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One of the outstanding analytical problems in X-ray single-particle imaging
(SPI) is the classification of structural heterogeneity, which is especially difficult
given the low signal-to-noise ratios of individual patterns and the fact that even
identical objects can yield patterns that vary greatly when orientation is taken
into consideration. Proposed here are two methods which explicitly account for
this orientation-induced variation and can robustly determine the structural
landscape of a sample ensemble. The first, termed common-line principal
component analysis (PCA), provides a rough classification which is essentially
parameter free and can be run automatically on any SPI dataset. The second
method, utilizing variation auto-encoders (VAEs), can generate 3D structures of
the objects at any point in the structural landscape. Both these methods are
implemented in combination with the noise-tolerant expand-maximize—
compress (EMC) algorithm and its utility is demonstrated by applying it to an
experimental dataset from gold nanoparticles with only a few thousand photons
per pattern. Both discrete structural classes and continuous deformations are
recovered. These developments diverge from previous approaches of extracting
reproducible subsets of patterns from a dataset and open up the possibility of
moving beyond the study of homogeneous sample sets to addressing open
questions on topics such as nanocrystal growth and dynamics, as well as phase
transitions which have not been externally triggered.

1. Introduction

X-ray single-particle imaging (SPI) is a method to reconstruct
3D structures of isolated nanoscale objects by collecting a
large number of diffraction patterns using bright X-ray pulses.
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The diffraction patterns sample the object’s 3D Fourier
transform along randomly oriented spherical slices, which
enables a Fourier synthesis of the 3D structure as long as the
orientations can be determined (Neutze et al., 2000). However,
the X-ray pulses are bright enough to destroy the sample after
each shot, and so each pattern is collected from a different
particle. If the particles are reproducible up to the resolution
of interest, then determination of the 3D structures is fairly
straightforward, involving the determination of the orienta-
tion and incident X-ray fluence for each shot. Various algo-
rithms have been proposed and implemented for this purpose,
including the expand-maximize—compress (EMC) algorithm
(Loh & Elser, 2009), which has been used for a number of
experimental demonstrations (Ekeberg et al., 2015; Rose et al.,
2018; Shi et al., 2018; Ayyer et al., 2019; Cho et al., 2021; Ayyer
et al., 2021). Other methods utilizing intensity correlations
have also been demonstrated experimentally (Kurta et al.,
2017; von Ardenne et al., 2018).

However, one of the challenges in analysing a serial dataset
like that produced in an SPI experiment is the proper classi-
fication of patterns in terms of their structures. This is a
necessary step in order to obtain a high-resolution structure,
since the underlying assumption of the above-mentioned
algorithms is that the particles are identical, which is never
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(a) Examples of diffraction patterns in the data set. The colour scale
maximizes at four photons. (b) The workflow of the CLPCA method. (c)
The upper row shows some typical frame averages in the dataset on a
logarithmic scale, while the lower row shows their corresponding real-
space 2D density projections via phase retrieval. The real-space field of
view is 132.4 nm.

true in practice. On the other hand, the framework used for
this classification can be used to study datasets where the
heterogeneity is not just a drawback, uncovering the landscape
of structural variations in the sample. This requires the
detection of discrete classes of object shapes representing
contaminants, aggregates efc. and even the detection of
continuous deformations, depending on the scientific problem
being studied.

In past years, different machine learning algorithms have
been developed for use in this classification of structural
variability. These algorithms are usually applied to the
patterns themselves using methods including spectral clus-
tering (Yoon et al., 2011), support vector machines (Bobkov et
al.,2015) and convolutional neural networks (Zimmermann et
al., 2019; Ignatenko et al., 2021).

