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One of the outstanding analytical problems in X-ray single-particle imaging

(SPI) is the classification of structural heterogeneity, which is especially difficult

given the low signal-to-noise ratios of individual patterns and the fact that even

identical objects can yield patterns that vary greatly when orientation is taken

into consideration. Proposed here are two methods which explicitly account for

this orientation-induced variation and can robustly determine the structural

landscape of a sample ensemble. The first, termed common-line principal

component analysis (PCA), provides a rough classification which is essentially

parameter free and can be run automatically on any SPI dataset. The second

method, utilizing variation auto-encoders (VAEs), can generate 3D structures of

the objects at any point in the structural landscape. Both these methods are

implemented in combination with the noise-tolerant expand–maximize–

compress (EMC) algorithm and its utility is demonstrated by applying it to an

experimental dataset from gold nanoparticles with only a few thousand photons

per pattern. Both discrete structural classes and continuous deformations are

recovered. These developments diverge from previous approaches of extracting

reproducible subsets of patterns from a dataset and open up the possibility of

moving beyond the study of homogeneous sample sets to addressing open

questions on topics such as nanocrystal growth and dynamics, as well as phase

transitions which have not been externally triggered.

1. Introduction

X-ray single-particle imaging (SPI) is a method to reconstruct

3D structures of isolated nanoscale objects by collecting a

large number of diffraction patterns using bright X-ray pulses.



The diffraction patterns sample the object’s 3D Fourier

transform along randomly oriented spherical slices, which

enables a Fourier synthesis of the 3D structure as long as the

orientations can be determined (Neutze et al., 2000). However,

the X-ray pulses are bright enough to destroy the sample after

each shot, and so each pattern is collected from a different

particle. If the particles are reproducible up to the resolution

of interest, then determination of the 3D structures is fairly

straightforward, involving the determination of the orienta-

tion and incident X-ray fluence for each shot. Various algo-

rithms have been proposed and implemented for this purpose,

including the expand–maximize–compress (EMC) algorithm

(Loh & Elser, 2009), which has been used for a number of

experimental demonstrations (Ekeberg et al., 2015; Rose et al.,

2018; Shi et al., 2018; Ayyer et al., 2019; Cho et al., 2021; Ayyer

et al., 2021). Other methods utilizing intensity correlations

have also been demonstrated experimentally (Kurta et al.,

2017; von Ardenne et al., 2018).

However, one of the challenges in analysing a serial dataset

like that produced in an SPI experiment is the proper classi-

fication of patterns in terms of their structures. This is a

necessary step in order to obtain a high-resolution structure,

since the underlying assumption of the above-mentioned

algorithms is that the particles are identical, which is never

true in practice. On the other hand, the framework used for

this classification can be used to study datasets where the

heterogeneity is not just a drawback, uncovering the landscape

of structural variations in the sample. This requires the

detection of discrete classes of object shapes representing

contaminants, aggregates etc. and even the detection of

continuous deformations, depending on the scientific problem

being studied.

In past years, different machine learning algorithms have

been developed for use in this classification of structural

variability. These algorithms are usually applied to the

patterns themselves using methods including spectral clus-

tering (Yoon et al., 2011), support vector machines (Bobkov et

al., 2015) and convolutional neural networks (Zimmermann et

al., 2019; Ignatenko et al., 2021).

In this work, we take an unsupervised learning approach to

analyse an experimental dataset of more than 2.4 million

diffraction patterns of nominally 42 nm cubic gold nano-

particles collected at the European XFEL (Ayyer et al., 2021).

The goal is to study the ‘structural landscape’ – classifying the

entire structural ensemble, including separating discrete

contaminants, as well as revealing any continuous structural

variations that may be present. We discuss two approaches, the

first of which produces an embedding of the diffraction

patterns based on their 3D structures. This approach can be

applied without modification to most SPI datasets. The second

is a generative method using variational auto-encoders

(VAEs) which enables us to visualize the 3D structure of the

particle at any point along its landscape. Both methods are

applied to the dataset to study the continuous XFEL-induced

deformation of the cubic nanoparticles to spheres.

