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Exact Minimax Estimation for
Phase Synchronization

Chao Gao

Abstract— We study the phase synchronization problem with
measurements ¥ = 7z 4+ oW € C"*", where z* is an
n-dimensional complex unit-modulus vector and W is a complex-
valued Gaussian random matrix. It is assumed that each entry Y;;

J
is observed with probability p. We prove that the minimax lower
bound of estimating z* under the squared £2 loss is (1—0(1)) %
We also show that both generalized power method and maximum
likelihood estimator achieve the error bound (1+o0(1)) % . Thus,

o

% is the exact asymptotic minimax error of the problem. Our
upper bound analysis involves a precise characterization of the
statistical property of the power iteration. The lower bound is

derived through an application of van Trees’ inequality.

Index Terms— Angular synchronization, minimax risk, power
method, maximum likelihood estimator.

I. INTRODUCTION

HE phase synchronization problem [1] is to estimate n

unknown angles 67, - - - , 6 from noisy measurements of
(07 — 0;) mod 27. In this paper, we consider the following
additive model [2]-[5]:

Yii = 2;z;, + oWy, € C, (H

for all 1 < j < k < n, where we use the notation x for the

complex conjugate of z. We assume that each z7 € C; =
{z € C: |z| = 1} and we can thus write it as 2} = e
The additive noise Wjy, in (1) is assumed to be i.i.d. standard
complex Gaussian.! Without the constraint that z* € C?, (1)
is recognized as a standard matrix spiked model. Our goal in
this paper is to study minimax optimal estimation of the vector

z* € C} under the loss function

n
0(z,27) :(grelgz&\ja—z; 2, 2)
j=1
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For W, ~ CN(0,1), we have Re(W;) ~ N (0, 3) and Im(Wy,) ~

)3
N (0, %) independently.

and Anderson Y. Zhang

We remark that the minimization over a global phase in the
definition of (2) is necessary. This is because the global phase
is not identifiable from the pairwise observations (1).

Various estimation procedures have been considered and
studied in the literature. For example, the maximum likelihood
estimator (MLE) is defined as a global maximizer of the
following constrained optimization problem

max z"Y z, 3)

z€Cy
where Y is Hermitian with Yj;, = ij forall 1<k<j<n
and Y;; = 0 for all j € [n]. Note that (3) can be shown
to be equivalent to min;ecy Zléj<k§n |Yir — Zj5k|2~ It was
shown in [6] that the MLE satisfies ¢(Z,2*) < Co? with
high probability for some constant C' > 0. However, the opti-
mization (3) is nonconvex and computationally infeasible in
general. To address this problem, generalized power method
(GPM) [7]-[9] and semi-definite programming (SDP) have
been considered in the literature to approximate the solution
of (3). The generalized power method is defined through the

iteration,?
(t=1)
L0 _ Zkeln\t) Yok
j 1)

“4)
=
ke 5} ik

In other words, one repeatedly computes the product
Y2~ and projects this vector to C} through entrywise
normalization. When the iteration (4) is initialized by the
eigenvector method,? [4] shows that 2(®) converges to the
global maximizer of (3) at a linear rate under the noise level

condition ¢? = O( ) For its statistical performance,

logn
[10] shows £(z(1), 2*) < Co® with high probability for some
constant C' > 0 eventually. The semidefinite programming is a
convex relaxation of (3). It refers to the following optimization
problem,

max

™Y Z bject to diag(Z) = I,, and Z = 0.
o pnax r(YZ) subject to diag(Z) and Z =

Q)

In general, the solution of (5) is an n X n matrix that does
not directly leads to an estimator of z*. When o2 = O(n'/?),
it was proved by [6] that the solution to (5) is a rank-one
matrix Z = Zzz", with Z being a global maximizer of (3).
This result was recently proved by [4] to hold under a weaker
2When the denominator of (4) is zero, take zj(.t) = z(.t_l).

3The eigenvector method estimates z;.‘ by 1, where u € C™ is the leading
eigenvector of Y.
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condition 0% = O (bZn)- Given the fact that SDP solves (3),
we know that it also achieves the same high-probability error

bound £(Z, 2*) < Co? as that of the MLE under the additional

s 2 _ n
condition ¢ = O <log — .

Despite these estimation procedures studied in the literature,
it remains an open problem what the optimal error under the
loss (2) is. In this paper, we establish a minimax lower bound
for phase synchronization. We show that

2

inf sup E.0(3,2) > (1—6)Z, 6)
zeCy z€CY 2
for some § = o(1) under the condition that o2 = o(n).

Here, by infzecy, we mean the infimum over all measurable
functions (of the data) whose range is C}. The notation E,
is the expectation operator induced by the data generating
process (1) indexed by z. This provides a stronger characteri-
zation of the fundamental limits of the phase synchronization
problem than the Cramér-Rao lower bound developed in
[11], [12], which is only established for unbiased estimators.
Instead, the lower bound in (6) holds for both unbiased and
biased estimators.

Moreover, in this paper, we prove both the MLE and the
GPM achieve the error bound

0.2
02 < (1405, %)

for some 0 = o(1) with high probability under the same
condition 02 = o(n). In other words, these two estimators
are not only rate-optimal, but are also exactly asymptotically
minimax by achieving the correct leading constant in front
of the optimal rate. In addition, since we know by the result
of [4] that the solution of the SDP is a rank-one matrix zz"
with Z being the MLE, the SDP also achieves the optimal

error bound (7) as a direct consequence, but under a stronger

condition 02 = O ( == ).
ogn

To formally state our main result, we introduce a more
general statistical estimation setting that allows the possibility
of missing entries [13], [14]. Instead of observing Y}, for
all 1 < j < k < n, we assume each Yj, is observed
with probability p. In other words, consider a random graph
A, ~ Bernoulli(p) independently for all 1 < j < k < n, and
we only observe Y, that follows (1) when Aj;, = 1. Define
Ajr, = Apj for 1 <k < j<mnand Aj; =0 for j € [n]. The
full observations can be organized into two Hermitian matrices
A and AoY, where o denotes the matrix Hadamard product.
The MLE and the GPM can be extended by replacing Y
in (3) and (4) with A;, Y.

