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Abstract

Although current CCG supertaggers achieve

high accuracy on the standard WSJ test set,

few systems make use of the categories’

internal structure that will drive the syntac-

tic derivation during parsing. The tagset is tra-

ditionally truncated, discarding the many rare

and complex category types in the long tail.

However, supertags are themselves trees.

Rather than give up on rare tags, we investigate

constructive models that account for their in-

ternal structure, including novel methods for

tree-structured prediction. Our best tagger is

capable of recovering a sizeable fraction of the

long-tail supertags and even generates CCG

categories that have never been seen in train-

ing, while approximating the prior state of the

art in overall tag accuracy with fewer param-

eters. We further investigate how well differ-

ent approaches generalize to out-of-domain

evaluation sets.

1 Introduction

Combinatory Categorial Grammar (CCG; Steedman,

2000) is a strongly lexicalized grammar formalism

in which rich syntactic categories at the lexical

level impose tight constraints on the constituents

that can be formed. Its syntax-semantics interface

has been attractive for downstream tasks such as

semantic parsing (Artzi et al., 2015) and machine

translation (Nǎdejde et al., 2017).

Most CCG parsers operate as a pipeline whose

first task is ‘supertagging’, i.e., sequence labeling

with a large search space of complex ‘supertags’

(Clark and Curran, 2004; Xu et al., 2015; Vaswani

et al., 2016, inter alia). The complex categories

specify valency information: expected arguments

to the right are signaled with forward slashes,

and expected arguments to the left with backward

slashes. For example, transitive verbs in English

(like ‘‘saw’’ in Figure 1a) are tagged (S\NP)/NP

to indicate that they expect a subsequent object

noun phrase (NP) and a preceding subject NP to

form a clause (S). Given the supertags, all that

remains to parsing is applying general rules of

(binary) combination between adjacent constitu-

ents until the entire input is covered. Supertagging

thus represents the crux of the overall parsing

process. In contrast to the simpler task of part-

of-speech tagging, supertaggers are required to

resolve most of the syntactic ambiguity in the

input.

One key challenge of CCG supertagging is that

the tagset is large and open-ended to account for

combinatorial possibilities of syntactic construc-

tions. This results in a heavy-tailed distribution

of supertags, which is visualized in Figure 1b;

a large proportion of unique supertags are rare

or unseen (out-of-vocabulary, OOV) even in a

training set as large as the Penn Treebank’s.

Previous CCG supertaggers have surrendered in

the face of this challenge: They treat categories as

a fixed set of opaque labels, rather than modeling

their compositional structure. Following Clark

(2002), the standard approach is to consider only

supertags appearing at least 10 times in the train-

ing data, sacrificing the possibility of predicting

two thirds of the supertag types in CCGbank. Rare

supertags may have little impact on overall token

accuracy—but the cost of this compromise is a

fundamental incapability in truly generalizing to

the task.

In this paper, we confront the long-tail problem

head-on by proposing a constructive framework

in which supertags are built from scratch rather

than predicted as opaque labels (Kogkalidis et al.,

2019). In contrast to prior constructive supertag-

gers (Kogkalidis et al., 2019; Bhargava and Penn,

2020), our model builds upon the observation

that supertags are themselves tree-structured, and
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Figure 1: CCG supertags.

hence can be generated top–down.1 Our experi-

ments on the English CCGbank and its rebanked

version show that constructing supertags as trees

improves our ability to predict rare and even

unseen tags, without sacrificing performance on

the more common ones.

Our contributions are threefold:

1. We introduce a general constructive super-

tagger that generates each lexical category

recursively as a tree. To our knowledge, this

is the first tree-structured predictor of its kind.

2. We apply this model to English CCG su-

pertagging. On frequent supertags, it matches

the more traditional approach of using a

fixed label set, while on the rare and unseen

ones, we see substantial improvements in

predictive performance.

3. We perform an array of in-depth analyses

that highlight the impact of different mod-

eling and inference choices for the task of

predicting supertags.

2 Motivation

2.1 Anatomy of a Supertag

The internal structure of any CCG supertag is a

tree licensed by the CFG in Figure 2. Atomic

categories like S and NP are related by slashes

to form functional categories, which can in turn

participate in larger functional categories. By con-

vention, the infix-notation supertag (S\NP)/NP

1Our models and code are available at

https://github.com/jakpra/treeconstructive

-supertagging.

Figure 2: The ‘syntax’ of CCG categories, using infix

notation for complex categories (FxnCat). Our model

generates supertags of type Cat top–down from this

grammar.

is equivalent to the tree in Figure 3a, with prefix

notation (/ (\ S NP) NP), where the slash signals

the direction in which the category can combine,

the right child of any slash is the argument, and the

left child is the result of combining the category

with its argument. These hierarchical supertags

constrain lexical item combination, e.g., specify-

ing subcategorization of verbs for an object NP to

the right (/). This flexibility leads to infinite2 pos-

sible supertags; in practice, they follow a power

law distribution. CCGbank (comprising the WSJ

portion of the Penn Treebank) contains numerous

rare supertags, including several that occur only

in the test set. Still others can be expected to occur

in a much larger English corpus.

In previous work, CCG supertaggers have

skirted this problem by ignoring the long tail of

supertags: Specifically, the ones occurring fewer

than 10 times in the training set. The consequences

of such a threshold can be seen from Figure 1b,

which visualizes the distribution of supertag types

in terms of depth (representing supertag complex-

ity) and token frequency. The supertags seen in

training that would be ignored under a threshold

2But see §7 for a discussion of how linguistic patterns

limit the set of observed tags.
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Figure 3: Schematic of our tree-structured supertagger

(left) in contrast with unstructured (top right) and

sequential (bottom right) models. Supertag depth also

corresponds to decoding steps. Numbers below nodes

denote positions or addresses.

of 10 appear in red, and the test set supertags never

seen in training in dark blue. Though these only

account for 0.2% of tokens in the test set, they are

present in nearly 4% of sentences and represent

fully two thirds of supertag types in CCGbank.

Further, we see that rarer categories are increas-

ingly more complex, i.e., their argument and result

types are in turn composed of FxnCats. Note in

particular that the bulk of depth-4 categories and

almost all categories with depth 5 or more fall

below the 10-count threshold.

Inspired by the recent proposals of Kogkalidis

et al. (2019) and Bhargava and Penn (2020),

we hypothesize that modeling the structure of

supertags, rather than treating them holistically

and thresholding by frequency, can successfully

generalize to rare and unseen tags. For example,

a good model should draw connections between

words that are NPs themselves, words that take

NPs as arguments (e.g., verbs), and words that

yield NPs as their result (e.g., determiners). We

examine whether such linguistically informed

generalizations can benefit supertags of various

frequency and structures, focusing on the rare and

complex ones.

2.2 Constructivity in Supertagging

We contrast two general paradigms for supertag-

ging below. (Our experiments will explore

multiple specific modeling strategies within each.)

