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In this paper, we test whether two data sets measured on the same set of
subjects share a common clustering structure. As a leading example, we focus
on comparing clustering structures in two independent random samples from
two deterministic two-component mixtures of multivariate Gaussian distri-
butions. Mean parameters of these Gaussian distributions are treated as po-
tentially unknown nuisance parameters and are allowed to differ. Assuming
knowledge of mean parameters, we first determine the phase diagram of the
testing problem over the entire range of signal-to-noise ratios by providing
both lower bounds and tests that achieve them. When nuisance parameters are
unknown, we propose tests that achieve the detection boundary adaptively as
long as ambient dimensions of the data sets grow at a sublinear rate with the
sample size.

1. Introduction. Clustering is one of the most widely used unsupervised learning tech-
niques. As the simplest nontrivial model for clustering, suppose we have independent obser-

vations Xi
ind∼ N(ziθ, Ip), i = 1, . . . , n. Here, {zi}1≤i≤n take their values in {−1,1} and are

deterministic cluster labels, and θ ∈ R
p . The n subjects thus form two clusters according to

their cluster labels. Note that the Xi’s can only be generated from two candidate multivari-
ate Gaussian distributions. We assume that the two means are θ and −θ for convenience.
In practice, as long as both cluster sizes grow linearly with n, one can estimate the means
under all settings considered in this manuscript and recenter the data at the average of these
two estimated means. All conclusions in this paper then follow. In what follows, we call
this generative model a deterministic two-component Gaussian mixture model. This is to be
differentiated from the usual two-component Gaussian mixture model where the zi’s are ran-
dom.

Under the foregoing model, uncovering clustering structure is equivalent to estimating the
unknown deterministic label vector z ∈ {−1,1}n. Let a ∧ b = min(a, b) for any real numbers
a and b. We measure the distance between two clustering structures by

�(̂z, z) =
(

1

n

n∑
i=1

1{̂zi �=zi}
)

∧
(

1

n

n∑
i=1

1{̂zi �=−zi}
)
,

the normalized Hamming distance up to a label switching. In the last display, taking mini-
mum over label switching is necessary since switching labels does not change the clustering
structure. Under this model setting, if ‖θ‖2 → ∞ as n → ∞, then the asymptotic minimax
risk of estimating z satisfies

inf
ẑ

sup
z∈{−1,1}n

E(z,θ)�(̂z, z) = exp
(
−(

1 + o(1)
)‖θ‖2

2

)
.(1)

See, for instance, [22].
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Nowadays, practitioners in a number of fields are able to collect multiple data sets mea-
sured on the same subjects, and it has become popular to integrate these different data sets to
find a common clustering structure. For example, in cancer genomics, researchers combine
different molecular features such as copy number variations and gene expressions measured
on the same patients to reveal novel tumor subtypes [9, 26, 28]. In collaborative filtering,
combining ratings on different types of items (e.g., movies and songs) from the same users
helps to better identify user types, and thus leads to better recommendations [23, 24, 31]. In
covariate-assisted network clustering [3, 10], additional nodal features are collected to facil-
itate the clustering of nodes in a social network. From a theoretical viewpoint, suppose that
we collect observations on q additional covariates on the same n subjects as a second data
set. Let Y1, . . . , Yn denote the random vectors formed by these q covariates. Similar to our

generative model on the Xi’s, we assume that Yi
ind∼ N(ziη, Iq) for some η ∈ R

q , where the
cluster labels {zi} are the same as those for the Xi’s. Further assume that the two data sets are
mutually independent. Now that they have the same clustering structure, using them together
improves the estimation error rate for z from (1) to

exp
(
−(

1 + o(1)
)‖θ‖2 + ‖η‖2

2

)
.(2)

In both theory and practice that we have mentioned here, the underlying assumption is that
these different data sets share the same clustering structure.

In the present paper, we focus on checking this key assumption based on data for a pair
of data sets under a stylized model. To formulate the problem, suppose the second data set
{Yi}1≤i≤n possesses a potentially different label vector σ = (σ1, . . . , σn)

T ∈ {−1,1}n. Thus,

we have two data sets Xi
ind∼ N(ziθ, Ip) and Yi

ind∼ N(σiη, Iq), i = 1, . . . , n, measured on
the same set of n subjects, and they are mutually independent. The assumption that the two
data sets share a common clustering structure can then be expressed as �(z, σ ) = 0. From a
statistical viewpoint, checking whether �(z, σ ) = 0 is equivalent to testing

H0 : �(z, σ ) = 0 vs. H1 : �(z, σ ) ≥ ε(3)

for some ε > 0. In the literature, such a testing problem is sometimes also called a detection
problem. For any n and ε, define parameter spaces

F0
n = {

(z, σ ) : z, σ ∈ {−1,1}n, �(z, σ ) = 0
}
,(4)

F1
n(ε) = {

(z, σ ) : z, σ ∈ {−1,1}n, �(z, σ ) ≥ ε
}
.(5)

Here and after, we focus on the case of two clusters and leave the case of more than two
clusters for future research. The parameter spaces do not put any restriction on the sizes of
the two clusters under either the null or the alternative. Let P

(n)
(θ,η,z,σ ) be the joint distribution

of the two data sets {Xi}1≤i≤n and {Yi}1≤i≤n. For any testing procedure ψ , its worst-case
testing error is

Rn(ψ, θ, η, ε) = sup
(z,σ )∈F0

n

P
(n)
(θ,η,z,σ )ψ + sup

(z,σ )∈F1
n(ε)

P
(n)
(θ,η,z,σ )(1 − ψ).(6)

We are interested in the asymptotic setting where ψ , θ , η and ε all scale with the sample
size n. For conciseness of notation, the dependence of these sequences on n is not expressed
explicitly. For given sequences of θ , η and ε, we call a sequence of tests ψ consistent if
Rn(ψ, θ, η, ε) → 0 as n → ∞. For every sample size n, the minimax testing error is defined
as

Rn(θ, η, ε) = inf
ψ

Rn(ψ, θ, η, ε).
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We say consistent testing of (3), or consistent detection, is possible, if the sequences of θ , η

and ε are such that Rn(θ, η, ε) → 0 as n → ∞. Otherwise, we say consistent testing, or con-
sistent detection, is impossible. Our goal is to find necessary and sufficient conditions (under
appropriate calibrations) for θ , η and ε sequences such that consistent testing is possible for
(3), and to find a sequence of consistent tests under these conditions.

To facilitate our discussion, let us assume for now that ‖θ‖ = ‖η‖, that is the two data
sets have equal signal-to-noise ratios (SNRs). An intuitive approach to testing (3) is to first
estimate z and σ with ẑ and σ̂, respectively, by separately clustering the two data sets. Then
we can reject the null hypothesis when �(̂z, σ̂ ) > ε/2. With the known minimax optimal
estimation error rate in (1), one can show that this test is consistent as long as

‖θ‖2 = ‖η‖2 > 2 log
(

1

ε

)
.(7)

However, condition (7) is far from optimal and the minimum SNR required for consistent
testing is much weaker.

A better test can be based on a reduction to a well-studied sparse signal detection problem.
Recall that ‖θ‖ = ‖η‖ is assumed. To further avoid technicalities, suppose that z and σ have
already been aligned so that �(z, σ ) = 1

n

∑n
i=1 1{zi �=σi}, and so there is no ambiguity due to

label switching. In this case, for the ith subject, the pairwise difference of projected data is

Di = θT Xi − ηT Yi√
‖θ‖2 + ‖η‖2

ind∼ N

(
1√
2
(zi − σi),1

)
,

and the Di’s are mutually independent. Under H0 in (3), Di
iid∼ N(0,1), while under H1, there

are at least an ε fraction of coordinates distributed either as N(
√

2‖θ‖,1) or N(−√
2‖θ‖,1).

This is the sparse signal detection problem studied by [11, 16, 17] under the asymptotic
setting where ε = n−β and

√
2‖θ‖ = √

2r logn for some constants β, r > 0. It was shown in
[11] and [8] that the higher criticism test is consistent as long as the pair (r, β) satisfy

β < β∗
IDJ(r) =

⎧⎪⎨⎪⎩
1

2
+ r, 0 < r ≤ 1

4
,

1 − (1 − √
r)2+, r >

1

4
.

(8)

Following [8], we call β∗
IDJ(r) the Ingster–Donoho–Jin threshold. In addition, it was shown

in [16] that the threshold on the right-hand side of (8) cannot be improved. As we shall show,
it is also the information theoretic limit (to the first order) for testing (3) if we only observe
{Di}1≤i≤n. This approach improves upon the plug-in procedure in the previous paragraph as
the SNR condition (8) is always weaker than (7). We shall show that we can further improve
condition (8) by fully utilizing the original data {Xi}1≤i≤n and {Yi}1≤i≤n since one actually
loses information by working only with the difference sequence {Di}1≤i≤n. The threshold
function on the right-hand side of (8) partitions all (r, β) values of interest into two disjoint
regions. One corresponds to (r, β) values where consistent testing is possible, and the other
where consistent testing is impossible.1 Thus, the (r, β) plane with such a detection boundary
function (or threshold function) is called a phase diagram in the literature.