Theorem 1: Assume 2% — oo and 1:gpn — 00. Then, there
exists some d = o(1) such that
o2
inf sup E.4(Z,2z) > (1—-0)—. 8
2eCt ey 522 (=0, ®

Moreover, both MLE and GPM achieve the error bound

o2
U(z,2") < (14—5)%7 ©

o

with probability at least 1 — n=8 — exp (— ("—5)1/4).
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Theorem 1 immediately implies (6) and (7) as a special

np

case of p = 1. We remark that both conditions - — oo

and lg;pn — oo are essential for the results of the above
. . . . . 2
theorem to hold. Since the minimax risk of the problem is g—p,

.. . . . 2
the condition 2% — oo, which is equivalent to & = o(n),
o 2

guarantees that the minimax risk is of smaller ordé)r than the
trivial one. The order n is trivial, since ¢(z,z*) < 4n for
any z,2* € C?. When p = 1, the necessity of 02 = o(n)
for a consistent estimation is understood in the literature [4],
[15]-[17]. In fact, the MLE and the GPM are no longer
optimal when o2 = n, and optimal phase synchronization
under this regime can be achieved by approximate message
passing [9], [16], [18]. The condition % — 00 guarantees
that the random graph A is connected with high probability.
It is known that when p < c% for some sufficiently
small constant ¢ > 0, the random graph has several disjoint
components, which makes the recovery of z* up to a global

phase impossible.

Since £(z,z) < 4n and exp (— (%)1/4) = 0(%),

the MLE and the GPM also satisfy the in-expectation bound

2
sup E.0(Z,2) < (1 + 5)0— +4n"7,
2€Cy 2p
for some § = o(l). We remark that the high-probability
exponent —8 of Theorem 1 can actually be replaced by —C'
for an arbitrarily large constant C' > 0. This implies the 4n~"
term in the above display can also be improved to 4n—(¢—1)
for any constant C' > 0. If we further assume that o2 /p>n—¢
for some constant ¢ > 0, we will have

HT < inf ¢ 5T
1-0)— < inf sup E 0(Z,2) < (1+0)—
(1-0)3, < nf up B:l(5,2) < (L+0),

for some § = o(1). Thus, ”—; is the exact asymptotic minimax
risk for phase synchronization.

Our analysis of the upper bounds relies on a precise statisti-
cal characterization of the power iteration map f : C}" — C7.
Let f be the map that characterizes the iteration of the GPM.
That is, 2" = f(2(*=1)). We show that as long as z € C}
satisfies £(z,z*) = o(n), the vector f(z) must satisfy

2
U(f(2),2%) < 60z, 2%) + (1+5)‘2’—p, (10)
for some 6 = o(1) with high probability. To be more precise,
we prove that the inequality (10) holds uniformly overall
z € CT such that ¢(z,2z*) < yn for some v = o(1) with
high probability. The bound (10) immediately leads to the
optimality of the GPM. This direct analysis of the power
iteration is very different from what has been done in the
literature. In the literature, the statistical error bound of the
GPM is derived through its convergence to the MLE [4], [7],

. .. 2 _ n
but that requires a stronger condition o = O Togn

when p = 1. In contrast, our analysis of GPM is not based
on its relation to the MLE. On the opposite, we analyze the
MLE based on its relation to the GPM. The optimality of
the MLE can also be derived from (10). This is by showing
that MLE is a fixed point of the map f. That is, z = f(Z), and

at least
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therefore with z = Z, we can rearrange (10) into the bound
o~ 146 o2
0z, 2) §.1—f5‘2’—p. N
To derive the lower bound result, we show that it is suffi-
cient to analyze the Bayes risk of a subproblem of estimating

the relative angle z;Zz;, for each j # k,

igf//w(zj)ﬂ(zk)Ez@—zj2k|2dzjdzk,
T

where inf4 means the infimum over all measurable functions
of the data, and m(-) is a density function on C;. In other
words, the difficulty of estimating a vector in C} is determined
by the average difficulty of estimating z;Z; given the knowl-
edge of (21)iep)\ 5,k for all j # k. To lower bound (11),
we apply a multivariate van Trees’ inequality [19] that relates
the Bayes risk (11) to the Fisher information of the phase
synchronization model.

a) Paper Organization: The rest of the paper is organized
as follows. In Section II, we establish a key lemma that
implies the critical inequality (10). The implications of the key
lemma on the statistical error bounds of GPM and MLE are
discussed in Section III, which establishes (9) for Theorem 1.
The minimax lower bound of phase synchronization is proved
in Section IV, which establishes (8) for Theorem 1. Finally,
Section V collects the remaining technical proofs of the paper.

b) Notation: For d € N, we write [d] = {1,...,d}.
Given a,b € R, we write a Vb = max(a,b) and a A b =
min(a,b). For a set S, we use I{S} and |S]| to denote its
indicator function and cardinality respectively. For a complex
number z € C, we use Z for its complex conjugate and
|z| for its modulus. For a matrix B = (Bj;) € Cdixdz
we use B" € C%*% for its conjugate transpose such that
B" = (By;). The Frobenius norm and operator norm of B

are defined by ||B|lr = \/251:1 EZ; |Bj|? and || Blop =
SUPyecdt weCdz:|ul|=|v||=1 u"Bv.For U,V € Ch*d2 oV €
R4>42 j5 the Hadamard product U o V = (U;;Vji). The
notation P and [E are generic probability and expectation
operators whose distribution is determined from the context.
For two positive sequences {a,} and {b,}, a, < b, or
a, = O(b,) means a, < Cb, for some constant C' > 0
independent of n. We also write a, = o(b,) or &= — oo
when limsup,, 3= = 0.

(1)

an
bn

II. A KEY LEMMA

Recall that we observe a random graph A;;, ~ Bernoulli(p)
independently for all 1 < j < k& < n. Whenever A, = 1,
we also observe Yj, = 27z + oW with Wy, ~ CN(0,1).
In summary, the observations contain an adjacency matrix A
and a masked version of pairwise interactions A o Y, which
are both Hermitian as we define Y}, = ij and Aj, = Ayg;
forall1 <k <j<mnandYj; = Aj; =0 for all j € [n].