In this work, we take an unsupervised learning approach to
analyse an experimental dataset of more than 2.4 million
diffraction patterns of nominally 42 nm cubic gold nano-
particles collected at the European XFEL (Ayyer et al., 2021).
The goal is to study the ‘structural landscape’ — classifying the
entire structural ensemble, including separating discrete
contaminants, as well as revealing any continuous structural
variations that may be present. We discuss two approaches, the
first of which produces an embedding of the diffraction
patterns based on their 3D structures. This approach can be
applied without modification to most SPI datasets. The second
is a generative method using variational auto-encoders
(VAEs) which enables us to visualize the 3D structure of the
particle at any point along its landscape. Both methods are
applied to the dataset to study the continuous XFEL-induced
deformation of the cubic nanoparticles to spheres.

2. Results
2.1. Experiment and dataset information

The dataset discussed in the rest of this work was collected
as part of the experiment described by Ayyer et al. (2021),
which we review in brief: The SPI experiment was performed
with the megahertz-rate European XFEL (Decking et al,
2020) on the SPB/SFX (single particles, biomolecules and
clusters/serial femtosecond crystallography) instrument
(Mancuso et al., 2019) with 6 keV photons in pulses with an
average energy of 2.5mJ (2.6 x 10'* photons) measured
upstream of the focusing optics. The adaptive gain integrating
pixel detector (AGIPD) (Allahgholi et al., 2019) was placed
705 mm downstream of the interaction region to collect each
diffraction pattern up to a scattering angle of 8.3°. In this
analysis, we will use data from the central region of the
detector up to 1.8°.

The samples were nominally gold cubes with edge lengths
42 nm and were injected into the X-ray beam via an electro-
spray aerosolization aerodynamic lens-stack sample delivery
system. For this sample, 34 197 950 frames were recorded, of
which 2 451 068 were judged to contain sample diffraction (hit
ratio ~7.17%). Part of the dataset was collected with the
European XFEL running at an intra-train repetition rate of
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1.1 MHz, during which a high fraction of the diffraction
patterns originated from spherical particles. This was found to
be due to the pre-exposure of particles in the wings of the
previous XFEL pulse in the train, which seemed to lead to
melting/rounding. This effect disappeared when reducing the
repetition rate to 0.5 MHz. As a result, the sample contains
diffraction patterns of cubes, spheres and, potentially, cubes at
different stages of melting/rounding.

2.2. Classification of the entire ensemble

There are two major challenges in understanding the
sample ensemble from the diffraction data. First, many of the
patterns are too weak (100-1000 photons per pattern) to apply
single-shot analysis, as illustrated in Fig. 1(a). Second, the
dataset is not structurally homogeneous, not just in that the
sample set included non-cubic particles, but also that a fraction
of the cubic particles suffered varied levels of melting due to
pre-exposure by the previous pulse in the train.

We first developed a common-line principal component
analysis (CLPCA) method to understand SPI datasets from an
arbitrary ensemble of particles. Fig. 1(b) shows our workflow,
which we discuss in detail below.

2.2.1. Generation of 2D averages via bootstrapping. Due
to the weak scattering signal in single diffraction frames, the
first step is to average similar 2D detector frames together
(accounting for in-plane rotations), which was done with the
2D classification procedure implemented in Dragonfly (Ayyer
et al., 2016). The code implements a modification of the EMC
algorithm that classifies all 2D frames into a given number of
averages (models, termed classes in Dragonfly). This aver-
aging improves the signal-to-noise ratio, corrects for incident
fluence variations and fills in detector panel gaps, at the
potential cost of washing out some structural variations. In
order to mitigate this last effect, one can use a very large
number of models, but this can lead to instabilities in the
iterative reconstruction and reduced signal-to-noise ratios in
individual class averages.

In order to get more pattern averages, a bootstrapping
method was used by running the reconstruction five times with
200 models, each time with a random subset of 80% of the
frames. In this way, each of the 1000 models are composed of a
different group of similar 2D frames. In Fig. 1(c), we show an
example of some typical 2D diffraction averages and corre-
sponding projected electron-density maps after phase retrieval
using a combination of the difference map and error reduction
algorithms similar to that employed by Ayyer et al. (2019).
This highlights the variety both in the samples and also in the
diffraction patterns from the same samples in different
orientations, such as the rotated versions of identical cubes in
the first two columns of Fig. 1(c).

