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Abstract

Although current CCG supertaggers achieve
high accuracy on the standard WSJ test set,
few systems make use of the categories’
internal structure that will drive the syntac-
tic derivation during parsing. The tagset is tra-
ditionally truncated, discarding the many rare
and complex category types in the long tail.
However, supertags are themselves trees.
Rather than give up on rare tags, we investigate
constructive models that account for their in-
ternal structure, including novel methods for
tree-structured prediction. Our best tagger is
capable of recovering a sizeable fraction of the
long-tail supertags and even generates CCG
categories that have never been seen in train-
ing, while approximating the prior state of the
art in overall tag accuracy with fewer param-
eters. We further investigate how well differ-
ent approaches generalize to out-of-domain
evaluation sets.

1 Introduction

Combinatory Categorial Grammar (CCG; Steedman,
2000) is a strongly lexicalized grammar formalism
in which rich syntactic categories at the lexical
level impose tight constraints on the constituents
that can be formed. Its syntax-semantics interface
has been attractive for downstream tasks such as
semantic parsing (Artzi et al., 2015) and machine
translation (Naddejde et al., 2017).

Most CCG parsers operate as a pipeline whose
first task is ‘supertagging’, i.e., sequence labeling
with a large search space of complex ‘supertags’
(Clark and Curran, 2004; Xu et al., 2015; Vaswani
et al., 2016, inter alia). The complex categories
specify valency information: expected arguments
to the right are signaled with forward slashes,
and expected arguments to the left with backward
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slashes. For example, transitive verbs in English
(like ‘‘saw’’ in Figure la) are tagged (S\NP)/NP
to indicate that they expect a subsequent object
noun phrase (NP) and a preceding subject NP to
form a clause (S). Given the supertags, all that
remains to parsing is applying general rules of
(binary) combination between adjacent constitu-
ents until the entire input is covered. Supertagging
thus represents the crux of the overall parsing
process. In contrast to the simpler task of part-
of-speech tagging, supertaggers are required to
resolve most of the syntactic ambiguity in the
input.

One key challenge of CCG supertagging is that
the tagset is large and open-ended to account for
combinatorial possibilities of syntactic construc-
tions. This results in a heavy-tailed distribution
of supertags, which is visualized in Figure 1b;
a large proportion of unique supertags are rare
or unseen (out-of-vocabulary, OOV) even in a
training set as large as the Penn Treebank’s.
Previous CCG supertaggers have surrendered in
the face of this challenge: They treat categories as
a fixed set of opaque labels, rather than modeling
their compositional structure. Following Clark
(2002), the standard approach is to consider only
supertags appearing at least 10 times in the train-
ing data, sacrificing the possibility of predicting
two thirds of the supertag types in CCGbank. Rare
supertags may have little impact on overall token
accuracy—but the cost of this compromise is a
fundamental incapability in truly generalizing to
the task.

In this paper, we confront the long-tail problem
head-on by proposing a constructive framework
in which supertags are built from scratch rather
than predicted as opaque labels (Kogkalidis et al.,
2019). In contrast to prior constructive supertag-
gers (Kogkalidis et al., 2019; Bhargava and Penn,
2020), our model builds upon the observation
that supertags are themselves tree-structured, and
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(b) Number of supertag types (circle sizes) in relation to token log-frequency (y-axis) and supertag depth (x-axis)
for the Rebank training set (left) and test set (right). Colors and horizontal offsets indicate supertags’ training-data
frequency band (decreasing frequency from left to right for each depth value).

Figure 1: CCG supertags.

hence can be generated top—down.! Our experi-
ments on the English CCGbank and its rebanked
version show that constructing supertags as trees
improves our ability to predict rare and even
unseen tags, without sacrificing performance on
the more common ones.

Our contributions are threefold:

1. We introduce a general constructive super-
tagger that generates each lexical category
recursively as a tree. To our knowledge, this
is the first tree-structured predictor of its kind.

2. We apply this model to English CCG su-
pertagging. On frequent supertags, it matches
the more traditional approach of using a
fixed label set, while on the rare and unseen
ones, we see substantial improvements in
predictive performance.

3. We perform an array of in-depth analyses
that highlight the impact of different mod-
eling and inference choices for the task of
predicting supertags.

2 Motivation

2.1 Anatomy of a Supertag

The internal structure of any CCG supertag is a
tree licensed by the CFG in Figure 2. Atomic
categories like S and NP are related by slashes
to form functional categories, which can in turn
participate in larger functional categories. By con-
vention, the infix-notation supertag (S\NP)/NP

'Our models and code are available at

https://github.com/jakpra/treeconstructive
-supertagging.
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Cat = FxnCat AtomCat
FxnCat = Cat Slash Cat
AtomCat =N NP S PP
Slash =/ 1\

Figure 2: The ‘syntax’ of CCG categories, using infix
notation for complex categories (FxnCat). Our model
generates supertags of type Cat top—down from this
grammar.

is equivalent to the tree in Figure 3a, with prefix
notation (/ (\ S NP) NP), where the slash signals
the direction in which the category can combine,
the right child of any slash is the argument, and the
left child is the result of combining the category
with its argument. These hierarchical supertags
constrain lexical item combination, e.g., specify-
ing subcategorization of verbs for an object NP to
the right (/). This flexibility leads to infinite? pos-
sible supertags; in practice, they follow a power
law distribution. CCGbank (comprising the WSJ
portion of the Penn Treebank) contains numerous
rare supertags, including several that occur only
in the test set. Still others can be expected to occur
in a much larger English corpus.

In previous work, CCG supertaggers have
skirted this problem by ignoring the long tail of
supertags: Specifically, the ones occurring fewer
than 10 times in the training set. The consequences
of such a threshold can be seen from Figure 1b,
which visualizes the distribution of supertag types
in terms of depth (representing supertag complex-
ity) and token frequency. The supertags seen in
training that would be ignored under a threshold

2But see §7 for a discussion of how linguistic patterns
limit the set of observed tags.
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Figure 3: Schematic of our tree-structured supertagger
(left) in contrast with unstructured (top right) and
sequential (bottom right) models. Supertag depth also
corresponds to decoding steps. Numbers below nodes
denote positions or addresses.

of 10 appear in red, and the test set supertags never
seen in training in dark blue. Though these only
account for 0.2% of tokens in the test set, they are
present in nearly 4% of sentences and represent
fully two thirds of supertag types in CCGbank.
Further, we see that rarer categories are increas-
ingly more complex, i.e., their argument and result
types are in turn composed of FxnCats. Note in
particular that the bulk of depth-4 categories and
almost all categories with depth 5 or more fall
below the 10-count threshold.

Inspired by the recent proposals of Kogkalidis
et al. (2019) and Bhargava and Penn (2020),
we hypothesize that modeling the structure of
supertags, rather than treating them holistically
and thresholding by frequency, can successfully
generalize to rare and unseen tags. For example,
a good model should draw connections between
words that are NPs themselves, words that take
NPs as arguments (e.g., verbs), and words that
yield NPs as their result (e.g., determiners). We
examine whether such linguistically informed
generalizations can benefit supertags of various
frequency and structures, focusing on the rare and
complex ones.