In this section, we establish a lemma that shows the con-
traction of the loss function through the generalized power
method. Note that E(A oY) = pz*z*"—pl,, with its leading
eigenvector proportional to z*. We can thus estimate z*/+/n
by computing the leading eigenvector of A o Y. Algorithmi-
cally, this leads to the power iteration that repeatedly computes
(A oY)z and then applies ¢» normalization. In the setting of

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

phase synchronization, since we know z* € C}, the gener-
alized power method then replaces the /> normalization by a
normalization applied to each coordinate. This GPM algorithm
can be explicitly written as

1

(t—
Zke[n]\{]} AjrYjrzy,
(t—1)] 2

L0 Lkemi\ iy AikYinz, ) (12)
J - if > eimn i) Ajijkzkf( )# 0,
t—1 . t—1
G 1 Depny AnYezy =0
Let us shorthand the above formula as
2 = ), (13)

by introducing a map f : C} — C¥ such that the jth entry of
f(2*=1) is given by (12). The following lemma characterizes
the evolution of the loss function (2) through the map f.

Lemma 1: There exist constants ¢, co, C1,Cy > 0, such
that if 2% > ¢; and % > ¢g, then, for any v € [0,1/16),
we will have

2
]P’(E(f(z),z*) < 01l(z,2")+ (1 + 5g)g—p for all z € C¥

1/4
such that £(z, 2") < vn) >1—n"? —exp <— (n—f) > ’
g

o logn+o2 o 2 lognto? 1/4
where 6, = C} e and 6o = Co (v* + = .

Remark 1: The result of Lemma 1 is established for the

map f defined through (12), where we set zj(t) = =D f

the denominator is 0. We remark that =" = 2" is not
important and it can be replaced by any number in C; without
changing the result of Lemma 1.

The lemma shows that for any z € C} that has a nontrivial
error, the vector f(z) will have an error that is smaller by
a multiplicative factor §; up to an additive term (1 + d2)
Plugging z = z* into the inequality reveals that

o’
2p°

(f(z"),2%) < (1+ 62>‘2’—p.

Thus, the additive term (1 + 52)‘5—2 can be understood as
the oracle error givegl the knowledge of z*. Indeed, we show
in Theorem 5 that g—p is the minimax lower bound for phase
synchronization under the loss function (2).

The two conditions Z—é’ > ¢; and I:I’n > ¢y are essentially
necessary for the result to hold. While = makes sure

np

2 . . . . .
that the error g—p is sufficiently small compared with the trivial
n, the condition =2~ > ¢y guarantees that the random graph

is connected. We can also slightly strengthen the conditions to

2% — oo and o2~ — oo so that both §; and d; are vanishing.

logn
Lemma 1 implies that as long as ¢(z(*~1), 2*) < ~n for
some y < 1/16, the next step of power iteration (12) satisfies

2

00, 2) < 610D, %) + (1 + 52)3—. (14)
p

The condition £(z(*=1) 2*) < yn then implies £(2(*), 2*) <

dyn+ (14 52)%. Given that 7% is sufficiently large (for a

sufficiently large c;), we can always choose 7y not too small

so that 01yn + (1 + 52)‘2’—; < yn. Therefore, £(2(), 2*) < yn.
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Thus, a simple induction argument implies that (14) holds for
all t > 1 as long as £(2(?), 2*) < yn. The one-step iteration
bound (14) immediately implies the linear convergence
1+ 69 o?

1-— 51 2}7,

0z, 2%) < 880(z, 2%) + (15)

for all ¢t > 1.

ITI. OPTIMALITY OF GENERALIZED
POWER METHOD AND MLE
In this section, we show thgit both the GPM and the MLE
achieve the optimal error g—p by using the conclusion of
Lemma 1. Theorem 2 and Theorem 3 together establish the
upper bounds (9) for Theorem 1.

A. Generalized Power Method

The result of Lemma 1 implies that (15) holds for all ¢ > 1,
as long as £(2(?)| 2*) < yn for some v < 1/16. Since z*/\/n
is the leading eigenvector of E(A oY), we can compute the
leading eigenvector of AoY as the initialization of the power
method. Let 7 € C™ be the leading eigenvector of AoY’, and
we define z(°) according to
Z(o):{ﬁ, u; # 0, (16)

J 1, ;=0

It is easy to check that z(0) CY, and thus can be applied
by the power iteration (12). This leads to the GPM for phase
synchronization, which is formally presented as Algorithm 1.

Algorithm 1 Generalized Power Method for Phase
Synchronization

Input: The data AoY and the number of iterations ¢, ax.
Output: The estimator Z = zlmax,

1 Obtain 2(?) from the leading eigenvector of A oY
by (16);

2 fOI'lf: 1, 7tmax dO

20 = f(z0),

where f(-) is defined in (12).
end

The error bound of z(?) is given by the following lemma.
Lemma 2: There exist constants ¢,C' > 0 such that if

el > c, then we will have
ogn

2
1
(=0, < 07—,

with probability at least 1 — n =Y.

Under the condition that 7% and =2
o ogn

the error rate of Lemma 2 satisfies ¢(2(?),2*) < ~n holds
for some v < 1/16. By Lemma 1 and its implication (15),
we directly obtain the following result.

Theorem 2: There exist constants ¢y, ca, C' > 0 such that if
Z’—é’ > ¢y and 1:;” > (o, then the GPM (i.e, Algorithm 1) will
satisfy

2\ 1/4\ 2
(0, ) < <1+c (M) ) o
np 2p

are sufficiently large,

8239

for all ¢t > log (2) with probability at least 1 — 2n=9 —
np\1/4
exp (- (28)").

We remark that the number of iterations log (#) required
by the theorem can be improved in some special cases.
For example, when p = 1, the error bound of Lemma 2
can be improved to /(2(?),z*) < Co? by a matrix per-
turbation analysis [7]. Then, (14) implies that £(z(1), 2*) <

1/4

1+C (W) ) f’; In other words, when the graph
is fully connected, a one-step refinement of power iteration is
sufficient to achieve the optimal error.