2. Results

2.1. Experiment and dataset information

The dataset discussed in the rest of this work was collected

as part of the experiment described by Ayyer et al. (2021),

which we review in brief: The SPI experiment was performed

with the megahertz-rate European XFEL (Decking et al.,

2020) on the SPB/SFX (single particles, biomolecules and

clusters/serial femtosecond crystallography) instrument

(Mancuso et al., 2019) with 6 keV photons in pulses with an

average energy of 2.5 mJ (2.6 � 1012 photons) measured

upstream of the focusing optics. The adaptive gain integrating

pixel detector (AGIPD) (Allahgholi et al., 2019) was placed

705 mm downstream of the interaction region to collect each

diffraction pattern up to a scattering angle of 8.3�. In this

analysis, we will use data from the central region of the

detector up to 1.8�.

The samples were nominally gold cubes with edge lengths

42 nm and were injected into the X-ray beam via an electro-

spray aerosolization aerodynamic lens-stack sample delivery

system. For this sample, 34 197 950 frames were recorded, of

which 2 451 068 were judged to contain sample diffraction (hit

ratio �7.17%). Part of the dataset was collected with the

European XFEL running at an intra-train repetition rate of
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Figure 1
(a) Examples of diffraction patterns in the data set. The colour scale
maximizes at four photons. (b) The workflow of the CLPCA method. (c)
The upper row shows some typical frame averages in the dataset on a
logarithmic scale, while the lower row shows their corresponding real-
space 2D density projections via phase retrieval. The real-space field of
view is 132.4 nm.



1.1 MHz, during which a high fraction of the diffraction

patterns originated from spherical particles. This was found to

be due to the pre-exposure of particles in the wings of the

previous XFEL pulse in the train, which seemed to lead to

melting/rounding. This effect disappeared when reducing the

repetition rate to 0.5 MHz. As a result, the sample contains

diffraction patterns of cubes, spheres and, potentially, cubes at

different stages of melting/rounding.

2.2. Classification of the entire ensemble

There are two major challenges in understanding the

sample ensemble from the diffraction data. First, many of the

patterns are too weak (100–1000 photons per pattern) to apply

single-shot analysis, as illustrated in Fig. 1(a). Second, the

dataset is not structurally homogeneous, not just in that the

sample set included non-cubic particles, but also that a fraction

of the cubic particles suffered varied levels of melting due to

pre-exposure by the previous pulse in the train.

We first developed a common-line principal component

analysis (CLPCA) method to understand SPI datasets from an

arbitrary ensemble of particles. Fig. 1(b) shows our workflow,

which we discuss in detail below.

2.2.1. Generation of 2D averages via bootstrapping. Due

to the weak scattering signal in single diffraction frames, the

first step is to average similar 2D detector frames together

(accounting for in-plane rotations), which was done with the

2D classification procedure implemented in Dragonfly (Ayyer

et al., 2016). The code implements a modification of the EMC

algorithm that classifies all 2D frames into a given number of

averages (models, termed classes in Dragonfly). This aver-

aging improves the signal-to-noise ratio, corrects for incident

fluence variations and fills in detector panel gaps, at the

potential cost of washing out some structural variations. In

order to mitigate this last effect, one can use a very large

number of models, but this can lead to instabilities in the

iterative reconstruction and reduced signal-to-noise ratios in

individual class averages.

In order to get more pattern averages, a bootstrapping

method was used by running the reconstruction five times with

200 models, each time with a random subset of 80% of the

frames. In this way, each of the 1000 models are composed of a

different group of similar 2D frames. In Fig. 1(c), we show an

example of some typical 2D diffraction averages and corre-

sponding projected electron-density maps after phase retrieval

using a combination of the difference map and error reduction

algorithms similar to that employed by Ayyer et al. (2019).

This highlights the variety both in the samples and also in the

diffraction patterns from the same samples in different

orientations, such as the rotated versions of identical cubes in

the first two columns of Fig. 1(c).

2.2.2. Common line 3D classification. The 2D EMC

method can only group similar 2D frames together but, as

mentioned above, diffraction patterns of the same object can

look very different depending on the orientation. In order to

understand the variations of structures in the sample, we need

to classify the averages further through their 3D features,

rather than considering them just as 2D images.

At small scattering angles, each average is a Fourier trans-

form of a projection of the target object at a given orientation.

According to the Fourier slice theorem, this means that each

average represents a slice through the 3D Fourier transform of

the object. Any two patterns of different orientations from the

same object should share a common intersection line (at larger

angles, these lines become arcs), as shown in the illustration of

Fig. 2(a). The similarity of the diffraction intensities along the

best ‘common lines’ between two patterns should be corre-

lated to the similarity of their 3D structures. For each pair of

2D averages we calculated the cross correlation (CC) between

their radial intensity profile lines at different angles. We define

the common-line similarity between two 2D averages as the

value of the highest CC coefficient. This yields a common-line

similarity matrix (CC matrix) with a size of N�N for N 2D

intensity averages. We find that the relation of the CC value of

one average to all other averages acts as a signature of its 3D

shape, namely that all particles with the same shape, regardless

of orientation, have high values between each other and lower

values to distinctly shaped objects.