2.2.2. Common line 3D classification. The 2D EMC
method can only group similar 2D frames together but, as
mentioned above, diffraction patterns of the same object can
look very different depending on the orientation. In order to
understand the variations of structures in the sample, we need

to classify the averages further through their 3D features,
rather than considering them just as 2D images.

At small scattering angles, each average is a Fourier trans-
form of a projection of the target object at a given orientation.
According to the Fourier slice theorem, this means that each
average represents a slice through the 3D Fourier transform of
the object. Any two patterns of different orientations from the
same object should share a common intersection line (at larger
angles, these lines become arcs), as shown in the illustration of
Fig. 2(a). The similarity of the diffraction intensities along the
best ‘common lines’ between two patterns should be corre-
lated to the similarity of their 3D structures. For each pair of
2D averages we calculated the cross correlation (CC) between
their radial intensity profile lines at different angles. We define
the common-line similarity between two 2D averages as the
value of the highest CC coefficient. This yields a common-line
similarity matrix (CC matrix) with a size of NxN for N 2D
intensity averages. We find that the relation of the CC value of
one average to all other averages acts as a signature of its 3D
shape, namely that all particles with the same shape, regardless
of orientation, have high values between each other and lower
values to distinctly shaped objects.

Common lines have been used previously for orientation
determination (Shneerson et al., 2008; Singer & Shkolnisky,
2011; Yefanov & Vartanyants, 2013), where the optimal angles
tell one how to fit the two slices in the 3D Fourier space. Here,
we are interested in the similarity index of the common lines
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Figure 2

(a) An illustration of the common line between two patterns of similar-
shaped objects but with different orientations. (b) The distribution of
1000 averages in the 3D CLPCA space. Different colours are manually
divided groups from the first two components: contaminants (blue), cubes
(red), transition (yellow) and spheres (green). Typical patterns for
averages in each group are also shown on a logarithmic scale.

IUCr) (2022). 9

Yulong Zhuang et al.

3 of 11

+ Machine learning for sample characterization



research papers

as a tool for structural similarity analysis, rather than the
relative angles at which they are maximized.

The 3D shape distribution was visualized using principal
component analysis (PCA), the inputs to which are the row
vectors of the CC matrix. Fig. 2(b) shows a 3D embedding of
the 1000 averages. In the rest of this article, we refer to this 3D
embedding as ‘CLPCA space’. Until this point, the entire
procedure is fully unsupervised and can be run automatically
for any SPI dataset.

By comparing with 2D patterns and their locations in
CLPCA space, we then qualitatively divided the CLPCA
space into four groups as shown in Fig. 2(b), where red
denotes cubes, green spheres, blue contaminants and yellow
rounded cubes. In the embedded space, CLPCA-1 separates
these assorted patterns from those originating from spherical/
cubic particles, CLPCA-2 separates spherical and cubic
particles, and for spherical particles, CLPCA-3 is associated
with their diameter (see Appendix D). In addition, we see a
sequence where particles transition from cubes to spheres.
This is a clear trace of the pre-melting processes observed in
the experiment. Without using any a priori knowledge about
the sample set, we are thus able to obtain a rough classification
of the dataset according to their 3D structures.

We also note from Fig. 2(b) that the dense cluster of cube
patterns are correctly identified as being from the same-
shaped particles, even though the patterns themselves vary
extensively at different orientations. For the sake of simplicity
we only perform the embedding with the PCA method, but
other dimensionality reduction methods could also be used
interchangeably. In Appendix A we show a comparison
between PCA and other embedding methods, showing no
strong preference in terms of separating structural classes for
this dataset.

2.2.3. Absolute embedding of images. The CLPCA method
provides a way of classifying unknown sample frames
according to their 3D structures. But the ‘similarity’ used for
generating the landscape is a relative concept, i.e. the distri-
butions in the embedded space depend on the sample one
chooses. This limits the classification and comparison of
certain subsamples. For example, one might want to look into
some subgroup in detail while still being able to relate them to
the whole-sample embedding, or generate new sets of
averages with bootstrapping. In addition, the time complexity
of calculating the similarity matrix scales as the square of the
number of models, which imposes a computational hurdle to
using too many models at once.