B. Maximum Likelihood Estimator

Next, we discuss how the result of Lemma 1 also implies
the optimality of the MLE. According to the data generating
process, the MLE is given by

Z = argmin E Aj|Yik — 22 )%,
2€CY 1 <jTh<n

A7)

which is equivalent to argmax_ccq 2" (A 0Y)z. By the defi-
nition of Z, its jth entry must satisfy

Z; = argmin Z Ajk|Yik — 2jZ)?
€0 keln\ (5}
_ Lke gy AikYieZx
‘Eke[nmj} Ajijkgk"

as long as Zke[n]\{j} AjrYi1z, # 0. In other words, we have
z=[f(2),

and the MLE is a fixed point of the power iteration. As long
as we can establish a crude bound /(Z, z*) < n for some
v < 1/16, Lemma 1 automatically leads to the optimal error
of the MLE.

Lemma 3: There exist constants ¢,C > 0 such that if

lfgp — > ¢, then the MLE will have error bound

2
1
0z, < 02 p* ,

with probability at least 1 — n =7,
M

Again, under the condition that 2% and 72~ are sufficiently
large, we have ((Z, z*) < yn for some v < 1/16. Lemma 1
implies that

2
03, 2%) < 6l(E,2) + (1 + 52);’_p.

After rearrangement, we obtain the bound £(Z,z*) <

2 . . . .
% "7. The result is summarized into the following theorem.

Theorem 3: There exist constants ¢y, ca, C' > 0 such that if

2L > ¢ and lgg’n > cg, then the MLE (17) will satisfy

1 2\ 1/4 2
0(z,27) < (1+C(Ln+a ) z,
np 2p

with probability at least 1 —2n~% — exp (— ("—5)1/4 .

o
To close this section, we briefly discuss the implication

of Lemma 1 on semi-definite programming (SDP) when the
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graph is fully connected. In other words, we only consider
p = 1. This is by leveraging a recent result on the con-
nection between SDP and MLE by [4]. Recall the definition
of SDP in (5). The following result is a special case of
Theorem 5 of [4].

Theorem 4 ([4]): Assume o2 < clogn for some sufficiently
large constant ¢ > 0. Then, with probability at least 1 —n~—!,
the SDP (5) admits a unique solution ZZ*, where Z is a global
optimum of (17) with all A, = 1.

This equivalence of SDP and MLE immediately implies the
following result.

Corollary 1: There exist constants ¢, C' > 0, such that if
0?2 < ¢ and p = 1, then the unique solution of the SDP

logn ~ .
can be written as zz", where 2 satisfies

1 2\ 1/4 2
o) < (HC(M) il
np 2

with probability at least 1 — 2n~! — exp (— (%)1/4).

Corollary 1 requires a stronger condition o2 < clogn than
what is needed by Theorem 2 and Theorem 3 when p = 1.
This condition is needed for the equivalence between SDP and
MLE, which is established via an £, norm argument in [4] and
is thus very unlikely to be weakened. Whether the equivalence
between SDP and MLE continues to hold when p < 1 is a
less clear issue in the literature. In general, the solution to
the SDP (5) is not necessarily a rank-one matrix. Obtaining
an estimator in C} requires a post-processing step such as the
rounding method suggested by [16], the consequence of which
is unclear to us.

IV. MINIMAX LOWER BOUND

We study the minimax lower bound of phase synchroniza-
tion in this section. The minimax risk is given by

inf sup E.{(Z, 2)

zeCy zeCy
n
= inf sup E, | min E |/Z\ja—2j|2 , (13)
zeCy zeCn a€Cy =

where E. is the expectation of (A oY, A) under the model
A]‘kY}k = AijjZk + O'Ajijk and Ajk ~ Bernoulli(p).
The main difficulty of analyzing (18) is that the loss function
0(Z,z) is not separable in j € [n] because of the identity
0(Z,z) = 2(n —|2z"2*|). This difficulty can be tackled with
the following inequality
* 1 25oH H||2
Uz, 2%) > 2nsz 22" %, (19)

which is proved in Lemma 9. Since the right hand side of (19)
can be written as > p<, |22k — z;Zx|?, we can lower
bound (18) by o

inf sup E.¢(Z, 2)

EEC;L ZGC;L
1
> — inf sup E,||Z2" — 22"||2
= o, EECT'ZE(% z” HF
1 - =
> —inf Z /HW(Zz) Ez|5‘}2k—zj5k|2dz
2n z =1

1<j#k<n

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

1 .
Z o Z EZ—(M)NWHTlf (20

1<j2k<n
//W(zj)w(zk)Ezﬁ — zj2k|2dzjdzk,

where 7 is some density function supported on C; to be
specified later, and the notation E._ = means expectation
over z except for its jth and kth entries with respect to the
distribution 7. In the above display, the second inequality is
due to the fact that we can lower bound the supremum over
z by an average over z, ie., sup,ccp E.[|Z2" — 22"[f >
J(IT2, 7(21)) E.||22" — 22"||3d2. From (20), it is sufficient
to lower bound

igf//w(zj)ﬂ(zk)EZ@—zj2k|2dzjdzk
7

for all j7 # k. This corresponds to the problem of estimating
25z, with other entries of z assumed to be known.

By symmetry, we consider the problem with 7 = 1 and
k = 2. Given the knowledge of z3, - - - , z,, we can decompose
the likelihood function as

p(AoY, A)

= p(A)p(A12Y12|A) H p(A1;Y1;]A)p(Az2;Y2;]A)
=3

< ] pAxYiklA).

3<j<k<n

Since p(A) [3<;<r<n P(AjrYje|A) is independent of
z1Z2, the sufficient statistics for estimating z1zs is
A19Y12, A13Yi3, -+, A1 Yy, and Ag3Yas, - -+, Ay, Ys,. Now
we restrict z; ~ 7 by requiring z; = a++v/'1 — a?i with a ~ f
for some density f supported on the unit interval [0, 1]. Then,
we can represent z; and zo by

z71=a++vV1—a% and zo =c+\V1—c2i.
Define
T(a,c) = ac+ /1 —a2y/1— 2,
S(a,c) = MC—am.

With this notation, we have
z122 = T'(a,c) + S(a,c)i.