Common lines have been used previously for orientation

determination (Shneerson et al., 2008; Singer & Shkolnisky,

2011; Yefanov & Vartanyants, 2013), where the optimal angles

tell one how to fit the two slices in the 3D Fourier space. Here,

we are interested in the similarity index of the common lines
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Figure 2
(a) An illustration of the common line between two patterns of similar-
shaped objects but with different orientations. (b) The distribution of
1000 averages in the 3D CLPCA space. Different colours are manually
divided groups from the first two components: contaminants (blue), cubes
(red), transition (yellow) and spheres (green). Typical patterns for
averages in each group are also shown on a logarithmic scale.



as a tool for structural similarity analysis, rather than the

relative angles at which they are maximized.

The 3D shape distribution was visualized using principal

component analysis (PCA), the inputs to which are the row

vectors of the CC matrix. Fig. 2(b) shows a 3D embedding of

the 1000 averages. In the rest of this article, we refer to this 3D

embedding as ‘CLPCA space’. Until this point, the entire

procedure is fully unsupervised and can be run automatically

for any SPI dataset.

By comparing with 2D patterns and their locations in

CLPCA space, we then qualitatively divided the CLPCA

space into four groups as shown in Fig. 2(b), where red

denotes cubes, green spheres, blue contaminants and yellow

rounded cubes. In the embedded space, CLPCA-1 separates

these assorted patterns from those originating from spherical/

cubic particles, CLPCA-2 separates spherical and cubic

particles, and for spherical particles, CLPCA-3 is associated

with their diameter (see Appendix D). In addition, we see a

sequence where particles transition from cubes to spheres.

This is a clear trace of the pre-melting processes observed in

the experiment. Without using any a priori knowledge about

the sample set, we are thus able to obtain a rough classification

of the dataset according to their 3D structures.

We also note from Fig. 2(b) that the dense cluster of cube

patterns are correctly identified as being from the same-

shaped particles, even though the patterns themselves vary

extensively at different orientations. For the sake of simplicity

we only perform the embedding with the PCA method, but

other dimensionality reduction methods could also be used

interchangeably. In Appendix A we show a comparison

between PCA and other embedding methods, showing no

strong preference in terms of separating structural classes for

this dataset.

2.2.3. Absolute embedding of images. The CLPCA method

provides a way of classifying unknown sample frames

according to their 3D structures. But the ‘similarity’ used for

generating the landscape is a relative concept, i.e. the distri-

butions in the embedded space depend on the sample one

chooses. This limits the classification and comparison of

certain subsamples. For example, one might want to look into

some subgroup in detail while still being able to relate them to

the whole-sample embedding, or generate new sets of

averages with bootstrapping. In addition, the time complexity

of calculating the similarity matrix scales as the square of the

number of models, which imposes a computational hurdle to

using too many models at once.

In order to get a quicker and more universal measure of

frame features after obtaining the embedding of a typical set

of averages, a neural network-based regression was used to

map any previously unseen averages into the defined

embedding space. Firstly, we extracted the relevant features of

the patterns: for each of our 1000 averages we Fourier-trans-

formed its azimuthal intensity variation at every radius and

kept the absolute values to make the pattern invariant to in-

plane rotations. We then kept frequency signals within the

spatial resolution at each radius as the training features, as

shown in Figs. 3(a)–3(c). We used the coordinates of the

averages in CLPCA space as training labels, as shown in

Fig. 3(e).

The neural network used for fitting the relation between the

pattern of 2D averages and their coordinates in CLPCA space

has four fully connected hidden layers with 512, 128, 64 and 32

nodes per layer, respectively. From the 1000 patterns used to

calculate the similarity matrix, 800 were used to train the

model, which was then validated with the rest of the 200

patterns with mean-square errors of 0.088, 0.059 and 0.042 for

components 1, 2 and 3, respectively. With this model, we were

quickly able to find the absolute embedding of any single 2D

intensity model and zoom into arbitrary subsets of patterns

while still retaining a reference to the full data set. An

example is shown in Fig. 3(d) where we use CLPCA on a

manually selected subset of averages in the ‘cube’ region of

CLPCA space. The frames which contributed to these selected

averages were classified using Dragonfly. The embedding of
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Figure 3
A brief illustration of the absolute embedding neural network (NN)
model. (a) The average pattern from Dragonfly. (b) A polar representa-
tion of the pattern. (c) A stack of 1D Fourier transform magnitudes along
the angular axis for each radial bin. The odd frequency components (due
to inversion symmetry) and the higher frequencies for signals at smaller
radii have been removed. These represent the feature vectors for the
neural network. (d) An example of using absolute CLPCA on a selected
cubic subset of frames (red dots). The grey dots represent the embedding
of the pattern averages from the whole dataset. (e) Training labels from
CLPCA.