Most previous supervised CCG supertaggers

assume a closed tagset and nonconstruc-

tively assign one complete category per word

(Figure 3b). This paradigm is oblivious to the

internal structure of the supertag and incapable

of predicting unseen supertags. This is often

combined with a frequency cutoff: Only the k

supertags seen at least n times in the training data

are considered by the model, making each tag

decision a k-way classification task. Traditionally

(Clark, 2002), systems use a threshold of n = 10
(yielding k = 425 in CCGbank and k = 511 in

CCGrebank). The main motivation for this is to

sidestep the most sparse and possibly noisy region

of the output space without dramatically decreas-

ing token coverage. Below we experiment with

both thresholded and non-thresholded models.

In contrast, a constructive tagger models the

internal structure of supertags (Kogkalidis et al.,

2019). Supertags are constructed from minimal

pieces (which for CCG are slashes and atomic cat-

egories).3 There is no frequency cutoff at training

time.4 At test time, supertags are predicted piece

by piece, and there is no constraint that predicted

supertags must have been seen before. This can

be done sequentially or recursively, taking the

categories’ internal tree structure into account.

Two different methods of sequential decoding

have been explored by Kogkalidis et al. (2019)

(hereafter ‘K+19’) and Bhargava and Penn (2020)

(‘BP20’). K+19 used a sequence-to-sequence

model, with a single target sequence consisting of

all serialized supertags for a sentence (Figure 3c).

They experimented with a type-logical grammar

formalism similar to CCG, and a Dutch cor-

pus. BP20 decoded CCG supertags as a separate

sequence per token, and additionally conditioned

each new supertag on the prediction history.

Here we go a step further and introduce methods

for directly decoding supertags as trees, freeing

the models from having to learn this fundamental

property from sequential data. We hypothesize

that this will produce better and more compact

representations that generalize to the long tail.

3 Tree-Structured Constructive

Supertagging

Given a sequence of words (a sentence), our goal

is to predict each word’s supertag. Constructing a

3For simplicity, we consider linguistic attributes like

dcl (declarative) to be part of the atomic category.
4In principle, a constructive model could be trained with

frequency-thresholded training data, but we do not see any

value in pursuing this option, as constructivity in itself already

mitigates noise and sparsity.
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supertag from its components requires a scoring

function for the parts that is cognizant of both

surrounding words and categories. Below we des-

cribe the decoding procedure (§3.1) and scoring

functions (§3.2) we developed for this purpose,

which, in line with §2, explicitly incorporate the

categories’ tree structure.

3.1 Predicting Tree-structured Supertags

According to the grammar in Figure 2, each cate-

gory is a binary tree with the following properties:

(1) Slashes are non-terminals with two children:

the category’s argument (the syntactic type it seeks

to combine with), and its result (the type it yields

after combining with its argument). (2) AtomCats

are leaf nodes. (3) The root of the tree is either the

category’s sole AtomCat, or its outermost functor,

whose argument it seeks to combine with first.

Our output supertags are trees, but there is a cru-

cial difference between our work and constituency

parsing of sentences. In the latter case, the yield of

a predicted tree is constrained to be the input sen-

tence, thereby restricting both its depth and width.

But in the case of supertagging, each word is

associated with a binary tree–structured supertag

whose breadth and depth are unknown at inference

time. We therefore grow supertags for each word

from the top down (Figure 3a). At the tth step, the

model greedily chooses the most likely node labels

at depth t, conditioned on the word encoding and

the ancestors predicted so far (Figure 3a). The first

decision (t = 0) is either an atomic category, or

the main functor. In the latter case, the model then

moves on to select the argument and result types,

which may be atomic categories or functors them-

selves. We are thus guaranteed to always generate

well-formed categories. As CCG supertags are not

very deep in practice, we impose an upper limit on

the depth of predicted trees based on the most com-

plex categories found in the training and develop-

ment data, with the main advantage that memory

allocation during training can be bounded.5

5The limits on depth and arity are practical simplifications

that follow from our task (supertags are always binary trees)

and data distribution (there are no categories with depth > 6
in any of the training or development sets we use). However,

our model can be generalized to trees of arbitrary depth, and

not as easily, but conceivably, to a different or even variable

arity. It turns out that none of the evaluation sets contain

categories that are deeper that what is seen in training (except

the redistributed test set in Figure 4, which contains one), so

this measure has virtually no impact on tagging performance.

3.2 Modeling Supertags

All supertagging models we compare consist

of (a) a sequence encoder, which generates a

d-dimensional contextualized representation hk,0

for each word k in a sentence x (equation (1),

together forming the |x| × d matrix H0); (b) an

output-positional encoder, which generates the

hidden representation hk,i for a position indexed

by i within the kth word’s category tree; and

(c) a fully-connected 2-layer perceptron (MLP)

with a final softmax layer which maps such a

representation to a probability distribution ok,i
over the inventory of possible labels L (atomic

categories and slashes; equation (2)). We use the

term position and the index i to refer to any atomic

part of a category for which a labeling decision

has to be made. This could be, for example, the

positions of the S category in Figure 3a and 3c, or

the single output in Figure 3b.

H0 = Encoder (x) (1)

ok,i = MLP (hk,i) (2)

The label yk,i is the most probable one per the

MLP’s prediction.

Contextualized Word Embeddings. In all con-

ditions, we encode sentences using the pretrained

RoBERTa-base encoder (Liu et al., 2019), fine-

tuning it for our task.6 Several recent studies have

shown that such models can capture syntactic

properties and relations (e.g., Jawahar et al., 2019;

Clark et al., 2019; Hewitt and Manning, 2019).

Output-positional Encoding. We experiment

with two alternative ways of deriving hidden

states for category-internal positions (k, i), where

i > 0: a tree-structured recursive neural network

(TreeRNN; Tai et al., 2015, inter alia), and a

deterministic addressing function that accesses

each node directly (AddrMLP). Both variants,

described below, also take into account the

current node’s ancestors.

The TreeRNN (equation (3)) computes the

hidden representation for a child node c(i) from

a vector embedding of its parent’s label yk,i and

the hidden representation hk,i. The encodings are

separately computed for child nodes representing

the result (c = ‘left’) and argument (c = ‘right’)

of the parent. Following K+19, we use the trans-

pose of the last layer of the MLP to embed labels.

6We also experimented with a BiGRU encoder, but

obtained consistently worse results.
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Our experiments use gated recurrent units (GRUs;

Cho et al., 2014).

hk,c(i) = GRUc (Embed (yk,i) , hk,i) (3)

Using tree-structured RNNs for top–down

generation is reminiscent of Zhang et al. (2016).

