖∞ = |Median(Yt ) − √
γWt |√

1 − γ
.

By Lemma 11, there exist universal constants C1,C2,C3 > 0 such that for any θ ∈
�(p,n, s,0), we have

Pθ

{ |Median(Yt ) − √
γWt |√

1 − γ
> C1

(
s

p
+
√

1 + x

p

)}
≤ e−C2x,
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as long as C3(
s
p

+
√

1+x
p

) ≤ 1. Using (37) and a union bound argument, there exists a univer-
sal constant C4 > 0 such that

(38) max
t∈T ‖Ỹt − Ȳt‖∞ ≤ C4

√
log log(8n)

p
,

with Pθ -probability at least 1 − 1/ log2(en), for any θ ∈ �(p,n, s,0), under the conditions
s ≤ (p log log(8n))1/5 and log log(8n)

p
≤ c. From now on, the event that (38) holds is denoted

by G.
With the above preparations, we can analyze Eθψ for any θ ∈ �0(p,n). Recalling the

definition of ga(·) in (14), we set C′ in (14) to be C4 in (38). Then, on the event G, we have
ga(Ỹt (j)) ≤ fa(Ȳt (j)) for j ∈ [p] and, therefore, given ε > 0 we can choose C = C(ε) > 0
in the definition of r and n0 = n0(ε) ∈ N such that

Eθψa,r,C′ ≤ Eθ (ψ1G) + Pθ

(
Gc)≤ Pθ

(
max
t∈T

p∑
j=1

fa

(
Ȳt (j)

)
> r

)
+ 1

log2(en)
≤ ε

2
,

for n ≥ n0, where the last inequality is by the same argument as in (21) in the proof of
Proposition 2.

Now we analyze Eθ (1 − ψa,r,C′) for θ ∈ �(p,n, s, ρ). Recall from the proof of Propo-
sition 2 that given any θ ∈ �(p,n, s, ρ), we may assume there exists t0 ≤ n/2 such that
t0(n−t0)

n
‖μ1 − μ2‖2 ≥ ρ2; moreover, there exists a unique t̃ ∈ T such that t0/2 < t̃ ≤ t0, and

‖�t̃‖2 = t̃‖μ1 − μ2‖2

2
≥ t0‖μ1 − μ2‖2

4
≥ t0(n − t0)

4n
‖μ1 − μ2‖2 ≥ ρ2

4
.

We introduce a function

ha(x) := inf
{
fa(y) : |x − y| ≤ a

10

}
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, |x| ≤ 9

10
a,

a2 − νa,
9

10
a < |x| ≤ 11

10
a,(

|x| − a

10

)2
− νa, |x| > 11

10
a.

To gain some intuition, a plot of the functions h1(·) and f1(·) is shown in Figure 1. By

reducing c > 0 if necessary, we may assume that 2C′√ log log(8n)
p

≤ a
10 , so we have on the

FIG. 1. An illustration of the functions fa(·) and ha(·) for the special case a = 1.
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event G that ga(Ỹt (j)) ≥ ha(Ȳt (j)) for j ∈ [p]. Thus

Eθ (1 − ψa,r,C′) ≤ Eθ

{
(1 − ψa,r,C′)1G

}+ Pθ

(
Gc)

≤ Pθ

( p∑
j=1

ha

(
Ȳt̃ (j )

)≤ r

)
+ 1

log2(en)
,

and we now control the first term on the right-hand side. When �t̃(j) = 0, we have
Eha(Ȳt̃ (j)) ≤ Efa(Ȳt̃ (j)) = 0. Moreover, by Lemma 4,

−Eha

(
Ȳt̃ (j )

)
= 2
(
νa − a2){�(11a/10) − �(9a/10)

}+ 2
∫ ∞

11a/10

{
νa − (x − a/10)

}
φ(x)dx

≤ 4a3

5
φ(9a/10) + 6a2{1 − �(11a/10)

}
� e−a2/3.

Next, for 0 < |�t̃(j)| < 8(1 − γ )1/2a, we have Eha(Ȳt̃ (j)) ≥ −(νa − a2) ≥ −2a2, and by

Lemma 6, we have Eha(Ȳt̃ (j)) ≤ Efa(Ȳt̃ (j)) ≤ 64�2
t̃
(j )

1−γ
+ 1 � a2.

Finally, we handle the case where |�t̃(j)| ≥ 8(1 − γ )1/2a, and assume without loss of
generality that �t̃(j) ≥ 8(1 − γ )1/2a. Observe by Lemma 4 that for x ≥ 4a, we have

(x − a/10)2 − νa ≥ x2 − ax

5
− 3a2 ≥ x2 − x2

20
− 3x2

16
≥ 3x2/4.