2.2 Constructivity in Supertagging

We contrast two general paradigms for supertag-
ging below. (Our experiments will explore
multiple specific modeling strategies within each.)

Most previous supervised CCG supertaggers
assume a closed tagset and nonconstruc-
tively assign one complete category per word
(Figure 3b). This paradigm is oblivious to the
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internal structure of the supertag and incapable
of predicting unseen supertags. This is often
combined with a frequency cutoff: Only the k
supertags seen at least n times in the training data
are considered by the model, making each tag
decision a k-way classification task. Traditionally
(Clark, 2002), systems use a threshold of n = 10
(yielding & = 425 in CCGbank and k£ = 511 in
CCGrebank). The main motivation for this is to
sidestep the most sparse and possibly noisy region
of the output space without dramatically decreas-
ing token coverage. Below we experiment with
both thresholded and non-thresholded models.

In contrast, a constructive tagger models the
internal structure of supertags (Kogkalidis et al.,
2019). Supertags are constructed from minimal
pieces (which for CCG are slashes and atomic cat-
egories).? There is no frequency cutoff at training
time.* At test time, supertags are predicted piece
by piece, and there is no constraint that predicted
supertags must have been seen before. This can
be done sequentially or recursively, taking the
categories’ internal tree structure into account.

Two different methods of sequential decoding
have been explored by Kogkalidis et al. (2019)
(hereafter ‘K+19’) and Bhargava and Penn (2020)
(‘BP20’). K+19 used a sequence-to-sequence
model, with a single target sequence consisting of
all serialized supertags for a sentence (Figure 3c).
They experimented with a type-logical grammar
formalism similar to CCG, and a Dutch cor-
pus. BP20 decoded CCG supertags as a separate
sequence per token, and additionally conditioned
each new supertag on the prediction history.

Here we go a step further and introduce methods
for directly decoding supertags as trees, freeing
the models from having to learn this fundamental
property from sequential data. We hypothesize
that this will produce better and more compact
representations that generalize to the long tail.

3 Tree-Structured Constructive
Supertagging

Given a sequence of words (a sentence), our goal
is to predict each word’s supertag. Constructing a

3For simplicity, we consider linguistic attributes like
dcl (declarative) to be part of the atomic category.

“In principle, a constructive model could be trained with
frequency-thresholded training data, but we do not see any
value in pursuing this option, as constructivity in itself already
mitigates noise and sparsity.
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supertag from its components requires a scoring
function for the parts that is cognizant of both
surrounding words and categories. Below we des-
cribe the decoding procedure (§3.1) and scoring
functions (§3.2) we developed for this purpose,
which, in line with §2, explicitly incorporate the
categories’ tree structure.

3.1 Predicting Tree-structured Supertags

According to the grammar in Figure 2, each cate-
gory is a binary tree with the following properties:
(1) Slashes are non-terminals with two children:
the category’s argument (the syntactic type it seeks
to combine with), and its result (the type it yields
after combining with its argument). (2) AtomCats
are leaf nodes. (3) The root of the tree is either the
category’s sole AtomCat, or its outermost functor,
whose argument it seeks to combine with first.

Our output supertags are trees, but there is a cru-
cial difference between our work and constituency
parsing of sentences. In the latter case, the yield of
a predicted tree is constrained to be the input sen-
tence, thereby restricting both its depth and width.
But in the case of supertagging, each word is
associated with a binary tree—structured supertag
whose breadth and depth are unknown at inference
time. We therefore grow supertags for each word
from the top down (Figure 3a). At the t'" step, the
model greedily chooses the most likely node labels
at depth ¢, conditioned on the word encoding and
the ancestors predicted so far (Figure 3a). The first
decision (¢t = 0) is either an atomic category, or
the main functor. In the latter case, the model then
moves on to select the argument and result types,
which may be atomic categories or functors them-
selves. We are thus guaranteed to always generate
well-formed categories. As CCG supertags are not
very deep in practice, we impose an upper limit on
the depth of predicted trees based on the most com-
plex categories found in the training and develop-
ment data, with the main advantage that memory
allocation during training can be bounded.’

3The limits on depth and arity are practical simplifications
that follow from our task (supertags are always binary trees)
and data distribution (there are no categories with depth > 6
in any of the training or development sets we use). However,
our model can be generalized to trees of arbitrary depth, and
not as easily, but conceivably, to a different or even variable
arity. It turns out that none of the evaluation sets contain
categories that are deeper that what is seen in training (except
the redistributed test set in Figure 4, which contains one), so
this measure has virtually no impact on tagging performance.
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3.2 Modeling Supertags

All supertagging models we compare consist
of (a) a sequence encoder, which generates a
d-dimensional contextualized representation hy,
for each word k in a sentence x (equation (1),
together forming the |x| x d matrix Hp); (b) an
output-positional encoder, which generates the
hidden representation hy, ; for a position indexed
by i within the k' word’s category tree; and
(c) a fully-connected 2-layer perceptron (MLP)
with a final softmax layer which maps such a
representation to a probability distribution 0y ;
over the inventory of possible labels L (atomic
categories and slashes; equation (2)). We use the
term position and the index i to refer to any atomic
part of a category for which a labeling decision
has to be made. This could be, for example, the
positions of the S category in Figure 3a and 3c, or
the single output in Figure 3b.

H, = Encoder (x) (1)
o;; = MLP (h; ;) 2)

The label yj,; is the most probable one per the
MLP’s prediction.

Contextualized Word Embeddings. Inall con-
ditions, we encode sentences using the pretrained
RoBERTa-base encoder (Liu et al., 2019), fine-
tuning it for our task.® Several recent studies have
shown that such models can capture syntactic
properties and relations (e.g., Jawahar et al., 2019;
Clark et al., 2019; Hewitt and Manning, 2019).

Output-positional Encoding. We experiment
with two alternative ways of deriving hidden
states for category-internal positions (k, ), where
¢ > 0: a tree-structured recursive neural network
(TreeRNN; Tai et al., 2015, inter alia), and a
deterministic addressing function that accesses
each node directly (AddrMLP). Both variants,
described below, also take into account the
current node’s ancestors.

The TreeRNN (equation (3)) computes the
hidden representation for a child node ¢(i) from
a vector embedding of its parent’s label y; ; and
the hidden representation hy, ;. The encodings are
separately computed for child nodes representing
the result (¢ = ‘left’) and argument (¢ = ‘right’)
of the parent. Following K+19, we use the trans-
pose of the last layer of the MLP to embed labels.

SWe also experimented with a BiGRU encoder, but
obtained consistently worse results.
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Our experiments use gated recurrent units (GRUs;
Cho et al., 2014).

hy, ;) = GRU, (Embed (yx;) ,hr;)  (3)

Using tree-structured RNNs for top—down
generation is reminiscent of Zhang et al. (2016).