For the AddrMLP, we represent the posi-

tion i of a node and the Slashes7 in its ancestors

(denoted by Yk,anc(i)) as a single feature vector that

augments the contextualized word embedding:

hk,i = hk,0 +Linear
(

Features
(

i,Yk,anc(i)

))

(4)

We use a binary addressing scheme to refer

to individual nodes: Each node in a category’s

tree representation is addressed by a sequence of

bits a0a1a2 . . . aT , corresponding to a top-down

traversal of the tree. The value at>0 = 0 (or, 1)
is interpreted as branching to the left (or, right) at

depth t. The root a0 has an arbitrary placeholder

value (say, 1).8 In the example in Figure 3, the

inner NP argument (the argument of the top-level

result) is addressed as 101. We represent the posi-

tion of a node by a vector of elements in its address,

mapping at>0 = 0 to 1 and at>0 = 1 to −1 and

ignoring a0. The slashes in node’s ancestors are

similarly mapped to a vector consisting of 1s for

forward slashes and −1 for backward slashes. We

use 0 to pad feature vectors to a fixed maximum

length. We then use a single linear layer to project

these features into the encoder’s hidden space

before adding it to the word’s contextualized

encoding.9

Attention. While each word’s contextualized

encoding contains some information about all

other words in the sentence, we hope to increase

the model’s output consistency using attention

(Bahdanau et al., 2015; Kim et al., 2017; Wu

et al., 2017) over the encoder’s hidden state. We

compute attention weights α as in equation (5)

and then add the α-weighted context values to the

hidden state, equation (6), replacing the simpler

7Only Slash operators can have children (Figure 2).
8Prepending all addresses with 1 has several represen-

tational advantages, the most straightforward of which is

that addresses can alternatively be read as binary numbers

enumerating category pieces in breadth-first traversal.
9The featurized encoder is, to a large extent, made possible

by fixing the arity and maximum depth of categories. The

TreeRNN will likely better admit more general setups, where

outputs of unbounded depth and/or variable arity are allowed.

MLP from equation (2).10

α = SoftMax
(

hk,iH
�
0

)

(5)

ok,i = MLP (hk,i + αH0) (6)

3.3 Learning

We train the model using the AdamW optimizer

(Loshchilov and Hutter, 2019) and apply teacher

forcing (Williams and Zipser, 1989) to avoid a

noisy feedback loop during learning.

Loss function. To achieve our goal of construct-

ing correct and complete categories, we need our

models to be correct in each atomic decision, even

and especially for more complex categories. We

make the loss function sensitive to this by normal-

izing the cross-entropy between the predictions

and the ground-truth only over the number of

words in a batch and retaining the unnormalized

sum over individual atomic category decisions.

This naturally scales with category complexity.

If instead we were normalizing over atomic

decisions, too, the loss contribution of, e.g.,

NP when it occurs inside a complex category

(S\NP)/NP with size 5, would be 5 times smaller

than when it occurs as a complete category on its

own. The disadvantage that complex categories

already have as they tend to be rarer than simpler

ones (Figure 1b) would be reinforced. By keeping

the atomic losses unnormalized, we therefore

essentially put higher weight on the long tail in

order to counterbalance this trend and improve

generalizability.

4 Experimental Setup

Per our quest to supertag the long tail, we com-

pare our TreeRNN and AddrMLP models to the

following baselines:

1) Thresholded classification (MLP 10): We

compute the output probabilities directly

from the encoder’s hidden state. (Because

there is always exactly one output position

for each input word, no additional encoding

function is needed.) Only categories that are

seen 10 times or more in training are consid-

ered. Supertags that fall below the threshold

are replaced with an <UNKNOWN> symbol in

training.

10We also tried self-attention over previously predicted

partial outputs but did not find an increase in performance.
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2) Non-thresholded classification (MLP 1):

Like MLP 10, except that all tags seen in

training may be predicted no matter their

frequency.

3) Per-sentence sequential (K+19): Kogkalidis

et al. (2019) construct type-logical super-

tags by generating for each sentence a sin-

gle sequence of atomic types and functors

(Figure 3c). Trees are unwrapped in prefix

notation and complete tags are separated from

one another by a special token. We adapt

K+19’s implementation of the sequence-to-

sequence Transformer model (Vaswani et al.,

2017), accommodating its decoding proce-

dure and memory requirements by training

with a batch size of 32 for up to 256 epochs.

We achieve the best performance using a

cosine-annealed learning rate schedule that

is warmed up over 10% of the total train-

ing steps and with a warm restart after 128

epochs (Loshchilov and Hutter, 2017).

4) Per-tag sequential (RNN): Instead of gen-

erating a single sequence for each sentence,

Bhargava and Penn (2020) generate each

word’s supertag separately with an RNN. We

implement a simplified version of Bhargava

and Penn’s model, omitting their prediction

history connections between supertags, and

using GRUs for decoding. We train this

model for up to 50 epochs (batch sizes and

learning rates are as with the tree-structured

and nonconstructive models).

If not indicated otherwise, we train the models

with a batch size of 8 for a maximum of 10 epochs,

and use early stopping based on the best develop-

ment set performance.11 All reported results are

averaged over 3 random restarts.

For downstream parsing evaluation (§6.3), we

run the C&C parser (Clark and Curran, 2007;

Clark et al., 2015) with the pretrained CCGbank

model and default hyperparameters, providing as

input our supertaggers’ 1-best predictions and

POS tags automatically obtained using Stanza

(Qi et al., 2020).

11Preliminary experiments showed that best dev perfor-

mance is usually reached within 10 epochs; batches larger

than 8 make our (single) GPU run out of memory.

Hidden dim d 768 Weight decay .01

Activation gelu LRs 1e-4, 1e-5 (ft)

Dropout .2 Seeds 14112, 36125,

AdamW β’s .9, .999 92225

AdamW ε 1e-6 Max cat depth 6

Table 1: Hyperparameters used in our experi-

ments. We use separate learning rates (LR) for

fine-tuning (ft) the RoBERTa-base model.

CCGbank Rebank

cat types 1,285 1,574

≥ 100 172 199

10–99 (medium rare) 253 312

< 10 (very rare) 860 1,063

atomic 34 37

sentences 39,604 39,604

tokens 929,552 943,204

medium rare cat 7,549 9,640

very rare cat 2,055 2,527

Table 2: Statistics of the CCG training corpora we

use in our experiments.

4.1 Model Details and Hyperparameters

In Table 1 we report the model and training

hyperparameters we use to facilitate replication

of our results. We performed manual grid-search

based on the development data to find workable

learning rates. We chose a hidden dimensional-

ity of 768 to match RoBERTa’s. We kept the

default values for the AdamW hyperparameters.

We follow Kogkalidis et al. (2019) in setting up

the sequential Transformer model with 8 decoder

heads and 2 decoder layers, but swap out the

from-scratch encoder with RoBERTa-base.

4.2 Datasets

We use two versions of the English CCGbank as

in-domain (financial news) training and test sets:

the original (Hockenmaier and Steedman, 2007)

and Honnibal et al. (2010) ‘‘rebanked’’, i.e., cor-

rected and enriched version (training sets reported

in Table 2; the results tables show test set counts).

The original CCGbank and Rebank differ in

a number of conventions for atomic categories

and category construction (Honnibal et al., 2010).