In order to get a quicker and more universal measure of
frame features after obtaining the embedding of a typical set
of averages, a neural network-based regression was used to
map any previously unseen averages into the defined
embedding space. Firstly, we extracted the relevant features of
the patterns: for each of our 1000 averages we Fourier-trans-
formed its azimuthal intensity variation at every radius and
kept the absolute values to make the pattern invariant to in-
plane rotations. We then kept frequency signals within the
spatial resolution at each radius as the training features, as
shown in Figs. 3(a)-3(c). We used the coordinates of the

averages in CLPCA space as training labels, as shown in
Fig. 3(e).

The neural network used for fitting the relation between the
pattern of 2D averages and their coordinates in CLPCA space
has four fully connected hidden layers with 512, 128, 64 and 32
nodes per layer, respectively. From the 1000 patterns used to
calculate the similarity matrix, 800 were used to train the
model, which was then validated with the rest of the 200
patterns with mean-square errors of 0.088, 0.059 and 0.042 for
components 1, 2 and 3, respectively. With this model, we were
quickly able to find the absolute embedding of any single 2D
intensity model and zoom into arbitrary subsets of patterns
while still retaining a reference to the full data set. An
example is shown in Fig. 3(d) where we use CLPCA on a
manually selected subset of averages in the ‘cube’ region of
CLPCA space. The frames which contributed to these selected
averages were classified using Dragonfly. The embedding of
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A brief illustration of the absolute embedding neural network (NN)
model. (a) The average pattern from Dragonfly. (b) A polar representa-
tion of the pattern. (¢) A stack of 1D Fourier transform magnitudes along
the angular axis for each radial bin. The odd frequency components (due
to inversion symmetry) and the higher frequencies for signals at smaller
radii have been removed. These represent the feature vectors for the
neural network. (d) An example of using absolute CLPCA on a selected
cubic subset of frames (red dots). The grey dots represent the embedding
of the pattern averages from the whole dataset. (¢) Training labels from
CLPCA.
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these new averages is shown in red with reference to the
whole-dataset CLPCA embedding.

In summary, the CLPCA method provides a robust and
mostly parameter-free framework to classify and visualize the
structural landscape of an arbitrary set of coherent diffraction
patterns.

2.3. 3D reconstruction of heterogeneous models

In the previous section we found a sequence where the
shape of the particles transitioned from cubic to spherical. To
understand this transition further, we would like to be able to
reconstruct the 3D models along the sequence. Given a set of
diffraction patterns from a discrete set of reproducible objects,
it is relatively straightforward to generate multiple 3D models
using the EMC algorithm (Ayyer et al., 2021; Cho et al., 2021).
Here, this approach is difficult for two reasons: (i) it needs to
assume a number of discrete heterogeneity models, which
does not qualitatively capture the continuous cube-sphere
transition, and (ii) we do not have enough patterns located in
the transition region to reconstruct 3D structures via EMC.

Fortunately, previous studies in cryo-electron microscopy
single-particle analysis provide a good way of modelling the
continuous heterogeneity. Zhong et al. (2021) developed
cryoDRGN, a variational auto-encoder (VAE) for the effi-
cient reconstruction of heterogeneous complexes and contin-
uous trajectories of protein motions. Inspired by their paper,
we developed a similar deep learning model by combining a
VAE and convolutional neural networks (CNNs) to model the
continuous shape transition along this ‘melting’ sequence.

2.3.1. Variational auto-encoders. Variational auto-encoders
(VAEs) are a neural network architecture introduced by
Kingma & Welling (2019), extensively used as generative
networks and to understand the internal relationships of a
dataset. They are a form of auto-encoder which are neural
networks which attempt to recover the input data using a
network with a bottleneck layer consisting of only a few
neurons, representing the dimensionally reduced dataset.
Fig. 4(a) shows the structure of our VAE neural network,
consisting of a 2D CNN pattern encoder to encode 2D
patterns, along with their orientation estimates, into distribu-
tions of latent parameters, and a 3D transposed convolution
network as volume decoder to generate 3D intensity volumes
from latent numbers. This setting allows the neural networks
to learn the 3D-heterogeneity structure-encoded latent
numbers from the diffraction patterns.