Main contributions. The main result of the present paper is twofold. First, we determine the
phase diagram of the testing problem (3) under a natural asymptotic setting comparable to
that used in [11], assuming knowledge of θ and η. In addition, we derive an asymptotically

1Throughout the paper, we do not focus on parameter values on the graph of the detection boundary function.
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optimal test that achieves the detection boundary adaptively when θ and η are unknown while
p and q grow at sublinear rates with n.

In the equal SNR case where we continue to use the foregoing (r, β) parametrization,
we shall show that the detection boundary for (3) by using all information in data can be
improved from (8) to

β∗(r) =

⎧⎪⎪⎨⎪⎪⎩
1

2
(1 + 3r), 0 < r ≤ 1

5
,√

1 − (1 − 2r)2+, r >
1

5
.

(9)

This detection boundary is uniformly better than that in (8) as β∗(r) ≥ β∗
IDJ(r) for all r > 0.

See Figure 1 for a graphical comparison. The determination of the new detection boundary
relies crucially on the investigation of a closely related bivariate sparse normal mixture de-
tection problem, which takes into account not only the information in Di but also that in
θT Xi+ηT Yi√

‖θ‖2+‖η‖2
.

Turn to the general case. We use three quantities to parametrize the testing problem (3):
parameter β related to distance between two clustering structures, parameter r characterizing
average SNR and an additional parameter s characterizing difference in SNRs between the
two data sets. So the pair (r, s) jointly characterize the SNRs in data. The foregoing case
of equal SNRs then reduces to a special case of the present parametrization with s = 0. In
the general case, our first contribution is the phase diagram in the (r, s, β) space for testing
(3). The detection boundary function that partitions the space into two disjoint regions (one
for parameter combinations where consistent testing is possible and the other for impossible
cases) can be expressed as a bivariate function β∗(r, s). As we shall show, this function has
five pieces defined on five disjoint subsets of the (r, s) domain. Our second contribution in
the general case is the proposal of an asymptotically optimal test that achieves the detection
boundary. The test that provably achieves the detection boundary is motivated by a higher
criticism test for the related bivariate sparse mixture detection problem. At the heart of our
proposal is a precise likelihood ratio approximation. This leads to a sequence of “asymptot-
ically sufficient” statistics, based on which a relatively simple higher criticism type test can
be shown to be optimal. When θ and η are unknown, the optimal test can be made adaptive
if p and q grow at some sublinear rates with n. When p,q 
 n, one may still achieve the
detection boundary adaptively if additional structural assumptions on θ and η are imposed so
that they can be estimated with sufficiently high accuracy.

Related works. The testing problem (3) is related to feature selection in clustering analysis.
In the literature, this has mainly been investigated in the context of sparse clustering [2, 5,
19, 20, 29], where it is assumed that only a small subset of covariates are useful for finding
clusters, and so it is important to identify them. In comparison, the testing problem (3) is
concerned with whether inclusion of an additional set of covariates {Yi}1≤i≤n can potentially
lead to smaller clustering errors than using {Xi}1≤i≤n alone. A major difference is that the
additional set of covariates may admit a completely different clustering structure in our set-
ting, while in sparse clustering, covariates that are not useful have no clustering structure. On
a separate note, [19] also touched on the problem of testing existence of clustering structure
for one data set. In the most comparable scenarios, their work focused on the regime where
phase transition happens when β ≤ 1

2 while the present paper focuses exclusively on phase
transitions occurring at some β > 1

2 . We leave the investigation of phase transitions with
β ≤ 1

2 for future research.
In addition to testing whether clustering structures in multiple data sets are the same, it

is of interest to approach the problem from a different angle. In particular, one could test
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whether multiple clustering structures share anything in common. We refer the readers to
[14] and [15] for studies along this line. In particular, [14] considered the case where one
observes two data sets from some random mixture distributions and entries of clustering
vectors z and σ follow some joint distribution. They tested whether the random vectors z and
σ are independent or not, which is complementary to the problem (3) we investigate here.
See [15] for generalization to network data. Both [14] and [15] used pseudo likelihood ratio
tests. Zhao et al. [32] used higher criticism approach toward testing independence against
positive correlation between random z and σ based on indirect observations, which is related
to the independence testing problem in [14]. See also [33]. The alternative hypotheses in [32]
and [33] are one-sided, while for testing independence of clustering label vectors, they are
naturally two-sided due to potential label permutation. Furthermore, Arias-Castro et al. [1]
studied optimality of higher criticism test of independence against positive correlation based
on a random sample of bivariate normal random vectors.

As we have mentioned earlier, there has been a growing literature on integrative clus-
tering. However, almost all of them were devoted to methodology development in different
application scenarios. To the best of our limited knowledge, there is little theoretical work
on statistical optimality besides [10], which focused on optimal estimation rate of a com-
mon clustering structure shared by a two-block stochastic block model and a two-component
Gaussian mixture.

Paper organization. The rest of the paper is organized as the following. Section 2 studies
(3) with an additional equal SNR assumption. This simplified setting demonstrates essence
of the problem while reducing a lot of technicalities. The general version of the problem
without equal SNR assumption is studied in Section 3. In Section 4, we consider (3) with
ε = 1/n, which is testing for exact equality. Optimal adaptive tests with unknown parameters
are discussed in Section 5. Section 6 presents some simulation results. Finally, technical
proofs are given in the Supplementary Material [13].

Notation. For d ∈ N, we write [d] = {1, . . . , d}. Given a, b ∈ R, we write a∨b = max(a, b),
a ∧ b = min(a, b) and a+ = max(a,0). For two positive sequences {an} and {bn}, we write
an � bn when there exists a constant C > 0 independent of n such that an ≤ Cbn for all n.
Moreover, an � bn means an � bn and bn � an. For a set S, we use 1{S} and |S| to denote
its indicator function and cardinality, respectively. For any matrix A, AT stands for its trans-
pose. Any vector v ∈ R

d is by default a d × 1 matrix. For a vector v = (v1, . . . , vd)T ∈ R
d ,

we define ‖v‖2 = ∑d
�=1 v2

� . The trace inner product between two matrices A,B ∈ R
d1×d2

is defined as 〈A,B〉 = ∑d1
�=1

∑d2
�′=1 A��′B��′ , while the Frobenius and operator norms of A

are ‖A‖F = √〈A,A〉 and ‖A‖op = smax(A), respectively, where smax(·) denotes the largest
singular value. We use P and E for generic probability and expectation operators whose dis-
tribution is determined by the context.

2. Testing with equal signal-to-noise ratios. Recall that we have two independent data

sets Xi
ind∼ N(ziθ, Ip) and Yi

ind∼ N(σiη, Iq) for i ∈ [n]. In this section, we first assume that
SNRs of the two data sets are equal. In other words, ‖θ‖ = ‖η‖. The general case of poten-
tially unequal SNRs is more complicated and will be studied in Section 3.

First, we show that we can apply dimension reduction to both data sets without losing any
information for testing (3). Consider {Xi}1≤i≤n. Since the clustering structure only appears
in the direction of θ , we can project all Xi ’s to the one-dimensional subspace spanned by the
unit vector θ/‖θ‖. After projection, we obtain θT Xi/‖θ‖ ∼ N(zi‖θ‖,1) for i ∈ [n]. Given
θ , θT Xi/‖θ‖ is a sufficient statistic for parameter zi . Therefore, we conclude that the pro-
jected data set {θT Xi/‖θ‖}1≤i≤n preserves all clustering information. The same argument
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also applies to {Yi}1≤i≤n. In the rest of this section, we write

X̃i = θT Xi/‖θ‖ and Ỹi = ηT Yi/‖η‖(10)

for i ∈ [n] and work with these one-dimensional random variables when constructing tests.
On the other hand, we shall establish lower bounds of the testing problem directly in the
original multidimensional setting.

2.1. A connection to sparse signal detection.

A related sparse mixture detection problem. For simplicity, let us suppose for now

that 1
n

∑n
i=1 1{zi �=σi} ≤ 1

2 , so that �(z, σ ) = 1
n

∑n
i=1 1{zi �=σi}. Under H0 in (3), both X̃i

ind∼
N(zi‖θ‖,1) and Ỹi

ind∼ N(zi‖θ‖,1) for all i ∈ [n], which motivates us to compute scaled
differences (X̃i − Ỹi)/

√
2, i ∈ [n].