Rebank has a larger and more diverse category

space, due in large part to a more principled

treatment of NP argument structure. Hence, we

conduct our main experiments with Rebank and
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Figure 4: Shifting the tail to evaluation. The new

test set (right) consists of those sentences in sections

02–21 that contain a category type occurring less than

10 times, and the new training set of the remaining

sentences (left). As a result, we evaluate on many more

category types that are not seen at all in training (dark

blue circles/right-most horizontal offset for each depth)

than before (Figure 1b).

use the original CCGbank for comparisons with

prior work.

A limitation of standard test sets for studying

the long tail is that category types appearing rarely

in training are even less frequent in evaluation

(the Rebank test set contains just 107 tokens of

categories seen 1–9 times in training, and only

27 tokens of OOV categories). Scores computed

over these small samples may thus not reliably

estimate the models’ generalization capacity. We

counteract this in two ways: 1) by explicitly

redistributing the training and test splits; and 2)

by evaluating on out-of-domain data, with the

assumption that a shift in domains means a shift

in category distribution.

In the first case, we train the models on

sentences containing exclusively the higher-

frequency (≥10) categories, and evaluate them

only on sentences with at least one rare category.

We split the usual Rebank training set (WSJ

sections 02–21) in this way—the distribution fol-

lows Figure 4.12 In comparison with the default

data splits (Figure 1b), we see that this sampling

method captures precisely the long tail of cat-

egories, while leaving the rest of the category

distribution largely unchanged.

For out-of-domain evaluation we use Honnibal

et al. (2009) (English) Wikipedia gold standard

and the (English) gold section of the Parallel

Meaning Bank, v3.0, which comprises multiple

12The few supertags in the 1–9 range of the new training

set are those which occurred slightly above 9 times in the

original training set, but some of their tokens were moved

due to occurring in the same sentence as a low-frequency tag.

text types, including literary and biblical texts

(PMB; Abzianidze et al., 2017). The Wikipedia

dataset follows CCGbank in terms of category

conventions, while PMB is more similar to

Rebank; we evaluate models trained on one

style only on in- and out-of-domain test sets

matching that style. That said, PMB contains

an unusually large number of unseen categories

following idiosyncratic conventions that even

Rebank-trained models are unlikely to pick up on

without additional training data.

5 Results

We report our main results on Rebank in Table 3.

In terms of overall accuracy, the tree-structured

constructive supertaggers (best: 94.70%) outper-

form the sequential ones (90.68%, 93.92%) and

are roughly on par with the nonconstructive classi-

fiers (best: 94.83). Performance is generally very

similar across all systems, except K+19. We con-

jecture that the main disparities between K+19 and

the other models lie in the increased ‘‘cognitive

load’’ of having to learn the correct structure of

categories, as well as the missing hard alignment

between words and supertags at test time.

Regarding the long tail, we ask: Can construc-

tive models accurately predict rare and complex

categories without sacrificing performance on the

head of the distribution? To answer this question,

we break down performance by the frequency

of category types in the training data. The base-

line is the thresholded classifier MLP 10, which

performs well on frequent categories but cannot

access rare categories occurring less than 10

times in training. The simplest way of resolving

this main hurdle is to remove the threshold, and

indeed we find that MLP 1 is able to predict

about a quarter of long-tail categories correctly.

Can we do better? The sequence-to-sequence

model by K+19 does a lot better on the tail and

even retrieves some unseen categories, but at the

cost of frequent ones. The per-tag recurrent and

tree-recursive generators (RNN and TreeRNN)

come close to to the nonconstructive classifiers,

but do not convincingly improve over them. The

AddrMLP model, finally, outperforms all others

on the rare tail while matching nonconstructive

taggers on frequent and simple ones.

For comparison with existing work (Table 5),

we also report results on the original CCGbank
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Acc Acc by cat frequency in training Acc by cat depth

All ≥100 10–99 1–9 OOV 0 1–2 3–6

n=56,395 n=55,698 n=563 n=107 n=27 n=19,67 n=33,409 n=3,315
Model N=538 N=199 N=222 N=91 N=26 N=18 N=253 N=267

Nonconstructive Classification

MLP 10 94.77 ± .07 95.26 ± .07 68.32 ± 1.42 – – 97.80 ± .14 94.25 ± .08 82.01 ± .18
MLP 10@ 94.76 ± .17 95.25 ± .18 68.98 ± 0.89 – – 97.73 ± .16 94.29 ± .23 81.88 ± .29

MLP 1 94.83 ± .09 95.27 ± .10 68.68 ± 1.09 23.99 ± 1.08 – 97.71 ± .16 94.37 ± .14 82.39 ± .11
MLP 1@ 94.75 ± .18 95.18 ± .17 70.16 ± 0.81 27.10 ± 1.62 – 97.84 ± .18 94.26 ± .52 82.33 ± .51

Constructive: Sequential

K+19 90.68 ± .15 91.10 ± .16 63.65 ± 0.21 34.58 ± 1.62 7.41 ± 0.00 91.71 ± .29 91.28 ± .02 78.43 ± .77

RNN 93.92 ± .01 94.39 ± .02 65.48 ± 0.62 19.00 ± 2.35 0.00 ± 0.00 95.25 ± .09 94.33 ± .04 81.77 ± .78
RNN@ 94.48 ± .08 94.93 ± .04 66.90 ± 2.32 27.41 ± 5.31 1.23 ± 2.14 97.72 ± .11 93.88 ± .09 81.33 ± .16

Constructive: Tree-structured

TreeRNN 94.62 ± .12 95.10 ± .11 64.24 ± 2.60 25.55 ± 0.54 2.47 ± 2.14 97.70 ± .21 94.14 ± .08 81.14 ± .90
TreeRNN@ 94.44 ± .22 94.95 ± .20 62.17 ± 3.03 22.43 ± 1.87 0.00 ± 0.00 97.61 ± .05 93.95 ± .33 80.61 ± .63

AddrMLP 94.58 ± .16 95.01 ± .16 67.44 ± 1.45 34.89 ± 2.35 3.70 ± 0.00 97.73 ± .13 94.02 ± .17 81.47 ± .24
AddrMLP@ 94.70 ± .05 95.11 ± .06 68.86 ± 0.57 36.76 ± 2.86 4.94 ± 2.14 97.85 ± .16 94.11 ± .03 81.92 ± .26

Table 3: Main results on Rebank evaluation set (WSJ section 23). Accuracy scores are computed

for bins based on the order of magnitude of category occurrences in training, and complexity of

categories in depth, with depth=0 corresponding to atomic categories like NP (Figure 3a has depth

2). Token (n) and type (N ) counts for each bin are given in the first two rows. ‘@’ refers to model

variants that use an attention mechanism over the encoder’s hidden states. (As a Transformer model,

the K+19 model attends to both the encoder and previously predicted outputs by default.) In each

column, we highlight all results r that fall within the standard deviation of the best result b, i.e., when

r + stdev(r) > b− stdev(b). For comparison, the overall tagging accuracy reported in Honnibal et al.

(2010) is 92.2%.

