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Exact Minimax Estimation for
Phase Synchronization

Chao Gao and Anderson Y. Zhang

Abstract— We study the phase synchronization problem with
measurements Y = z∗z∗H + σW ∈ C

n×n, where z∗ is an
n-dimensional complex unit-modulus vector and W is a complex-
valued Gaussian random matrix. It is assumed that each entry Yjk
is observed with probability p. We prove that the minimax lower
bound of estimating z∗ under the squared �2 loss is (1−o(1))σ2

2p .
We also show that both generalized power method and maximum
likelihood estimator achieve the error bound (1+o(1))σ2

2p . Thus,
σ2

2p is the exact asymptotic minimax error of the problem. Our
upper bound analysis involves a precise characterization of the
statistical property of the power iteration. The lower bound is
derived through an application of van Trees’ inequality.

Index Terms— Angular synchronization, minimax risk, power
method, maximum likelihood estimator.

I. INTRODUCTION

THE phase synchronization problem [1] is to estimate n
unknown angles θ∗1 , · · · , θ∗n from noisy measurements of

(θ∗j − θ∗k) mod 2π. In this paper, we consider the following
additive model [2]–[5]:

Yjk = z∗j z̄∗k + σWjk ∈ C, (1)

for all 1 ≤ j < k ≤ n, where we use the notation x̄ for the
complex conjugate of x. We assume that each z∗j ∈ C1 =
{x ∈ C : |x| = 1} and we can thus write it as z∗j = eiθ∗

j .
The additive noise Wjk in (1) is assumed to be i.i.d. standard
complex Gaussian.1 Without the constraint that z∗ ∈ Cn

1 , (1)
is recognized as a standard matrix spiked model. Our goal in
this paper is to study minimax optimal estimation of the vector
z∗ ∈ Cn

1 under the loss function

�(�z, z∗) = min
a∈C1

n�
j=1

|�zja − z∗j |2. (2)
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1For Wjk ∼ CN (0, 1), we have Re(Wjk) ∼ N �

0, 1
2

�
and Im(Wjk) ∼

N �
0, 1

2

�
independently.

We remark that the minimization over a global phase in the
definition of (2) is necessary. This is because the global phase
is not identifiable from the pairwise observations (1).

Various estimation procedures have been considered and
studied in the literature. For example, the maximum likelihood
estimator (MLE) is defined as a global maximizer of the
following constrained optimization problem

max
z∈Cn

1

zHY z, (3)

where Y is Hermitian with Yjk = Ȳkj for all 1 ≤ k < j ≤ n
and Yjj = 0 for all j ∈ [n]. Note that (3) can be shown
to be equivalent to minz∈Cn

1

�
1≤j<k≤n |Yjk − zj z̄k|2. It was

shown in [6] that the MLE satisfies �(�z, z∗) ≤ Cσ2 with
high probability for some constant C > 0. However, the opti-
mization (3) is nonconvex and computationally infeasible in
general. To address this problem, generalized power method
(GPM) [7]–[9] and semi-definite programming (SDP) have
been considered in the literature to approximate the solution
of (3). The generalized power method is defined through the
iteration,2

z
(t)
j =

�
k∈[n]\{j} Yjkz

(t−1)
k����k∈[n]\{j} Yjkz
(t−1)
k

��� . (4)

In other words, one repeatedly computes the product
Y z(t−1) and projects this vector to Cn

1 through entrywise
normalization. When the iteration (4) is initialized by the
eigenvector method,3 [4] shows that z(t) converges to the
global maximizer of (3) at a linear rate under the noise level
condition σ2 = O

�
n

log n

�
. For its statistical performance,

[10] shows �(z(t), z∗) ≤ Cσ2 with high probability for some
constant C > 0 eventually. The semidefinite programming is a
convex relaxation of (3). It refers to the following optimization
problem,

max
Z=ZH∈Cn×n

Tr(Y Z) subject to diag(Z) = In and Z � 0.

(5)
In general, the solution of (5) is an n× n matrix that does

not directly leads to an estimator of z∗. When σ2 = O(n1/2),
it was proved by [6] that the solution to (5) is a rank-one
matrix �Z = �z�zH, with �z being a global maximizer of (3).
This result was recently proved by [4] to hold under a weaker

2When the denominator of (4) is zero, take z
(t)
j = z

(t−1)
j .

3The eigenvector method estimates z∗j by �uj , where �u ∈ Cn is the leading
eigenvector of Y .
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condition σ2 = O
�

n
log n

�
. Given the fact that SDP solves (3),

we know that it also achieves the same high-probability error
bound �(�z, z∗) ≤ Cσ2 as that of the MLE under the additional

condition σ2 = O
�

n
log n

�
.

Despite these estimation procedures studied in the literature,
it remains an open problem what the optimal error under the
loss (2) is. In this paper, we establish a minimax lower bound
for phase synchronization. We show that

inf
�z∈Cn

1

sup
z∈Cn

1

Ez�(�z, z) ≥ (1 − δ)
σ2

2
, (6)

for some δ = o(1) under the condition that σ2 = o(n).
Here, by inf�z∈Cn

1
, we mean the infimum over all measurable

functions (of the data) whose range is C
n
1 . The notation Ez

is the expectation operator induced by the data generating
process (1) indexed by z. This provides a stronger characteri-
zation of the fundamental limits of the phase synchronization
problem than the Cramér-Rao lower bound developed in
[11], [12], which is only established for unbiased estimators.
Instead, the lower bound in (6) holds for both unbiased and
biased estimators.

Moreover, in this paper, we prove both the MLE and the
GPM achieve the error bound

�(�z, z∗) ≤ (1 + δ)
σ2

2
, (7)

for some δ = o(1) with high probability under the same
condition σ2 = o(n). In other words, these two estimators
are not only rate-optimal, but are also exactly asymptotically
minimax by achieving the correct leading constant in front
of the optimal rate. In addition, since we know by the result
of [4] that the solution of the SDP is a rank-one matrix �z�zH

with �z being the MLE, the SDP also achieves the optimal
error bound (7) as a direct consequence, but under a stronger
condition σ2 = O

�
n

log n

�
.

To formally state our main result, we introduce a more
general statistical estimation setting that allows the possibility
of missing entries [13], [14]. Instead of observing Yjk for
all 1 ≤ j < k ≤ n, we assume each Yjk is observed
with probability p. In other words, consider a random graph
Ajk ∼ Bernoulli(p) independently for all 1 ≤ j < k ≤ n, and
we only observe Yjk that follows (1) when Ajk = 1. Define
Ajk = Akj for 1 ≤ k < j ≤ n and Ajj = 0 for j ∈ [n]. The
full observations can be organized into two Hermitian matrices
A and A ◦ Y , where ◦ denotes the matrix Hadamard product.
The MLE and the GPM can be extended by replacing Yjk

in (3) and (4) with AjkYjk .
Theorem 1: Assume np

σ2 → ∞ and np
log n → ∞. Then, there

exists some δ = o(1) such that

inf
�z∈Cn

1

sup
z∈Cn

1

Ez�(�z, z) ≥ (1 − δ)
σ2

2p
. (8)

Moreover, both MLE and GPM achieve the error bound

�(�z, z∗) ≤ (1 + δ)
σ2

2p
, (9)

with probability at least 1 − n−8 − exp
�
− �np

σ2

	1/4
�

.