these new averages is shown in red with reference to the

whole-dataset CLPCA embedding.

In summary, the CLPCA method provides a robust and

mostly parameter-free framework to classify and visualize the

structural landscape of an arbitrary set of coherent diffraction

patterns.

2.3. 3D reconstruction of heterogeneous models

In the previous section we found a sequence where the

shape of the particles transitioned from cubic to spherical. To

understand this transition further, we would like to be able to

reconstruct the 3D models along the sequence. Given a set of

diffraction patterns from a discrete set of reproducible objects,

it is relatively straightforward to generate multiple 3D models

using the EMC algorithm (Ayyer et al., 2021; Cho et al., 2021).

Here, this approach is difficult for two reasons: (i) it needs to

assume a number of discrete heterogeneity models, which

does not qualitatively capture the continuous cube–sphere

transition, and (ii) we do not have enough patterns located in

the transition region to reconstruct 3D structures via EMC.

Fortunately, previous studies in cryo-electron microscopy

single-particle analysis provide a good way of modelling the

continuous heterogeneity. Zhong et al. (2021) developed

cryoDRGN, a variational auto-encoder (VAE) for the effi-

cient reconstruction of heterogeneous complexes and contin-

uous trajectories of protein motions. Inspired by their paper,

we developed a similar deep learning model by combining a

VAE and convolutional neural networks (CNNs) to model the

continuous shape transition along this ‘melting’ sequence.

2.3.1. Variational auto-encoders. Variational auto-encoders

(VAEs) are a neural network architecture introduced by

Kingma & Welling (2019), extensively used as generative

networks and to understand the internal relationships of a

dataset. They are a form of auto-encoder which are neural

networks which attempt to recover the input data using a

network with a bottleneck layer consisting of only a few

neurons, representing the dimensionally reduced dataset.

Fig. 4(a) shows the structure of our VAE neural network,

consisting of a 2D CNN pattern encoder to encode 2D

patterns, along with their orientation estimates, into distribu-

tions of latent parameters, and a 3D transposed convolution

network as volume decoder to generate 3D intensity volumes

from latent numbers. This setting allows the neural networks

to learn the 3D-heterogeneity structure-encoded latent

numbers from the diffraction patterns.

The inputs of the VAE network are the 2D intensity

averages used as input for the CLPCA method in the previous

section and their associated relative orientations. The former

are obtained from the Dragonfly output discussed in Section

2.2.1, while the latter are calculated as described below. We

start with the 3D intensity volume of an ideal 42 nm cubic

particle, slicing it with 16 407 orientations distributed

uniformly in quaternion space within the Oh subgroup to

account for the symmetry of the object. This subgroup was

chosen for this sample since we observed no symmetry

breaking in either the single-model reconstruction in Ayyer et

al. (2021) or in any of the 2D averages. The procedure

following the choice of samples is identical even if there is no

symmetry expected. The cross-correlation coefficient (CC) of

each 2D model is calculated with all the orientations. The

orientation with the highest CC is recorded for each model. In

addition, another parameter which helps in training is termed

‘gain’, referring to the ratio of the best to the average CC over

all orientations. This parameter can also indicate the ‘cubic-

ness’ of the particle since patterns from cubes fit very well to

the synthetic model.

The VAE works in the following manner: For each input

average X, its orientation � and gain G, the encoder network

generates a Gaussian distribution of its latent variable values

N(�, �). The fact that this is not just a single latent vector z but

a distribution makes the auto-encoder variational and

enforces the smoothness of the latent space. It also enables the

network to use information from neighbouring regions in the

space to update regions with limited data. A latent vector z is

sampled using this distribution and used by the decoder to

generate a 3D intensity volume V3D, which is then symme-

trized by the octahedral point group. The known orientation is

then used to slice the generated 3D volume to get a recon-

structed 2D pattern X 0. The goal of training is to minimize the

difference between X and X 0 (further details in Appendix B).