Note that the null and the alternative distributions of {(X̃i − Ỹi)/
√

2}1≤i≤n under (3) are

the same as those in a sparse signal detection problem. Indeed, (X̃i − Ỹi)/
√

2
iid∼ N(0,1) for

i ∈ [n] under the null, and at least an ε fraction of the statistics follow either N(
√

2‖θ‖,1) or
N(−√

2‖θ‖,1) under the alternative. A well-studied Bayesian version of this sparse signal
detection problem is given by the following form: for i ∈ [n],

H0 : Ui
iid∼ N(0,1),(11)

H1 : Ui
iid∼ (1 − ε)N(0,1) + ε

2
N

(−√
2‖θ‖,1

) + ε

2
N

(√
2‖θ‖,1

)
.(12)

In what follows, we refer to (11)–(12) (and any such Bayesian version of the problem) as a
sparse mixture detection problem. There are two noticeable differences between (12) and the
distribution of {(X̃i − Ỹi)/

√
2}1≤i≤n under H1 in (3):

1. The number of nonnull signals in (12) is a binomial random variable while it is deter-
ministic in (3);

2. The probabilities that a nonnull signal is from N(
√

2‖θ‖,1) and from N(−√
2‖θ‖,1)

are equal in (12) while in (3) there is no restriction on how many nonnull signals follow either
of the two distributions.

However, these differences are inconsequential as long as our focus is on the phase diagrams
of these testing problems with the calibration we now introduce.

For either the hypothesis testing problem (11)–(12) or (3) with ‖θ‖ = ‖η‖, introduce the
calibration

ε = n−β and
√

2‖θ‖ =
√

2r logn.(13)

For (11)–(12),2 it was proved in [16, 17] for that the likelihood ratio test is consistent when
β < β∗

IDJ(r) and no test is consistent when β > β∗
IDJ(r), where the threshold function is

β∗
IDJ(r) =

⎧⎪⎨⎪⎩
1

2
+ r, 0 < r ≤ 1

4
,

1 − (1 − √
r)2+, r >

1

4
.

(14)

Note that β < β∗
IDJ(r) is equivalent to (8). Moreover, Donoho and Jin [11] proposed a higher

criticism (HC) test that rejects H0 when

sup
t>0

|∑n
i=1 1{|Ui |2>t} − nP(χ2

1 > t)|√
nP(χ2

1 > t)(1 − P(χ2
1 > t))

>
√

2(1 + δ) log logn,

2The non-Bayesian version of the problem has also been studied in [16, 17].
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where χ2
m denotes a chi-square distribution with m degrees of freedom and δ > 0 is some

arbitrary fixed constant. They proved that the HC test adaptively achieves consistency when
β < β∗

IDJ(r). We refer interested readers to [12, 18] for more discussions on HC tests.

Result for testing equivalence of clustering. Turn to (3). We need to slightly modify the HC
test to accommodate the possibility of label switching in the clustering context. Define

T −
n = sup

t>0

|∑n
i=1 1{|X̃i−Ỹi |2/2>t} − nP(χ2

1 > t)|√
nP(χ2

1 > t)(1 − P(χ2
1 > t))

,

T +
n = sup

t>0

|∑n
i=1 1{|X̃i+Ỹi |2/2>t} − nP(χ2

1 > t)|√
nP(χ2

1 > t)(1 − P(χ2
1 > t))

.

Based on these two statistics, we define

ψ = 1{T −
n ∧T +

n >
√

2(1+δ) log logn},(15)

where δ > 0 is an arbitrary fixed constant. Taking the minimum of T +
n and T −

n makes the test
invariant to label switching since if �(z, σ ) = 1

n

∑n
i=1 1{zi �=−σi} then the previous discussion

applied to {(X̃i + Ỹi)/
√

2, i ∈ [n]} rather than {(X̃i − Ỹi)/
√

2, i ∈ [n]}.

PROPOSITION 2.1. For testing (3) with the assumption that ‖θ‖ = ‖η‖ and the calibra-
tion in (13), the test (15) satisfies limn→∞ Rn(ψ, θ, η, ε) = 0 as long as β < β∗

IDJ(r).

Proposition 2.1 shows that the test (15) consistently distinguishes two clustering structures
under the same condition that implies consistency in the sparse mixture detection problem
(11)–(12). This being said, it is not clear at this point whether β∗

IDJ(r) is the detection bound-
ary for (3) under the equal SNR assumption and the calibration (13), which if were true,
would require that no consistent test exists when β > β∗

IDJ(r).

REMARK 2.1. Another straightforward way to testing (3) is to first estimate z and σ

and then reject H0 if the two estimators are not sufficiently close. Let ẑ and σ̂ be minimax
rate optimal estimators of z and σ that satisfy the error bounds (1). A natural test is then
ψestimation = 1{�(̂z,σ̂ )>ε/2}. It can be shown that limn→∞ Rn(ψestimation, θ, η) = 0 when β <

r/2 under the calibration (13). Compared with the condition β < β∗
IDJ(r) required by the test

(15), ψestimation needs a stronger SNR to achieve consistency and is hence inferior.

2.2. The lost information. The natural follow-up question is whether the condition
β < β∗

IDJ(r) in Proposition 2.1 is necessary for consistently testing (3) with the equal SNR
assumption and the calibration (13). In order to address this lower bound question, let us
continue to suppose 1

n

∑n
i=1 1{zi �=σi} ≤ 1

2 so that we ignore label switching temporarily. A key
observation is that by reducing the data from (X̃i, Ỹi) to (X̃i − Ỹi)/

√
2, we have thrown away

all the information in (X̃i + Ỹi)/
√

2. To see its consequence, we now study the sequence
{(X̃i + Ỹi)/

√
2}1≤i≤n.

We note that whether zi = σi not only changes the distribution of (X̃i − Ỹi)/
√

2, but also
the distribution of (X̃i + Ỹi)/

√
2. In fact, we have

1√
2
(X̃i + Ỹi) ∼

{
N

(±√
2‖θ‖,1

)
, zi = σi,

N(0,1), zi �= σi.
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Since there is at least an ε fraction of clustering labels that do not match, a natural corre-
sponding sparse mixture detection problem is the following:

H0 : Vi
iid∼ 1

2
N

(−√
2‖θ‖,1

) + 1

2
N

(√
2‖θ‖,1

)
,(16)

H1 : Vi
iid∼ 1 − ε

2
N

(−√
2‖θ‖,1

) + 1 − ε

2
N

(√
2‖θ‖,1

) + εN(0,1).(17)

Compared with (11)–(12), the roles of N(0,1) and 1
2N(−√

2‖θ‖,1) + 1
2N(

√
2‖θ‖,1) have

been switched in (16)–(17). To our limited knowledge, the testing problem (16)–(17) has not
been studied in the literature before. With the same calibration (13), its fundamental limit is
given by the following theorem.

THEOREM 2.1. Consider testing (16)–(17) with calibration (13). Define

β̄∗(r) = 1 ∧ r + 1

2
.(18)

When β < β̄∗(r), the likelihood ratio test is consistent. When β > β̄∗(r), no test is consistent.

Theorem 2.1 shows that the optimal threshold (in terms of the calibration (13)) for the
testing problem (16)–(17) is β̄∗(r). It is easy to check that

β̄∗(r) ≤ β∗
IDJ(r) for all r > 0.

This indicates that the sequence {(X̃i + Ỹi)/
√

2}1≤i≤n does contain information, but not as
much as that in {(X̃i − Ỹi)/

√
2}1≤i≤n. Similar to (15), we can also design an HC-type test as

motivated by (16)–(17). Define

T̄ +
n = sup

t>0

|∑n
i=1 1{(X̃i+Ỹi )

2/2≤t} − P(χ2
1,2‖θ‖2 ≤ t)|√

nP(χ2
1,2‖θ‖2 ≤ t)(1 − P(χ2

1,2‖θ‖2 ≤ t))
,

T̄ −
n = sup

t>0

|∑n
i=1 1{(X̃i−Ỹi )

2/2≤t} − P(χ2
1,2‖θ‖2 ≤ t)|√

nP(χ2
1,2‖θ‖2 ≤ t)(1 − P(χ2

1,2‖θ‖2 ≤ t))
.

Here and after, χ2
m,a denotes a noncentral chi-square distribution with m degrees of freedom

and noncentrality parameter a. In addition to T̄ +
n , we need T̄ −

n to accommodate the possibility
of 1

n

∑n
i=1 1{zi �=σi} > 1

2 . The overall test for our original problem is then

ψ̄ = 1{T̄ −
n ∧T̄ +

n >
√

2(1+δ) log logn},(19)

where δ > 0 is an arbitrary fixed constant.

THEOREM 2.2. For testing (3) with the assumption that ‖θ‖ = ‖η‖ and the calibration
in (13), the test (19) satisfies limn→∞ Rn(ψ̄, θ, η, ε) = 0 as long as β < β̄∗(r).