Theorem 1 immediately implies (6) and (7) as a special
case of p = 1. We remark that both conditions np

σ2 → ∞
and np

log n → ∞ are essential for the results of the above

theorem to hold. Since the minimax risk of the problem is σ2

2p ,

the condition np
σ2 → ∞, which is equivalent to σ2

2p = o(n),
guarantees that the minimax risk is of smaller order than the
trivial one. The order n is trivial, since �(z, z∗) ≤ 4n for
any z, z∗ ∈ Cn

1 . When p = 1, the necessity of σ2 = o(n)
for a consistent estimation is understood in the literature [4],
[15]–[17]. In fact, the MLE and the GPM are no longer
optimal when σ2 
 n, and optimal phase synchronization
under this regime can be achieved by approximate message
passing [9], [16], [18]. The condition np

log n → ∞ guarantees
that the random graph A is connected with high probability.
It is known that when p ≤ c log n

n for some sufficiently
small constant c > 0, the random graph has several disjoint
components, which makes the recovery of z∗ up to a global
phase impossible.

Since �(�z, z) ≤ 4n and exp
�
− �np

σ2

	1/4
�

= o
�

σ2

np

�
,

the MLE and the GPM also satisfy the in-expectation bound

sup
z∈Cn

1

Ez�(�z, z) ≤ (1 + δ)
σ2

2p
+ 4n−7,

for some δ = o(1). We remark that the high-probability
exponent −8 of Theorem 1 can actually be replaced by −C
for an arbitrarily large constant C > 0. This implies the 4n−7

term in the above display can also be improved to 4n−(C−1)

for any constant C > 0. If we further assume that σ2/p ≥ n−c

for some constant c > 0, we will have

(1 − δ)
σ2

2p
≤ inf

�z∈Cn
1

sup
z∈Cn

1

Ez�(�z, z) ≤ (1 + δ)
σ2

2p
,

for some δ = o(1). Thus, σ2

2p is the exact asymptotic minimax
risk for phase synchronization.

Our analysis of the upper bounds relies on a precise statisti-
cal characterization of the power iteration map f : Cn

1 → Cn
1 .

Let f be the map that characterizes the iteration of the GPM.
That is, z(t) = f(z(t−1)). We show that as long as z ∈ Cn

1

satisfies �(z, z∗) = o(n), the vector f(z) must satisfy

�(f(z), z∗) ≤ δ�(z, z∗) + (1 + δ)
σ2

2p
, (10)

for some δ = o(1) with high probability. To be more precise,
we prove that the inequality (10) holds uniformly overall
z ∈ Cn

1 such that �(z, z∗) ≤ γn for some γ = o(1) with
high probability. The bound (10) immediately leads to the
optimality of the GPM. This direct analysis of the power
iteration is very different from what has been done in the
literature. In the literature, the statistical error bound of the
GPM is derived through its convergence to the MLE [4], [7],
but that requires a stronger condition σ2 = O

�
n

log n

�
at least

when p = 1. In contrast, our analysis of GPM is not based
on its relation to the MLE. On the opposite, we analyze the
MLE based on its relation to the GPM. The optimality of
the MLE can also be derived from (10). This is by showing
that MLE is a fixed point of the map f . That is, �z = f(�z), and
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therefore with z = �z, we can rearrange (10) into the bound
�(�z, z) ≤ 1+δ

1−δ
σ2

2p .
To derive the lower bound result, we show that it is suffi-

cient to analyze the Bayes risk of a subproblem of estimating
the relative angle zj z̄k for each j �= k,

inf
�T


 

π(zj)π(zk)Ez| �T − zj z̄k|2dzjdzk, (11)

where inf �T means the infimum over all measurable functions
of the data, and π(·) is a density function on C1. In other
words, the difficulty of estimating a vector in Cn

1 is determined
by the average difficulty of estimating zj z̄k given the knowl-
edge of (zl)l∈[n]\{j,k} for all j �= k. To lower bound (11),
we apply a multivariate van Trees’ inequality [19] that relates
the Bayes risk (11) to the Fisher information of the phase
synchronization model.

a) Paper Organization: The rest of the paper is organized
as follows. In Section II, we establish a key lemma that
implies the critical inequality (10). The implications of the key
lemma on the statistical error bounds of GPM and MLE are
discussed in Section III, which establishes (9) for Theorem 1.
The minimax lower bound of phase synchronization is proved
in Section IV, which establishes (8) for Theorem 1. Finally,
Section V collects the remaining technical proofs of the paper.

b) Notation: For d ∈ N, we write [d] = {1, . . . , d}.
Given a, b ∈ R, we write a ∨ b = max(a, b) and a ∧ b =
min(a, b). For a set S, we use I{S} and |S| to denote its
indicator function and cardinality respectively. For a complex
number x ∈ C, we use x̄ for its complex conjugate and
|x| for its modulus. For a matrix B = (Bjk) ∈ Cd1×d2 ,
we use BH ∈ C

d2×d1 for its conjugate transpose such that
BH = (B̄kj). The Frobenius norm and operator norm of B

are defined by �B�F =
��d1

j=1

�d2
k=1 |Bjk|2 and �B�op =

supu∈Cd1 ,v∈Cd2 :�u�=�v�=1 uHBv. For U, V ∈ Cd1×d2 , U◦V ∈
R

d1×d2 is the Hadamard product U ◦ V = (UjkVjk). The
notation P and E are generic probability and expectation
operators whose distribution is determined from the context.
For two positive sequences {an} and {bn}, an � bn or
an = O(bn) means an ≤ Cbn for some constant C > 0
independent of n. We also write an = o(bn) or bn

an
→ ∞

when lim supn
an

bn
= 0.

II. A KEY LEMMA

Recall that we observe a random graph Ajk ∼ Bernoulli(p)
independently for all 1 ≤ j < k ≤ n. Whenever Ajk = 1,
we also observe Yjk = z∗j z̄∗k + σWjk with Wjk ∼ CN (0, 1).
In summary, the observations contain an adjacency matrix A
and a masked version of pairwise interactions A ◦ Y , which
are both Hermitian as we define Yjk = Ȳkj and Ajk = Akj

for all 1 ≤ k < j ≤ n and Yjj = Ajj = 0 for all j ∈ [n].
In this section, we establish a lemma that shows the con-

traction of the loss function through the generalized power
method. Note that E(A ◦ Y ) = pz∗z∗H−pIn with its leading
eigenvector proportional to z∗. We can thus estimate z∗/

√
n

by computing the leading eigenvector of A ◦ Y . Algorithmi-
cally, this leads to the power iteration that repeatedly computes
(A ◦ Y )z and then applies �2 normalization. In the setting of

phase synchronization, since we know z∗ ∈ Cn
1 , the gener-

alized power method then replaces the �2 normalization by a
normalization applied to each coordinate. This GPM algorithm
can be explicitly written as

z
(t)
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�

k∈[n]\{j} AjkYjkz
(t−1)
k����k∈[n]\{j} AjkYjkz
(t−1)
k

���
,

if
�

k∈[n]\{j} AjkYjkz
(t−1)
k �= 0,

z
(t−1)
j , if

�
k∈[n]\{j} AjkYjkz

(t−1)
k = 0.

(12)

Let us shorthand the above formula as

z(t) = f(z(t−1)), (13)

by introducing a map f : C
n
1 → C

n
1 such that the jth entry of

f(z(t−1)) is given by (12). The following lemma characterizes
the evolution of the loss function (2) through the map f .

Lemma 1: There exist constants c1, c2, C1, C2 > 0, such
that if np

σ2 ≥ c1 and np
log n ≥ c2, then, for any γ ∈ [0, 1/16),

we will have

P

�
�(f(z), z∗) ≤ δ1�(z, z∗) + (1 + δ2)

σ2

2p
for all z ∈ C

n
1

such that �(z, z∗) ≤ γn
�
≥ 1 − n−9 − exp

�
−
�np

σ2

�1/4
�

,

where δ1 = C1

�
log n+σ2

np and δ2 = C2

�
γ2 + log n+σ2

np

�1/4

.

Remark 1: The result of Lemma 1 is established for the

map f defined through (12), where we set z
(t)
j = z

(t−1)
j if

the denominator is 0. We remark that z
(t)
j = z

(t−1)
j is not

important and it can be replaced by any number in C1 without
changing the result of Lemma 1.