For the AddrMLP, we represent the posi-
tion i of a node and the Slashes’ in its ancestors
(denoted by Yy, anc(i)) as a single feature vector that
augments the contextualized word embedding:

hy,; = hy, o + Linear (Features (7, Yy anc(i))) (4)

We use a binary addressing scheme to refer
to individual nodes: Each node in a category’s
tree representation is addressed by a sequence of
bits agajas ... ar, corresponding to a top-down
traversal of the tree. The value a;~¢9 = 0 (or, 1)
is interpreted as branching to the left (or, right) at
depth ¢. The root agy has an arbitrary placeholder
value (say, 1).% In the example in Figure 3, the
inner NP argument (the argument of the top-level
result) is addressed as 101. We represent the posi-
tion of anode by a vector of elements in its address,
mapping as~o = 0 to 1 and a;~9 = 1 to —1 and
ignoring ag. The slashes in node’s ancestors are
similarly mapped to a vector consisting of 1s for
forward slashes and —1 for backward slashes. We
use 0 to pad feature vectors to a fixed maximum
length. We then use a single linear layer to project
these features into the encoder’s hidden space
before adding it to the word’s contextualized
encoding.’

Attention. While each word’s contextualized
encoding contains some information about all
other words in the sentence, we hope to increase
the model’s output consistency using attention
(Bahdanau et al., 2015; Kim et al., 2017; Wu
et al., 2017) over the encoder’s hidden state. We
compute attention weights a as in equation (5)
and then add the a-weighted context values to the
hidden state, equation (6), replacing the simpler

7Only Slash operators can have children (Figure 2).

8Prepending all addresses with 1 has several represen-
tational advantages, the most straightforward of which is
that addresses can alternatively be read as binary numbers
enumerating category pieces in breadth-first traversal.

9The featurized encoder is, to a large extent, made possible
by fixing the arity and maximum depth of categories. The
TreeRNN will likely better admit more general setups, where
outputs of unbounded depth and/or variable arity are allowed.
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MLP from equation (2).'°

a = SoftMax (hy, ;H ) (5)
0y,; = MLP (h;; + aHy) (6)

3.3 Learning

We train the model using the AdamW optimizer
(Loshchilov and Hutter, 2019) and apply teacher
forcing (Williams and Zipser, 1989) to avoid a
noisy feedback loop during learning.

Loss function. To achieve our goal of construct-
ing correct and complete categories, we need our
models to be correct in each atomic decision, even
and especially for more complex categories. We
make the loss function sensitive to this by normal-
izing the cross-entropy between the predictions
and the ground-truth only over the number of
words in a batch and retaining the unnormalized
sum over individual atomic category decisions.
This naturally scales with category complexity.

If instead we were normalizing over atomic
decisions, too, the loss contribution of, e.g.,
NP when it occurs inside a complex category
(S\NP)/NP with size 5, would be 5 times smaller
than when it occurs as a complete category on its
own. The disadvantage that complex categories
already have as they tend to be rarer than simpler
ones (Figure 1b) would be reinforced. By keeping
the atomic losses unnormalized, we therefore
essentially put higher weight on the long tail in
order to counterbalance this trend and improve
generalizability.

4 Experimental Setup

Per our quest to supertag the long tail, we com-
pare our TreeRNN and AddrMLP models to the
following baselines:

1) Thresholded classification (MLP_10): We
compute the output probabilities directly
from the encoder’s hidden state. (Because
there is always exactly one output position
for each input word, no additional encoding
function is needed.) Only categories that are
seen 10 times or more in training are consid-
ered. Supertags that fall below the threshold
are replaced with an <UNKNOWN> symbol in
training.

10We also tried self-attention over previously predicted
partial outputs but did not find an increase in performance.
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2) Non-thresholded -classification (MLP_1):
Like MLP_10, except that all tags seen in
training may be predicted no matter their
frequency.

3) Per-sentence sequential (K+19): Kogkalidis
et al. (2019) construct type-logical super-
tags by generating for each sentence a sin-
gle sequence of atomic types and functors
(Figure 3c). Trees are unwrapped in prefix
notation and complete tags are separated from
one another by a special token. We adapt
K+19’s implementation of the sequence-to-
sequence Transformer model (Vaswani et al.,
2017), accommodating its decoding proce-
dure and memory requirements by training
with a batch size of 32 for up to 256 epochs.
We achieve the best performance using a
cosine-annealed learning rate schedule that
is warmed up over 10% of the total train-
ing steps and with a warm restart after 128
epochs (Loshchilov and Hutter, 2017).

4) Per-tag sequential (RNN): Instead of gen-
erating a single sequence for each sentence,
Bhargava and Penn (2020) generate each
word’s supertag separately with an RNN. We
implement a simplified version of Bhargava
and Penn’s model, omitting their prediction
history connections between supertags, and
using GRUs for decoding. We train this
model for up to 50 epochs (batch sizes and
learning rates are as with the tree-structured
and nonconstructive models).

If not indicated otherwise, we train the models
with a batch size of 8 for a maximum of 10 epochs,
and use early stopping based on the best develop-
ment set performance.'! All reported results are
averaged over 3 random restarts.

For downstream parsing evaluation (§6.3), we
run the C&C parser (Clark and Curran, 2007;
Clark et al., 2015) with the pretrained CCGbank
model and default hyperparameters, providing as
input our supertaggers’ 1-best predictions and
POS tags automatically obtained using Stanza
(Qi et al., 2020).

"Preliminary experiments showed that best dev perfor-
mance is usually reached within 10 epochs; batches larger
than 8 make our (single) GPU run out of memory.
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Hidden dim d 768 Weight decay .01

Activation gelu LRs le-4, 1e-5 (ft)
Dropout 2 Seeds 14112, 36125,
AdamW f’s .9, .999 92225
AdamW e le-6 Max cat depth 6

Table 1: Hyperparameters used in our experi-
ments. We use separate learning rates (LR) for
fine-tuning (ff) the RoOBERTa-base model.

CCGbank Rebank

cat types 1,285 1,574
> 100 172 199
10-99 (medium rare) 253 312
< 10 (very rare) 860 1,063
atomic 34 37
sentences 39,604 39,604
tokens 929,552 943,204
medium rare cat 7,549 9,640
very rare cat 2,055 2,527

Table 2: Statistics of the CCG training corpora we
use in our experiments.

4.1 Model Details and Hyperparameters

In Table 1 we report the model and training
hyperparameters we use to facilitate replication
of our results. We performed manual grid-search
based on the development data to find workable
learning rates. We chose a hidden dimensional-
ity of 768 to match RoBERTa’s. We kept the
default values for the AdamW hyperparameters.
We follow Kogkalidis et al. (2019) in setting up
the sequential Transformer model with 8 decoder
heads and 2 decoder layers, but swap out the
from-scratch encoder with RoOBERTa-base.

4.2 Datasets

We use two versions of the English CCGbank as
in-domain (financial news) training and test sets:
the original (Hockenmaier and Steedman, 2007)
and Honnibal et al. (2010) ‘‘rebanked’’, i.e., cor-
rected and enriched version (training sets reported
in Table 2; the results tables show test set counts).