2.3. Combining the two views. Proposition 2.1 and Theorem 2.2 show that the original
testing problem (3) can be tested based on both pairwise differences and pairwise sums. Due
to their mutual independence, the two views are complementary. Both are nontrivial and lead
to tests for the original problem (3) that achieve consistency under appropriate conditions.
We now show that to achieve information-theoretic limit in the original testing problem (3)
with all data under equal SNR assumption with the calibration (13), we need to combine the
two views. In what follows, we first explain how to combine two views in sparse mixture
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detection. This is followed by our main result for testing equivalence of clustering as in
(3) with equal SNR assumption. Interestingly, Cai et al. [7] discovered a similar phenomenon
that one achieves additional power by using a complementary sequence in a different context,
namely two sample multiple testing.

Sparse mixture detection. We now study the combination of the two views (11)–(12) and
(16)–(17), which can be formulated as testing for i ∈ [n]:

H0 : (Ui,Vi)
iid∼ 1

2
N(0,1) ⊗ N

(−√
2‖θ‖,1

)
(20)

+ 1

2
N(0,1) ⊗ N

(√
2‖θ‖,1

)
vs.

H1 : (Ui,Vi)
iid∼ 1 − ε

2
N(0,1) ⊗ N

(−√
2‖θ‖,1

)
+ 1 − ε

2
N(0,1) ⊗ N

(√
2‖θ‖,1

)
(21)

+ ε

2
N

(−√
2‖θ‖,1

) ⊗ N(0,1) + ε

2
N

(√
2‖θ‖,1

) ⊗ N(0,1).

The critical values in (14) and (18) can now be viewed as detection boundaries for testing
(20)–(21) when only {Ui}1≤i∈n and only {Vi}1≤i∈n are used, respectively. The two compo-
nents Ui and Vi behave very differently under null and alternative. The value of |Ui | tends
to be smaller under H0 and larger under H1, while the value of |Vi | behaves in the opposite
way. This motivates us to combine the two pieces of information by working with |Ui |− |Vi |,
which tends to be smaller under H0 and larger under H1. Since there is on average an ε frac-
tion of nonnulls under H1, we may reject H0 if

∑n
i=1 1{|Ui |−|Vi |>t} is too large for some t . This

intuition motivates us to consider the following HC-type test. Define the survival function

S‖θ‖(t) = P(U2,V 2)∼χ2
1 ⊗χ2

1,2‖θ‖2

(|U | − |V | > t
)
.

We reject H0 when

sup
t∈R

|∑n
i=1 1{|Ui |−|Vi |>t} − nS‖θ‖(t)|√

nS‖θ‖(t)(1 − S‖θ‖(t))
>

√
2(1 + δ) log logn,(22)

where δ > 0 is an arbitrary fixed constant. The test statistic depends on Ui and Vi only through
|Ui | and |Vi |, the null and alternative distributions of which remain unchanged if we replace
the mixing proportions {1

2 , 1
2} in (20)–(21) to {α,1 − α} for any α ∈ [0,1]. This observation

is key to the fact that the test in (22) continues to work for any cluster fraction and for
deterministic cluster labels.

THEOREM 2.3. Consider testing (20)–(21) with calibration (13). Define β∗(r) as in (9).
When β < β∗(r), the likelihood ratio test and the HC-type test (22) are consistent. When
β > β∗(r), no test is consistent.

We plot the three detection boundaries β̄∗(r) (red), β∗
IDJ(r) (orange) and β∗(r) (blue) in

Figure 1. Since β̄∗(r) ≤ β∗
IDJ(r) ≤ β∗(r) for all r > 0, in view of the discussion following

(20)–(21) we can conclude that pooling information in {Ui}1≤i∈n and {Vi}1≤i∈n leads to a
more powerful test than using either single sequence.
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FIG. 1. Comparison of three detection boundaries.

Testing equivalence of clustering. We are now in a position to show that β∗(r) in (9) is
also the detection boundary for testing (3) with all data under the equal SNR assumption and
the calibration (13). Motivated by (22) and taking into account possible label switching, we
define

Ť −
n = sup

t∈R

|∑n
i=1 1{|X̃i−Ỹi |−|X̃i+Ỹi |>

√
2t} − nS‖θ‖(t)|√

nS‖θ‖(t)(1 − S‖θ‖(t))
,

Ť +
n = sup

t∈R

|∑n
i=1 1{|X̃i+Ỹi |−|X̃i−Ỹi |>

√
2t} − nS‖θ‖(t)|√

nS‖θ‖(t)(1 − S‖θ‖(t))
,

and

ψ̌ = 1{Ť −
n ∧Ť +

n >
√

2(1+δ) log logn},(23)

where δ > 0 is an arbitrary fixed constant.

THEOREM 2.4. For testing (3) with the assumption that ‖θ‖ = ‖η‖ and the calibration
in (13), the test (23) satisfies limn→∞ Rn(ψ̌, θ, η, ε) = 0 as long as β < β∗(r). Moreover, we
have lim infn→∞ Rn(θ, η, ε) > 0, that is no test is consistent, when β > β∗(r).

We conclude this section with several remarks on Theorem 2.4. First, the theorem sug-
gests that the two-dimensional sparse mixture testing problem (20)–(21) contains the math-
ematical essence of the original testing equivalence of clustering problem (3). In particu-
lar, they share the same detection boundary. In addition, it shows that using either the pair-
wise difference or the pairwise sum sequence only results in a suboptimal solution (see Fig-
ure 1). It is worth noting that even the Bayesian version of the testing problem (3), namely
(20)–(21), is different from the sparse mixture detection problem (11)–(12) that has been
well studied in the literature. Furthermore, it suffices to work with the projected data sets
{(θT Xi/‖θ‖, ηT Yi/‖η‖)}1≤i≤n when constructing tests, as they are sufficient statistics for
(z, σ ) with any given values of θ and η.

3. The general phase diagram. In this section, we study the general case of testing (3)
where ‖θ‖ and ‖η‖ are not necessarily equal. This is a more complicated problem than the
equal SNR case studied in Section 2. For the general case, we adopt the following calibration:

ε = n−β,
2‖θ‖‖η‖√

‖θ‖2 + ‖η‖2
=

√
2r logn,

|‖θ‖2 − ‖η‖2|√
‖θ‖2 + ‖η‖2

=
√

2s logn.(24)

With this calibration, we are interested in all (r, s) pairs in (0,∞) × [0,∞). Although there
are other ways to parametrize ‖θ‖ and ‖η‖, we find (24) convenient and interpretable. In
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(24), r characterizes average signal strength and s quantifies the level of difference in SNRs
of the two samples. When s = 0, (24) reduces to (13). With this natural reduction, all results
in Section 2 can be obtained by setting s = 0 in results for the general case which we shall
derive in this section. Furthermore, the following identities can be derived from (24):

‖θ‖2 + ‖η‖2 = 2(r + s) logn,(25)

‖θ‖2 ∨ ‖η‖2 = (r + s + √
s
√

r + s) logn,(26)

‖θ‖2 ∧ ‖η‖2 = (r + s − √
s
√

r + s) logn.(27)

3.1. A related sparse mixture detection problem. With X̃i ∼ N(zi‖θ‖,1) and Ỹi ∼
N(σi‖η‖,1) as defined in (10), it is natural to consider

‖η‖X̃i − ‖θ‖Ỹi√
‖θ‖2 + ‖η‖2

∼ N

(‖θ‖‖η‖(zi − σi)√
‖θ‖2 + ‖η‖2

,1
)
, i ∈ [n].(28)

Moreover, to avoid information loss, we also consider the following complementary se-
quence:

‖θ‖X̃i + ‖η‖Ỹi√
‖θ‖2 + ‖η‖2

∼ N

(‖θ‖2zi + ‖η‖2σi√
‖θ‖2 + ‖η‖2

,1
)
, i ∈ [n].(29)

The sequences (28) and (29) are mutually independent since they are Gaussian and un-
correlated. Since (X̃i, Ỹi) is sufficient for (zi, σi) and has one-to-one correspondence with

(
‖η‖X̃i−‖θ‖Ỹi√

‖θ‖2+‖η‖2
,

‖θ‖X̃i+‖η‖Ỹi√
‖θ‖2+‖η‖2

), there is no information loss.