The lemma shows that for any z ∈ Cn
1 that has a nontrivial

error, the vector f(z) will have an error that is smaller by
a multiplicative factor δ1 up to an additive term (1 + δ2)σ2

2p .
Plugging z = z∗ into the inequality reveals that

�(f(z∗), z∗) ≤ (1 + δ2)
σ2

2p
.

Thus, the additive term (1 + δ2)σ2

2p can be understood as
the oracle error given the knowledge of z∗. Indeed, we show
in Theorem 5 that σ2

2p is the minimax lower bound for phase
synchronization under the loss function (2).

The two conditions np
σ2 ≥ c1 and np

log n ≥ c2 are essentially
necessary for the result to hold. While np

σ2 ≥ c1 makes sure
that the error σ2

2p is sufficiently small compared with the trivial
n, the condition np

log n ≥ c2 guarantees that the random graph
is connected. We can also slightly strengthen the conditions to
np
σ2 → ∞ and np

log n → ∞ so that both δ1 and δ2 are vanishing.
Lemma 1 implies that as long as �(z(t−1), z∗) ≤ γn for

some γ < 1/16, the next step of power iteration (12) satisfies

�(z(t), z∗) ≤ δ1�(z(t−1), z∗) + (1 + δ2)
σ2

2p
. (14)

The condition �(z(t−1), z∗) ≤ γn then implies �(z(t), z∗) ≤
δ1γn + (1 + δ2)σ2

2p . Given that np
σ2 is sufficiently large (for a

sufficiently large c1), we can always choose γ not too small
so that δ1γn + (1 + δ2)σ2

2p ≤ γn. Therefore, �(z(t), z∗) ≤ γn.
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Thus, a simple induction argument implies that (14) holds for
all t ≥ 1 as long as �(z(0), z∗) ≤ γn. The one-step iteration
bound (14) immediately implies the linear convergence

�(z(t), z∗) ≤ δt
1�(z

(0), z∗) +
1 + δ2

1 − δ1

σ2

2p
, (15)

for all t ≥ 1.

III. OPTIMALITY OF GENERALIZED

POWER METHOD AND MLE
In this section, we show that both the GPM and the MLE

achieve the optimal error σ2

2p by using the conclusion of
Lemma 1. Theorem 2 and Theorem 3 together establish the
upper bounds (9) for Theorem 1.

A. Generalized Power Method

The result of Lemma 1 implies that (15) holds for all t ≥ 1,
as long as �(z(0), z∗) ≤ γn for some γ < 1/16. Since z∗/

√
n

is the leading eigenvector of E(A ◦ Y ), we can compute the
leading eigenvector of A ◦Y as the initialization of the power
method. Let �u ∈ Cn be the leading eigenvector of A ◦ Y , and
we define z(0) according to

z
(0)
j =

� �uj

|�uj | , �uj �= 0,

1, �uj = 0.
(16)

It is easy to check that z(0) ∈ Cn
1 , and thus can be applied

by the power iteration (12). This leads to the GPM for phase
synchronization, which is formally presented as Algorithm 1.

Algorithm 1 Generalized Power Method for Phase
Synchronization
Input: The data A ◦ Y and the number of iterations tmax.
Output: The estimator �z = ztmax .

1 Obtain z(0) from the leading eigenvector of A ◦ Y
by (16);

2 for t = 1, · · · , tmax do

z(t) = f(z(t−1)),

where f(·) is defined in (12).
end

The error bound of z(0) is given by the following lemma.
Lemma 2: There exist constants c, C > 0 such that if

np
log n > c, then we will have

�(z(0), z∗) ≤ C
σ2 + 1

p
,

with probability at least 1 − n−9.
Under the condition that np

σ2 and np
log n are sufficiently large,

the error rate of Lemma 2 satisfies �(z(0), z∗) ≤ γn holds
for some γ < 1/16. By Lemma 1 and its implication (15),
we directly obtain the following result.

Theorem 2: There exist constants c1, c2, C > 0 such that if
np
σ2 ≥ c1 and np

log n ≥ c2, then the GPM (i.e, Algorithm 1) will
satisfy

�(z(t), z∗) ≤
�

1 + C

�
log n + σ2

np

�1/4
�

σ2

2p
,

for all t ≥ log
�

1
σ2

	
with probability at least 1 − 2n−9 −

exp
�
− �np

σ2

	1/4
�

.

We remark that the number of iterations log
�

1
σ2

	
required

by the theorem can be improved in some special cases.
For example, when p = 1, the error bound of Lemma 2
can be improved to �(z(0), z∗) ≤ Cσ2 by a matrix per-
turbation analysis [7]. Then, (14) implies that �(z(1), z∗) ≤�

1 + C
�

log n+σ2

np

�1/4
�

σ2

2 . In other words, when the graph

is fully connected, a one-step refinement of power iteration is
sufficient to achieve the optimal error.

B. Maximum Likelihood Estimator

Next, we discuss how the result of Lemma 1 also implies
the optimality of the MLE. According to the data generating
process, the MLE is given by

�z = argmin
z∈Cn

1

�
1≤j<k≤n

Ajk|Yjk − zj z̄k|2, (17)

which is equivalent to argmaxz∈Cn
1

zH(A ◦ Y )z. By the defi-
nition of �z, its jth entry must satisfy

�zj = argmin
zj∈C1

�
k∈[n]\{j}

Ajk|Yjk − zj �̄zk|2

=

�
k∈[n]\{j} AjkYjk�zk����k∈[n]\{j} AjkYjk�zk

��� .
as long as

�
k∈[n]\{j} AjkYjk�zk �= 0. In other words, we have

�z = f(�z),

and the MLE is a fixed point of the power iteration. As long
as we can establish a crude bound �(�z, z∗) ≤ γn for some
γ < 1/16, Lemma 1 automatically leads to the optimal error
of the MLE.

Lemma 3: There exist constants c, C > 0 such that if
np

log n > c, then the MLE will have error bound

�(�z, z∗) ≤ C
σ2 + 1

p
,

with probability at least 1 − n−9.
Again, under the condition that np

σ2 and np
log n are sufficiently

large, we have �(�z, z∗) ≤ γn for some γ < 1/16. Lemma 1
implies that

�(�z, z∗) ≤ δ1�(�z, z∗) + (1 + δ2)
σ2

2p
.

After rearrangement, we obtain the bound �(�z, z∗) ≤
1+δ2
1−δ1

σ2

p . The result is summarized into the following theorem.
Theorem 3: There exist constants c1, c2, C > 0 such that if

np
σ2 ≥ c1 and np

log n ≥ c2, then the MLE (17) will satisfy

�(�z, z∗) ≤
�

1 + C

�
log n + σ2

np

�1/4
�

σ2

2p
,

with probability at least 1 − 2n−9 − exp
�
− �np

σ2

	1/4
�

.
To close this section, we briefly discuss the implication

of Lemma 1 on semi-definite programming (SDP) when the
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graph is fully connected. In other words, we only consider
p = 1. This is by leveraging a recent result on the con-
nection between SDP and MLE by [4]. Recall the definition
of SDP in (5). The following result is a special case of
Theorem 5 of [4].

Theorem 4 ([4]): Assume σ2 ≤ c n
log n for some sufficiently

large constant c > 0. Then, with probability at least 1 − n−1,
the SDP (5) admits a unique solution �z�zH, where �z is a global
optimum of (17) with all Ajk = 1.

This equivalence of SDP and MLE immediately implies the
following result.

Corollary 1: There exist constants c, C > 0, such that if
σ2 ≤ c n

log n and p = 1, then the unique solution of the SDP
can be written as �z�zH, where �z satisfies

�(�z, z∗) ≤
�

1 + C

�
log n + σ2

np

�1/4
�

σ2

2
,

with probability at least 1 − 2n−1 − exp
�
− � n

σ2

	1/4
�

.