The original CCGbank and Rebank differ in
a number of conventions for atomic categories
and category construction (Honnibal et al., 2010).
Rebank has a larger and more diverse category
space, due in large part to a more principled
treatment of NP argument structure. Hence, we
conduct our main experiments with Rebank and
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Figure 4: Shifting the tail to evaluation. The new
test set (right) consists of those sentences in sections
02-21 that contain a category type occurring less than
10 times, and the new training set of the remaining
sentences (left). As a result, we evaluate on many more
category types that are not seen at all in training (dark
blue circles/right-most horizontal offset for each depth)
than before (Figure 1b).

use the original CCGbank for comparisons with
prior work.

A limitation of standard test sets for studying
the long tail is that category types appearing rarely
in training are even less frequent in evaluation
(the Rebank test set contains just 107 tokens of
categories seen 1-9 times in training, and only
27 tokens of OOV categories). Scores computed
over these small samples may thus not reliably
estimate the models’ generalization capacity. We
counteract this in two ways: 1) by explicitly
redistributing the training and test splits; and 2)
by evaluating on out-of-domain data, with the
assumption that a shift in domains means a shift
in category distribution.

In the first case, we train the models on
sentences containing exclusively the higher-
frequency (>10) categories, and evaluate them
only on sentences with at least one rare category.
We split the usual Rebank training set (WSJ
sections 02-21) in this way—the distribution fol-
lows Figure 4.2 In comparison with the default
data splits (Figure 1b), we see that this sampling
method captures precisely the long tail of cat-
egories, while leaving the rest of the category
distribution largely unchanged.

For out-of-domain evaluation we use Honnibal
et al. (2009) (English) Wikipedia gold standard
and the (English) gold section of the Parallel
Meaning Bank, v3.0, which comprises multiple

12The few supertags in the 1-9 range of the new training
set are those which occurred slightly above 9 times in the
original training set, but some of their tokens were moved
due to occurring in the same sentence as a low-frequency tag.

text types, including literary and biblical texts
(PMB; Abzianidze et al., 2017). The Wikipedia
dataset follows CCGbank in terms of category
conventions, while PMB is more similar to
Rebank; we evaluate models trained on one
style only on in- and out-of-domain test sets
matching that style. That said, PMB contains
an unusually large number of unseen categories
following idiosyncratic conventions that even
Rebank-trained models are unlikely to pick up on
without additional training data.

5 Results

We report our main results on Rebank in Table 3.
In terms of overall accuracy, the tree-structured
constructive supertaggers (best: 94.70%) outper-
form the sequential ones (90.68%, 93.92%) and
are roughly on par with the nonconstructive classi-
fiers (best: 94.83). Performance is generally very
similar across all systems, except K+19. We con-
jecture that the main disparities between K+19 and
the other models lie in the increased ‘‘cognitive
load’’ of having to learn the correct structure of
categories, as well as the missing hard alignment
between words and supertags at test time.

Regarding the long tail, we ask: Can construc-
tive models accurately predict rare and complex
categories without sacrificing performance on the
head of the distribution? To answer this question,
we break down performance by the frequency
of category types in the training data. The base-
line is the thresholded classifier MLP_10, which
performs well on frequent categories but cannot
access rare categories occurring less than 10
times in training. The simplest way of resolving
this main hurdle is to remove the threshold, and
indeed we find that MLP_1 is able to predict
about a quarter of long-tail categories correctly.
Can we do better? The sequence-to-sequence
model by K+19 does a lot better on the tail and
even retrieves some unseen categories, but at the
cost of frequent ones. The per-tag recurrent and
tree-recursive generators (RNN and TreeRNN)
come close to to the nonconstructive classifiers,
but do not convincingly improve over them. The
AddrMLP model, finally, outperforms all others
on the rare tail while matching nonconstructive
taggers on frequent and simple ones.

For comparison with existing work (Table 5),
we also report results on the original CCGbank
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Acc Acc by cat frequency in training Acc by cat depth
All >100 10-99 1-9 ooV 0 1-2 3-6
n=56,395 n=55,698 n=563 n=107 n=27 n=19,67 n=33,409 n=3,315

Model N=538 N=199 N=222 N=91 N=26 =18 N=253 N=267
Nonconstructive Classification
MLP_10 94.77 + .07 95.26 + .07 68.32 + 1.42 - - 97.80 + .14 9425 + .08 82.01 + .18
MLP_10@ 94.76 + .17 9525 + .18 68.98 + (.89 - - 97.73 + .16 9429 + 23 81.88 + .29
MLP_] 94.83 + .09 9527 + .10 68.68 + 1.09 2399 + 1.08 - 9771+ .16 9437 + .14 82.39 + .11
MLP_l@ 9475 + .18 9518 + .17 70.16 + 0.81 27.10 + 1.62 - 97.84 + .18 94.26 + .52 8233+ 51
Constructive: Sequential
K+19 90.68 + .15 91.10 + .16 63.65 + 0.21 3458 + 1.62 741+ 0.00 91.71 + .29 91.28 + .02 78.43 + 77
RNN 93.92 + .01 9439 + .02 65.48 + (.62 19.00 + 2.35 0.00 + 0.00 9525 + .09 9433 + .04 81.77 + .78
RNN@ 94.48 + .08 94.93 + .04 66.90 + 2.32 2741+ 5.31 123+ 2.14 97.72 + .11 93.88 + .09 8133+ .16
Constructive: Tree-structured
TreeRNN 94.62 + .12 95.10 + .11 64.24 + 2.60 2555 + 0.54 2474 2.14 97.70 + .21 94.14 + .08 81.14 + .90
TreeRNN@ 94.44 + 20 94.95 + .20 62.17 + 3.03 2243+ 1.87 0.00 + 0.00 97.61 + .05 93.95 + 33 80.61 + .63
AddrMLP 9458 + .16 95.01 + .16 67.44 + 1.45 34.89 + 2.35 3.70 + 0.00 9773 + .13 94.02 + .17 81.47 + .24
AddrMLP@ 94.70 + .05 95.11 + .06 68.86 + (.57 36.76 + 2.86 494+ 214 97.85 + .16 94.11 + .03 81.92 + .26

Table 3: Main results on Rebank evaluation set (WSJ section 23). Accuracy scores are computed
for bins based on the order of magnitude of category occurrences in training, and complexity of
categories in depth, with depth=0 corresponding to atomic categories like NP (Figure 3a has depth
2). Token (n) and type (V) counts for each bin are given in the first two rows. ‘@’ refers to model
variants that use an attention mechanism over the encoder’s hidden states. (As a Transformer model,
the K+19 model attends to both the encoder and previously predicted outputs by default.) In each
column, we highlight all results r that fall within the standard deviation of the best result b, i.e., when
r + stdev(r) > b — stdev(b). For comparison, the overall tagging accuracy reported in Honnibal et al.