Without loss of generality,3 let us further assume ‖θ‖ ≥ ‖η‖. We note that when zi =
σi , the two sequences have means 0 and ±

√
‖θ‖2 + ‖η‖2, respectively. When zi �= σi , they

have means ± 2‖θ‖‖η‖√
‖θ‖2+‖η‖2

and ± |‖θ‖2−‖η‖2|√
‖θ‖2+‖η‖2

, respectively. Therefore, a natural corresponding

sparse mixture detection problem is for i ∈ [n],

H0 : (Ui,Vi)
iid∼ 1

2
N(0,1) ⊗ N

(−√
2(r + s) logn,1

)
(30)

+ 1

2
N(0,1) ⊗ N

(√
2(r + s) logn,1

)
,

H1 : (Ui,Vi)
iid∼ 1 − ε

2
N(0,1) ⊗ N

(−√
2(r + s) logn,1

)
+ 1 − ε

2
N(0,1) ⊗ N

(√
2(r + s) logn,1

)
(31)

+ ε

2
N(

√
2r logn,1) ⊗ N(

√
2s logn,1)

+ ε

2
N(−

√
2r logn,1) ⊗ N(−

√
2s logn,1).

When s = 0, the testing problem (30)–(31) reduces to (20)–(21).
Similar to Section 2, as a first step, we derive the detection boundaries of tests that use

only {Ui}1≤i≤n or only {Vi}1≤i≤n.

3We only use ‖θ‖ ≥ ‖η‖ to motivate the testing problem (30)–(31). All the theorems in the paper hold with
general θ and η that admit the calibration (24).
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THEOREM 3.1. Consider testing (30)–(31) with ε = n−β . Define

β̄∗(r, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
+ r − 2

√
s(

√
r + s − √

s), 3s > r and (
√

r + s − √
s)2 ≤ 1

4
,

1 + r − s

2
, 3s ≤ r and r + s ≤ 1,

r − 2(
√

r + s − √
s)(

√
r + s − 1), r + s > 1 and

1

4
< (

√
r + s − √

s)2 ≤ 1,

1, (
√

r + s − √
s)2 > 1.

For any fixed constant δ > 0, we have the following two conclusions:

1. When β < β∗
IDJ(r), the test that rejects when

sup
t>0

|∑n
i=1 1{|Ui |2>t} − nP(χ2

1 > t)|√
nP(χ2

1 > t)(1 − P(χ2
1 > t))

>
√

2(1 + δ) log logn

is consistent. When β > β∗
IDJ(r), no test that only uses {Ui}1≤i≤n is consistent.

2. When β < β̄∗(r, s), the test that rejects when

sup
t>0

|∑n
i=1 1{|Vi |2≤t} − nP(χ2

1,2(r+s) logn ≤ t)|√
nP(χ2

1,2(r+s) logn ≤ t)(1 − P(χ2
1,2(r+s) logn ≤ t))

>
√

2(1 + δ) log logn

is consistent. When β > β̄∗(r, s), no test that only uses {Vi}1≤i≤n is consistent.

The first conclusion of Theorem 3.1 is obvious, since the marginal distributions of
{Ui}1≤i≤n under (30) and (31) are exactly the same as those under (11) and (12), respectively.
In contrast, the second conclusion shows an intricate behavior of the two-dimensional thresh-
old function β̄∗(r, s). We note that β̄∗(r, s) can be viewed as an extension of β̄∗(r) defined in
(18) in the sense that setting s = 0 in β̄∗(r, s) gives (18). The definition of β̄∗(r, s) involves
four disjoint regions in the (r, s) domain (0,∞) × [0,∞). When s = 0, the second and the
third cases become degenerate. Moreover, we also have the relation β̄∗(r, s) ≤ β̄∗(r) for all
r, s > 0, which suggests that the testing problem becomes harder as the gap between ‖θ‖ and
‖η‖ gets larger. Last but not least, at each fixed r > 0, as s → ∞ we have β̄∗(r, s) → 1

2 .

3.2. Which event should we count? Now let us try to solve the testing problem (30)–(31)
by considering both {Ui}1≤i≤n and {Vi}1≤i≤n. In order to derive the optimal detection bound-
ary for (30)–(31) and also for the original problem (3), we need to first find the optimal test
statistic. By Theorem 3.1, the detection boundary of either single sequence can be achieved
by an appropriate HC-type test. For {Ui}1≤i≤n, the test counts the number of large |Ui |’s by∑n

i=1 1{|Ui |2>t}, and for {Vi}1≤i≤n the corresponding test counts the number of small |Vi |’s by∑n
i=1 1{|Vi |2≤t}. These tests suggest that for testing (30)–(31) we should count the event that

either |Ui | is large or |Vi | is small. When the SNRs are equal, we have used
∑n

i=1 1{|Ui |−|Vi |>t}
in Section 2.3 for this purpose. However, such an event may no longer be appropriate when
‖θ‖ �= ‖η‖.

In order to find out the appropriate event to count, we present the following heuristic
argument from a more general perspective. Let us consider the following abstract sparse
mixture testing problem:

H0 : W1, . . . ,Wn
iid∼ P vs.(32)

H1 : W1, . . . ,Wn
iid∼ (1 − ε)P + εQ,(33)
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where ε = n−β for some constant β ∈ (0,1). Then the general HC-type test statistic can be
written as

sup
A∈A

|∑n
i=1 1{Wi∈A} − nP (A)|√
nP (A)(1 − P(A))

,(34)

where A is some collection of events. As we shall show, the reason to take the supremum
over the collection A is mostly for the sake of adaptation. When one has knowledge of P and
Q, let us consider first the statistic

Tn(A) =
∑n

i=1 1{Wi∈A} − nP (A)√
nP (A)(1 − P(A))

.

With the calibration ε = n−β , by our detailed calculation in Supplementary Material (Section
A.5), a sufficient condition for a test of the form 1{|Tn(A)|>cn} to be consistent with some
slowly diverging sequence cn is that

β <
1

2
+ logQ(A)

logn
+ 1

2
min

(
1,

log 1
P(A)

logn

)
.(35)

To maximize the detection region, we shall consider some event A that makes the right-hand
side of (35) as large as possible. Since the right-hand side of (35) is increasing in Q(A) and
decreasing in P(A), the maximum is achieved by A = {dQ

dP
(W) > t} for some appropriate

choice of t according to the Neyman–Pearson lemma. This fact naturally motivates the choice
of

A =
{{

dQ

dP
(W) > t

}
: t > 0

}
in (34), which results in the following HC-type statistic

sup
t>0

|∑n
i=1 1{(dQ/dP )(Wi)>t} − nP ((dQ/dP )(W) > t)|√
nP ((dQ/dP )(W) > t)P ((dQ/dP )(W) ≤ t)

.(36)

3.3. Likelihood ratio approximation. The heuristic argument in Section 3.2 suggests that
we use the statistic

∑n
i=1 1{(dQ/dP )(Wi)>t}. We specify P and Q to the setting of (30)–(31) to

obtain that

dQ

dP
(Wi) = q(Ui,Vi)

p(Ui,Vi)
,

where

p(u, v) = 1

2
φ(u)φ

(
v −

√
2(r + s) logn

)
(37)

+ 1

2
φ(u)φ

(
v +

√
2(r + s) logn

)
,

q(u, v) = 1

2
φ(u −

√
2r logn)φ(v −

√
2s logn)

(38)

+ 1

2
φ(u +

√
2r logn)φ(v +

√
2s logn).

Here, φ(·) is the probability density function of N(0,1). Note that p and q scale with n

though the dependence is not explicit in the notation. The following key lemma simplifies the
calculation of the likelihood ratio statistic.
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LEMMA 3.1. For p(u, v) and q(u, v) defined above, we have

sup
r≥0,s>0

sup
u,v∈R

∣∣∣∣log
q(u, v)

p(u, v)
−

√
2 logn

(|√ru + √
sv| − √

r + s|v|)∣∣∣∣ ≤ log 2.

By Lemma 3.1,
√

2 logn(|√ru + √
sv| − √

r + s|v|) is the leading term of log q(u,v)
p(u,v)

as
n → ∞. Therefore, from an asymptotic viewpoint, we could simply focus on the sequence{|√rUi + √

sVi | −
√

r + s|Vi |}1≤i≤n,

which combines the information in {Ui}1≤i≤n and {Vi}1≤i≤n. When s = 0, it reduces to
{√r(|Ui |−|Vi |)}1≤i≤n, which further justifies the optimality of the test (22) when ‖θ‖ = ‖η‖.
As s → ∞, we have

√
r + s − √

s = r√
r+s+√

s
→ 0, and it can shown that the sequence

becomes {√rUi sign(Vi)}1≤i≤n. For any real number a, sign(a) = a/|a| when a �= 0 and
sign(0) = 0. In other word, for extremely large values of s only the sign information of the
sequence with weaker SNR matters.

3.4. The three-dimensional phase diagram. We now move on to determine detection
boundaries for (30)–(31) and for (3) in general.