Corollary 1 requires a stronger condition σ2 ≤ c n
log n than

what is needed by Theorem 2 and Theorem 3 when p = 1.
This condition is needed for the equivalence between SDP and
MLE, which is established via an �∞ norm argument in [4] and
is thus very unlikely to be weakened. Whether the equivalence
between SDP and MLE continues to hold when p < 1 is a
less clear issue in the literature. In general, the solution to
the SDP (5) is not necessarily a rank-one matrix. Obtaining
an estimator in Cn

1 requires a post-processing step such as the
rounding method suggested by [16], the consequence of which
is unclear to us.

IV. MINIMAX LOWER BOUND

We study the minimax lower bound of phase synchroniza-
tion in this section. The minimax risk is given by

inf
�z∈Cn

1

sup
z∈Cn

1

Ez�(�z, z)

= inf
�z∈Cn

1

sup
z∈Cn

1

Ez

⎡⎣min
a∈C1

n�
j=1

|�zja − zj |2
⎤⎦ , (18)

where Ez is the expectation of (A ◦ Y, A) under the model
AjkYjk = Ajkzj z̄k + σAjkWjk and Ajk ∼ Bernoulli(p).
The main difficulty of analyzing (18) is that the loss function
�(�z, z) is not separable in j ∈ [n] because of the identity
�(�z, z) = 2 (n − |zHz∗|). This difficulty can be tackled with
the following inequality

�(z, z∗) ≥ 1
2n

��z�zH − zzH�2
F, (19)

which is proved in Lemma 9. Since the right hand side of (19)
can be written as

�
1≤j �=k≤n |�zj �̄zk − zj z̄k|2, we can lower

bound (18) by

inf
�z∈Cn

1

sup
z∈Cn

1

Ez�(�z, z)

≥ 1
2n

inf
�z∈Cn

1

sup
z∈Cn

1

Ez��z�zH − zzH�2
F

≥ 1
2n

inf
�z

�
1≤j �=k≤n

�
 n�
l=1

π(zl)

�
Ez |�zj �̄zk − zj z̄k|2dz

≥ 1
2n

�
1≤j �=k≤n

Ez−(j,k)∼π inf
�T

(20)
 

π(zj)π(zk)Ez | �T − zj z̄k|2dzjdzk,

where π is some density function supported on C1 to be
specified later, and the notation Ez−(j,k) means expectation
over z except for its jth and kth entries with respect to the
distribution π. In the above display, the second inequality is
due to the fact that we can lower bound the supremum over
z by an average over z, i.e., supz∈Cn

1
Ez��z�zH − zzH�2

F ≥�
(
�n

l=1 π(zl)) Ez��z�zH − zzH�2
Fdz. From (20), it is sufficient

to lower bound

inf
�T


 

π(zj)π(zk)Ez | �T − zj z̄k|2dzjdzk

for all j �= k. This corresponds to the problem of estimating
zj z̄k with other entries of z assumed to be known.

By symmetry, we consider the problem with j = 1 and
k = 2. Given the knowledge of z3, · · · , zn, we can decompose
the likelihood function as

p(A ◦ Y, A)

= p(A)p(A12Y12|A)

⎛⎝ n�
j=3

p(A1jY1j |A)p(A2jY2j |A)

⎞⎠
×

�
3≤j<k≤n

p(AjkYjk|A).

Since p(A)
�

3≤j<k≤n p(AjkYjk|A) is independent of
z1z̄2, the sufficient statistics for estimating z1z̄2 is
A12Y12, A13Y13, · · · , A1nY1n and A23Y23, · · · , A2nY2n. Now
we restrict zj ∼ π by requiring zj = a+

√
1 − a2i with a ∼ f

for some density f supported on the unit interval [0, 1]. Then,
we can represent z1 and z2 by

z1 = a +
 

1 − a2i and z2 = c +
 

1 − c2i.

Define

T (a, c) = ac +
 

1 − a2
 

1 − c2,

S(a, c) =
 

1 − a2c − a
 

1 − c2.

With this notation, we have

z1z̄2 = T (a, c) + S(a, c)i.

The likelihood p(A12Y12|A) corresponds to the distribution

N
�

A12

�
T (a, c)
S(a, c)

�
,
1
2
A12σ

2I2

�
. (21)

For j = 3, · · · , n, we have Y1j = z1z̄j + σW1j . Since zj

is known for j = 3, · · · , n, observing Y1j is equivalent to
observing Y1jzj = z1 + σW1jzj , and we still have W1jzj ∼
CN (0, 1) by the property of complex Gaussian distribution.
This argument implies that the likelihood

�n
j=3 p(A1jY1j |A)

is proportional to the density function of

N
⎛⎝ n�

j=3

A1j

�
a√

1 − a2

�
,
σ2
�n

j=3 A1j

2
I2

⎞⎠ . (22)
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Similarly,
�n

j=3 p(A2jY2j |A) is proportional to the density
function of

N
⎛⎝ n�

j=3

A2j

�
c√

1 − c2

�
,
σ2
�n

j=3 A2j

2
I2

⎞⎠ . (23)

Therefore, we have the identity

inf
�T


 

π(z1)π(z2)Ez| �T − z1z̄2|2dz1dz2

= inf
�T,�S


 

f(a)f(c)E(a,c) (24)!

(�T − T (a, c))2 + (�S − S(a, c))2
"
dadc,

where the expectation E(a,c) is under the product of the
conditional distributions (21), (22) and (23) with marginal
given by Ajk ∼ Bernoulli(p). The quantity (24) can be lower
bounded by van Trees’ inequality [19], and the result is given
by the following lemma.

Lemma 4: There exist constants c, C > 0 such that as long
as np

σ2 ≥ c, there exists some nice density function f supported
on the unit interval such that

inf
�T,�S


 

f(a)f(c)E(a,c)

!
(�T − T (a, c))2 + (�S − S(a, c))2

"
dadc ≥

�
1 − C

�
σ2

np
+

1
n

��
σ2

np
.

Plugging the result of Lemma 4 into (20), we have imme-
diately the following theorem, which establishes the lower
bound (8) for Theorem 1.

Theorem 5: There exist constants c, C > 0 such that as
long as np

σ2 ≥ c, then we will have

inf
�z∈Cn

1

sup
z∈Cn

1

Ez�(�z, z) ≥
�

1 − C

�
σ2

np
+

1
n

��
σ2

2p
.

V. PROOFS

This section presents the proofs of all technical results in
the paper. We first list some auxiliary lemmas in Section V-A.
The key lemma that leads to various upper bound results
(Lemma 1) is proved in Section V-B. Then, we prove Lemma 4
in Section V-C. Finally, the proofs of Lemma 2 and Lemma 3
are given in Section V-D.

A. Some Auxiliary Lemmas

Lemma 5: There exist constants c, C > 0 such that if
np

log n > c, then we will have

max
j∈[n]

⎛⎝ �
k∈[n]\{j}

(Ajk − p)

⎞⎠2

≤ Cnp log n,

and
�A − EA�op ≤ C

√
np,

with probability at least 1 − n−10.
Proof: The first result is a direct application of union

bound and Bernstein’s inequality. The second result is
Theorem 5.2 of [20].

Lemma 6: There exist constants c, C > 0 such that if
np

log n > c, then we will have

�A ◦ W�op ≤ C
√

np,

with probability at least 1 − n−10.
Proof: We use PA for the conditional probability P(·|A).

Define the event

A =

⎧⎨⎩max
j∈[n]

�
k∈[n]\{j}

Ajk ≤ 2np

⎫⎬⎭ .