Three-dimensional information is obtained since the same

latent space region is sampled by averages in a variety of

orientations.
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Figure 4
(a) A schematic diagram of the variational auto-encoder (VAE). It
consists of two convolutional neural networks as encoder and decoder,
and the model is fitted by comparing the similarity between the input and
decoder-generated 2D slices with additional regularization by assuming
the latent parameter follows an N(0, 1) distribution. (b) The distribution
of the 10 000 bootstrapped 2D average patterns in CLPCA space (grey).
Red dots are selected average patterns along the melting sequence used
for the VAE analysis. (c) CLPCA-2 plotted against gain for the selected
patterns from panel (b) along the melting sequence.



Note that although the G is not strictly necessary for the

VAE network to reconstruct 3D volumes, it helps to regularize

the latent space of z.

When the model is trained, we can encode the 2D diffrac-

tion patterns into the latent space via the encoder network.

The VAE network not only reconstructs the 3D structure of

any given input 2D diffraction pattern but can also do so for

any chosen location in the latent space. In this way, it can be

used to study the continuous transition between cube and

sphere in the melting sequence, including in regions where

there are not sufficient patterns to isolate and obtain a

conventional reconstruction.

2.3.2. Tracing the melting sequence.

As mentioned before, using Dragonfly

to generate 2D averages comes at the

cost of potentially averaging out struc-

tural variations in individual frames due

to the limited number of classes. To

generate the CLPCA landscape, 1000

averages were deemed to be enough to

cover most of the major shapes in the

sample, but in order to trace the

continuous shape variation along the

melting sequence more detailed minor

variation information needs to be

retained. To keep more of this variation

information along the melting sequence

we repeat the same bootstrapping plus

Dragonfly method as described in

Section 2.2.1 to generate 10 000 average

patterns.

Using the CLPCA method in combi-

nation with the absolute embedding

approach discussed in Section 2.2.3, we

selected 5965 of these averages located

along the melting sequence. Fig. 4(b)

shows the distribution of these averages

and the selected melting sequence

averages in CLPCA space. As discussed

above, the CLPCA-2 is roughly aligned

with the melting sequence, which can be

used as a coarse estimator of the melting

process. Fig. 4(c) shows the comparison

between CLPCA-2 and the gain G for

the selected melting sequence models.

Although correlated with the melting

sequence at a certain level, by visual

inspection G seems to be good at tracing

the cubes, while CLPCA-2 is better at

isolating the spheres.

In order to reduce computational

cost, the input 2D average intensities

were downsampled and truncated

slightly at high q. Since the intensity

distribution of a compact object is

heavily weighted to low q, the input data

were normalized by the azimuthally

averaged intensity over the whole

dataset. Details of the VAE network

structure and various pre-processing

steps are given in Appendix B.

For simplicity, we start by modelling

with a 1D latent space, so the VAE
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Figure 5
(a) VAE-encoded 1D latent number z plotted against CLPCA-2 for the input sample patterns. The
colour coding is the gain parameter of each pattern. (b) A histogram of latent number z. (c) A
histogram of CLPCA-2. (d) The volume ‘evolution’ along z, with volumes calculated with a density
threshold equal to 10�4 of the total mass. The dashed horizontal line is the size of the support
volume in phase retrieval. Vertical grey lines show the locations of the 12 selected z numbers. (e)
The top three rows are the VAE-generated intensity volumes from the 12 selected z numbers on a
logarithmic scale, the three rows showing slices in (from row 1 to row 3) the h100i, h110i and h111i
directions, respectively. The bottom three rows show their corresponding density projections in real
space.



model is forced to trace the strongest variation along the

melting sequence/cubic–spherical transition. Fig. 5(a) shows

the VAE-encoded 1D latent parameter z plotted against

CLPCA-2 for the input models, colour coded by the G para-

meter: brighter yellow indicates that the particles are more

anisotropic. Figs. 5(b) and 5(c) are the histograms of z and

CLPCA-2, respectively. Though there exists a strong correla-

tion between the latent parameter z and CLPCA-2, they show

different distributions in tracing the cubic–spherical transition.

First, the VAE further separates the cubic side cluster classi-

fied by CLPCA (CLPCA-2 <�0.25). Secondly, at lower than z

’ �1.5 another sequence is visible which is not clearly seen in

CLPCA space.

One advantage of the VAE network is that it allows us to

reconstruct/generate the 3D intensity volume for any given z.