The likelihood p(A12Y12|A) corresponds to the distribution

T(a,c)) 1 9
N (A12 (S(a,c)) ,514120 Iy ). (21)
For j = 3,--- ,n, we have Yi; = 21z; + ocWy;. Since z;
is known for j = 3,---,n, observing Y7, is equivalent to

observing Yi;z; = 21 + cWy,z;, and we still have Wy z; ~
CN(0,1) by the property of complex Gaussian distribution.
This argument implies that the likelihood H;L:?) p(A1;Y1,]A)
is proportional to the density function of

o Z?:g Ay

N ZAU <\/1a—c12>7 2
=3

L. (22)
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Similarly, H;L:?, p(A2;Y2;|A) is proportional to the density
function of

o Z;Z:Zi Ag;

n
c .
A2j ( 2) ,
e Vi——¢ 2

Therefore, we have the identity

lllf //71'(2’1)71’(22)1[‘32|T\ — 2’152|2d2:1d2:2

i [ron

[(T ~T(a,¢))?

where the expectation E(, ) is under the product of the
conditional distributions (21), (22) and (23) with marginal
given by A;, ~ Bernoulli(p). The quantity (24) can be lower
bounded by van Trees’ inequality [19], and the result is given
by the following lemma.

Lemma 4: There exist constants ¢, C' > 0 such that as long
as 7% > c, there exists some nice density function f supported
on the unit interval such that

it [ [ 601108 [(F 7007

2 2
dade > (1_c<0_+1)>0_.
np n np

Plugging the result of Lemma 4 into (20), we have imme-
diately the following theorem, which establishes the lower
bound (8) for Theorem 1.

Theorem 5: There exist constants ¢,C' > 0 such that as

long as % > ¢, then we will have

2 2
REE
np n 2p

V. PROOFS

I ]. (23)

E(a c) (24)

+(S - S(a, c))Q} dade,

+ (5= S(a,))?]

inf sup E.l(Z,z) >
zeCy z€Cyp

This section presents the proofs of all technical results in
the paper. We first list some auxiliary lemmas in Section V-A.
The key lemma that leads to various upper bound results
(Lemma 1) is proved in Section V-B. Then, we prove Lemma 4
in Section V-C. Finally, the proofs of Lemma 2 and Lemma 3
are given in Section V-D.

A. Some Auxiliary Lemmas

Lemma 5: There exist constants ¢,C' > 0 such that if

o > ¢ then we will have
2
max Z (Ajr —p) | < Cnplogn,
T \ ety
and

|A—EA|o, < Cy/np,

with probability at least 1 — n =19,

Proof: The first result is a direct application of union
bound and Bernstein’s inequality. The second result is
Theorem 5.2 of [20]. O

8241

Lemma 6: There exist constants ¢,C' > 0 such that if

np
ogn = G then we will have

[AeWllop < Cy/np,

with probability at least 1 — n =19,
Proof: We use P, for the conditional probability P(-|A).

Define the event

= { max
JE[n]

Z Ajr <2np

ke[n]\{5}

Under the assumption 7% > ¢, we have P(A) <
—!1 by Bernstein’s inequality and a union bound argument.

By Corollary 3.11 of [21], we have

sup P4 (|[A o Re(W)]lop > C1/np +t) < e,t2/27

AcA
for some constant Cy > 0. This implies that
supye s Pa (J[AoRe(W)lop > Coy/mp) < n~ 't for

some constant Co > 0. Thus, we have

P (||AoRe(W)|lop > Cay/np) < P(A°)
+ sup P4 (| A o Re(W)||op > Cay/np) < 2n~
AcA

The same high probability bound also holds for ||A o
Im(W)||op. Finally, the desired conclusion is implied by
|40 Wlay S 14 0 Im(W)llop + 14 0 Re(W)lo. &

Lemma 7: Consider independent random variables X, ~
N(0,1) for 1 < j < k <n. Assume Xj; = X for 1 <j <
k < n. There exist constants ¢, C' > 0 such that if lgfgpn > c,
then we will have

2

Y ApXe | <n(
ke[n]\{5}

n

D

Jj=1

n—1)p+ Cv/n3p?logn,

with probability at least 1 — n~1'9. The same result holds if
Xi; = —Xj, is assumed instead for 1 < j < k < n.

Proof: We use P, for the conditional probability P(-|A).
We only prove the case where Xj; = X3, for1 < j <k <mn,
as the same proof holds for the other case X;; = —Xj;, for
1<j<k<n.

Define the event
A = { max A < 2np,
{jam 2 A<
ke[n]\{7}

Z Z Ajr <n(n—1p+ 5\/n2plogn}.

J=Lke[n]\{5}

—11

Under the assumption lonpn > ¢, we have P(A°) <

by Bernstein’s inequality and a union bound argument. Define

2

9(X) =

NE

Z Aijjk

g=1 \ke[n\{j}
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Then, for any A € A, for any two symmetric matrices

X' X" € R""™ we have
lg(X") = g(X")]
2
< X X aneg-xw
J=1 \ke[n]\{j}
n
< SoAn Y (K- X
J=1 \ke[n\{j} ke[n\{j}
SRCTAD D DINC RS AL

J=1ke[n]\{5}

HICEER

j=1k>j

= 2/np

where the first inequality is by the triangle inequality and
the second inequality is by the Cauchy-Schwarz inequality.
As a consequence, g(X), as a function of the upper triangular
matrix of X, has a Lipschitz constant bounded by 2,/np.
By a standard Gaussian concentration inequality for Lipschitz
functions [22], we have

P (lg(X) = E(g(X)[A)| > t\/np)
P(A%) + sup P (lg(X) = E(g(X)|A)| > ty/np)

< p M4 2€Xp(—Clt2),

IN

for some constant C; > 0. Therefore, by choosing ¢t =
Cs5+/log n for some constant Cy > 0, we have

9(X) <E(g(X)|A) 4+ Cay/nplogn,

with probability at least 1 — 2n~ 1. Additionally, we have

2

E(g(X)|A) < Z Ajr Xk

ke[n]\{7}

SE
j=1

= i: Do A

g=1 keln]\{s}
By the definition of A, we have E(g(

n(n —1)p + 5/n?plogn on A. Hence,
g(X) < \/n(n —1)p+5y/n?plogn + Cov/nplogn,

—10

X)) <

with probability at least 1 — n~"", and the desired result is

implied by squaring both sides of the above inequality. O
Lemma 8 (Lemma 13 of [23]): Consider independent ran-

dom variables X; ~ N(0,1) and E; ~ Bernoulli(p). Then,

. 2
t t
P ZXjEj/p >t | <2exp (—min (fG_n’%>>’

j=1
for any ¢ > 0.
Lemma 9: For any z,z* € C}, we have
nl(z, 2*) < ||z2" — 2*2*1||3 < 2nl(z, 2%).