Under the assumption np
log n > c, we have P(Ac) ≤

n−11 by Bernstein’s inequality and a union bound argument.
By Corollary 3.11 of [21], we have

sup
A∈A

PA (�A ◦ Re(W )�op > C1
√

np + t) ≤ e−t2/2,

for some constant C1 > 0. This implies that
supA∈A PA

��A ◦ Re(W )�op > C2
√

np
	 ≤ n−11 for

some constant C2 > 0. Thus, we have

P (�A ◦ Re(W )�op > C2
√

np) ≤ P(Ac)

+ sup
A∈A

PA (�A ◦ Re(W )�op > C2
√

np) ≤ 2n−11.

The same high probability bound also holds for �A ◦
Im(W )�op. Finally, the desired conclusion is implied by
�A ◦ W�op � �A ◦ Im(W )�op + �A ◦ Re(W )�op.

Lemma 7: Consider independent random variables Xjk ∼
N (0, 1) for 1 ≤ j < k ≤ n. Assume Xkj = Xjk for 1 ≤ j <
k ≤ n. There exist constants c, C > 0 such that if np

log n > c,
then we will have

n�
j=1

⎛⎝ �
k∈[n]\{j}

AjkXjk

⎞⎠2

≤ n(n − 1)p + C
 

n3p2 log n,

with probability at least 1 − n−10. The same result holds if
Xkj = −Xjk is assumed instead for 1 ≤ j < k ≤ n.

Proof: We use PA for the conditional probability P(·|A).
We only prove the case where Xkj = Xjk for 1 ≤ j < k ≤ n,
as the same proof holds for the other case Xkj = −Xjk for
1 ≤ j < k ≤ n.

Define the event

A =

�
max
j∈[n]

�
k∈[n]\{j}

Ajk ≤ 2np,

n�
j=1

�
k∈[n]\{j}

Ajk ≤ n(n − 1)p + 5
 

n2p log n

&
.

Under the assumption np
log n > c, we have P(Ac) ≤ n−11

by Bernstein’s inequality and a union bound argument. Define

g(X) =

'((() n�
j=1

⎛⎝ �
k∈[n]\{j}

AjkXjk

⎞⎠2

.
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Then, for any A ∈ A, for any two symmetric matrices
X 	, X 		 ∈ Rn×n, we have

|g(X 		) − g(X 	)|

≤

'((() n�
j=1

⎛⎝ �
k∈[n]\{j}

Ajk(X 		
jk − X 	

jk)

⎞⎠2

≤

'((() n�
j=1

⎛⎝ �
k∈[n]\{j}

Ajk

�
k∈[n]\{j}

(X 		
jk − X 	

jk)2

⎞⎠
≤
 

2np

'(() n�
j=1

�
k∈[n]\{j}

(X 		
jk − X 	

jk)2

= 2
√

np

'(() n�
j=1

�
k>j

(X 		
jk − X 	

jk)2

where the first inequality is by the triangle inequality and
the second inequality is by the Cauchy-Schwarz inequality.
As a consequence, g(X), as a function of the upper triangular
matrix of X , has a Lipschitz constant bounded by 2

√
np.

By a standard Gaussian concentration inequality for Lipschitz
functions [22], we have

P (|g(X) − E(g(X)|A)| > t
√

np)
≤ P(Ac) + sup

A∈A
PA (|g(X) − E(g(X)|A)| > t

√
np)

≤ n−11 + 2 exp(−C1t
2),

for some constant C1 > 0. Therefore, by choosing t =
C2

√
log n for some constant C2 > 0, we have

g(X) ≤ E(g(X)|A) + C2

 
np log n,

with probability at least 1 − 2n−11. Additionally, we have

E(g(X)|A) ≤

'((() n�
j=1

E

⎛⎝ �
k∈[n]\{j}

AjkXjk

⎞⎠2

=

'(() n�
j=1

�
k∈[n]\{j}

Ajk.

By the definition of A, we have E(g(X)|A) ≤�
n(n − 1)p + 5

 
n2p log n on A. Hence,

g(X) ≤
�

n(n − 1)p + 5
 

n2p logn + C2

 
np log n,

with probability at least 1 − n−10, and the desired result is
implied by squaring both sides of the above inequality.

Lemma 8 (Lemma 13 of [23]): Consider independent ran-
dom variables Xj ∼ N (0, 1) and Ej ∼ Bernoulli(p). Then,

P

⎛⎝������
n�

j=1

XjEj/p

������ > t

⎞⎠ ≤ 2 exp
�
−min

�
pt2

16n
,
pt

2

��
,

for any t > 0.
Lemma 9: For any z, z∗ ∈ Cn

1 , we have

n�(z, z∗) ≤ �zzH − z∗z∗H�2
F ≤ 2n�(z, z∗).

Proof: The definition of �(z, z∗) implies

�(z, z∗) = 2n − sup
|a|=1

(zHz∗a + z∗Hzā) = 2 (n − |zHz∗|) .

By direct calculation,

�zzH − z∗z∗H�2
F = 2

�
n2 − |zHz∗|2	 .

We thus obtain the relation

�zzH − z∗z∗H�2
F = �(z, z∗) (n + |zHz∗|)

= �(z, z∗)
�

2n− �(z, z∗)
2

�
,

which immediately implies the conclusion.
Lemma 10: For any x ∈ C such that Re(x) > 0,

��� x
|x| − 1

��� ≤��� Im(x)
Re(x)

���.
Proof: Let x = a + bi, and then���� x

|x| − 1
���� =

|x − |x||
|x|

=

��a + bi −√
a2 + b2

��
|x|

=

�
(a −√

a2 + b2)2 + b2

√
a2 + b2

=

*
2b2

a2 + b2 + a
√

a2 + b2

≤
���� ba
���� = ���� Im(x)

Re(x)

���� .
The proof is complete.
Lemma 11: For any x ∈ C\{0} and any y ∈ Cn

1 ,��� x
|x| − y

��� ≤ 2|x − y|.
Proof: We have

��� x
|x| − y

��� ≤ ��� x
|x| − x

��� + |x − y| = ||x| −
1| + |x − y| = ||x| − |y|| + |x − y| ≤ 2|x − y|.

B. Proof of Lemma 1
We organize the proof into four steps. We first list a few

high-probability events in Step 1. These events are assumed to
be true in later steps. Step 2 provides an error decomposition
of �(f(z), z∗), and then each error term in the decomposition
will be analyzed and bounded in Step 3. Finally, we combine
the bounds and derive the desired result in Step 4.

a) Step 1. Some high-probability events: By Lemma 5,
Lemma 6 and Lemma 7, we know that

min
j∈[n]

�
k∈[n]\{j}

Ajk ≥ (n − 1)p − C
 

np log n, (25)

max
j∈[n]

�
k∈[n]\{j}

Ajk ≤ (n − 1)p + C
 

np log n, (26)

�A − EA�op ≤ C
√

np, (27)
�A ◦ W�op ≤ C

√
np, (28)

n�
j=1

������
�

k∈[n]\{j}
AjkIm(Wjkz∗kz̄∗j )

������
2

(29)

≤ n2p

2

�
1 + C

+
log n

n

�
,
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n�
j=1

������
�

k∈[n]\{j}
AjkRe(Wjkz∗kz̄∗j )

������
2

(30)

≤ n2p

2

�
1 + C

+
log n

n

�
,

all hold with probability at least 1 − n−9 for some
constant C > 0. To establish (29)-(30), note that√

2Im(Wjkz∗k z̄∗j ),
√

2Re(Wjkz∗k z̄∗j ) are all independently
standard normally distributed for 1 ≤ j < k ≤ n. We also
have −Im(Wjkz∗k z̄∗j ) = Im(W̄jk z̄∗kz∗j ) = Im(Wkjz

∗
j z̄∗k) and

Re(Wjkz∗k z̄∗j ) = Re(W̄jk z̄∗kz∗j ) = Re(Wkjz
∗
j z̄∗k) for any

1 ≤ j < k ≤ n.
In addition to (25)-(30), we need another high-probability

inequality. For a sufficiently small ρ such that ρ2 np
σ2 is

sufficiently large, we want to upper bound the random variable�n
j=1 I

,
2σ
np

����k∈[n]\{j} AjkWjkz∗k
��� > ρ

-
. The existence of

such ρ is guaranteed by the condition that np
σ2 is sufficiently

large, and the specific choice will be given later. We first bound
its expectation by Lemma 8,

n�
j=1

P

⎧⎨⎩2σ

np

������
�

k∈[n]\{j}
AjkWjkz∗k

������ > ρ

⎫⎬⎭
≤

n�
j=1

P

⎧⎨⎩2σ

np

������
�

k∈[n]\{j}
AjkRe(Wjkz∗k)

������ > ρ

2

⎫⎬⎭
+

n�
j=1

P

⎧⎨⎩2σ

np

������
�

k∈[n]\{j}
AjkIm(Wjkz∗k)

������ > ρ

2

⎫⎬⎭
≤ 4n exp

�
− ρ2 np

256σ2

�
+ 4n exp

�
−ρnp

8σ

�
.