The inputs of the VAE network are the 2D intensity
averages used as input for the CLPCA method in the previous
section and their associated relative orientations. The former
are obtained from the Dragonfly output discussed in Section
2.2.1, while the latter are calculated as described below. We
start with the 3D intensity volume of an ideal 42 nm cubic
particle, slicing it with 16407 orientations distributed
uniformly in quaternion space within the O, subgroup to
account for the symmetry of the object. This subgroup was
chosen for this sample since we observed no symmetry
breaking in either the single-model reconstruction in Ayyer et

al. (2021) or in any of the 2D averages. The procedure
following the choice of samples is identical even if there is no
symmetry expected. The cross-correlation coefficient (CC) of
each 2D model is calculated with all the orientations. The
orientation with the highest CC is recorded for each model. In
addition, another parameter which helps in training is termed
‘gain’, referring to the ratio of the best to the average CC over
all orientations. This parameter can also indicate the ‘cubic-
ness’ of the particle since patterns from cubes fit very well to
the synthetic model.

The VAE works in the following manner: For each input
average X, its orientation Q2 and gain G, the encoder network
generates a Gaussian distribution of its latent variable values
N(u, o). The fact that this is not just a single latent vector z but
a distribution makes the auto-encoder variational and
enforces the smoothness of the latent space. It also enables the
network to use information from neighbouring regions in the
space to update regions with limited data. A latent vector z is
sampled using this distribution and used by the decoder to
generate a 3D intensity volume V3p, which is then symme-
trized by the octahedral point group. The known orientation is
then used to slice the generated 3D volume to get a recon-
structed 2D pattern X'. The goal of training is to minimize the
difference between X and X’ (further details in Appendix B).
Three-dimensional information is obtained since the same
latent space region is sampled by averages in a variety of
orientations.
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(a) A schematic diagram of the variational auto-encoder (VAE). It
consists of two convolutional neural networks as encoder and decoder,
and the model is fitted by comparing the similarity between the input and
decoder-generated 2D slices with additional regularization by assuming
the latent parameter follows an N(0, 1) distribution. (b) The distribution
of the 10 000 bootstrapped 2D average patterns in CLPCA space (grey).
Red dots are selected average patterns along the melting sequence used
for the VAE analysis. (¢) CLPCA-2 plotted against gain for the selected
patterns from panel (b) along the melting sequence.
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Note that although the G is not strictly necessary for the
VAE network to reconstruct 3D volumes, it helps to regularize
the latent space of z.

When the model is trained, we can encode the 2D diffrac-
tion patterns into the latent space via the encoder network.
The VAE network not only reconstructs the 3D structure of
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any given input 2D diffraction pattern but can also do so for

any chosen location in the latent space. In this way, it can be

used to study the continuous transition between cube and

sphere in the melting sequence, including in regions where

there are not sufficient patterns to isolate and obtain a
conventional reconstruction.

2.3.2. Tracing the melting sequence.

As mentioned before, using Dragonfly

to generate 2D averages comes at the

cost of potentially averaging out struc-

tural variations in individual frames due

to the limited number of classes. To

generate the CLPCA landscape, 1000
averages were deemed to be enough to
cover most of the major shapes in the
sample, but in order to trace the
continuous shape variation along the
melting sequence more detailed minor
variation information needs to be
retained. To keep more of this variation
information along the melting sequence
we repeat the same bootstrapping plus
Dragonfly method as described in
Section 2.2.1 to generate 10 000 average
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with the melting sequence, which can be
used as a coarse estimator of the melting
process. Fig. 4(c) shows the comparison
between CLPCA-2 and the gain G for
the selected melting sequence models.
Although correlated with the melting
sequence at a certain level, by visual