Acc Acc by cat freq in training Parsing

All ≥100 10–99 1–9 OOV LF Parseability

n=55,371 n=54,825 n=442 n=82 n=22 n=2,407

Model N=435 N=171 N=176 N=67 N=21

Nonconstructive

MLP 10@ 96.09 ± .07 96.50 ± .08 67.27 ± 1.02 – – 90.78 ± .09 86.95 ± 0.75

MLP 1 96.22 ± .06 96.58 ± .07 70.29 ± 2.35 23.17 ± 3.23 – 90.91 ± .09 88.26 ± 0.39

Constructive

K+19 92.12 ± .21 92.46 ± .20 65.38 ± 0.99 34.55 ± 4.28 1.52 ± 2.62 87.66 ± .19 91.14 ± 0.13

RNN@ 95.10 ± .07 95.48 ± .07 65.76 ± 1.71 26.02 ± 0.70 0.00 ± 0.00 90.63 ± .04 89.53 ± 0.18

AddrMLP@ 96.09 ± .07 96.44 ± .08 68.10 ± 1.38 37.40 ± 1.41 3.03 ± 2.62 90.79 ± .08 86.03 ± 1.72

Table 4: Results on the original CCGbank evaluation set (WSJ section 23). The population n for

computing Parseability is the number of sentences in the test set. In each column, we highlight all

results that fall within the standard deviation of the best result.

(Table 4). Our best constructive and noncon-

structive models are on par with the previously

reported state of the art in terms of overall accu-

racy. Tian et al. (2020) only report performance

on categories seen at least 10 times in training, i.e.,

the union of our ‘‘≥ 100’’ and ‘‘10-99’’ bins; our

top-3 results on this subset are MLP 1: 96.37%,

MLP 10@: 96.27%, AddrMLP@: 96.22%. The

rise in absolute scores from Table 3 to Table 4 is

consistent with Honnibal et al. (2010) finding that

Rebank is more difficult to supertag and parse than

CCGbank due to its sparser category space. We

therefore encourage future researchers to conduct

experiments on Rebank and report detailed results

for frequency- and complexity-binned subsets

of the output space to facilitate more in-depth

comparisons.

Evaluating Generalizability. One of the

inherent problems of the supertagging task is the

sparsity of the output space. This is, however,

not sufficiently captured by standard evaluation

sets, as illustrated in Figure 1b. To test how

well the models really generalize to the long
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Acc Parsing

Model All ≥ 10 OOV LF P/ability

Nonconstructive

V+16 94.24 – – 88.32 –

C+18 96.05 – – – –

T+20 – 96.39 – 90.68 –

Constructive

BP20 96.00 – 5 90.9 96.2

Table 5: Relevant baselines reported in previous

work (on the original CCGbank): Vaswani et al.

(2016), Clark et al. (2018), Tian et al. (2020), and

Bhargava and Penn (2020).

Acc Acc by cat freq

All ≥100 10–99 1–9 OOV

n=53,765 n=50,754 n=989 n=292 n=1,730

Model N=1,351 N=188 N=240 N=118 N=805

Nonconstructive

MLP 10 88.76 92.86 55.71 13.24 –

MLP 1 88.79 92.87 55.61 19.29 –

Sequential

K+19 80.20 83.49 47.72 25.11 11.62

RNN 88.73 92.64 52.92 23.52 5.38

Tree-structured

TreeRNN 88.78 92.54 49.90 20.55 9.62

AddrMLP 89.01 92.70 54.03 26.48 10.96

Table 6: Performance of the best systems (the

variants with attention for each paradigm) on

redistributed Rebank train/test splits. Frequency

bins are based on the new training set.

tail, we evaluate them on alternatively sampled

training and evaluation splits of the WSJ data

(Table 6) as well as in domains diverging from

the WSJ training set (Table 7). These experiments

largely confirm our findings from the standard

Rebank evaluation set, while the change in

category distribution has several important effects

on our ability to evaluate model generalization:

First, OOV performance is much higher on the

redistributed data (Table 6) than on the standard

test splits in Tables 3, 4, and 7, highlighting

all of the constructive models’ generalization

capability, and in turn suggesting that the OOV

categories in WSJ section 23 and PMB are

truly difficult, noisy, or otherwise inconsistent

with the training data. Second, the proportion of

evaluation tokens of categories less than 10 times

in training is 1.6% in PMB and 3.8% in our

Wiki PMB

Acc All ≥100 10–99 1–9 OOV

n=4,151 n=53,739 n=52,010 n=870 n=191 n=668

Model N=138 N=243 N=129 N=47 N=14 N=53

Nonconstructive

MLP 10 92.54 90.11 92.10 57.05 – –

MLP 1 92.31 90.27 92.10 63.41 29.14 –

Constructive

K+19 87.29 84.39 86.13 55.86 32.64 0.20

RNN 92.00 89.52 91.38 61.42 24.26 0.25

AddrMLP 92.46 90.16 92.02 59.00 36.30 1.55

Table 7: Performance of the best systems (the

variants with attention for each paradigm) on the

Wikipedia and PMB13 datasets. The state of the art

on the Wikipedia data is 90.00% (Xu et al., 2015).

redistributed Rebank evaluation data, compared

to only ≈0.2% in the standard CCGbank and

Rebank test sets. This 7x–16x increase in relative

size renders the tail much more consequential

for overall performance. And indeed we observe

slightly smaller gaps in overall accuracy between

the best-performing nonconstructive and the best-

performing constructive systems in Table 7 (0.08

on Wiki, 0.11 on PMB) compared to 0.13 in

Tables 3 and 4, while in Table 6 AddrMLP even

clearly outperforms the nonconstructive models.

Third, performance on rare and unseen categories

can now be measured much more reliably due

to the larger absolute counts of rare and unseen

categories. We provide in-depth analyses of this

subset of tags in § 6.2.

In both in-domain and out-of-domain data, the

performance gap between the nonconstructive

MLPs and AddrMLP on the most frequent

categories is minimal and in fact lies within the

standard deviation. Given the trend we observe

from Tables 3 and 4 to Tables 6 and 7, the ability

to generalize to the long tail may well outweigh

any minor improvement on the most frequent

categories when applied to even more diverse data,

within other languages, and across languages.

13Because we did not train any models on PMB itself,

we analyze performance on all of PMB-gold, but for future

comparisons, we also report accuracy on the suggested eval-

uation split: K+19: 85.43%; RNN@: 90.24%; AddrMLP@:

90.78%; MLP 1@: 90.88%; MLP 10@: 90.91%.
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Figure 5: Confusion matrices by category depth, based

on the standard Rebank evaluation set. Rows (columns)

correspond to gold (predicted) categories with the

respective depth. Thus, cells above (below) the diagonal

refer to categories predicted too deep (shallow). All

numbers are absolute differences between confusions

made by AddrMLP@ and MLP 10@ / K+19, res-

pectively. Thus, positive numbers (red) are more typical

for AddrMLP@ and negative numbers (blue) are more

typical for one of the other systems.