By Markov inequality, we have

n�
j=1

I

⎧⎨⎩2σ

np

������
�

k∈[n]\{j}
AjkWjkz∗k

������ > ρ

⎫⎬⎭
≤ 4σ2

ρ2p
exp

�
− 1

16

+
ρ2np

σ2

�
, (31)

with probability at least

1 − ρ2pn

σ2

�
exp

�
− ρ2 np

256σ2
+

1
16

+
ρ2 np

σ2

�

+ exp

�
−ρnp

8σ
+

1
16

+
ρ2 np

σ2

��

≥ 1 − 2ρ2pn

σ2
exp

�
− 1

16

+
ρ2 np

σ2

�

≥ 1 − exp

�
− 1

32

+
ρ2 np

σ2

�
.

Finally, we conclude that the events (25)-(31) hold
simultaneously with probability at least 1 − n−9 −
exp
�
− 1

32

�
ρ2 np

σ2

�
.

b) Step 2. Error decomposition: For any z ∈ C
n
1 such

that �(z, z∗) ≤ γn, we can define .z ∈ Cn such that

.zj =

�
k∈[n]\{j} AjkYjkzk�

k∈[n]\{j} Ajk

for each j ∈ [n]. Denote �z = f(z) then �zj = .zj/|.zj| for each
coordinate such that .zj �= 0.

The condition �(z, z∗) ≤ γn implies there exists some b ∈
C1 such that �z − z∗b�2 ≤ γn. By direct calculation, we can
write

.zj z̄
∗
j b̄ =

�
k∈[n]\{j} Ajkz∗j z̄∗kzk�

k∈[n]\{j} Ajk
z̄∗j b̄

+

�
k∈[n]\{j} AjkWjkzk�

k∈[n]\{j} Ajk
z̄∗j b̄

= 1 +

�
k∈[n]\{j} Ajk z̄∗k b̄(zk − z∗kb)�

k∈[n]\{j} Ajk

+
σ
�

k∈[n]\{j} AjkWjk(zk − z∗kb)z̄∗j b̄�
k∈[n]\{j} Ajk

+
σ
�

k∈[n]\{j} AjkWjkz∗k z̄∗j�
k∈[n]\{j} Ajk

which is equal to

1 +
1

n − 1

n�
k=1

z̄∗k b̄(zk − z∗kb) − 1
n − 1

z̄∗j b̄(zj − z∗j b)

+

��
k∈[n]\{j} Ajk z̄∗k b̄(zk − z∗kb)�

k∈[n]\{j} Ajk

− 1
n − 1

n�
k∈[n]\{j}

z̄∗k b̄(zk − z∗kb)

�

+
σ
�

k∈[n]\{j} AjkWjk(zk − z∗kb)z̄∗j b̄�
k∈[n]\{j} Ajk

+
σ
�

k∈[n]\{j} AjkWjkz∗kz̄∗j�
k∈[n]\{j} Ajk

.

Now we define a0 = 1 + 1
n−1

�n
k=1 z̄∗k b̄(zk − z∗kb) and

a = a0/|a0|, and we have

.zj z̄
∗
j āb̄ = |a0| − 1

n − 1
z̄∗j āb̄(zj − z∗j b) + Fj + Gj + Hj ,

where

Fj =

�
k∈[n]\{j} Ajk z̄∗kāb̄(zk − z∗kb)�

k∈[n]\{j} Ajk

− 1
n − 1

n�
k∈[n]\{j}

z̄∗kāb̄(zk − z∗kb),

Gj =
σ
�

k∈[n]\{j} AjkWjk(zk − z∗kb)z̄∗j āb̄�
k∈[n]\{j} Ajk

,

Hj =
σā
�

k∈[n]\{j} AjkWjkz∗kz̄∗j�
k∈[n]\{j} Ajk

.
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By Lemma 10, we have the bound

|�zj − z∗j ab|2 = |�zj z̄
∗
j āb̄ − 1|2 ≤

����� Im(.zj z̄
∗
j āb̄)

Re(.zj z̄∗j āb̄)

�����
2

, (32)

whenever Re(.zj z̄
∗
j āb̄) > 0 holds. By Cauchy-Schwartz

inequality, we have

|a0| ≥ 1 − 1
n − 1

�z∗��z − bz∗� ≥ 1 − 2
√

γ, (33)

under the condition �z − z∗b�2 ≤ γn. We also have

1
n − 1

|z̄∗j āb̄(zj − z∗j b)| ≤ 1
n − 1

|zj − z∗j b| ≤
√

γn

n − 1
.

Therefore, as long as |Fj | ∨ |Gj | ∨ |Hj | ≤ ρ, we have

Re(.zj z̄
∗
j āb̄) ≥ 1 − 3(

√
γ + ρ). (34)

Under the assumption that γ < 1/16 and with a proper
choice of ρ that will be given later, we have 3(

√
γ + ρ) < 1

and then Re(.zj z̄
∗
j āb̄) is positive. Hence, the event {.zj = 0}

is included in the event {|Fj | ∨ |Gj | ∨ |Hj | > ρ}.
By (32), we obtain the bound

|�zj − z∗j ab|2

≤
����� Im(.zj z̄

∗
j āb̄)

Re(.zj z̄∗j āb̄)

�����
2

I {|Fj | ∨ |Gj | ∨ |Hj | ≤ ρ}

+ 4I {|Fj | ∨ |Gj | ∨ |Hj | > ρ}

≤ 1
(1 − 3(

√
γ + ρ))2

�����Im
�
− 1

n − 1
z̄∗j āb̄(zj − z∗j b)

�

+ Im(Fj) + Im(Gj) + Im(Hj)

�����
2

+ 4I{|Fj | > ρ} + 4I{|Gj | > ρ} + 4I{|Hj| > ρ},
which can be further upper bounded by

≤ 1 + η

(1 − 3(
√

γ + ρ))2
|Im(Hj)|2

+
3(1 + η−1)

(1 − 3(
√

γ + ρ))2
|Im(Fj)|2

+
3(1 + η−1)

(1 − 3(
√

γ + ρ))2

����Im�− 1
n − 1

z̄∗j āb̄(zj − z∗j b)
�����2

+
3(1 + η−1)

(1 − 3(
√

γ + ρ))2
|Im(Gj)|2 + 4I{|Fj| > ρ}

+ 4I{|Gj| > ρ} + 4I{|Hj| > ρ},
for some η which will be specified later. Here the last
inequality is due to the fact that (x1 + x2)2 = x2

1 + x2
2 +

2(η1/2x1)(η−1/2x2) ≤ (1 + η)x2
1 + (1 + η−1)x2

2 for any
x1, x2 ∈ R.

c) Step 3. Analysis of each error term: Next, we will
analyze the error terms Fj , Gj and Hj separately. By triangle
inequality, (25) and (26), we have

|Fj |

≤

����k∈[n]\{j}(Ajk − p)z̄∗k āb̄(zk − z∗kb)
����

k∈[n]\{j} Ajk

+

������p
�

k∈[n]\{j}
z̄∗k āb̄(zk − z∗kb)

������
����� 1�

k∈[n]\{j} Ajk
− 1

(n − 1)p

�����

≤ 2
np

������
�

k∈[n]\{j}
(Ajk − p)z̄∗k(zk − z∗kb)

������
+ p

√
n�z − bz∗�

2
����k∈[n]\{j}(Ajk − p)

���
n2p2

≤ 2
np

������
�

k∈[n]\{j}
(Ajk − p)z̄∗k(zk − z∗kb)

������
+ C1

√
p logn

np
�z − bz∗�.