inspection G seems to be good at tracing
the cubes, while CLPCA-2 is better at

isolating the spheres.
In order to reduce computational
cost, the input 2D average intensities

were downsampled and truncated
slightly at high g. Since the intensity

Figure 5

(a) VAE-encoded 1D latent number z plotted against CLPCA-2 for the input sample patterns. The
colour coding is the gain parameter of each pattern. (b) A histogram of latent number z. (¢) A
histogram of CLPCA-2. (d) The volume ‘evolution’ along z, with volumes calculated with a density
threshold equal to 10™* of the total mass. The dashed horizontal line is the size of the support
volume in phase retrieval. Vertical grey lines show the locations of the 12 selected z numbers. (e)
The top three rows are the VAE-generated intensity volumes from the 12 selected z numbers on a
logarithmic scale, the three rows showing slices in (from row 1 to row 3) the (100), (110) and (111)
directions, respectively. The bottom three rows show their corresponding density projections in real

space.

distribution of a compact object is
heavily weighted to low g, the input data
were normalized by the azimuthally
averaged intensity over the whole
dataset. Details of the VAE network
structure and various pre-processing
steps are given in Appendix B.

For simplicity, we start by modelling
with a 1D latent space, so the VAE
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model is forced to trace the strongest variation along the
melting sequence/cubic-spherical transition. Fig. 5(a) shows
the VAE-encoded 1D latent parameter z plotted against
CLPCA-2 for the input models, colour coded by the G para-
meter: brighter yellow indicates that the particles are more
anisotropic. Figs. 5(b) and 5(c) are the histograms of z and
CLPCA-2, respectively. Though there exists a strong correla-
tion between the latent parameter z and CLPCA-2, they show
different distributions in tracing the cubic-spherical transition.
First, the VAE further separates the cubic side cluster classi-
fied by CLPCA (CLPCA-2 < —0.25). Secondly, at lower than z
2~ —1.5 another sequence is visible which is not clearly seen in
CLPCA space.

One advantage of the VAE network is that it allows us to
reconstruct/generate the 3D intensity volume for any given z.
Here, we selected 12 z numbers of equal steps between —2.00
and 2.67. In Fig. 5(e), the upper three rows show three special
((100), (110) and (111)) slices of the 12 VAE-generated
intensity volumes on a logarithmic scale. We see a clear and
smooth cubic—spherical transition from z >~ 2.7 — —1.5, which
shows that the VAE network is able to trace the early melting
stages much better than the CLPCA. For the second
‘sequence’ at z < 1.5, the lower contrast in the intensities and
the less-spherical structures indicate they are likely to be
contaminated particles at late melting stages, the low contrast
being due to the fact that they contain various shapes and a
lack of accurate orientation estimates. Compared with the
CLPCA method that roughly classifies cubic and spherical
particles, the VAE is able to provide a detailed smooth
modelling of the entire transition process.

The bottom three rows of Fig. 5(e) show projections of
phase-retrieved density maps in real space along the same
three directions. We also find the volume increases by around
10% from cubes to spheres along the melting sequence by
calculating the volume evolution of 3D reconstructed volumes
at 200 different finely sampled z values, shown as black dots in
Fig. 5(d). This is consistent with the density difference
between crystalline gold (19.32 g cm ™) and molten/randomly
close-packed atoms (17.31 g cm ™). This is also in agreement
with the direct size fitting on 2D average patterns of spherical
and cubic particles, shown in Fig. 9.

This volume analysis allows us to observe an additional
feature, namely that the melting sequence seems to show two
different stages: Stage 1 is from z >~ 3 — —0.3, where most of
the shape change occurs, but with no significant volume
changes. Stage 2 is from z >~ —0.3 — —1.5, where all particles
are mostly round but the volume increases. This is to be
expected, since edges and vertices require lower energies to be
disrupted than for complete melting, where the bulk crystal
structure is lost (Cahn, 1986; Chen et al., 2021). As discussed
below, the melting sequence here is only based on the 3D
structure of the particles. Thus, the ‘two stages’ might only
suggest that the shape changing happened ‘before’ the size
expansion along z (exposure intensity).