Sparse mixture detection. Consider the sparse mixture detection problem (30)–(31) first.
Inspired by Lemma 3.1, we consider the following HC-type test that rejects (30) when

sup
t∈R

|∑n
i=1 1{|√rUi+√

sVi |−√
r+s|Vi |>t} − nS(r,s)(t)|√

nS(r,s)(t)(1 − S(r,s)(t))
>

√
2(1 + δ) log logn,(39)

where δ > 0 is some arbitrary fixed constant. Here, S(r,s)(t) is the survival function of
|√rUi + √

sVi | − √
r + s|Vi | under the null distribution, defined by

S(r,s)(t) = PH0

(|√rU + √
sV | − √

r + s|V | > t
)
,(40)

where H0 is defined in (30). By Lemma 3.1 and our heuristic argument in Section 3.2, the
test statistic in (39) is asymptotically equivalent to (36). Indeed, the test with rejection re-
gion (39) achieves the optimal detection boundary of the testing problem (30)–(31), which is
summarized as the following theorem.

THEOREM 3.2. Consider testing (30)–(31) with ε = n−β . Define

β∗(r, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
+ 2(r + s − √

s
√

r + s), 3s > r and r + s − √
s
√

r + s ≤ 1

8
,

1

2
(1 + 3r − s), 3s ≤ r and 5r + s ≤ 1,

2
√

r
√

1 − r − s, 5r + s > 1,
1

8
< r + s − √

s
√

r + s ≤ 1

2
,

and 2(1 − r − s)(r + s − √
s
√

r + s) > r,[
2
√

2(r + s − √
s
√

r + s) 5r + s > 1,
1

8
< r + s − √

s
√

r + s ≤ 1

2
,

−2(r + s − √
s
√

r + s)

]
, and 2(1 − r − s)(r + s − √

s
√

r + s) ≤ r,

1, r + s − √
s
√

r + s >
1

2
.

When β < β∗(r, s), the test with rejection region (39) is consistent. When β > β∗(r, s), no
test is consistent.
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FIG. 2. 3D plot of the detection boundary β∗(r, s) in Theorems 3.2 and 3.3.

Testing equivalence of clustering. Turn to the original testing problem (3). Note that the two
sequences (28) and (29) play the same roles as {Ui}1≤i≤n and {Vi}1≤i≤n do in sparse mixture
detection. In view of the parameterization in (24)–(27), we define

C−(Xi, Yi, θ, η) = ∣∣θT Xi − ηT Yi

∣∣ − ∣∣θT Xi + ηT Yi

∣∣,(41)

C+(Xi, Yi, θ, η) = ∣∣θT Xi + ηT Yi

∣∣ − ∣∣θT Xi − ηT Yi

∣∣.(42)

For testing (3), we need both {C−(Xi, Yi, θ, η)}1≤i≤n and {C+(Xi, Yi, θ, η)}1≤i≤n to accom-
modate the possibility of label switching. Then the HC-type statistics for testing (3) can be
defined as

Ṫ −
n = sup

t∈R
|∑n

i=1 1{C−(Xi,Yi ,θ,η)>t
√

2 logn} − nS(r,s)(t)|√
nS(r,s)(t)(1 − S(r,s)(t))

,(43)

Ṫ +
n = sup

t∈R
|∑n

i=1 1{C+(Xi,Yi ,θ,η)>t
√

2 logn} − nS(r,s)(t)|√
nS(r,s)(t)(1 − S(r,s)(t))

.(44)

They lead to the test

ψ̇ = 1{Ṫ −
n ∧Ṫ +

n >
√

2(1+δ) log logn},(45)

for some arbitrary fixed constant δ > 0.

THEOREM 3.3. For testing (3) with calibration (24), the test (45) satisfies
limn→∞ Rn(ψ̇, θ, η, ε) = 0 as long as β < β∗(r, s). Moreover, when β > β∗(r, s), no test
is consistent.

With Theorem 3.3, we fully characterize the detection boundary of the testing problem
(3) by the function β∗(r, s). To help understanding the behavior of β∗(r, s), Figure 2 demon-
strates its 3D plot from various angles. In addition, we plot the five regions that divide the
domain of β∗(r, s), that is, (0,∞) × [0,∞), on the left panel of Figure 3. Furthermore, we
fix s and study the behavior of the function β∗

s (r) = β∗(r, s) as a function of r at some fixed
s value. We start with s = 0. In this case, the problem reduces to the equal SNR situation, and
we are able to recover β∗

s (r) = β∗(r), where β∗(r) is defined in (9). For any fixed s ∈ (0, 1
16),
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FIG. 3. The five regions of the (r, s)-plane with the contour of β∗(r, s) (left panel). The detection boundaries
β∗

s (r) = β∗(r, s) with s fixed (right panel). The curve moves to the right as the fixed value of s increases. The five
colors of the two plots correspond to the five regions of β∗(r, s) in the order of green, blue, cyan, magenta and
yellow.

the definition of β∗
s (r) involves all the five areas in the left panel of Figure 3, and we have

β∗
s (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
+ 2(r + s − √

s
√

r + s),

0 < r < 3s,
1

2
(1 + 3r − s),

3s ≤ r <
1 − s

5
,

2
√

r
√

1 − r − s,
1 − s

5
≤ r < root(s),

2
√

2(r + s − √
s
√

r + s) − 2(r + s − √
s
√

r + s),

root(s) ≤ r <

(√
1

2
+ s

4
+

√
s

4

)2
− s,

1, r >

(√
1

2
+ s

4
+

√
s

4

)2
− s.

Here, r = root(s) is a root of the equation 2(1 − r − s)(r + s − √
s
√

r + s) = r . We note that
when s ∈ (0, 1

16), the equation has a unique real root between 3
16 and 1

2 . Next, we consider
any fixed s ≥ 1

16 . In this case, two regions become degenerate, and we have

β∗
s (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
+ 2(r + s − √

s
√

r + s),

0 < r <

(√
1

8
+ s

4
+

√
s

4

)2
− s,[

2
√

2(r + s − √
s
√

r + s) − 2(r + s − √
s
√

r + s)

]
,(√

1

8
+ s

4
+

√
s

4

)2
− s ≤ r <

(√
1

2
+ s

4
+

√
s

4

)2
− s,

1, r ≥
(√

1

2
+ s

4
+

√
s

4

)2
− s.
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Last but not least, we would like to point out that when s = ∞, we obtain the Ingster–
Donoho–Jin threshold β∗

s (r) = β∗
IDJ(r). This agrees with the intuition that the sequence

{Vi}1≤i≤n is asymptotically noninformative for the testing problem (30)–(31) as s → ∞.
The functions {β∗

s (r)} with various fixed values of s are shown on the right panel of Figure 3,
and all the curves are sandwiched between β∗(r) and β∗

IDJ(r) (also see Figure 1). It is clear
that for a fixed s, a larger r makes the testing problem easier. On the other hand, increasing s

always makes the problem harder in the sense that β∗
s1

(r) ≥ β∗
s2

(r) for all r > 0 when s1 < s2.

4. Testing for exact equality. The most stringent version of the testing problem (3) is
whether or not the two clustering structures are exactly equal. This can be formulated as the
following hypothesis testing problem:

H0 : �(z, σ ) = 0 versus H1 : �(z, σ ) > 0.(46)

Since the distance function �(z, σ ) only takes value in the set {0, n−1,2n−1, . . .}, the alterna-
tive hypothesis of (46) is equivalent to �(z, σ ) ≥ n−1. Therefore, the testing problem (46) is
a special case of (3) with β = 1. However, Theorem 3.3 only covers β < 1. Since the lower
bound proof of Theorem 3.3 is based on the connection between (3) and (30)–(31), which
requires nε → ∞, the case of β = 1 is thus excluded.

In this section, we rigorously study testing problem (46). Given a testing procedure ψ , we
define its worst-case testing error by

Rexact
n (ψ, θ, η) = sup

(z,σ )∈F0
n

P
(n)
(θ,η,z,σ )ψ + sup

(z,σ )∈F1
n(n−1)

P
(n)
(θ,η,z,σ )(1 − ψ).

The minimax testing error is then defined by Rexact
n (θ, η) = infψ Rexact

n (ψ, θ, η). Our first
result gives a necessary and sufficient condition for the existence of a consistent test.

THEOREM 4.1. Consider testing (46) with calibration (24). When r + s − √
s
√

r + s <
1
2 , we have lim infn→∞ Rexact

n (θ, η) > 0. When r + s − √
s
√

r + s > 1
2 , the HC-type test ψ̇

defined in (45) satisfies limn→∞ Rexact
n (ψ̇, θ, η) = 0.

Theorem 4.1 shows that whether r + s − √
s
√

r + s is above or below 1
2 determines the

existence of a consistent test for (46). This is compatible with the last regime of the threshold
function β∗(r, s). See the yellow area in the left panel of Figure 3. Given the relation (27),
it is required that both ‖θ‖2 and ‖η‖2 are greater than 1

2 logn for separating the null and the
alternative hypotheses. Moreover, the same optimal HC-type test in Theorem 3.3 continues
to work for testing exact equality. On a related note, HC tests also work for the boundary case
of β = 1 in the classical settings (11)–(12) and that in [11].