Using (27), we have

n�
j=1

|Fj |2 ≤ 8
n2p2

n�
j=1

������
�

k∈[n]\{j}
(Ajk − p)z̄∗k(zk − z∗kb)

������
2

+ C2
1

log n

np
�z − bz∗�2

≤ 8
n2p2

�A − EA�2
op�z − bz∗�2 + C2

1

log n

np
�z − bz∗�2

≤ C2
log n

np
�(z, z∗).

The above bound also implies
n�

j=1

I{|Fj | > ρ} ≤ ρ−2
n�

j=1

|Fj |2 ≤ C2

ρ2

log n

np
�(z, z∗).

Similarly, we can also bound the error terms that depend
on Gj . By (25) and (28), we have

n�
j=1

|Gj |2 ≤ 2σ2

n2p2

n�
j=1

������
�

k∈[n]\{j}
AjkWjk(zk − z∗kb)

������
2

≤ 2σ2

n2p2
�A ◦ W�2

op�z − bz∗�2

≤ C3
σ2

np
�(z, z∗),

and thus
n�

j=1

I{|Gj | > ρ} ≤ ρ−2
n�

j=1

|Gj |2 ≤ C3

ρ2

σ2

np
�(z, z∗).

For the contribution of Hj , we use (25) and (31), and have
n�

j=1

I{|Hj | > ρ}

≤
n�

j=1

I

⎧⎨⎩2σ

np

������
�

k∈[n]\{j}
AjkWjkz∗k

������ > ρ

⎫⎬⎭
≤ 4σ2

ρ2p
exp

�
− 1

16

+
ρ2 np

σ2

�
.

Next, we study the main error term |Im(Hj)|2. By (25),
we have

n�
j=1

|Im(Hj)|2 ≤
�

1 + C4

*
log n

np

�2

σ2

n2p2

×
n�

j=1

������
�

k∈[n]\{j}
AjkIm(Wjkz∗kz̄∗j ā)

������
2

,
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which can be further upper bounded by

≤ (1 + η)

�
1 + C4

*
log n

np

�2

σ2

n2p2

×
n�

j=1

������
�

k∈[n]\{j}
AjkIm(Wjkz∗kz̄∗j )

������
2

+ (1 + η−1)

�
1 + C4

*
log n

np

�2

σ2

n2p2

×
n�

j=1

������
�

k∈[n]\{j}
AjkRe(Wjkz∗k z̄∗j )

������
2

|Im(ā)|2.

By (33), we have

|Im(ā)| =
|Im(a0)|
|a0| ≤

1
n−1�z∗��z − bz∗�

1 − 2
√

γ

≤
n

n−1

√
γ

1 − 2
√

γ
≤ 20

√
γ,

where the last inequality is due to the assumption that γ <
1/16. Together with (29) and (30), we have

n�
j=1

|Im(Hj)|2 ≤
�

1 + C5

�
η + η−1γ +

*
log n

np

��
σ2

2p
.

The last error term we need to analyze is���Im�− 1
n−1 z̄∗j āb̄(zj − z∗j b)

����2. It can simply be bounded by
1

(n−1)2 |zj − z∗j b|2.
d) Step 4. Combining the bounds: Plugging all the

individual error bounds obtained in Step 3 into the error
decomposition in Step 2, we obtain

�(�z, z∗)

≤
n�

j=1

|�zj − z∗j ab|2

≤
�

1 + C6

�
ρ +

√
γ + η + η−1γ +

*
log n

np

��
σ2

2p

+
16σ2

ρ2 p
exp

�
− 1

16

+
ρ2np

σ2

�
+C6

�
η−1 + ρ−2

	 log n + σ2

np
�(z, z∗).

We set

η =

*
γ +

log n + σ2

np
and ρ2 =

√
32

*
log n + σ2

np
.

Then, since ρ2np
σ2 is sufficiently large, we have

16σ2

ρ2 p
exp

�
− 1

16

+
ρ2np

σ2

�
≤ σ2

ρ2 p

�
σ2

ρ2 np

�2

≤ σ2

p

*
σ2

np
.

Therefore, we have

�(�z, z∗) ≤
�

1 + C7

�
γ2 +

log n + σ2

np

�1/4
�

σ2

2p

+ C7

*
log n + σ2

np
�(z, z∗).

Since the above inequality is derived from the condi-
tion (25)-(31) and �(z, z∗) ≤ γn. It holds uniformly overall
z ∈ Cn

1 such that �(z, z∗) ≤ γn with probability at least

1 − n−9 − exp
�
− �np

σ2

	1/4
�

. The proof is complete.

C. Proof of Lemma 4
We use the version of van Trees’ inequality presented as

Equation (11) of the paper [19]. We have

inf
�T,�S


 

f(a)f(c)E(a,c)!

(�T − T (a, c))2 + (�S − S(a, c))2
"
dadc

≥

 


Tr(J(a, c))f(a)f(c)dadc − I(f), (35)

where I(f) is the information of the prior which will be
elaborated later. The matrix J(a, c) is given by J(a, c) =
AB−1A, where

A =
∂(T, S)
∂(a, c)

=

�
c −√

1 − c2 a√
1−a2 a −√

1 − a2 c√
1−c2

− ac√
1−a2 −√

1 − c2
√

1 − a2 + ac√
1−c2

�
,

and B is the Fisher information matrix. Due to the inde-
pendence between A12Y12 and {A1jY1j}j≥3 ∛ {A2jY2j}j≥3,
we have B = B1 + B2 with

B1 =
2p

σ2

���∂T
∂a

��2 +
��∂S

∂a

��2 ∂T
∂a

∂T
∂c

∂T
∂a

∂T
∂c

��∂T
∂c

��2 +
��∂S

∂c

��2
�

,

and

B2 =
2(n − 2)p

σ2

� 1
1−a2 0

0 1
1−c2

�
,

In the following we show how to derive [B2]11. Let (ξ, ζ)T

be a bivariate normal random vector distributed according
to (22). Thus, the part of the likelihood function that involves
a is proportional to l(ξ, ζ, {A1j}j≥3 ; a) which is defined as

l(ξ, ζ, {A1j}j≥3 ; a)

= exp

�
− 1

σ2
�

j≥3 A1j

��
ξ − a

�
j≥3

A1j

�2

+

�
ζ −
 

1 − a2
�
j≥3

A1j

�2��
.

Then

[B2]11 = −E
∂2 log l(ξ, ζ, {A1j}j≥3 ; a)

∂a2

= E
2ζ

σ2(1 − a2)
3
2

=
2(n − 2)p
(1 − a2)σ2

.

The rest of the entries of B1 and B2 can be calculated
analogously and are omitted here.