6 Detailed Analysis

6.1 Constructing Complex Categories

Whereas nonconstructive taggers do not distin-

guish between categories of varying complexity

(each supertag prediction is a single k-way deci-

sion), constructive taggers are always required to

make multiple atomic decisions whenever assign-

ing a complex category, all of which need to be

correct in order for the full category to be counted

as correct. This raises the question: How difficult

are categories of varying complexity for each of

the systems?

As Figure 1b shows, deeper, i.e., more com-

plex, categories tend to be rarer and thus are more

difficult than simple ones in general, for all mod-

els. Surprisingly however, we can see in the three

rightmost columns of Table 3 that it is not dramat-

ically more difficult for constructive systems to

generate complex categories of depth≥ 1 than it is

for nonconstructive systems to simply assign them

(apart from K+19, which underperforms on fre-

quent categories regardless of their complexity).

In Figure 5 we take a closer look at the mod-

els’ ability to predict categories of the appropriate

depth. For the sake of brevity, we only con-

sider three extreme cases: MLP 10, K+19, and

AddrMLP. Compared with MLP 10, which tends

to choose one of the very frequent but relatively

shallow categories of depth 1 or 2, AddrMLP

prefers both standalone atomic (depth-0) cate-

gories and those of depth 3 and 4 (column totals in

the top left matrix). On the head, AddrMLP con-

fuses depth-1 for depth-0 categories and overpre-

dicts the depth of depth-2 and depth-3 categories

more frequently than the baseline. On the subset

of rare categories (which are deeper than more

frequent categories on average), AddrMLP is con-

sistently better at predicting categories of the cor-

rect depth (diagonal in the bottom left matrix); the

thresholded model consistently chooses categories

that are too shallow here. The sequential tagger

by K+19 struggles with predicting the correct

depth for frequent categories much more than the

tree-structured model (top right matrix), which is

almost certainly a result of its lack of an inductive

bias for the tree structure of categories. On the rare

tail, however, its ability to guess the right depth

is almost as good as that of AddrMLP (bottom

right).

6.2 Generation Behavior and Unseen Tags

Are there any distinct patterns in the output of

the different models? By manually searching the

corpus, we find that even in the cases where a tag-

ger assigns a category with an incorrect structure,

there are systematic confusions such as between

argument and adjunct PPs and between fixed

particle verbs and (aspectual) adjunct particles.

This is difficult to measure at a large scale, but

we present two examples in Tables 8 and 9. The

thresholded tagger has the option to output an

<UNKNOWN> label when it believes the correct

category is not in the tagset. It makes use of this

option for 0.25% of tokens on average (0.11%

with standard train/test splits); when it does, the

correct category is indeed missing from the tagset

about 2/3 of the time. This happens, e.g., with

WH-words in elliptical questions, as in Table 10.

In Table 11 we quantify the structural and

labeling errors more generally, based on the redis-

tributed evaluation set to ensure reliable estimates

on rare phenomena. A substantial portion of erro-

neous categories actually do have the correct
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garnered from 1984 to 1986

Gold (S[pss]\NP) (ADV/ADV)/NP

MLP 10 � �

MLP 1 � �

K+19 � �

RNN � �

AddrMLP (S[pss]\NP)/PP (PP/ADV)/NP

Table 8: AddrMLP treats ‘‘garnered’’ as expecting

a PP argument (which would be correct for a

source-PP, e.g., ‘‘garnered information from the

internet’’, but this is a different sense of ‘‘from’’).

The other models correctly identify ‘‘garnered’’

as an intransitive passive verb with ‘‘from’’

introducing an adverbial PP adjunct. The gold

category of ‘‘from’’ is so complicated because it is

correlated with ‘‘to’’: First it expects an NP object

on the right (‘‘1984’’), then an adverbial adjunct

on the right (the to-PP), after which it produces

an adjunct to a VP.14 AddrMLP’s predictions for

‘‘garnered’’ and ‘‘from’’ are consistent in treating

the entire construction ‘‘from 1984 to 1986’’ as an

argument of the verb.

orders began piling up

Gold (S[ng]\NP)/PR PR

MLP 10 S[ng]\NP ADV

MLP 1 S[ng]\NP ADV

K+19 S[ng]\NP ADV

RNN (S[ng]\NP)/PP S[adj]\NP

AddrMLP � �

Table 9: Here, the intended treatment of the

particle (PR) ‘‘up’’ is as an argument selected

by the predicate. Only AddrMLP gets this right.

We assume this is preferable over treating it as

a VP adjunct (as the nonconstructive and K+19

taggers do) from a semantic perspective, because

‘‘pile up’’ is a fixed expression with a meaning

distinct from that of ‘‘(to) pile’’ or ‘‘pile in’’. The

RNN categories are both wrong and inconsistent

(the ‘‘piling’’ category expects a PP and the ‘‘up’’

category is predicative).

structure (� struct).15 For these cases, we perform

a detailed error analysis, whose results we present

in Figure 6. In fact, if the structure is correct, the

14ADV is not an actual atomic category. We use it to

abbreviate the VP-adjunct category (S\NP)\(S\NP). PP is a

conventionalized atomic category for argument-PPs.
15E.g., for ‘‘piling’’ in Table 9 the RNN predicts

(S[ng]\NP)/PP, which exhibits the correct structure (X\X)/X

with an incorrect atomic label (PP instead of PR).

Why constructive ?

Gold S[wq]/(S[adj]\NP) S[adj]\NP

MLP 10 <UNKNOWN> �

MLP 1 (S/S)/(S[adj]\NP) �

K+19 � �

RNN � �

AddrMLP � �

Table 10: Supertags for WH-words tend to be

rare or unseen in training. Here, MLP 10

correctly identifies that it cannot predict

the true category for ‘‘why’’ and instead

outputs <UNKNOWN>, while MLP 1 chooses

an incorrect tag. The constructive taggers are

able to generate the correct category.

Incorrect

Model Correct �struct �formed ✗formed

A
ll

MLP 10@ 47,542 1,345 4,746 –

MLP 1@ 47,552 1,401 4,811 –

K+19 43,120 2,706 7,812 127

RNN@ 47,704 1,395 4,661 5

TreeRNN@ 47,733 1,373 4,659 1

AddrMLP@ 47,851 1,352 4,562 1

In
v

en
te

d K+19 201 96 160 127

RNN@ 93 26 71 5

TreeRNN@ 162 83 213 1

AddrMLP@ 190 89 240 1

Table 11: Analysis of predicted supertag

structures in the redistributed evaluation set.

Incorrect predictions are broken down in terms

of having the correct structure (� struct: the same

number and arrangement of slashes, arguments,

and results as the gold category), an incorrect

but well-formed structure (� formed: diverging

arrangement of arguments, but still obeying the

grammar in Figure 2), or an invalid structure

(✗ formed, e.g., missing arguments to slashes).

predicted category is often only off by the direction

of a single slash or the attribute of a single atomic

category. K+19 additionally struggles with atomic

decisions beyond just differences in attributes.