Hence

Eha

(
Ȳt̃ (j )

)≥ 3

4
E
(
Ȳt̃ (j )21{Ȳt̃ (j )≥4a}

)− (νa − a2)
P
(
Ȳt̃ (j ) < 4a

)
≥ 3�2

t̃
(j )

4(1 − γ )
P
(
Ȳt̃ (j ) ≥ 4a

)− 3a2
P
(
Ȳt̃ (j ) < 4a

)≥ 45�2
t̃
(j )

128(1 − γ )
.

Summarizing then, we have

Eha

(
Ȳt̃ (j )

)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

≤ 0 and � −e−a2/3 if �t̃(j) = 0,

� −a2 and � a2 if 0 <
∣∣�t̃(j)

∣∣< 8(1 − γ )1/2a,

≥ 45�t̃(j)2

128(1 − γ )
if
∣∣�t̃(j)

∣∣≥ 8(1 − γ )1/2a.

We now study Varha(Ȳt̃ (j)). When �t̃(j) = 0, we have

Varha

(
Ȳt̃ (j )

)≤ Eh2
a

(
Ȳt̃ (j )

)
≤ 2
∫ ∞

9a/10

{(
νa − a2)2 ∨ ((x − a/10)2 − νa

)2}
φ(x)dx

≤ 2
∫ ∞

9a/10

(
ν2
a ∨ x2)φ(x)dx � e−a2/4.

When 0 < |�t̃(j)| < 2(1 − γ )1/2a, assuming that �t̃(j) > 0 without loss of generality and
writing θ := �t̃(j)/(1 − γ )1/2 as shorthand, we have

Varha

(
Ȳt̃ (j )

)≤ Eh2
a

(
Ȳt̃ (j )

)
≤
(∫ − 9a

10

−∞
+
∫ θ+a

9a
10

+
∫ ∞
θ+a

){(
νa − a2)2 ∨ ((|x| − a/10

)2 − νa

)2}
φ(x − θ) dx

� e−a2/4 + a4 + e−a2/4 � a4.
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Finally, when |�t̃(j)| ≥ 2(1 − γ )1/2a, Let us define a random variable L := 1{Ȳt̃ (j )≥11a/10}.
Then assuming that �t̃(j) ≥ 2(1 − γ )1/2a without loss of generality, we have that

Varha

(
Ȳt̃ (j )

)
= E
{
Var
(
ha

(
Ȳt̃ (j )

)|L)}+ Var
{
E
(
ha

(
Ȳt̃ (j )

)|L)}
≤ P(L = 0)E

{
h2

a

(
Ȳt̃ (j )

)|L = 0
}+ P(L = 1)Var

{(
Ȳt̃ (j ) − a/10

)2|L = 1
}

+ P(L = 0)P(L = 1)

× {∣∣E{ha

(
Ȳt̃ (j )

)|L = 0
}∣∣+ ∣∣E((Ȳt̃ (j ) − a/10

)2 − νa|L = 1
)∣∣}2.

Now, similar to the proof of Lemma 7,

∣∣E{ha

(
Ȳt̃ (j )

)|L = 0
}∣∣≤ νa +E

{
Ȳ 2

t̃ (j )|Ȳt̃ (j ) < 11a/10
}
�

�2
t̃
(j )

1 − γ
,

E
{
h2

a

(
Ȳt̃ (j )

)|L = 0
}≤ 2ν2

a + 2E
{
Ȳ 4

t̃ (j )|Ȳt̃ (j ) < 11a/10
}
�

�4
t̃
(j )

(1 − γ )2 ,

∣∣E((Ȳt̃ (j ) − a/10
)2 − νa|L = 1

)∣∣≤ νa +E
{
Ȳ 2

t̃ (j )|Ȳt̃ (j ) ≥ 11a/10
}
�

�2
t̃
(j )

1 − γ
.

But P(L = 0) = �(11a/10 − �t̃(j)/(1 − γ )1/2) ≤ �(
−9�t̃ (j)

20(1−γ )1/2 ). Finally, we note that

P(L = 1)Var
{(

Ȳt̃ (j ) − a/10
)2|L = 1

}≤ Var
{(

Ȳt̃ (j ) − a/10
)2}

�
�2

t̃
(j )

1 − γ
.