In addition to the HC-type test, we introduce a Bonferroni-type test that is also optimal for
(46). To this end, define

t∗(r, s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
r(1 − r − s),

2(r + s)(r + s + √
s
√

r + s) ≤ r,√
2(r + s − √

s
√

r + s) − (r + s − √
s
√

r + s),

2(r + s)(r + s + √
s
√

r + s) > r.

The following lemma shows that it characterizes the largest element of the sequence
{|√rUi + √

sVi | − √
r + s|Vi |}1≤i≤n under the null distribution.

LEMMA 4.1. Suppose {(Ui,Vi)}1≤i≤n are generated according to (30). Then we have

max1≤i≤n(|√rUi + √
sVi | − √

r + s|Vi |)√
2 logn

→ t∗(r, s) in probability.
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Lemma 4.1 shows that the largest element of the sequence {|√rUi + √
sVi | −√

r + s|Vi |}1≤i≤n is asymptotically t∗(r, s)
√

2 logn under H0. It is therefore natural to re-
ject H0 when the random variable max1≤i≤n(|√rUi + √

sVi | − √
r + s|Vi |) is larger than

t∗(r, s)
√

2 logn. In view of the connection between sparse mixture detection and testing
clustering equivalence, applying the result to the sequences {C−(Xi, Yi, θ, η)}1≤i≤n and
{C+(Xi, Yi, θ, η)}1≤i≤n in (41)–(42), we obtain the following testing procedure:

ψBonferroni = 1{(max1≤i≤n C−(Xi,Yi ,θ,η))∧(max1≤i≤n C+(Xi,Yi ,θ,η))>2t∗(r,s) logn}.(47)

THEOREM 4.2. Consider testing (46) with calibration (24). When r + s − √
s
√

r + s >
1
2 , we have limn→∞ Rexact

n (ψBonferroni, θ, η) = 0.

5. Adaptive tests. In this section, we investigate how to test (3) and (46) when the model
parameters θ ∈R

p and η ∈ R
q are unknown. We will show that both the HC-type test and the

Bonferroni test can be modified into adaptive procedures, as long as some mild growth rate
conditions on the ambient dimensions p and q are satisfied.

5.1. Adaptive Bonferroni test. We start with testing (46). When designing the adap-

tive procedures, we adopt a random data splitting scheme. We first draw d1, . . . , dn
iid∼

Bernoulli(1
2), and then define D0 = {i ∈ [n] : di = 0} and D1 = {i ∈ [n] : di = 1}. Then

{D0,D1} forms a random partition of [n]. Given some algorithms θ̂ (·) and η̂(·) that com-
pute estimators of θ and η, we define θ̂ (m) = θ̂ ({(Xi, Yi)}i∈Dm) and η̂(m) = η̂({(Xi, Yi)}i∈Dm)

for m = 0 and 1. For m = 0 and 1, by plugging θ̂ (m) and η̂(m) into the relation (24), we obtain
r̂ (m) and ŝ(m).

Given these estimators of θ and η, we can modify (47) into an adaptive procedure. We
replace max1≤i≤n C−(Xi, Yi, θ, η) and max1≤i≤n C+(Xi, Yi, θ, η) by

Ĉ±
m = max

i∈Dm

C±(
Xi,Yi, θ̂

(1−m), η̂(1−m)), m = 0,1.

Then we combine these statistics by

Ĉ− =
{
Ĉ−

0 ∨ Ĉ−
1 , 1{‖θ̂ (0)−θ̂ (1)‖≤1,‖η̂(0)−η̂(1)‖≤1} + 1{‖θ̂ (0)−θ̂ (1)‖>1,‖η̂(0)−η̂(1)‖>1} = 1,

Ĉ−
0 ∨ Ĉ+

1 , 1{‖θ̂ (0)−θ̂ (1)‖>1,‖η̂(0)−η̂(1)‖≤1} + 1{‖θ̂ (0)−θ̂ (1)‖≤1,‖η̂(0)−η̂(1)‖>1} = 1,
(48)

Ĉ+ =
{
Ĉ+

0 ∨ Ĉ+
1 , 1{‖θ̂ (0)−θ̂ (1)‖≤1,‖η̂(0)−η̂(1)‖≤1} + 1{‖θ̂ (0)−θ̂ (1)‖>1,‖η̂(0)−η̂(1)‖>1} = 1,

Ĉ+
0 ∨ Ĉ−

1 , 1{‖θ̂ (0)−θ̂ (1)‖>1,‖η̂(0)−η̂(1)‖≤1} + 1{‖θ̂ (0)−θ̂ (1)‖≤1,‖η̂(0)−η̂(1)‖>1} = 1.
(49)

The adaptive Bonferroni test is defined by

ψada-Bonferroni = 1{Ĉ−∧Ĉ+>2(1+ 1√
logn

)̂t logn},

where

t̂ = t∗(̂r(0), ŝ(0)) + t∗(̂r(1), ŝ(1))

2
.

The additional factor (1+ 1√
logn

) is to accommodate the error caused by estimators of θ and η.
Before writing down a theorem that gives the desired theoretical guarantee for ψada-Bonferroni,
let us define the loss functions

L(θ̂, θ) = ‖θ̂ − θ‖ ∧ ‖θ̂ + θ‖, L(η̂, η) = ‖η̂ − η‖ ∧ ‖η̂ + η‖.
Though θ and η can be of different dimensions, we use the same notation L(·, ·) for the two
loss functions for simplicity.
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THEOREM 5.1. Consider testing (46) with the calibration (24). Assume that there is
some constant γ > 0, such that

lim
n→∞ sup

z∈{−1,1}n
σ∈{−1,1}n

P
(n)
(θ,η,z,σ )

(
L

(
θ̂ (0), θ

) ∨ L
(
θ̂ (1), θ

) ∨ L
(
η̂(0), η

) ∨ L
(
η̂(1), η

)
> n−γ )

(50)
= 0.

When r + s − √
s
√

r + s > 1
2 , we have limn→∞ Rexact

n (ψada-Bonferroni, θ, η) = 0.

The condition (50) may seem abstract at first sight. Later in Section 5.3, we shall give
concrete estimators so that it is met when p and q grow sublinearly with n. For full details,
see Corollary 5.1.

5.2. Adaptive HC-type test. To modify (45) into an adaptive procedure is more in-
volved. This is due to the fact that we not only need to approximate the statistics
{C−(Xi, Yi, θ, η)}1≤i≤n and {C+(Xi, Yi, θ, η)}1≤i≤n, but also need to estimate the survival
function S(r,s)(t) defined in (40). Our proposed strategy starts with a random data split-

ting step. This time we split the data into three parts instead of two. Draw d1, . . . , dn
iid∼

Discrete Uniform({0,1,2}), and then define Dm = {i ∈ [n] : di = m} for m = 0,1,2.
Given some algorithms θ̂ (·) and η̂(·) that compute estimators of θ and η, we first define

θ̂ = θ̂ ({(Xi, Yi)}i∈D0) and η̂ = η̂({(Xi, Yi)}i∈D0). We then use θ̂ and η̂ for as projection direc-
tions and compute X̂i = θ̂ T Xi/‖θ̂‖ and Ŷi = η̂T Yi/‖η̂‖ for all i ∈ D1 ∪D2. Note that condi-
tioning on {di}1≤i≤n and {(Xi, Yi)}i∈D0 , X̂i and Ŷi are distributed according to N(zia,1) and
N(σib,1), respectively, where a = θ̂ T θ/‖θ̂‖ and b = η̂T η/‖η̂‖. Given the projected data, we
will use those in D1 to estimate the one-dimensional parameters |a| and |b|, and those in D2
to construct the test statistic. Define

â =
(

1

|D1|
∑
i∈D1

X2
i − 1

)1/2

+
and b̂ =

(
1

|D1|
∑
i∈D1

Y 2
i − 1

)1/2

+
.

With â and b̂, we define

r̂ = (2|̂a||b̂|)2

(2 logn)(â2 + b̂2)
and ŝ = |̂a2 − b̂2|2

(2 logn)(â2 + b̂2)
.

Then the adaptive HC-type statistics are

T̂ ±
n = sup

|t |≤logn

|∑i∈D2
1{C±(X̂i ,Ŷi ,̂a,b̂)>t

√
2 logn} − |D2|S(̂r,̂s)(t)|√|D2|S(̂r,̂s)(t)

.

This leads to the adaptive test

ψ̂ada-HC = 1{T̂ −
n ∧T̂ +

n >(logn)3}.