We then have

Tr(J(a, c))

≥ Tr(AB−1
2 AT) − |Tr(A((B1 + B2)−1 − B−1

2 )AT)|
≥ �B−1/2

2 AT�2
F

�
1 − �B1/2

2 (B1 + B2)−1B
1/2
2 − I2�F

�
.
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By direct calculation, �B−1/2
2 AT�2

F = 2σ2

(n−2)p . Therefore,
 

Tr(J(a, c))π(a)π(c)dadc

≥ σ2

p(n − 2)

�
1 −

 


�B1/2
2 (B1 + B2)−1B

1/2
2 − I2�F

f(a)f(c)dadc

�
.

Now we set f to be a density function of a distribution
supported on the interval [0.4, 0.6]. We set

f(θ) ∝ exp
�
− 1

1 − 10|θ − 1/2|2
�

I{0.4 < θ < 0.6}.

This makes f satisfy the regularity condition required by
[19] so that van Trees’ inequality (35) holds. By the choice of
f , we know that both a and c are bounded away from 0 and
1. As a result, we have �B2�op � np

σ2 , �B−1
2 �op � σ2

np and

�(B1 + B2)−1�op � σ2

np . Thus,

�B1/2
2 (B1 + B2)−1B

1/2
2 − I2�F

≤ �B2�op�(B1 + B2)−1 − B−1
2 �F

≤ �B2�op�B−1
2 �op�(B1 + B2)−1�op�B1�F

� n−1.

Hence, we have
 

Tr(J(a, c))f(a)f(c)dadc ≥ σ2

(n − 2)p
�
1 − C1 n−1

	
.

Finally, we need to provide an upper bound for I(f). The
definition of I(f) is given by

I(f) =



[0.4,0.6]2

1
f(θ1)f(θ2)

�
j,k,l∈{1,2}�

∂

∂θk
Kjk(θ)f(θ1)f(θ2)

��
∂

∂θl
Kjl(θ)f(θ1)f(θ2)

�
dθ,

where θ = (θ1, θ2) = (a, c) and K(θ) = AB−1, which is a
2 × 2 matrix depending on the value of θ = (a, c). By the
regularity conditions satisfied by the choice of f , we have

I(f) ≤ C2 max
θ∈[0.4,0.6]2

max
j,k∈{1,2}

���� ∂

∂θk
Kjk(θ)

����2 .

The above bound can be explicitly calculated via the def-
initions of A, B1 and B2, but we omit the tedious details.
Intuitively, the contribution of B1 is negligible compared with
that of B2, and the contribution of B2 is of order np/σ2. Thus,

I(f) ≤ C3

�
σ2

np

�2

. This leads to the lower bound

inf
�T


 

π(zj)π(zk)Ez | �T − zj z̄k|2dzjdzk

≥ σ2

np

�
1 − C

�
1
n

+
σ2

np

��
.

The desired result is obtained by plugging the above lower
bound to (20). This completes the proof.

D. Proofs of Lemma 2 and Lemma 3

The two lemmas can be proved via the same argument, and
thus we present the proofs together. For any z ∈ C

n such that
�z�2 = n, we have

�p−1A◦Y − zzH�2
F = �p−1A◦Y �2

F +n2−2p−1zH(A◦Y )z.

Therefore, min�z�2=n �p−1A ◦ Y − zzH�2
F is equivalent to

max�z�2=n zH(A◦Y )z. We can thus write z(0) as z
(0)
j = �zj

|�zj| ,
where �z = argmin

�z�2=n

�p−1A ◦ Y − zzH�2
F. (36)

On the other hand, for any z ∈ Cn
1 ,�

1≤j<k≤n

Ajk|Yjk − zj z̄k|2

=
�

1≤j<k≤n

Ajk(|Yjk|2 + 1)

−
�

1≤j<k≤n

AjkYjk(zj z̄k + z̄jzk)

=
�

1≤j<k≤n

Ajk(|Yjk|2 + 1) − zH(A ◦ Y )z

=
�

1≤j<k≤n

Ajk(|Yjk|2 + 1)

− p

2
��p−1A ◦ Y �2

F + n2 − �p−1A ◦ Y − zzH�2
F

	
.

Therefore, minz∈Cn
1

�
1≤j<k≤n Ajk|Yjk − zj z̄k|2 is equiv-

alent to minz∈Cn
1
�p−1A ◦ Y − zzH�2

F, and the MLE can be
equivalently written as�z = argmin

z∈Cn
1

�p−1A ◦ Y − zzH�2
F. (37)

Now we analyze (36) and (37) simultaneously. For �z that
is either (36) or (37), we have

�p−1A ◦ Y − �z�zH�2
F ≤ �p−1A ◦ Y − z∗z∗H�2

F.

Rearranging the above inequality, we have

��z�zH − z∗z∗H�2
F

≤ 2
��Tr
�
(�z�zH − z∗z∗H)(p−1A ◦ Y − z∗z∗H)

	�� ,
which implies

��z�zH − z∗z∗H�F (38)

≤ 2
����Tr

�� �z�zH − z∗z∗H

��z�zH − z∗z∗H�F

�
(p−1A ◦ Y − z∗z∗H)

����� .
Since �z�zH−z∗z∗H

��z�zH−z∗z∗H�F
is a Hermitian matrix of rank at most

two, it has the spectral decomposition�z�zH − z∗z∗H

��z�zH − z∗z∗H�F
= λ1 uuH + λ2 vvH,

where u, v are complex unit vectors orthogonal to each other
and λ1, λ2 are real and satisfy λ2

1 + λ2
2 = 1. Then, we bound

the right hand side of (38) by

2|λ1|
��uH(p−1A ◦ Y − z∗z∗H)u

��
+ 2|λ2|

��vH(p−1A ◦ Y − z∗z∗H)v
��

≤ 2(|λ1| + |λ2|)�p−1A ◦ Y − z∗z∗H�op

≤ 2
√

2�p−1A ◦ Y − z∗z∗H�op.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 04,2022 at 04:28:26 UTC from IEEE Xplore.  Restrictions apply. 



GAO AND ZHANG: EXACT MINIMAX ESTIMATION FOR PHASE SYNCHRONIZATION 8247

Therefore,

��z�zH − z∗z∗H�F

≤ 4
√

2�p−1A ◦ Y − z∗z∗H�op

≤ 1
p
�(A − EA) ◦ z∗z∗H�op +

σ

p
�A ◦ W�op.

By Lemma 5,

�(A − EA) ◦ z∗z∗H�op

= sup
�u�=1

������
�

1≤j �=k≤n

(Ajk − p)z∗j z̄∗kuj ūk

������
≤ �A − EA�op

≤ C1
√

np,

with probability at least 1−n−10. By Lemma 6, �A◦W�op ≤
C2

√
np with probability at least 1 − n−10. Thus,

��z�zH − z∗z∗H�2
F ≤ C3

n(σ2 + 1)
p

,

with probability at least 1−2n−10. For the MLE �z, it satisfies�z ∈ Cn
1 , and thus we can use Lemma 9 and obtain the bound

�(�z, z∗) ≤ 1
n
��z�zH − z∗z∗H�2

F ≤ C3
σ2 + 1

p
,

with probability at least 1 − 2n−10. For z(0), its definition
implies that

z
(0)
j z̄

(0)
k =

�zj �̄zk

|�zj �̄zk|
,

and therefore, we have

|z(0)
j z̄

(0)
k − z∗j z̄∗k| ≤ 2|�zj �̄zk − z∗j z̄∗k|,

by Lemma 11. Use this inequality, and we have

�z(0)z(0)H − z∗z∗H�F ≤ 2��z�zH − z∗z∗H�F,

and thus �z(0)z(0)H − z∗z∗H�2
F ≤ C4

n(σ2+1)
p with probability

at least 1 − 2n−10. By Lemma 9, we have

�(z(0), z∗) ≤ 1
n
�z(0)z(0)H − z∗z∗H�2

F ≤ C4
σ2 + 1

p
,

with probability at least 1 − 2n−10. The proof is complete.
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