We note that the melting sequence here is purely based on
the 3D structure of the particles. Since we observe a contin-
uous transition, we assume a monotonic relationship between

the latent variable z and the incident fluence in the previous
pulse. However, without additional information about the
expected distribution of particles with a given incident fluence,
we cannot obtain the precise mapping between the two. As all
pre-exposures happened 880 ns before the imaging pulse, one
should not view the melting sequence as a time-dependent
shape variation, but rather an incident fluence- or tempera-
ture-dependent behaviour.

We have shown that the 1D latent space VAE network is
capable of modelling the major transition, but it is not the only
variation in the dataset. To trace more variations we now
model it with a higher-dimensional latent space. Fig. 6(a)
shows the 2D VAE-encoded latent parameters of the sample.
Neither the first nor the second latent parameter traces the
cubic-spherical transition independently. This shows the
encoding of more secondary variations, e.g. contaminants, size
etc.

We selected 200 evenly distributed points in the latent space
and generated their 3D intensity volumes. Fig. 6(b) shows the
(100) direction projection maps of the phase-retrieved VAE-
generated intensity volumes of the 200 selected latent
numbers z. One can clearly see that the transition between
spherical and cubic features from right to left is roughly
encoded in the first z component. However, the trend is
twisted in 2D space and we obtained multiple transition
sequences along the second component. In regions with no or
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Figure 6

(a) The distribution of the dataset in 2D latent space, colour coded by
CLPCA-2. Black crosses in the plot are the 200 selected latent numbers z.
(b) The (100) direction projections of the 200 real-space densities
retrieved from the logarithmic intensity volumes generated from the 200
selected latent numbers z [black crosses in panel (@)]. Semi-transparent
slices are volumes generated from latent regions with no or very few data
points.
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very few data points (semi-transparent slices), the results are
less reliable as the VAE network could not generate reliable
intensity volumes.

3. Conclusions

In this work, we have demonstrated two methods to study
heterogeneous ensembles of samples using X-ray single-
particle imaging by analysing the relationships between the
3D structures of the samples rather than the diffraction
patterns directly. The first, termed CLPCA, uses the fact that
diffraction patterns from ideal particles share a common line/
arc from the Ewald construction. The similarity of the best
common lines allows us to visualize a low-dimensional
embedding of the dataset which roughly represents 3D simi-
larity regardless of orientation. A fully connected neural
network was trained against the embedding in order to embed
arbitrary 2D averages with respect to the rest of the data set.

This was applied to an experimental dataset from gold
nanoparticles, containing 2.4 million patterns with only a few
thousand photons per frame. In order to improve the signal-
to-noise ratio and fill in detector panel gaps, 2D classification
in Dragonfly was used to combine similar patterns up to in-
plane rotations, and a bootstrapping approach was used to
increase the number of 2D averages with subsets of the data.

The second method involves a generative VAE network
that models continuous structural deformations, and can be
used to generate 3D structures at arbitrary points along the
landscape. In the studied dataset, this network was able to
recover a continuous melting sequence induced by pre-expo-
sure of the particles to the previous pulse in the European
XFEL pulse train. At low fluences, we observed a rounding of
the particle shape, while at higher fluences we additionally
observed a volume expansion, probably caused by atomic
scale disordering at higher temperatures. Our two methods
open up the possibility of studying samples of heterogeneous
particles and, potentially, tracing the dynamic motion of
particles in SPI experiments.

APPENDIX A
Different embeddings of CC matrix

In Fig. 7 we show a comparison between PCA and other
standard dimensional reduction methods implemented in the
scikit-learn Python package (Pedregosa et al., 2011). For the
sample set considered, all four embeddings are able to sepa-
rate the four basic shape groups (cube, sphere, transition and
contaminant), although this may not be true for other, more
complex, continuous structural variations.

APPENDIX B
Details of the VAE model

The details of the VAE network and preprocessing steps are
described below. The code is available at https:/github.com/
AyyerLab/SPIEncoder.