These observations allow us to deduce that

Var
(
ha

(
Ȳt̃ (j )

))
�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e−a2/4 if �t̃(j) = 0,

a4 if 0 <
∣∣�t̃(j)

∣∣< 2(1 − γ )1/2a,

�t̃ (j)2

1 − γ
if
∣∣�t̃(j)

∣∣≥ 2(1 − γ )1/2a.

The bound on the expectation then implies that

∑
j :�t̃ (j)=0

∣∣Eha

(
Ȳt̃ (j )

)∣∣� pe−a2/3 � p log log(8n)

(
s2

p log log(8n)

)4/3
≤ s,

where we used the condition s ≤ (p log log(8n))1/5. We deduce similar to the argument in
the proof of Proposition 2 that

p∑
j=1

Eha

(
Ȳt̃ (j )

)≥ ‖�t̃‖2

4(1 − γ )

provided we choose C = C(ε) > 0 sufficiently large in the definition of ρ. Moreover,

p∑
j=1

Var
(
ha

(
Ȳt̃ (j )

))
� pe−a2/4 + sa4 + ‖�t̃‖2

1 − γ
.
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By Chebychev’s inequality, we deduce that

Pθ

( p∑
j=1

ha

(
Ȳt̃ (j )

)≤ r

)
≤ Pθ

( p∑
j=1

ha

(
Ȳt̃ (j )

)≤ ‖�t̃‖2

8

)

�
pe−a2/4 + sa4 + ‖�t̃‖2

1−γ

{‖�t̃‖2/(1 − γ )}2

�
pe−a2/4 + sa4 + ρ2

1−γ

{ρ2/(1 − γ )}2 .

Hence, by increasing n0 = n0(ε) and C = C(ε) > 0 if necessary, we may conclude that
Eθ (1 − ψa,r,C′) ≤ ε/2, as required. �

PROOF OF THEOREM 11. The proof uses similar arguments to those in the proof of
Proposition 3, but instead of establishing (23), we need to show that given η > 0, we can find a
universal constant c > 0 such that E(θ1,θ2)∼ν⊗ν exp(〈θ1, θ2〉�(γ )−1) ≤ 1 + η when ρ ≥ cr∗

�(γ ),
where r∗

�(γ ) denotes the right-hand side of (16). Since

(39) �(γ )−1 = κ1(γ )Ip − κ2(γ )1p1T
p ,

with κ1(γ ) = 1
1−γ

and κ2(γ ) = γ
(1−γ )(1+(p−1)γ )

, the calculation will be very similar, and
essentially our argument replaces Ip in the proof of Proposition 3 by κ1(γ )Ip .

First, consider the case when s ≤ √
p log log(8n) and s log(

ep log log(8n)

s2 ) ≥ log log(8n). We
define ν to be the distribution of θ , sampled according to the following process:

1. Uniformly sample a subset S of [p] of cardinality s;
2. Independently, sample k according to a uniform distribution on {0,1,2, . . . ,

�log2(n/2)�};
3. Given (S, k) sampled in the previous steps, define θj� := β/2k/2 for all (j, �) ∈ S ×

[2k] and θj� := 0 otherwise, where β > 0.

Suppose that we generate θ1 and θ2 independently with distribution ν, where θ1 is generated

from (S, k) and θ2 comes from (T , l). By (39), we have 〈θ1, θ2〉�(γ )−1 ≤ κ1(γ )β2

2|l−k|/2 |S ∩ T |, and
thus

E(θ1,θ2)∼ν⊗ν exp
(〈θ1, θ2〉�(γ )−1

)≤ E exp
(

κ1(γ )β2

2|l−k|/2 |S ∩ T |
)
.

Note that we obtain the same formula as (28) except that the β2 in (28) is replaced by
κ1(γ )β2. This immediately implies that the same argument that bounds (28) can also be
applied here and we obtain the lower bound with the desired rate κ1(γ )−1s log(

ep log log(8n)

s2 ).

Next, we consider the case s ≤ √
p log log(8n) and s log(

ep log log(8n)

s2 ) < log log(8n). The
sampling process for θ ∼ ν is now:

1. Sample k from a uniform distribution on {0,1,2, . . . , �log2(n/2)�};
2. Given k, define θj� := β/2k/2 for all (j, �) ∈ [s] × [2k] and θj� := 0 otherwise.

Similar to before, 〈θ1, θ2〉�(γ )−1 ≤ κ1(γ )β2

2|l−k|/2 s, and thus

E(θ1,θ2)∼ν⊗ν exp
(〈θ1, θ2〉�(γ )−1

)≤ E exp
(

κ1(γ )β2

2|l−k|/2 s

)
.