(2010) 18 92.2%.
Acc Acc by cat freq in training Parsing
All >100 10-99 1-9 (0]0)Y LF Parseability
n=>55,371 n=54,825 n=442 n=82 n=22 n=2,407
Model N=435 N=171 N=176 N=67 N=21
Nonconstructive
MLP_10@ 96.09 + 07 96.50 + 08 67.27 +1.02 - - 90.78 - 09 86.95 +0.75
MLP_1 96.22 + 06 96.58 + 07 70.29 +235 23.17 +3.23 - 90.91 + 09 88.26 +0.39
Constructive
K+19 92.12 + 21 92.46 + 20 65.38 099 34.55 +428 1.52 +262 87.66 +.19 91.14 +0.13
RNN@ 95.10 + 07 9548 + .07 6576 +1.71 26.02 +0.70 0.00 =+ 0.00 90.63 + 04 89.53 +0.18
AddrMLP@ 96.09 - 07 96.44 + 08 68.10 - 138 37.40 + 141 3.03 +2062 90.79 + 08 86.03 +1.72

Table 4: Results on the original CCGbank evaluation set (WSJ section 23). The population n for
computing Parseability is the number of sentences in the test set. In each column, we highlight all
results that fall within the standard deviation of the best result.

(Table 4). Our best constructive and noncon-
structive models are on par with the previously
reported state of the art in terms of overall accu-
racy. Tian et al. (2020) only report performance
on categories seen at least 10 times in training, i.e.,
the union of our ‘> 100’’ and ‘‘10-99’’ bins; our
top-3 results on this subset are MLP_1: 96.37%,
MLP_10@: 96.27%, AddtMLP@: 96.22%. The
rise in absolute scores from Table 3 to Table 4 is
consistent with Honnibal et al. (2010) finding that
Rebank is more difficult to supertag and parse than
CCGbank due to its sparser category space. We
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therefore encourage future researchers to conduct
experiments on Rebank and report detailed results
for frequency- and complexity-binned subsets
of the output space to facilitate more in-depth
comparisons.

Evaluating Generalizability. One of the
inherent problems of the supertagging task is the
sparsity of the output space. This is, however,
not sufficiently captured by standard evaluation
sets, as illustrated in Figure 1b. To test how
well the models really generalize to the long
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Acc Parsing

Model All >10 OOV LF  P/ability
Nonconstructive

V+16 94.24 - - 88.32 -
C+18  96.05 - - - -
T+20 - 96.39 - 90.68 -
Constructive

BP20  96.00 - 5 90.9 96.2

Table 5: Relevant baselines reported in previous
work (on the original CCGbank): Vaswani et al.
(2016), Clark et al. (2018), Tian et al. (2020), and
Bhargava and Penn (2020).

Acc Acc by cat freq
All >100 10-99 1-9 OOV
n=53,765 n=>50,754 n=989 n=292 n=1,730
Model N=1351 N=188 N=240 N=118 N=805

Nonconstructive

MLP_10  88.76 92.86 55.71 1324 -
MLP_1 88.79 92.87 5561 19.29 -

Sequential
K+19 80.20 83.49 4772 25.11 11.62
RNN 88.73 92.64 5292 2352 5.38

Tree-structured

TreeRNN  88.78 92.54 4990 20.55 9.62
AddrMLP 89.01 92.70 54.03 26.48 10.96

Table 6: Performance of the best systems (the
variants with attention for each paradigm) on
redistributed Rebank train/test splits. Frequency
bins are based on the new training set.

tail, we evaluate them on alternatively sampled
training and evaluation splits of the WSJ data
(Table 6) as well as in domains diverging from
the WSIJ training set (Table 7). These experiments
largely confirm our findings from the standard
Rebank evaluation set, while the change in
category distribution has several important effects
on our ability to evaluate model generalization:
First, OOV performance is much higher on the
redistributed data (Table 6) than on the standard
test splits in Tables 3, 4, and 7, highlighting
all of the constructive models’ generalization
capability, and in turn suggesting that the OOV
categories in WSJ section 23 and PMB are
truly difficult, noisy, or otherwise inconsistent
with the training data. Second, the proportion of
evaluation tokens of categories less than 10 times
in training is 1.6% in PMB and 3.8% in our

Wiki PMB

Acc All >100 10-99 1-9 OOV
n=4,151 n=53,739 n=52,010 n=870 n=191 n=668
Model N=138 N=243 N=129 N=47 N=14 N=53

Nonconstructive

MLP_10 92.54 90.11 9210 57.05 - -
MLP_1 9231 90.27 92.10 63.41 29.14 -

Constructive

K+19 87.29 84.39 86.13 55.86 32.64 0.20
RNN 92.00 89.52 91.38 61.4224.26 0.25
AddrMLP 9246 90.16 92.02 59.00 36.30 1.55

Table 7: Performance of the best systems (the
variants with attention for each paradigm) on the
Wikipedia and PMB!? datasets. The state of the art
on the Wikipedia data is 90.00% (Xu et al., 2015).

redistributed Rebank evaluation data, compared
to only ~0.2% in the standard CCGbank and
Rebank test sets. This 7x—16x increase in relative
size renders the tail much more consequential
for overall performance. And indeed we observe
slightly smaller gaps in overall accuracy between
the best-performing nonconstructive and the best-
performing constructive systems in Table 7 (0.08
on Wiki, 0.11 on PMB) compared to 0.13 in
Tables 3 and 4, while in Table 6 AddrMLP even
clearly outperforms the nonconstructive models.
Third, performance on rare and unseen categories
can now be measured much more reliably due
to the larger absolute counts of rare and unseen
categories. We provide in-depth analyses of this
subset of tags in § 6.2.

In both in-domain and out-of-domain data, the
performance gap between the nonconstructive
MLPs and AddrMLP on the most frequent
categories is minimal and in fact lies within the
standard deviation. Given the trend we observe
from Tables 3 and 4 to Tables 6 and 7, the ability
to generalize to the long tail may well outweigh
any minor improvement on the most frequent
categories when applied to even more diverse data,
within other languages, and across languages.

3Because we did not train any models on PMB itself,
we analyze performance on all of PMB-gold, but for future
comparisons, we also report accuracy on the suggested eval-
vation split: K+19: 85.43%; RNN@: 90.24%; AddrMLP@:
90.78%; MLP_1@: 90.88%; MLP_10@: 90.91%.
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Figure 5: Confusion matrices by category depth, based
on the standard Rebank evaluation set. Rows (columns)
correspond to gold (predicted) categories with the
respective depth. Thus, cells above (below) the diagonal
refer to categories predicted too deep (shallow). All
numbers are absolute differences between confusions
made by AddrMLP@ and MLP_10@ / K+19, res-
pectively. Thus, positive numbers (red) are more typical
for AddrMLP@ and negative numbers (blue) are more
typical for one of the other systems.