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

Proof: The definition of £(z, z*) implies

U(z,2") =2n — sup (z"z"a+ 2z""za) =2 (n —|2"2%]).
la|=1
By direct calculation,
22" — 2* 2" ||f = 2 (n® — |2"2*%) .

We thus obtain the relation
B2t = a2, 27) (n |22

o) (- 1522

which immediately implies the conclusion.

|2z

Lemma 10: For any x € C such that Re(x) L — 1‘ <
‘Im(x)
Re(z) |"
Proof: Let x = a + bi, and then
z 1‘ _ Je—lall
|| ||
la + bi — Va2 + b?|
|z]
V(o — Va5 4 b2
a va? + b2
B 2b2
B a? + b2 + av/a? + b2
bl |Im(x)
- ~ |Re(x) |’
The proof is complete. O

Lemma 11: For any x € C\{0} and any y € C7,
‘ﬁ —y‘ <2z —yl.
Proof: We have |-%

x
||

—y| < | -]+ 1o -yl = el -

1+ o=yl = lle] = Iyl + o — y] < 2Je — yl. O
B. Proof of Lemma 1

We organize the proof into four steps. We first list a few
high-probability events in Step 1. These events are assumed to
be true in later steps. Step 2 provides an error decomposition
of ¢(f(z),2*), and then each error term in the decomposition
will be analyzed and bounded in Step 3. Finally, we combine
the bounds and derive the desired result in Step 4.

a) Step 1. Some high-probability events: By Lemma 5,

Lemma 6 and Lemma 7, we know that

mln Z Ajr > (n—1)p—Cy/nplogn, (25)
jE
n\{j}
max Z Ajr < (n—1)p+Cy/nplogn, (26)
n]\{j}
||A EAllop < Cy/np, (27)
[AoW|op, < Cy/np, (28)
2
ST AnIm(Wieziz)) (29)

=1 | kel
2
< % <1+C

logn
n Y
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n

ST YD AjRe(W.

J=1|ken]\{5}
logn
n Y

2
< 2P <1 +C

2
all hold with probability at least 1 — n~? for some
constant C' > 0. To establish (29)-(30), note that
V2Im(Wjkziz)), V2Re(Wjkziz;) are all independently
standard normally distributed for 1 <j <k <n. We also
have —Im(Wjr2z;25) = Im(Wjizi2;) = Im(Wy;25z);) and
Re(Wjr2;z7) = Re(W]kE;z]*») = Re(Wy;z;z};) for any
1<j<k<n.

In addition to (25)-(30), we need another high—prog)ability
inequality. For a sufficiently small p such that Z—% is
sufficiently large, we want to upper bound the random variable
PRy
such p is guaranteed by the condition that 2% is sufficiently
large, and the specific choice will be given later. We first bound
its expectation by Lemma 8,

- 20
E Pl =
j=1

np

k2% ) (30)

i—‘; ‘Zk’e[n]\{j} Ajijkz,:‘ > p}. The existence of

Z A]‘ijkzZ >p
ke[n]\{j}

Z A; kRe

ken\{s}

- 20
E Pl =
=1

Z A Im(Wigzp)| >
ke[n]\{5}

2

p? np pnp
4 (— )

25602> L

By Markov inequality, we have

np

< 4nexp (—

n

ZH 2—0 Z AiWikz| > p

" |ketnis)
2
< 1o exp : \/ r np ;
p*p 16
with probability at least
p? n p2 np
25602
pnp 1
>1—exp < )

Finally, we conclude that the events (25)-(31) hold
simultaneously with probability at least 9

1 — n7? —
_ 1 [/p*np
32 o2 :

(€19

exp
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b) Step 2. Error decomposition: For any z € C} such
that /(z, 2*) < yn, we can define z € C" such that

e ke iy AskYinzn
et (5 Ain

for each j € [n]. Denote z = f(z) then z; = Z;/|Z;| for each
coordinate such that z; # 0.

The condition £(z, z*) < n implies there exists some b €
C; such that ||z — z*b||* < yn. By direct calculation, we can
write

_ A2 e
3,57 = kelnl) T
ke (5} ik
Zke \{j}AJkWszk
ke (5} ik
> ketn\ (i} AikZib(zr — D)
Zkem\{y} Aji )
Eke Ny A
O—Zke NG A]kW]kzkz
2kep\ (5} ik

b

—%
J

=1+

which is equal to

1 - S*7 * 1 Z*7 *
1+ e szb(zk —z1b) — —— Tb(25 — 2;b)
(Zke n\{j} A'kizg(zk — Z;b)
2okein 1) A

Loy
L e
UZke[n]\{]} A Wik (2 —

2kern\iy ik
EDYENNG AakWszk
Zkernt A

1+ ﬁ S h_ Zib(zk — 25b) and

Zib(zr — z,fb))

2;0)Z;b

Now we define a9 =
a = ap/|ag|, and we have

T ox=7 1 —k—7 *
zjz;ab = |ao| — _1zjab(zj—zjb)+Fj+Gj+Hj,

where
o ey Ainziab(zr — 2b)
N =
ket (5} ik
1 - -
- Z zyab(zr — z1b),
kelnl\ {3} )
G - UZke[n]\{j} Ajijk(Zk—Z,:b)E;@b
J - )
2 ket {5} ik
04 e \{j}A]kWszkz
H =

ket (5} ik
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By Lemma 10, we have the bound

_ Im(z;2; ab)
- x 712 o ks 2 J
|Zj — zjab| = |Zijab - 1| S m 5 (32)
whenever Re(Z;jzjab) > 0 holds. By Cauchy-Schwartz

inequality, we have

1 * *
laol 21— ——[[="lllz = b2"| = 1 =27, (33)
under the condition ||z — 2*b||? < yn. We also have
k=1 * * \/ryn
n_1|zjab(zj—zjb)| < 71—].|Zj —2z7b < T

Therefore, as long as |F}| V |G|V |H;| < p, we have
Re(zjzjab) > 1 —3(\/7 + p).