We can then set κ1(γ )β2s = c1 log log(8n) for a sufficiently small c1 > 0, and apply the same
argument as in the proof of Gao, Han and Zhang ((2020), Proposition 4.2). The lower bound
follows with rate ρ2 = sβ2 � κ1(γ )−1 log log(8n). �
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CSÖRGŐ, M. and HORVÁTH, L. (1997). Limit Theorems in Change-Point Analysis. Wiley Series in Probability
and Statistics. Wiley, Chichester. MR2743035

DONOHO, D. and JIN, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist. 32
962–994. MR2065195 https://doi.org/10.1214/009053604000000265

ENIKEEVA, F. and HARCHAOUI, Z. (2019). High-dimensional change-point detection under sparse alternatives.
Ann. Statist. 47 2051–2079. MR3953444 https://doi.org/10.1214/18-AOS1740

FRICK, K., MUNK, A. and SIELING, H. (2014). Multiscale change point inference. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 76 495–580. MR3210728 https://doi.org/10.1111/rssb.12047

GAO, C., HAN, F. and ZHANG, C.-H. (2020). On estimation of isotonic piecewise constant signals. Ann. Statist.
48 629–654. MR4102670 https://doi.org/10.1214/18-AOS1792

HALL, P. and JIN, J. (2010). Innovated higher criticism for detecting sparse signals in correlated noise. Ann.
Statist. 38 1686–1732. MR2662357 https://doi.org/10.1214/09-AOS764

https://doi.org/10.1214/20-AOS1994SUPP
http://www.ams.org/mathscinet-getitem?mr=2797847
https://doi.org/10.1214/10-AOS839
http://www.ams.org/mathscinet-getitem?mr=2246369
https://doi.org/10.1109/TIT.2005.850056
http://www.ams.org/mathscinet-getitem?mr=3058688
https://doi.org/10.1214/12-AOAS565
http://www.ams.org/mathscinet-getitem?mr=3815301
https://doi.org/10.1214/18-EJS1442
http://www.ams.org/mathscinet-getitem?mr=2572452
https://doi.org/10.1214/09-AOS707
http://www.ams.org/mathscinet-getitem?mr=2652280
https://doi.org/10.1016/j.jeconom.2009.10.020
http://www.ams.org/mathscinet-getitem?mr=1210954
http://www.ams.org/mathscinet-getitem?mr=3127849
https://doi.org/10.1214/13-AOS1127
http://www.ams.org/mathscinet-getitem?mr=3375870
https://doi.org/10.1214/15-AOS1328
http://arxiv.org/abs/arXiv:2003.03668
http://www.ams.org/mathscinet-getitem?mr=3522667
https://doi.org/10.1214/16-EJS1155
http://www.ams.org/mathscinet-getitem?mr=3310536
https://doi.org/10.1111/rssb.12079
http://www.ams.org/mathscinet-getitem?mr=3662444
https://doi.org/10.1214/15-AOS1432
http://www.ams.org/mathscinet-getitem?mr=3632344
https://doi.org/10.1111/rssc.12169
http://www.ams.org/mathscinet-getitem?mr=2743035
http://www.ams.org/mathscinet-getitem?mr=2065195
https://doi.org/10.1214/009053604000000265
http://www.ams.org/mathscinet-getitem?mr=3953444
https://doi.org/10.1214/18-AOS1740
http://www.ams.org/mathscinet-getitem?mr=3210728
https://doi.org/10.1111/rssb.12047
http://www.ams.org/mathscinet-getitem?mr=4102670
https://doi.org/10.1214/18-AOS1792
http://www.ams.org/mathscinet-getitem?mr=2662357
https://doi.org/10.1214/09-AOS764
https://doi.org/10.1109/TIT.2005.850056
https://doi.org/10.1214/09-AOS707
https://doi.org/10.1111/rssb.12079


1112 H. LIU, C. GAO AND R. J. SAMWORTH

HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc.
58 13–30. MR0144363

HORVÁTH, L. and HUŠKOVÁ, M. (2012). Change-point detection in panel data. J. Time Series Anal. 33 631–648.
MR2944843 https://doi.org/10.1111/j.1467-9892.2012.00796.x

JIRAK, M. (2015). Uniform change point tests in high dimension. Ann. Statist. 43 2451–2483. MR3405600
https://doi.org/10.1214/15-AOS1347

KILLICK, R., FEARNHEAD, P. and ECKLEY, I. A. (2012). Optimal detection of changepoints with a linear
computational cost. J. Amer. Statist. Assoc. 107 1590–1598. MR3036418 https://doi.org/10.1080/01621459.
2012.737745