6 Detailed Analysis

6.1 Constructing Complex Categories

Whereas nonconstructive taggers do not distin-
guish between categories of varying complexity
(each supertag prediction is a single k-way deci-
sion), constructive taggers are always required to
make multiple atomic decisions whenever assign-
ing a complex category, all of which need to be
correct in order for the full category to be counted
as correct. This raises the question: How difficult
are categories of varying complexity for each of
the systems?

As Figure 1b shows, deeper, i.e., more com-
plex, categories tend to be rarer and thus are more
difficult than simple ones in general, for all mod-
els. Surprisingly however, we can see in the three
rightmost columns of Table 3 that it is not dramat-
ically more difficult for constructive systems to
generate complex categories of depth > 1 thanitis
for nonconstructive systems to simply assign them
(apart from K+19, which underperforms on fre-
quent categories regardless of their complexity).

In Figure 5 we take a closer look at the mod-
els’ ability to predict categories of the appropriate
depth. For the sake of brevity, we only con-
sider three extreme cases: MLP_10, K+19, and
AddrMLP. Compared with MLP_10, which tends
to choose one of the very frequent but relatively
shallow categories of depth 1 or 2, AddrMLP
prefers both standalone atomic (depth-0) cate-
gories and those of depth 3 and 4 (column totals in
the top left matrix). On the head, AddrMLP con-
fuses depth-1 for depth-0 categories and overpre-
dicts the depth of depth-2 and depth-3 categories
more frequently than the baseline. On the subset
of rare categories (which are deeper than more
frequent categories on average), AddrMLP is con-
sistently better at predicting categories of the cor-
rect depth (diagonal in the bottom left matrix); the
thresholded model consistently chooses categories
that are too shallow here. The sequential tagger
by K+19 struggles with predicting the correct
depth for frequent categories much more than the
tree-structured model (top right matrix), which is
almost certainly a result of its lack of an inductive
bias for the tree structure of categories. On the rare
tail, however, its ability to guess the right depth
is almost as good as that of AddrMLP (bottom
right).

6.2 Generation Behavior and Unseen Tags

Are there any distinct patterns in the output of
the different models? By manually searching the
corpus, we find that even in the cases where a tag-
ger assigns a category with an incorrect structure,
there are systematic confusions such as between
argument and adjunct PPs and between fixed
particle verbs and (aspectual) adjunct particles.
This is difficult to measure at a large scale, but
we present two examples in Tables 8 and 9. The
thresholded tagger has the option to output an
<UNKNOWNS> label when it believes the correct
category is not in the tagset. It makes use of this
option for 0.25% of tokens on average (0.11%
with standard train/test splits); when it does, the
correct category is indeed missing from the tagset
about 2/3 of the time. This happens, e.g., with
Wa-words in elliptical questions, as in Table 10.
In Table 11 we quantify the structural and
labeling errors more generally, based on the redis-
tributed evaluation set to ensure reliable estimates
on rare phenomena. A substantial portion of erro-
neous categories actually do have the correct
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garnered from 1984 to 1986 Why constructive  ?
Gold (S[pss]\NP) (ADV/ADV)/NP Gold S[wq]/(S[adj]\NP) S[adj]\NP
MLP_10 v v MLP_10 <UNKNOWN> v
MLP_1 v v MLP_1 (S/S)/(S[adj]\NP) v
K+19 v v K+19 v v
RNN v v RNN v v
AddrMLP (S[pss]\NP)/PP (PP/ADV)/NP AddrMLP v v

Table 8: AddrMLP treats ‘‘garnered’’ as expecting
a PP argument (which would be correct for a
source-PP, e.g., ‘‘garnered information from the
internet’’, but this is a different sense of ‘‘from’’).
The other models correctly identify ‘‘garnered’’
as an intransitive passive verb with ‘‘from”’
introducing an adverbial PP adjunct. The gold
category of ‘‘from’’ is so complicated because it is
correlated with ‘‘to’’: First it expects an NP object
on the right (*‘1984°’), then an adverbial adjunct
on the right (the to-PP), after which it produces
an adjunct to a VP.!* AddrMLP’s predictions for
“‘garnered’’ and ‘‘from’’ are consistent in treating
the entire construction ‘‘from 1984 to 1986’" as an
argument of the verb.

orders began piling up
Gold (S[ng]\NP)/PR PR
MLP_10 S[ngl\NP ADV
MLP_1 S[ng]\NP ADV
K+19 S[ng]\NP ADV
RNN (S[ng]\NP)/PP  S[adj]\NP
AddrMLP v v

Table 9: Here, the intended treatment of the
particle (PR) ‘‘up’” is as an argument selected
by the predicate. Only AddrMLP gets this right.
We assume this is preferable over treating it as
a VP adjunct (as the nonconstructive and K+19
taggers do) from a semantic perspective, because
“‘pile up’’ is a fixed expression with a meaning
distinct from that of ‘‘(to) pile’” or ‘‘pile in’’. The
RNN categories are both wrong and inconsistent
(the ““piling’’ category expects a PP and the ‘‘up”’
category is predicative).

structure (v struct).' For these cases, we perform
a detailed error analysis, whose results we present
in Figure 6. In fact, if the structure is correct, the

“ADV is not an actual atomic category. We use it to
abbreviate the VP-adjunct category (S\NP)\(S\NP). PP is a
conventionalized atomic category for argument-PPs.

BE.g., for “‘piling’’ in Table 9 the RNN predicts
(SIng]\NP)/PP, which exhibits the correct structure (X\X)/X
with an incorrect atomic label (PP instead of PR).
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Table 10: Supertags for WH-words tend to be
rare or unseen in training. Here, MLP_10
correctly identifies that it cannot predict
the true category for ‘‘why’’ and instead
outputs <UNKNOWNS>, while MLP_1 chooses
an incorrect tag. The constructive taggers are
able to generate the correct category.

Incorrect
Model Correct v'struct ' formed Xformed
MLP_10@ 47,542 1,345 4,746 -

MLP_1@ 47,552 1,401 4,811 -
K+19 43,120 2,706 7,812 127

< RNN@ 47,704 1,395 4,661 5
TreeRNN@ 47,733 1,373 4,659 1
AddrtMLP@ 47,851 1352 4,562 1

< K+19 201 96 160 127

2 RNN@ 93 26 71 5

£ TreeRNN@ 162 83 213 1

=~ AddrMLP@ 190 89 240 1

Table 11: Analysis of predicted supertag
structures in the redistributed evaluation set.
Incorrect predictions are broken down in terms
of having the correct structure (v struct: the same
number and arrangement of slashes, arguments,
and results as the gold category), an incorrect
but well-formed structure (v formed: diverging
arrangement of arguments, but still obeying the
grammar in Figure 2), or an invalid structure
(X formed, e.g., missing arguments to slashes).

predicted category is often only off by the direction
of a single slash or the attribute of a single atomic
category. K+19 additionally struggles with atomic
decisions beyond just differences in attributes.