Under the assumption that v < 1/16 and with a proper
choice of p that will be given later, we have 3(,/7 + p) < 1
and then Re(z;z;ab) is positive. Hence, the event {z; = 0}
is included in the event {|F;| V |G;| V |H,| > p}.

By (32), we obtain the bound

5 — zabf

(34)

Im(z; 2} ab)
~ |Re(zz5a ab)
+4]I{|FJ| V|G|V [Hj| > p}

]- 1 —% =7 *
m <_n — Jab(z; — zjb)>

S U301
+Im(F)) + Im(G;) + Im(Hj)‘

HIF VG|V [Hj| < p}

+AI{|E;| > p} + 4{|G;| > p} + 4I{[Hj| > p},

which can be further upper bounded by
1+n

=T33 +9)7 (P
3(1+n7h)
s T mEr
314971 I 2
(1—-3(/7+p))? ( TR jb)>
1 fg(j% L))z [ (G5)[* + 4I{ F| > p}

+4I{|G;] > p} + 4I{|Hj| > p},

for some 7 which will be specified later. Here the last
inequality is due to the fact that (v1 + 22)? = 2} + 23 +
2\ 2ar) (7 200) < (1+ ) + (1+n~")ad for any
x1,T € R.

c) Step 3. Analysis of each error term: Next, we will
analyze the error terms £/, G; and H; separately. By triangle
inequality, (25) and (26), we have

|F5
}Eke \{j}(AJk —p)zpab(z, — Zkb)}
ket () Ak

1
|Eke[n1\{j} Aji (n—=1)p

+lp > Zab(z — 2ib)
ken]\ {5}
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2 * *
< P Z (Ajk — p)Zp(2k — 2h)
kel
2 ‘Zke[n]\{ 4 (Ajk —p)
+pvilz— bz T
2
< o > (Ajk —p)Fi(zk — 21b)
kel 17}
+ 017”9;;%‘””2 — b2

Using (27), we have

Z|Fj|2 2
7j=1

Z (Aje — p)z(2k — 2;b)
J=1|ken]\{5}
logn

+ 0250 b
np
< 2|\A EAHopnz—bz*|\2+021°gp"|| — bz
< C’glOgné(z,z ).
The above bound also implies
SHIF > o} < IR < 1B 2,

J=1 J=1

Similarly, we can also bound the error terms that depend
on G;. By (25) and (28), we have

- 20 "
z:|Gj|2 < 2 Z Z Aje Wik (2 — 21.b)
Jj=1 J=1|ke[n]\{j}
202 N
< Taaldo Wi,z — b=
2
S 030_6(252*)7
np
and thus
n n 03 0_2
D HIGH > p} < p Y IGP < 5 —L(z,27).
= = pe np

For the contribution of H;, we use (25) and (31), and have

> HIH;| > p}

j=1

z": 20

Z AjijkZZ >p
=t " kel sy

- 402 1 /p%2np
—exp [ ——1/ i
~ pPp P76V 52

Next, we study the main error term |[Im(H;)|*>. By (25),
we have
S
" logn o
S m(H)P < (14 Cny |22 ) T
~ np n?p

2

Z A Im(Wiezizia)|
ke[n\{j}

%
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which can be further upper bounded by
2

logn o2
np nZp?
2

n
x| > Auwlm(Wiziz))

J=1|ke[n]\{7}
2,
logn o

L+ (14 Cuyf
+(1+n )("’4 np>n2p2
2

x> 1Y AjRe(Wjrziz;)| |Im(a).
i=1 [ke[n]\{5}
By (33), we have

<(1+mn) <1+C4

I L z*I1lz = bz*
|a0| 1-2/y
1-2./7 2\r

where the last inequality is due to the assumption that v <
1/16. Together with (29) and (30), we have
logn o?
np 2p

n
> m(H;)?
j=1
need to

The
‘Im (—%12]*»&5(21- - z;b))‘ It can simply be bounded by
d) Step 4. Combining the bounds: Plugging all the
individual error bounds obtained in Step 3 into the error
decomposition in Step 2, we obtain

0(z,27)

< <1+C5 <n+n1'y+

last error term we analyze 1is

SR
j=1
< (14 (ot vAtntnive )T
< 61| P YTn—n v np %
+1602 1 pnp
ex
2p P16V o
_ oy logn +o0? .
+Cq (7 4 p2) 2R gz, 27,
np
We set
1 2 1 2
n= L logntot 4 P2 =/32 logn o7
np np

Then, since ”ff# is sufficiently large, we have

1602 1 /p? np o2 o2 \> 0% [o2
7 - &XP < 2 S

p*p 16 p? p \p* np P\ np

Therefore, we have
R 1 2\ 1/4 2
(3,27 < <1 Ly (f 4 M) z
np 2p

1 2
+C- M((z, 2.
T
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Since the above inequality is derived from the condi-
tion (25)-(31) and ¢(z, z*) < yn. It holds uniformly overall
z € CV such that ¢(z,2*) < ~n with probability at least
1—n"2—exp (— (%)1/4). The proof is complete.

C. Proof of Lemma 4
We use the version of van Trees’ inequality presented as

Equation (11) of the paper [19]. We have

1M//f

T T(a,c))* +

//n a,0))

where I(f) is the information of the prior which will be
elaborated later. The matrix J(a,c) is given by J(a,c) =
AB™1A, where

o(T,S)

:5‘(ac)
_(c m = a—m%&)

— 2 )
\/1 2 V1—a2+ T
and B is the Fisher information matrix. Due to the inde-
pendence between A12Y72 and {Alelj}j>3 U {A2;Ys;}
we have B = By + By with B

(S — S(a,c)) }dadc

(a)f(c)dade = I(f),  (35)

)

j=3’

2p 85 |2 oT oT
By = 0_2 <‘ 6T 5 da ‘ Qa B‘C_S‘
‘da Oc 0
and 2( 2) L 0
_sn—2)p (1=
BQ — 0_2 < 0 1_12> 9

In the following we show how to derive [Ba],;. Let (§,¢)"
be a bivariate normal random vector distributed according
to (22). Thus, the part of the likelihood function that involves
a is proportional to [(&, ¢, { A1, }j>3 ;) which is defined as

l(fa Cv {Alj}j23 5 a’)

Y G B
= exp Y, A

+<C—¢TTEE:AU>3>.