B1. Preprocessing the input patterns

The 2D averages from Dragonfly have an initial size of
441 x 441 pixels, which is computationally redundant
considering the data are highly oversampled. For the results
shown in this paper, we used the following procedures to
reduce the size. We first downsampled the size to 243 x 243,
and then we cut off the high-q part to reduce the size further to
161 x 161.

In addition to the size reduction, diffraction patterns of
compactly supported objects are overwhelmingly dominated
by the low-q signal. To weight the higher-q shape information
appropriately, we divided the 2D intensities by the radial
average intensity over the whole dataset before feeding them
into the VAE, and multiplied it back when generating the 3D
intensities.

B2. Model parameters

The depth and nodes of our encoder/decoder network
depend on the quality of the sample and the spatial resolution
of the reconstructed 3D volumes we need. In our code we
provide three different reconstructed volume size options: low
volume (81%), intermediate volume (161%) and high volume
(243%). The loss function contains the mean-square error plus
binary cross entropy and a Kullback-Leibler divergence as the
regularization term. For the results shown in this paper, the
low-volume model is used, in which the encoder network has
four 2D convolution layers with (16 x 81%), (32 x 27°),
(64 x 9%) and (128 x 9%) nodes and (3 x 3) kernel size per
layer. The decoder consists of six 3D transposed convolution
layers with (128 x 9%), (64 x 9°), (32 x 27°), (16 x 81°%),
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Figure 7

Comparison between four different common dimensionality reduction
methods, (top left) PCA, (top right) isomap, (bottom left) spectral
embedding and (bottom right) t-SNE. Colour coding is same as in Fig. 2
by manually divided groups from the first two components of PCA space.
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(8 x 161%) and (1 x 161°) nodes and (3 x 3 x 3) kernel size
per layer.

In Fig. 8 we show a comparison of input 2D patterns X and
the corresponding 2D slices of their reconstructed 3D inten-
sities X’ of our VAE model at four representative latent z
values from the model shown in Section 2.3.2. Considered
together with Fig. 5, the first pattern is probably from half-
melted contaminant particles, where the reconstruction is not
reliable because the number of patterns of that shape is low
and the orientation estimate by fitting against a cube is in-
accurate. The other rows are well reconstructed spheres,
melting cubes and cubes.

B3. Computation devices

The network was implemented in PyTorch and run on a
single node with four NVidia V100 GPUs with 32 GB memory

Contaminants

Half-melted

Cubes

Input Reconstructed

Figure 8

The left-hand column shows input intensities X to our VAE model, and
the right-hand column shows VAE-reconstructed intensity patterns X’ on
a logarithmic scale.
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Figure 9

Volume distribution of cubic particles (orange) and spherical particles

(blue).

each. For our 5672 2D averages, the 161° volume model takes
less than 2 h to calculate.

APPENDIX C
Direct size comparison of cubes and spheres

Fig. 9 shows the volume comparison of classified pure cubes
and pure spheres. The cube sizes were calculated directly from
frames with clear streak fringes, which were assumed to have
at least one set of faces parallel to the X-ray beam. The larger
spread of cube sizes can be accounted for by the inclusion of
frames where the faces were not exactly parallel to the beam.
Nevertheless, similar to the VAE model, a clear size increase is
observed from cubes to spheres.
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Figure 10

Correlation of radial intensity distribution with the CLPCA-3 component
for the spherical 2D averages. The left-hand panel shows radial intensities
versus g for 192 2D class averages. The right-hand panel shows the
corresponding CLPCA-3 values. One can observe the stretching of the
intensity distributions for higher values of CLPCA-3.
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APPENDIX D
Correlation of CLPCA-3 with sphere diameter

By observation, we note that the CLPCA-3 component in
Fig. 2 is associated with the diameter of the spherical particles
highlighted in green. To validate this observation, we exam-
ined the radial intensity distributions for these spherical
classes versus their CLPCA-3 values. This is shown in Fig. 10
for 192 2D averages in that region of CLPCA space.
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