To what extent can the constructive models gen-

erate categories that were unseen during training?

We take a closer look at categories the constructive

taggers invented in the bottom halves of Table 11

and Figure 6. K+19 is the most willing to invent

categories, closely followed by the tree-structured

models and finally RNN, which is rather conserva-

tive in this respect (see sums of the last four rows

in Table 11). Merely generating more new cate-

gories irrespective of their correctness is of course
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Figure 6: Fine-grained analysis of correctly structured

but incorrectly labeled predictions (‘� struct’ in

Table 11). ‘Attribute error’ means that the predicted

atomic category is correct except for a wrong or missing

linguistic attribute (e.g., S vs. S[dcl]); ‘atom error’

means that an entirely wrong atomic category has been

chosen (e.g., PP vs. NP); and ‘slash error’ means

confusing / and \.

not necessarily an advantage, but it is encouraging

to see the models make use of their freedom to

do so at an adequate rate, rather than only repro-

ducing known categories or vastly overgenerating

invented ones. Interestingly, given that a incorrect

invented category has the same structure as the

gold category, we again see that the majority of

errors are due to only a single attribute or slash,

suggesting that in these cases the models get the

general idea of the category right and only err in

fine-grained and context-sensitive subcategoriza-

tion. In the case of a slash mistake, they are notably

also able to recover from it in later predictions.

While the tree-structured taggers are guaranteed

to produce valid categories,16 it is possible for the

sequential taggers to generate structurally invalid

categories, i.e., sequences of atomic categories

and slashes that are not licensed by the grammar

in Figure 2. With the tag-wise RNN generator,

which generally refrains from inventing new

categories, this only happens extremely rarely,

but in the case of K+19, every 14th sentence is

affected by an ill-formed supertag on average

16That TreeRNN and AddrMLP still produced one

malformed category can be considered a bug: They attempted

to generate a category deeper than the maximally allowed

depth and were unable to complete it. This is avoidable in

practice.

bring

Predicted sequence / / \S[b] NP \NP

Predicted supertag ((S[b]\NP)/(NP\ - ))/-

Gold sequence / \S[b] NP NP

Gold supertag (S[b]\NP)/NP

Table 12: A malformed supertag extracted from

a sequence predicted by K+19. Underscores ‘ ’

indicate gaps in the tree structure resulting from

predicted surplus slashes.

(every 66th sentence in the standard Rebank test

set). A common source of errors is that too many

slashes are predicted, whose argument and result

slots can then not be filled by the predicted atomic

categories. We show an example in Table 12.

And vice versa, are there any categories that

are not generated despite being seen in train-

ing? There are 80 category types in the standard

Rebank test set that none of the tree-structured

taggers ever predict correctly, although they are

attested in the training data, and there are 93 types

that are never retrieved by K+19, 73 of which

overlap. Out of these 73, no one occurs more

than three times in the test set and almost all

appear fewer than 50 times in training, with three

exceptions: (NP\NP)\(NP\NP) (68 times in train-

ing), ((N\N)\(N\N))/NP (50 times), and (NP\NP)/N

(50 times). The first one is usually used for the last

part of complex numerical expressions (such as

dates and ranges), but the one token bearing this

category in the test set is ‘‘not’’ in ‘‘they might

not miss one at all’’, which is likely an annotation

error.17 The second one encodes prepositions

modifying an appositive bare noun, typically an

appellation or postposed proper noun. The third

one is for determiners of appositions or paren-

theticals. 67 of the 73 types that are problematic

for the constructive models are never accurately

predicted by the nonconstructive models either.

6.3 Parts of Speech and Sentence Parsing

Parsing performance is computed using labeled

F1-score (LF) over CCG dependencies in all

sentences, following Clark and Curran (2007),

and Parseability, i.e., the proportion of sentences

for which a complete CCG derivation can be

17There are a few more instances of such implausible lex-

ical categories in the training data, like S or ((:\NP)/PP)/NP.
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Nouns Verbs WH Other

n=16,946 n=7,915 n=542 n=29,968

N=83 N=296 N=54 N=436

Model f=1,158 f=129 f=38 f=358

MLP 10@ 98.58 93.18 92.25 95.51

MLP 1 98.62 93.49 92.68 95.65

K+19 95.58 90.54 90.04 90.62

RNN@ 98.60 93.17 91.88 93.68

AddrMLP@ 98.56 93.62 93.11 95.43

Table 13: Performance by part-of-speech, based

on the original CCGbank test set. n and N refer

to token and type counts in the test set, as before;

f refers to the average frequency with which a

supertag belonging to the respective POS class

is seen in training.

constructed.18 Nearly all the models we compare

outperform the state of the art in labeled depen-

dency F1-score (right-most columns in Table 4).

Interestingly, the K+19 model produces more

parseable supertag sequences than others, despite

consistently lagging behind in terms of category

accuracy. Apparently this tagger prefers to be

self-consistent over producing the actual correct

categories, either due to its multihead attention

mechanism, the fact that decisions towards the

end of the sequence have access to all previously

predicted categories in their entirety (rather than

just parts of them), or both.

Long-range Dependencies. We examine

supertagging performance by POS class (a few are

shown in Table 13) and find that constructive and

nonconstructive taggers perform similarly across

classes, with one notable exception: WH-words,

whose supertags are rarely seen in training and

have a high type/token ratio at test time. Their

special syntactic status raises the question: How

important are constructivity, tree structure, and

long-tail recall for recovering categories involved

in long-range dependencies?

Somewhat surprisingly, we find that the RNN

is best for these dependencies (Figure 7), which

might be related to the two parsing metrics

in Table 4: RNN@ strikes a good balance

between LF and Parseability. We further exam-

ine the average dependency length per category,

and contrary to our expectation, dependencies

18The C&C parser also reports coverage, the proportion of

sentences for which at least one dependency relation can be

recovered. Coverage is 100% in all our conditions.

Figure 7: Parsing F1-score for varying dependency

lengths, measured in terms of linear distance of the two

words involved in the dependency.

involving WH-categories are relatively short

(usually 3–4 intervening words). We find that

the supertags with the longest dependencies on

average largely are functioning as subordina-

tors, sentence adverbials, and inverted speech

verbs such as (S[dcl]\S[dcl])\NP. These supertags

have in common that they all contain sentential

result/argument pairs of the form S[x]|S[x] (where

x is an optional attribute). The autoregressive

nature of the RNN may be conducive to model-

ing the matching atomic categories of argument

and result. Exploring various decoding orders for

both sequential and tree-structured constructive

taggers in order to more explicitly take advantage

of these intra-category relations is an interest-

ing avenue for future work. We also expect a

major boost in Parseability from incorporating

inter-category prediction history into our models

(Bhargava and Penn, 2020). But this is nontrivial

for tree-structured decoding and goes beyond our

scope here.