Here, we selected 12 z numbers of equal steps between �2.00

and 2.67. In Fig. 5(e), the upper three rows show three special

(h100i, h110i and h111i) slices of the 12 VAE-generated

intensity volumes on a logarithmic scale. We see a clear and

smooth cubic–spherical transition from z’ 2.7!�1.5, which

shows that the VAE network is able to trace the early melting

stages much better than the CLPCA. For the second

‘sequence’ at z < 1.5, the lower contrast in the intensities and

the less-spherical structures indicate they are likely to be

contaminated particles at late melting stages, the low contrast

being due to the fact that they contain various shapes and a

lack of accurate orientation estimates. Compared with the

CLPCA method that roughly classifies cubic and spherical

particles, the VAE is able to provide a detailed smooth

modelling of the entire transition process.

The bottom three rows of Fig. 5(e) show projections of

phase-retrieved density maps in real space along the same

three directions. We also find the volume increases by around

10% from cubes to spheres along the melting sequence by

calculating the volume evolution of 3D reconstructed volumes

at 200 different finely sampled z values, shown as black dots in

Fig. 5(d). This is consistent with the density difference

between crystalline gold (19.32 g cm�3) and molten/randomly

close-packed atoms (17.31 g cm�3). This is also in agreement

with the direct size fitting on 2D average patterns of spherical

and cubic particles, shown in Fig. 9.

This volume analysis allows us to observe an additional

feature, namely that the melting sequence seems to show two

different stages: Stage 1 is from z ’ 3 ! �0.3, where most of

the shape change occurs, but with no significant volume

changes. Stage 2 is from z ’ �0.3 ! �1.5, where all particles

are mostly round but the volume increases. This is to be

expected, since edges and vertices require lower energies to be

disrupted than for complete melting, where the bulk crystal

structure is lost (Cahn, 1986; Chen et al., 2021). As discussed

below, the melting sequence here is only based on the 3D

structure of the particles. Thus, the ‘two stages’ might only

suggest that the shape changing happened ‘before’ the size

expansion along z (exposure intensity).

We note that the melting sequence here is purely based on

the 3D structure of the particles. Since we observe a contin-

uous transition, we assume a monotonic relationship between

the latent variable z and the incident fluence in the previous

pulse. However, without additional information about the

expected distribution of particles with a given incident fluence,

we cannot obtain the precise mapping between the two. As all

pre-exposures happened 880 ns before the imaging pulse, one

should not view the melting sequence as a time-dependent

shape variation, but rather an incident fluence- or tempera-

ture-dependent behaviour.

We have shown that the 1D latent space VAE network is

capable of modelling the major transition, but it is not the only

variation in the dataset. To trace more variations we now

model it with a higher-dimensional latent space. Fig. 6(a)

shows the 2D VAE-encoded latent parameters of the sample.

Neither the first nor the second latent parameter traces the

cubic–spherical transition independently. This shows the

encoding of more secondary variations, e.g. contaminants, size

etc.

We selected 200 evenly distributed points in the latent space

and generated their 3D intensity volumes. Fig. 6(b) shows the

h100i direction projection maps of the phase-retrieved VAE-

generated intensity volumes of the 200 selected latent

numbers z. One can clearly see that the transition between

spherical and cubic features from right to left is roughly

encoded in the first z component. However, the trend is

twisted in 2D space and we obtained multiple transition

sequences along the second component. In regions with no or
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Figure 6
(a) The distribution of the dataset in 2D latent space, colour coded by
CLPCA-2. Black crosses in the plot are the 200 selected latent numbers z.
(b) The h100i direction projections of the 200 real-space densities
retrieved from the logarithmic intensity volumes generated from the 200
selected latent numbers z [black crosses in panel (a)]. Semi-transparent
slices are volumes generated from latent regions with no or very few data
points.



very few data points (semi-transparent slices), the results are

less reliable as the VAE network could not generate reliable

intensity volumes.

3. Conclusions

In this work, we have demonstrated two methods to study

heterogeneous ensembles of samples using X-ray single-

particle imaging by analysing the relationships between the

3D structures of the samples rather than the diffraction

patterns directly. The first, termed CLPCA, uses the fact that

diffraction patterns from ideal particles share a common line/

arc from the Ewald construction. The similarity of the best

common lines allows us to visualize a low-dimensional

embedding of the dataset which roughly represents 3D simi-

larity regardless of orientation. A fully connected neural

network was trained against the embedding in order to embed

arbitrary 2D averages with respect to the rest of the data set.