Jj=3

—aZA1j>2

Jj=3

Then

82 IOg l(f, C? {Alj}j23 5 a)
Oa?
_ 2¢ _ 2(n—2)p
o2(1—a?)? - (1-a?)o?
The rest of the entries of By and By can be calculated
analogously and are omitted here.
We then have

Tr(J(a,c)
> Tr(AB; ' A™) —
> 1B, 2 ar | (1

[32]11 =-E

| Tr(A((B1 + B2) ™" = By )A")]
— 1By (By + B2) 7' By* ~ e ) -
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By direct calculation, || By "/ AT||2 = —22°_ Therefore,

n2)
//Tr a,c))
a 1/2 1 p1/2
— 1= B;,’"(B1+ B By —1I
—p<n—2>< //” e 2le

f(a)f(c)dadc) .

(a)m(c)dade

Now we set f to be a density function of a distribution
supported on the interval [0.4, 0.6]. We set

1

0 —— = | [{04 <0 .6}.

1( )ocexp( 1_10|9_1/2|2> {0.4<6<0.6}
This makes f satisfy the regularity condition required by

[19] so that van Trees’ inequality (35) holds. By the choice of

f, we know that both a and ¢ are bounded away from 0 and

1. As a result, we have | Ballop < 2%, 1By Hlop < Z—; and
I(B1 + B2) Hlop S np - Thus,
|By/*(By + By) ™' B, — Lle
< | Ballopll(B1 + B2) ™" = By |
< |IBalloplI By *llopll(B1 + B2) " lop | Bi I
< ol
Hence, we have
[ [roeeans@saauez = (1)
a,c))f(a)f(c ac_(n_Z)p 1),

Finally, we need to provide an upper bound for I(f). The
definition of I(f) is given by

1
15)= /[0.4,0.6]2 oI 2

ik le{1,2}
(oK 0)7(00)762) ) (K (0)701)5162) ) .

where § = (01,02) = (a,c) and K () = AB~!, which is a
2 x 2 matrix depending on the value of § = (a,c). By the
regularity conditions satisfied by the choice of f, we have

2

max

0
— K1 (0
be [0406]2jk€{12} #(0)

1)< -

The above bound can be explicitly calculated via the def-
initions of A, B; and Bs, but we omit the tedious details.
Intuitively, the contribution of B; is negligible compared with
that of B», and the contribution of Bs is of order np / o°. Thus,

I(f) < Cs (n ) This leads to the lower bound

igf//ﬂ(zj)w(zk)Ez|f—zj2k|2dzjdzk
T
2

2
20—(1—0(1+U—>).
np n  np

The desired result is obtained by plugging the above lower
bound to (20). This completes the proof.
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D. Proofs of Lemma 2 and Lemma 3

The two lemmas can be proved via the same argument, and
thus we present the proofs together. For any z € C™ such that
||z]|> = n, we have

TTAoY —22"||f = lp P Ao Y ||F+n® —2p 12" (A0Y)z.
p F=1P F p
Therefore, miny,j2—, [|[p~'A oY — 22| is equivalent to
max|, 2, 2" (AoY)z. We can thus write 2(*) as z(o) ‘?‘,
J
where
2 =argmin|[p tAoY — 22"||3.
llz][2=n

(36)

On the other hand, for any z € C7,
> AV -zl
1<j<k<n
= > Ap(Ypl+1)
1<j<k<n
— > ApYik(zE + Z2)
1<j<k<n
> AVl +1) —2"(Ao0Y)z
1<j<k<n
> AVl +1)
1<j<k<n
— S (P Ao Y[R +n?

—p7 Aoy —22"f).

Therefore, min.ecy > < e, Ajk|Yie — 25 2] is equiv-
alent to min.ccr [[p~'A oY — z2"||%, and the MLE can be
equivalently written as

Z = argmin|[p tAoY — 22"||3.

2€CY

(37

Now we analyze (36) and (37) simultaneously. For Z that
is either (36) or (37), we have
[p~tAoY —Z2"|% < [lp~'AoY — 2" 2*||3.

Rearranging the above inequality, we have

<2Tr (227 - 2" ") (p~ Ao Y — 2"2™))]
which implies
||33H o Z*Z*H”F -
e
=2 (<M> (p~tAoY — Z*Z*H)> ‘ .
Since —Z—Z 2" is a Hermitian matrix of rank at most

) Zz8—z*2*H|p -
two, it has the spectral decomposition
EEH __Z*Z*H ° °
———————— = A\ uu" + A2 vv
ToH % ok H ’
|Z2% — z* 2+ ||p

where u, v are complex unit vectors orthogonal to each other
and A1, Ay are real and satisfy A\? + \3 = 1. Then, we bound
the right hand side of (38) by
2[A\| [ut(p~tAoY —

+2|Xo| [ (pTTACY —

< 2(IM] + D2 pTrA0Y — 2
<22l Ao Y — 2o,

2* *H)

u
* *H)U‘

"2 lop
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Therefore,
< 4V3p T Ao Y — 2
1 . s o
< EH(A —EA)o2"2 HHop + EHAOWHOP'

By Lemma 5,
[(A=EA) 0 2"2"op

= sup g (Ajk —p)z]*é;ujﬂk
Il =211 <k <n

<[l A—EAlop

S Cl auZ
with probability at least 1 —n~'0. By Lemma 6, || Ao W ||op <
Cy/mp with probability at least 1 — n ', Thus,

o n(o? +1)
122" — 2" 2™ < Cs———,

with probability at least 1 —2n~1°. For the MLE Z, it satisfies
z € C7, and thus we can use Lemma 9 and obtain the bound

1, . 241
03, 2%) < 2|7 — 222 < G T
n p

with probability at least 1 — 210, For (%), its definition
implies that

0) (0 ik
050 - Ef
2k

and therefore, we have

12020 — 22z < 2027 — 22,

by Lemma 11. Use this inequality, and we have
”Z(O)Z(O)H _ Z*Z*HHF < QH/ZVZ\H _ Z*Z*HHF;

and thus [|2(0)2(©% — 2272 < €, ™7+ with probability
at least 1 — 2n~1%. By Lemma 9, we have

1 241
0O, 27) < S0, _ e o2 o o, 1
n p

with probability at least 1 — 2n 10, The proof is complete.
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