To what extent can the constructive models gen-
erate categories that were unseen during training ?
We take a closer look at categories the constructive
taggers invented in the bottom halves of Table 11
and Figure 6. K+19 is the most willing to invent
categories, closely followed by the tree-structured
models and finally RNN, which is rather conserva-
tive in this respect (see sums of the last four rows
in Table 11). Merely generating more new cate-
gories irrespective of their correctness is of course
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Figure 6: Fine-grained analysis of correctly structured
but incorrectly labeled predictions (‘v struct’ in
Table 11). ‘Attribute error’ means that the predicted
atomic category is correct except for a wrong or missing
linguistic attribute (e.g., S vs. S[dcl]); ‘atom error’
means that an entirely wrong atomic category has been
chosen (e.g., PP vs. NP); and °‘slash error’ means
confusing / and \.

not necessarily an advantage, but it is encouraging
to see the models make use of their freedom to
do so at an adequate rate, rather than only repro-
ducing known categories or vastly overgenerating
invented ones. Interestingly, given that a incorrect
invented category has the same structure as the
gold category, we again see that the majority of
errors are due to only a single attribute or slash,
suggesting that in these cases the models get the
general idea of the category right and only err in
fine-grained and context-sensitive subcategoriza-
tion. In the case of a slash mistake, they are notably
also able to recover from it in later predictions.
While the tree-structured taggers are guaranteed
to produce valid categories,'® it is possible for the
sequential taggers to generate structurally invalid
categories, i.e., sequences of atomic categories
and slashes that are not licensed by the grammar
in Figure 2. With the tag-wise RNN generator,
which generally refrains from inventing new
categories, this only happens extremely rarely,
but in the case of K+19, every 14th sentence is
affected by an ill-formed supertag on average

1That TreeRNN and AddrMLP still produced one
malformed category can be considered a bug: They attempted
to generate a category deeper than the maximally allowed
depth and were unable to complete it. This is avoidable in
practice.
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bring

Predicted sequence
Predicted supertag
Gold sequence
Gold supertag

/ / \SIb]NP \NP
((S[bI\NP)/(NP\ ))/.
/ \S[b] NP NP
(S[b]\NP)/NP

Table 12: A malformed supertag extracted from
a sequence predicted by K+19. Underscores ‘_°
indicate gaps in the tree structure resulting from
predicted surplus slashes.

(every 66th sentence in the standard Rebank test
set). A common source of errors is that too many
slashes are predicted, whose argument and result
slots can then not be filled by the predicted atomic
categories. We show an example in Table 12.
And vice versa, are there any categories that
are not generated despite being seen in train-
ing? There are 80 category types in the standard
Rebank test set that none of the tree-structured
taggers ever predict correctly, although they are
attested in the training data, and there are 93 types
that are never retrieved by K+19, 73 of which
overlap. Out of these 73, no one occurs more
than three times in the test set and almost all
appear fewer than 50 times in training, with three
exceptions: (NP\NP)\(NP\NP) (68 times in train-
ing), (N\N)\(N\N))/NP (50 times), and (NP\NP)/N
(50 times). The first one is usually used for the last
part of complex numerical expressions (such as
dates and ranges), but the one token bearing this
category in the test set is ‘‘not’’ in ‘‘they might
not miss one at all’’, which is likely an annotation
error.'” The second one encodes prepositions
modifying an appositive bare noun, typically an
appellation or postposed proper noun. The third
one is for determiners of appositions or paren-
theticals. 67 of the 73 types that are problematic
for the constructive models are never accurately
predicted by the nonconstructive models either.

6.3 Parts of Speech and Sentence Parsing

Parsing performance is computed using labeled
Fl-score (LF) over CCG dependencies in all
sentences, following Clark and Curran (2007),
and Parseability, i.e., the proportion of sentences
for which a complete CCG derivation can be

"There are a few more instances of such implausible lex-
ical categories in the training data, like S or ((:\NP)/PP)/NP.
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Nouns Verbs| WH | Other
n=16,946 n=7915 | n=542 | n=29,968
N=83  N=296 | N=54 | N=436
Model f=1,158  f=129 | f=38 | f=358
MLP_10@ 98.58 93.18 {92.25| 95.51
MLP_1 98.62 93.49 |92.68 | 95.65
K+19 95.58 90.54 {90.04 | 90.62
RNN@ 98.60 93.17 |91.88| 93.68
AddrMLP@ 98.56 93.62 |93.11| 95.43

Table 13: Performance by part-of-speech, based
on the original CCGbank test set. n and N refer
to token and type counts in the test set, as before;
f refers to the average frequency with which a
supertag belonging to the respective POS class
is seen in training.

constructed.'® Nearly all the models we compare
outperform the state of the art in labeled depen-
dency Fl-score (right-most columns in Table 4).
Interestingly, the K+19 model produces more
parseable supertag sequences than others, despite
consistently lagging behind in terms of category
accuracy. Apparently this tagger prefers to be
self-consistent over producing the actual correct
categories, either due to its multihead attention
mechanism, the fact that decisions towards the
end of the sequence have access to all previously
predicted categories in their entirety (rather than
just parts of them), or both.

Long-range Dependencies. We examine
supertagging performance by POS class (a few are
shown in Table 13) and find that constructive and
nonconstructive taggers perform similarly across
classes, with one notable exception: WH-words,
whose supertags are rarely seen in training and
have a high type/token ratio at test time. Their
special syntactic status raises the question: How
important are constructivity, tree structure, and
long-tail recall for recovering categories involved
in long-range dependencies?

Somewhat surprisingly, we find that the RNN
is best for these dependencies (Figure 7), which
might be related to the two parsing metrics
in Table 4: RNN@ strikes a good balance
between LF and Parseability. We further exam-
ine the average dependency length per category,
and contrary to our expectation, dependencies

18The C&C parser also reports coverage, the proportion of
sentences for which at least one dependency relation can be
recovered. Coverage is 100% in all our conditions.

255

0.60 4 AddFMLP@ .
-4- TreeRNN@ *
055 —- K+19 e
1-4 5-9 10-14 15-19 20-24 25-29 30+

dependency length

Figure 7: Parsing Fl-score for varying dependency
lengths, measured in terms of linear distance of the two
words involved in the dependency.

involving WH-categories are relatively short
(usually 3-4 intervening words). We find that
the supertags with the longest dependencies on
average largely are functioning as subordina-
tors, sentence adverbials, and inverted speech
verbs such as (S[dcl]\S[dcl])\NP. These supertags
have in common that they all contain sentential
result/argument pairs of the form S[z]|S[z] (Where
x is an optional attribute). The autoregressive
nature of the RNN may be conducive to model-
ing the matching atomic categories of argument
and result. Exploring various decoding orders for
both sequential and tree-structured constructive
taggers in order to more explicitly take advantage
of these intra-category relations is an interest-
ing avenue for future work. We also expect a
major boost in Parseability from incorporating
inter-category prediction history into our models
(Bhargava and Penn, 2020). But this is nontrivial
for tree-structured decoding and goes beyond our
scope here.