6.4 Runtime and Model Size

While the constructive taggers need to make

more individual decisions for each supertag than

nonconstructive ones, they only have to consider

a much smaller and denser output space. This

trade-off between time and space complexity

should be considered in addition to tagging accu-

racy when evaluating each model. Thus we ask:

How do the constructive supertaggers compare

to nonconstructive ones in terms of efficiency? In

Table 14 we report model sizes (i.e., the number of
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Params Train time Infer speed

Model millions hours sents/s

Nonconstructive Classification

MLP 10 2.0 9 191

MLP 1 2.4 11 195

Constructive: Sequential

K+19 11.8 120 0.3

RNN 4.8 68 135

Constructive: Tree-structured

TreeRNN 8.3 10 125

AddrMLP 1.3 10 126

Table 14: Model size and time required for training

and inference. All models use the RoBERTa en-

coder, whose 124.6 million parameters are not

included here. Training times are approximate

and include development set evaluation at every

epoch.

learned parameters), training time until develop-

ment performance plateaus, and inference speed.

As model size and runtime vary greatly between

different constructive taggers, the answer to our

question depends on how supertags are modeled

and inferred.

The K+19 sequential Transformer model has

low efficiency for two reasons: The Transformer

architecture itself has a large number of param-

eters; and sequential inference is slow because

individual predictions for the same sentence can-

not be parallelized and the number of inference

steps per input sentence is linear in the sum of

all category sizes (the number of atomic pieces)

for that sentence. The GRUs in the RNN and

TreeRNN models are much smaller than the

Transformer of K+19, but the TreeRNN with its

two GRUs for argument and result transitions

ends up having almost as many parameters as the

Transformer in total. The nonconstructive models

map hidden representations into a much larger and

sparser output space than the constructive models

(and the output space of MLP 1, in turn, is larger

and sparser than that of MLP 10). AddrMLP,

on the other hand, consists exclusively of feed-

forward layers, resulting in the smallest model

size among the ones we compare.

The sequential models require relatively many

training epochs to converge. The reason total

training time is still comparable between K+19

and RNN despite the extreme disparity in infer-

ence speed is that the Transformer is trained

non-autoregressively and thus performs inference

only between epochs, for evaluation on the devel-

opment set, whereas RNN training inherently

relies on inference. The nonconstructive and tree-

structured models converge within the first 10

epochs.

For the per-tag constructive models RNN,

TreeRNN, and AddrMLP we parallelize infer-

ence across all supertags in a batch, and for the

tree-structured ones, we further parallelize the

prediction of the children of slash functors, mak-

ing their inference time logarithmic in the size of

the largest predicted category in a sentence.

AddrMLP is both time- and space-efficient

overall. Its parameter count is only ≈1/10 of the

K+19 model and ≈1/2 of the nonconstructive

ones.

7 Discussion and Related Work

For a long time, researchers have addressed the

large search space of CCG supertags. Baldridge

(2008) and Ravi et al. (2010) were particu-

larly concerned with high lexical ambiguity and

counteracted this, respectively, by improving lex-

icon initialization using linguistic principles, and

explicitly minimizing model sizes. Deoskar et al.

(2013), working with lexico-syntactic dependen-

cies similar to supertags, addressed difficulties

arising from the long tail of rare and unseen

words; and Deoskar et al. (2014) addressed a

similar issue specifically for generalizing a CCG

parser. The problem of out-of-vocabulary words

has gotten much less severe with the advent of

deep contextualized sentence encoders operating

on subword units.

An alternative way of reducing the burden on

the supertagger is to couple it with the parser and

jointly optimize lexical and phrasal categories,

subject to the combinatory rules of CCG (Auli and

Lopez, 2011; Garrette et al., 2015). Garrette et al.

(2015) notably included a fully constructive proba-

bilistic model of categories in a weakly-supervised

grammar-induction scenario. In the context of

grammar induction for semantic parsing specifi-

cally, Kwiatkowski et al. (2011) and Artzi et al.

(2015) have explored template-based methods

to generalize a limited initial lexicon to likely

alternative syntactic usages of observed words.
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In the special case that all categories in a sen-

tence but one are known, the combinatory rules

of CCG can be reverse-engineered to infer the

missing category. As an efficient and scalable

example of this, Thomforde and Steedman (2011)

have proposed Chart Inference.

Since the beginning of the neural era, virtually

all advances in CCG supertagging have involved

different means of deep sequence encoding, typ-

ically in the form of (Bi)LSTMs, with techniques

including: predicting categories directly from the

word-level encoder (Xu et al., 2015; Lewis et al.,

2016); giving credit to likely category sequences

(Vaswani et al., 2016; Kadari et al., 2018); forc-

ing the model to distribute its attention over a

fixed-size window of neighboring words (Wu

et al., 2017); training the encoder specifically to

be aware of each word’s neighboring categories

(‘cross-view training’; Clark et al., 2018); and

latently modeling parse chunks with a graph-

convolutional network over word n-grams (Tian

et al., 2020).

Similar techniques have been applied to

supertagging in the related formalism Tree-

Adjoining Grammar (TAG) (Kasai et al., 2017,

2018). Zhu and Sarkar (2019) have formulated

TAG supertagging as multitask learning with

respect to certain aspects of the elementary trees’

internal structure. Their system predicts the cat-

egory that optimizes the weighted sum of the

scores for each subtask.

A possible objection to generating categories

entirely productively is that universal linguistic

patterns constrain the shape of categories and the

syntactic relations they may engage in (Chomsky

and Lasnik, 1993; Baldridge and Kruijff, 2003),

and for any given language, word order and other

language-specific properties further restrict the

underlying grammar. Note that for a FxnCat shape

with given argument and result types, the direc-

tion of its Slash functors is largely determined by

global word order properties of the respective lan-

guage. Consider the prototypical category shape

for adpositions, (NP|NP)|NP, where ‘|’ stands for

either forward or backward direction. In English, a

predominantly prepositional (as opposed to post-

positional) language with postnominal-PP mod-

ifiers, this shape is most commonly instantiated

as (NP\NP)/NP, but different ordering patterns

may dominate in other languages. Languages

with more flexible word orders will show a

greater variance in slash directionality than those

with fixed word orders. While our approach is

in principle equipped to pick up on such patterns

from data, we do not explicitly prohibit unlikely

category types. One potential way of incorporat-

ing such information is via logical constraints at

training and/or inference time in the style of Li

and Srikumar (2019); Li et al. (2019). Another

approach could be a hybrid one, bridging between

constructive and nonconstructive tagging in a

more fluid way. We plan to explore these avenues

in future work.

8 Conclusion

We introduced a novel, explicitly tree-structured

CCG supertagging method, advancing the nascent

paradigm of constructive supertagging. Our analy-

sis of complex and long-tail categories highlights

the positive impact of different modeling and

inference choices within this paradigm: structural

inductive bias as well as adequate contextual-

ization via, e.g., attention contribute to more

efficient, robust, and self-consistent models. We

hope that our proposed method can be instrumen-

tal in researching and applying not only CCG

and related syntactic formalisms, but also other

paradigms like morphological (de)composition of

complex words in morphologically rich languages,

or compositional semantic parsing.
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