KIRCH, C., MUHSAL, B. and OMBAO, H. (2015). Detection of changes in multivariate time series with appli-
cation to EEG data. J. Amer. Statist. Assoc. 110 1197–1216. MR3420695 https://doi.org/10.1080/01621459.
2014.957545

KOLTCHINSKII, V. and LOUNICI, K. (2017). Concentration inequalities and moment bounds for sample covari-
ance operators. Bernoulli 23 110–133. MR3556768 https://doi.org/10.3150/15-BEJ730

LIU, H., GAO, C. and SAMWORTH, R. J. (2021). Supplement to “Minimax rates in sparse, high-dimensional
change point detection.” https://doi.org/10.1214/20-AOS1994SUPP

OMBAO, H., VON SACHS, R. and GUO, W. (2005). SLEX analysis of multivariate nonstationary time series.
J. Amer. Statist. Assoc. 100 519–531. MR2160556 https://doi.org/10.1198/016214504000001448

PAGE, E. S. (1955). A test for a change in a parameter occurring at an unknown point. Biometrika 42 523–527.
MR0072412 https://doi.org/10.1093/biomet/42.3-4.523

PENG, T., LECKIE, C. and RAMAMOHANARAO, K. (2004). Proactively detecting distributed denial of service
attacks using source IP address monitoring. In Networking 2004 (N. Mitrou, K. Kontovasilis, G. N. Rouskas,
I. Iliadis and L. Merakos, eds.) 771–782. Springer, Berlin.

WANG, T. and SAMWORTH, R. J. (2018). High dimensional change point estimation via sparse projection. J. R.
Stat. Soc. Ser. B. Stat. Methodol. 80 57–83. MR3744712 https://doi.org/10.1111/rssb.12243

WANG, D., YU, Y. and RINALDO, A. (2017). Optimal covariance change point localization in high dimension.
arXiv preprint. Available at arXiv:1712.09912.

WANG, D., YU, Y. and RINALDO, A. (2018). Optimal change point detection and localization in sparse dynamic
networks. arXiv preprint. Available at arXiv:1809.09602.

WANG, D., YU, Y. and RINALDO, A. (2020). Univariate mean change point detection: Penalization, CUSUM
and optimality. Electron. J. Stat. 14 1917–1961. MR4091859 https://doi.org/10.1214/20-EJS1710

XIE, Y. and SIEGMUND, D. (2013). Sequential multi-sensor change-point detection. Ann. Statist. 41 670–692.
MR3099117 https://doi.org/10.1214/13-AOS1094

ZHANG, N. R., SIEGMUND, D. O., JI, H. and LI, J. Z. (2010). Detecting simultaneous changepoints in multiple
sequences. Biometrika 97 631–645. MR2672488 https://doi.org/10.1093/biomet/asq025

http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=2944843
https://doi.org/10.1111/j.1467-9892.2012.00796.x
http://www.ams.org/mathscinet-getitem?mr=3405600
https://doi.org/10.1214/15-AOS1347
http://www.ams.org/mathscinet-getitem?mr=3036418
https://doi.org/10.1080/01621459.2012.737745
http://www.ams.org/mathscinet-getitem?mr=3420695
https://doi.org/10.1080/01621459.2014.957545
http://www.ams.org/mathscinet-getitem?mr=3556768
https://doi.org/10.3150/15-BEJ730
https://doi.org/10.1214/20-AOS1994SUPP
http://www.ams.org/mathscinet-getitem?mr=2160556
https://doi.org/10.1198/016214504000001448
http://www.ams.org/mathscinet-getitem?mr=0072412
https://doi.org/10.1093/biomet/42.3-4.523
http://www.ams.org/mathscinet-getitem?mr=3744712
https://doi.org/10.1111/rssb.12243
http://arxiv.org/abs/arXiv:1712.09912
http://arxiv.org/abs/arXiv:1809.09602
http://www.ams.org/mathscinet-getitem?mr=4091859
https://doi.org/10.1214/20-EJS1710
http://www.ams.org/mathscinet-getitem?mr=3099117
https://doi.org/10.1214/13-AOS1094
http://www.ams.org/mathscinet-getitem?mr=2672488
https://doi.org/10.1093/biomet/asq025
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1080/01621459.2014.957545

	Introduction
	Main results
	Special cases
	Minimax detection boundary
	Upper bound
	Lower bound

	Adaptation to sparsity
	Asymptotic constants

	Spatial dependence
	Temporal dependence
	Proofs
	Proofs of results in Section 2
	Proofs of results in Section 3

	Acknowledgments
	Supplementary Material
	References