This was applied to an experimental dataset from gold

nanoparticles, containing 2.4 million patterns with only a few

thousand photons per frame. In order to improve the signal-

to-noise ratio and fill in detector panel gaps, 2D classification

in Dragonfly was used to combine similar patterns up to in-

plane rotations, and a bootstrapping approach was used to

increase the number of 2D averages with subsets of the data.

The second method involves a generative VAE network

that models continuous structural deformations, and can be

used to generate 3D structures at arbitrary points along the

landscape. In the studied dataset, this network was able to

recover a continuous melting sequence induced by pre-expo-

sure of the particles to the previous pulse in the European

XFEL pulse train. At low fluences, we observed a rounding of

the particle shape, while at higher fluences we additionally

observed a volume expansion, probably caused by atomic

scale disordering at higher temperatures. Our two methods

open up the possibility of studying samples of heterogeneous

particles and, potentially, tracing the dynamic motion of

particles in SPI experiments.

APPENDIX A

Different embeddings of CC matrix

In Fig. 7 we show a comparison between PCA and other

standard dimensional reduction methods implemented in the

scikit-learn Python package (Pedregosa et al., 2011). For the

sample set considered, all four embeddings are able to sepa-

rate the four basic shape groups (cube, sphere, transition and

contaminant), although this may not be true for other, more

complex, continuous structural variations.

APPENDIX B

Details of the VAE model

The details of the VAE network and preprocessing steps are

described below. The code is available at https://github.com/

AyyerLab/SPIEncoder.

B1. Preprocessing the input patterns

The 2D averages from Dragonfly have an initial size of

441 � 441 pixels, which is computationally redundant

considering the data are highly oversampled. For the results

shown in this paper, we used the following procedures to

reduce the size. We first downsampled the size to 243 � 243,

and then we cut off the high-q part to reduce the size further to

161 � 161.

In addition to the size reduction, diffraction patterns of

compactly supported objects are overwhelmingly dominated

by the low-q signal. To weight the higher-q shape information

appropriately, we divided the 2D intensities by the radial

average intensity over the whole dataset before feeding them

into the VAE, and multiplied it back when generating the 3D

intensities.

B2. Model parameters

The depth and nodes of our encoder/decoder network

depend on the quality of the sample and the spatial resolution

of the reconstructed 3D volumes we need. In our code we

provide three different reconstructed volume size options: low

volume (813), intermediate volume (1613) and high volume

(2433). The loss function contains the mean-square error plus

binary cross entropy and a Kullback–Leibler divergence as the

regularization term. For the results shown in this paper, the

low-volume model is used, in which the encoder network has

four 2D convolution layers with (16 � 812), (32 � 272),

(64 � 92) and (128 � 92) nodes and (3 � 3) kernel size per

layer. The decoder consists of six 3D transposed convolution

layers with (128 � 93), (64 � 93), (32 � 273), (16 � 813),
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Figure 7
Comparison between four different common dimensionality reduction
methods, (top left) PCA, (top right) isomap, (bottom left) spectral
embedding and (bottom right) t-SNE. Colour coding is same as in Fig. 2
by manually divided groups from the first two components of PCA space.



(8 � 1613) and (1 � 1613) nodes and (3 � 3 � 3) kernel size

per layer.

In Fig. 8 we show a comparison of input 2D patterns X and

the corresponding 2D slices of their reconstructed 3D inten-

sities X 0 of our VAE model at four representative latent z

values from the model shown in Section 2.3.2. Considered

together with Fig. 5, the first pattern is probably from half-

melted contaminant particles, where the reconstruction is not

reliable because the number of patterns of that shape is low

and the orientation estimate by fitting against a cube is in-

accurate. The other rows are well reconstructed spheres,

melting cubes and cubes.

B3. Computation devices

The network was implemented in PyTorch and run on a

single node with four NVidia V100 GPUs with 32 GB memory

each. For our 5672 2D averages, the 1613 volume model takes

less than 2 h to calculate.

APPENDIX C

Direct size comparison of cubes and spheres

Fig. 9 shows the volume comparison of classified pure cubes

and pure spheres. The cube sizes were calculated directly from

frames with clear streak fringes, which were assumed to have

at least one set of faces parallel to the X-ray beam. The larger

spread of cube sizes can be accounted for by the inclusion of

frames where the faces were not exactly parallel to the beam.