Compared with (43) and (44), the adaptive versions T̂ −
n and T̂ +

n restrict the supremum to the
range |t | ≤ logn and does not have an estimator of 1 − S(r,s)(t) in the denominator. More-
over, the test uses the threshold (logn)3 instead of the smaller

√
2(1 + δ) log logn. These

changes are adopted to accommodate the additional errors caused by estimating the unknown
parameters and to avoid extra technicalities.

THEOREM 5.2. Consider testing (3) with calibration (24). Assume that there is some
constant γ > 0, such that

lim
n→∞ sup

z∈{−1,1}n
σ∈{−1,1}n

P
(n)
(θ,η,z,σ )

(
L(θ̂, θ) ∨ L(η̂, η) > n−γ ) = 0.(51)

When β < β∗(r, s), we have limn→∞ Rn(ψada-HC, θ, η) = 0.
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For estimators such that condition (51) can be fulfilled, see Section 5.3.
Randomly splitting the data into three parts is needed for technical details in the

proofs. In order for our proof to go through, we need to approximate the statistics
{C−(Xi, Yi, θ, η)}1≤i≤n and {C+(Xi, Yi, θ, η)}1≤i≤n and the survival function S(r,s)(t) at
different levels of accuracy. In particular, we require that the estimation error of S(r,s)(t)

to be at most (logn)O(1)√
n

, independent of the dimensions p and q . Therefore, in addition to
the two-part data splitting strategy used in building the adaptive Bonferroni test, we need to
devote a separate part to estimate projection directions of two one-dimensional subspaces.

REMARK 5.1. One may wonder whether the adaptive HC-type test can also achieve the
optimal detection boundary for the problem (46). The answer would be no for the current
definition of ψada-HC, because under H1 in (46) with a nontrivial probability, D2 does not
contain the coordinate that has the signal. However, a modification of ψada-HC can resolve
this issue. The modification requires rotating the roles of the three parts D0, D1 and D2, and
then we can define analogous versions of the HC-type statistics T̂ −

n and T̂ +
n on D0 and D1.

These statistics can be combined in a similar way to (48) and (49). We omit the details.

Computation. We now discuss computation of ψ̂ada-HC. Note that both T̂ −
n and T̂ +

n can be
computed efficiently using the p-value interpretation of the HC statistic in [11]. In the ideal
situation where θ and η are known, the two sets of p-values are {S(r,s)(

C−(Xi,Yi ,θ,η)√
2 logn

)}1≤i≤n

and {S(r,s)(
C+(Xi,Yi ,θ,η)√

2 logn
)}1≤i≤n, which are involved in the computation of the test (45). When

θ and η are unknown, the following proposition suggests a similar computation strategy.

PROPOSITION 5.1. Define p̂−
i = S(̂r,̂s)(

C−(X̂i ,Ŷi ,̂a,b̂)√
2 logn

) and p̂+
i = S(̂r,̂s)(

C+(X̂i ,Ŷi ,̂a,b̂)√
2 logn

) for

i ∈ D2. Then, with probability tending to 1, we have

T̂ −
n = max

1≤i≤|D2|
√|D2|

∣∣∣∣ i

|D2| − p̂−
(i,D2)

∣∣∣∣/√
p̂−

(i,D2)
,(52)

T̂ +
n = max

1≤i≤|D2|
√|D2|

∣∣∣∣ i

|D2| − p̂+
(i,D2)

∣∣∣∣/√
p̂+

(i,D2)
,(53)

where the subscript (i,D2) indicates the ith order statistic within the set D2.

The statistics p̂−
i and p̂+

i can be regarded as estimators of p-values, which is a use-
ful interpretation of ψ̂ada-HC. Since the formulas (52) and (53) hold with high probability,
limn→∞ Rn(ψada-HC, θ, η) = 0 will continue to hold when β < β∗(r, s) if (52) and (53) are
used in the computation of ψ̂ada-HC.

5.3. Parameter estimation. We close this section by presenting a simple estimator for θ

and η. Since we have that Xi ∼ N(ziθ, Ip), the empirical second moment 1
n

∑n
i=1 XiX

T
i is a

consistent estimator of the population counterpart θθT + Ip when p � n. Apply eigenvalue
decomposition and we get 1

n

∑n
i=1 XiX

T
i = ∑p

j=1 λ̂j ûj û
T
j , and then a natural estimator for θ

is θ̂ = (̂λ1−1)1/2û1. This simple estimator enjoys the following property.

PROPOSITION 5.2. Consider independent observations X1, . . . ,Xn ∼ N(ziθ, Ip) with
some zi ∈ {−1,1} for all i ∈ [n]. Assume p ≤ n, and then there exist universal constants
C,C′ > 0, such that L(θ̂, θ) = ‖θ̂ − θ‖ ∧ ‖θ̂ + θ‖ ≤ C

√
p/n, with probability at least 1 −

e−C′p uniformly over all z ∈ {−1,1}n and all θ ∈ R
p that satisfies ‖θ‖ ≥ 1.
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COROLLARY 5.1. Consider the calibration (24). Suppose p ∨ q < n1−δ for some con-
stant δ ∈ (0,1), then there exists some constant γ > 0 depending on δ, such that the condi-
tions (50) and (51) hold.

Combining Theorem 5.1, Theorem 5.2 and Corollary 5.1, we conclude that the optimal
detection boundaries of the testing problems (3) and (46) can be achieved adaptively without
the knowledge of (θ, η), as long as the dimensions do not grow too fast in the sense that
p ∨ q < n1−δ . In a more general setting, one may have Xi ∼ N(ziθ, σ 2Ip) with both θ and
σ 2 unknown. The proposed algorithm still works for estimating θ . To estimate σ 2, one can
use σ̂ 2 = 1

p
Tr( 1

n

∑n
i=1 XiX

T
i − θ̂ θ̂ T ). The theoretical analysis can be generalized to this case,

and we omit the details.
The condition p ∨ q < n1−δ can be weakened if additional sparsity assumptions on θ

and η are imposed. This is related to the sparse clustering setting studied in the literature
[2, 19, 20], and a sparse PCA algorithm [4, 6, 21, 25, 30] can be applied to estimate θ and
η. We would also like to point out a recent work by Roquain and Verzelen [27] that studies
the effect of estimating the null distribution for the Benjamini–Hochberg procedure in the
setting of multiple testing. In our problem of testing the equivalence of clustering, there may
also be very subtle effects of estimating the null distribution without assuming the condition
p ∨ q < n1−δ . Whether the detection boundary stays the same and how it may change are
intriguing problems to be investigated in the future.

6. Some simulation results. This section reports results from a simulation study in the
equal SNR case. We assume knowledge of θ and η and so the ambient dimensions p and q

do not affect our results.
We set n = 105, r = 0.2 and vary β in {0.6,0.7,0.8,0.9}. In the null case, we have both

cluster label vectors equal to (1, . . . ,1,−1, . . . ,−1)T , a 105-dimensional vector with its first
5 × 104 elements equal to 1 and the remaining ones equal to −1. In each alternative case (as
specified by a β value), we set a collection of �n1−β� coordinates from 1 to −1. In both null
and alternative settings, the cluster label vectors are deterministic.

We consider two tests. The first test is essentially (23). The only modification is that we
use an empirical critical value estimated from a simulated null distribution of Ť +

n ∧ Ť −
n rather

than
√

2(1 + δ) log logn. We refer to it as the “two-view test.” The second test is the single-
view test in (15). Here, we also use an empirical critical value estimated from a simulated
null distribution of T +

n ∧ T −
n . We refer to it as the “single-view test.” For either test, the

estimated critical value is set to be the 95th percentile of an empirical null distribution over
400 repetitions (corresponding to α = 0.05).

Table 1 reports the powers (obtained as average over 200 repetitions in each alternative
case) of these two tests for the four different β values. By Proposition 2.1 and Theorem 2.4,
phase transitions for the two-view test and the single-view test occur at β = 0.8 and 0.7,
respectively. Results in Table 1 corroborate these theoretical findings. For either test, when

TABLE 1
Comparison of powers and phase transitions: two-view test versus single-view test. Equal SNR setting with

r = 0.2 and n = 105. Each reported power is the average over 200 repetitions. Critical values are obtained svia
400 repetitions in the null case with α = 0.05

β 0.6 0.7 0.8 0.9

Two-view test 0.845 0.245 0.085 0.055
Single-view test 0.345 0.090 0.060 0.050
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β is no larger than the phase transition point, the test has nontrivial power that is larger than
0.05. When β is larger than the point, power becomes trivial. Across all β values, the two-
view test consistently outperforms the single-view test.

Funding The first author was supported in part by NSF CAREER award DMS-1847590
and NSF grant CCF-1934931. The second author was supported in part by NSF CAREER
award DMS-1352060.

SUPPLEMENTARY MATERIAL

Supplement to “Testing equivalence of clustering” (DOI: 10.1214/21-AOS2113SUPP;
.pdf). The supplement contains proofs of all results in the main text.
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