6.4 Runtime and Model Size

While the constructive taggers need to make
more individual decisions for each supertag than
nonconstructive ones, they only have to consider
a much smaller and denser output space. This
trade-off between time and space complexity
should be considered in addition to tagging accu-
racy when evaluating each model. Thus we ask:
How do the constructive supertaggers compare
to nonconstructive ones in terms of efficiency? In
Table 14 we report model sizes (i.e., the number of
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Params Train time Infer speed
Model millions hours sents/s

Nonconstructive Classification

MLP_10 2.0 9 191

MLP_1 24 11 195
Constructive: Sequential

K+19 11.8 120 0.3

RNN 4.8 68 135
Constructive: Tree-structured

TreeRNN 8.3 10 125

AddrMLP 1.3 10 126

Table 14: Model size and time required for training
and inference. All models use the RoOBERTa en-
coder, whose 124.6 million parameters are not
included here. Training times are approximate
and include development set evaluation at every
epoch.

learned parameters), training time until develop-
ment performance plateaus, and inference speed.
As model size and runtime vary greatly between
different constructive taggers, the answer to our
question depends on how supertags are modeled
and inferred.

The K+19 sequential Transformer model has
low efficiency for two reasons: The Transformer
architecture itself has a large number of param-
eters; and sequential inference is slow because
individual predictions for the same sentence can-
not be parallelized and the number of inference
steps per input sentence is linear in the sum of
all category sizes (the number of atomic pieces)
for that sentence. The GRUs in the RNN and
TreeRNN models are much smaller than the
Transformer of K+19, but the TreeRNN with its
two GRUs for argument and result transitions
ends up having almost as many parameters as the
Transformer in total. The nonconstructive models
map hidden representations into a much larger and
sparser output space than the constructive models
(and the output space of MLP_1, in turn, is larger
and sparser than that of MLP_10). AddrMLP,
on the other hand, consists exclusively of feed-
forward layers, resulting in the smallest model
size among the ones we compare.

The sequential models require relatively many
training epochs to converge. The reason total
training time is still comparable between K+19

and RNN despite the extreme disparity in infer-
ence speed is that the Transformer is trained
non-autoregressively and thus performs inference
only between epochs, for evaluation on the devel-
opment set, whereas RNN training inherently
relies on inference. The nonconstructive and tree-
structured models converge within the first 10
epochs.

For the per-tag constructive models RNN,
TreeRNN, and AddrMLP we parallelize infer-
ence across all supertags in a batch, and for the
tree-structured ones, we further parallelize the
prediction of the children of slash functors, mak-
ing their inference time logarithmic in the size of
the largest predicted category in a sentence.

AddrMLP is both time- and space-efficient
overall. Its parameter count is only ~1/10 of the
K+19 model and ~1/2 of the nonconstructive
ones.

7 Discussion and Related Work

For a long time, researchers have addressed the
large search space of CCG supertags. Baldridge
(2008) and Ravi et al. (2010) were particu-
larly concerned with high lexical ambiguity and
counteracted this, respectively, by improving lex-
icon initialization using linguistic principles, and
explicitly minimizing model sizes. Deoskar et al.
(2013), working with lexico-syntactic dependen-
cies similar to supertags, addressed difficulties
arising from the long tail of rare and unseen
words;, and Deoskar et al. (2014) addressed a
similar issue specifically for generalizing a CCG
parser. The problem of out-of-vocabulary words
has gotten much less severe with the advent of
deep contextualized sentence encoders operating
on subword units.

An alternative way of reducing the burden on
the supertagger is to couple it with the parser and
jointly optimize lexical and phrasal categories,
subject to the combinatory rules of CCG (Auli and
Lopez, 2011; Garrette et al., 2015). Garrette et al.
(2015) notably included a fully constructive proba-
bilistic model of categories in a weakly-supervised
grammar-induction scenario. In the context of
grammar induction for semantic parsing specifi-
cally, Kwiatkowski et al. (2011) and Artzi et al.
(2015) have explored template-based methods
to generalize a limited initial lexicon to likely
alternative syntactic usages of observed words.
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In the special case that all categories in a sen-
tence but one are known, the combinatory rules
of CCG can be reverse-engineered to infer the
missing category. As an efficient and scalable
example of this, Thomforde and Steedman (2011)
have proposed Chart Inference.

Since the beginning of the neural era, virtually
all advances in CCG supertagging have involved
different means of deep sequence encoding, typ-
ically in the form of (Bi)LSTMs, with techniques
including: predicting categories directly from the
word-level encoder (Xu et al., 2015; Lewis et al.,
2016); giving credit to likely category sequences
(Vaswani et al., 2016; Kadari et al., 2018); forc-
ing the model to distribute its attention over a
fixed-size window of neighboring words (Wu
et al., 2017); training the encoder specifically to
be aware of each word’s neighboring categories
(‘cross-view training’; Clark et al., 2018); and
latently modeling parse chunks with a graph-
convolutional network over word n-grams (Tian
et al., 2020).

Similar techniques have been applied to
supertagging in the related formalism Tree-
Adjoining Grammar (TAG) (Kasai et al., 2017,
2018). Zhu and Sarkar (2019) have formulated
TAG supertagging as multitask learning with
respect to certain aspects of the elementary trees’
internal structure. Their system predicts the cat-
egory that optimizes the weighted sum of the
scores for each subtask.

A possible objection to generating categories
entirely productively is that universal linguistic
patterns constrain the shape of categories and the
syntactic relations they may engage in (Chomsky
and Lasnik, 1993; Baldridge and Kruijff, 2003),
and for any given language, word order and other
language-specific properties further restrict the
underlying grammar. Note that for a FxnCat shape
with given argument and result types, the direc-
tion of its Slash functors is largely determined by
global word order properties of the respective lan-
guage. Consider the prototypical category shape
for adpositions, (NP|NP)|NP, where ‘|’ stands for
either forward or backward direction. In English, a
predominantly prepositional (as opposed to post-
positional) language with postnominal-PP mod-
ifiers, this shape is most commonly instantiated
as (NP\NP)/NP, but different ordering patterns
may dominate in other languages. Languages
with more flexible word orders will show a
greater variance in slash directionality than those
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with fixed word orders. While our approach is
in principle equipped to pick up on such patterns
from data, we do not explicitly prohibit unlikely
category types. One potential way of incorporat-
ing such information is via logical constraints at
training and/or inference time in the style of Li
and Srikumar (2019); Li et al. (2019). Another
approach could be a hybrid one, bridging between
constructive and nonconstructive tagging in a
more fluid way. We plan to explore these avenues
in future work.

8 Conclusion

We introduced a novel, explicitly tree-structured
CCQG supertagging method, advancing the nascent
paradigm of constructive supertagging. Our analy-
sis of complex and long-tail categories highlights
the positive impact of different modeling and
inference choices within this paradigm: structural
inductive bias as well as adequate contextual-
ization via, e.g., attention contribute to more
efficient, robust, and self-consistent models. We
hope that our proposed method can be instrumen-
tal in researching and applying not only CCG
and related syntactic formalisms, but also other
paradigms like morphological (de)composition of
complex words in morphologically rich languages,
or compositional semantic parsing.
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