Nevertheless, similar to the VAEmodel, a clear size increase is

observed from cubes to spheres.
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Figure 8
The left-hand column shows input intensities X to our VAE model, and
the right-hand column shows VAE-reconstructed intensity patterns X 0 on
a logarithmic scale.

Figure 9
Volume distribution of cubic particles (orange) and spherical particles
(blue).

Figure 10
Correlation of radial intensity distribution with the CLPCA-3 component
for the spherical 2D averages. The left-hand panel shows radial intensities
versus q for 192 2D class averages. The right-hand panel shows the
corresponding CLPCA-3 values. One can observe the stretching of the
intensity distributions for higher values of CLPCA-3.



APPENDIX D

Correlation of CLPCA-3 with sphere diameter

By observation, we note that the CLPCA-3 component in

Fig. 2 is associated with the diameter of the spherical particles

highlighted in green. To validate this observation, we exam-

ined the radial intensity distributions for these spherical

classes versus their CLPCA-3 values. This is shown in Fig. 10

for 192 2D averages in that region of CLPCA space.
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Horke, D. A., Küpper, J., Loh, N. D., Mancuso, A. P. & Chapman,
H. N. (2021). Optica, 8, 15–23.

Bobkov, S. A., Teslyuk, A. B., Kurta, R. P., Gorobtsov, O. Yu.,
Yefanov, O. M., Ilyin, V. A., Senin, R. A. & Vartanyants, I. A.
(2015). J. Synchrotron Rad. 22, 1345–1352.

Cahn, R. W. (1986). Nature, 323, 668–669.
Chen, J., Fan, X., Liu, J., Gu, C., Shi, Y., Zheng, W. & Singh, D. J.
(2021). J. Phys. Chem. Lett. 12, 8170–8177.

Cho, D. H., Shen, Z., Ihm, Y., Wi, D. H., Jung, C., Nam, D., Kim, S.,
Park, S.-Y., Kim, K. S., Sung, D., Lee, H., Shin, J.-Y., Hwang, J., Lee,
S. Y., Lee, S. Y., Han, S. W., Noh, D. Y., Loh, N. D. & Song, C.
(2021). ACS Nano, 15, 4066–4076.

Decking, W., Abeghyan, S., Abramian, P., et al. (2020). Nat. Photon.
14, 391–397.

Ekeberg, T., Svenda, M., Abergel, C., Maia, F. R., Seltzer, V., Claverie,
J.-M., Hantke, M., Jönsson, O., Nettelblad, C., van der Schot, G.,
Liang, M., DePonte, D. P., Barty, A., Seibert, M. M., Iwan, B.,
Andersson, I., Loh, N. D., Martin, A. V., Chapman, H., Bostedt, C.,
Bozek, J. D., Ferguson, K. R., Krzywinski, J., Epp, S. W., Rolles, D.,
Rudenko, A., Hartmann, R., Kimmel, N. & Hajdu, J. (2015). Phys.
Rev. Lett. 114, 098102.

Ignatenko, A., Assalauova, D., Bobkov, S. A., Gelisio, L., Teslyuk,
A. B., Ilyin, V. A. & Vartanyants, I. A. (2021). Mach. Learn. Sci.

Technol. 2, 025014.
Kingma, D. P. & Welling, M. (2019). Found. Trends Mach. Learn. 12,
307–392.

Kurta, R. P., Donatelli, J. J., Yoon, C. H., Berntsen, P., Bielecki, J.,
Daurer, B. J., DeMirci, H., Fromme, P., Hantke, M. F., Maia, F. R.,
Munke, A., Nettelblad, C., Pande, K., Reddy, H. K., Sellberg, J. A.,
Sierra, R. G., Svenda, M., van der Schot, G., Vartanyants, I. A.,
Williams, G. J., Xavier, P. L., Aquila, A., Zwart, P. H. & Mancuso,
A. P. (2017). Phys. Rev. Lett. 119, 158102.

Loh, N. D. & Elser, V. (2009). Phys. Rev. E, 80, 026705.
Mancuso, A. P., Aquila, A., Batchelor, L., Bean, R. J., Bielecki, J.,
Borchers, G., Doerner, K., Giewekemeyer, K., Graceffa, R., Kelsey,
O. D., Kim, Y., Kirkwood, H. J., Legrand, A., Letrun, R., Manning,
B., Lopez Morillo, L., Messerschmidt, M., Mills, G., Raabe, S.,
Reimers, N., Round, A., Sato, T., Schulz, J., Signe Takem, C.,
Sikorski, M., Stern, S., Thute, P., Vagovič, P., Weinhausen, B. &
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