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Abstract

For interpreting the behavior of a probabilis-

tic model, it is useful to measure a model’s

calibration—the extent to which the model

produces reliable confidence scores. We ad-

dress the open problem of calibration for tag-

ging models with sparse tagsets, and recom-

mend strategies to measure and reduce cali-

bration error (CE) in such models. We show

that several post-hoc recalibration techniques

all reduce calibration error across the marginal

distribution for two existing sequence taggers.

Moreover, we propose tag frequency grouping

(TFG) as a way to measure calibration error in

different frequency bands. Further, recalibrat-

ing each group separately promotes a more eq-

uitable reduction of calibration error across the

tag frequency spectrum.

1 Introduction

An advantage of probabilistic models is that, in ad-

dition to providing a prediction, they also quantify

uncertainty. Knowing how certain a model is about

a particular prediction can be crucial when using its

output for downstream tasks or when weighing its

trustworthiness. Of course, the probability estimate

associated with a predicted output is an artifact of

the model, and is subject to error—separate from

the accuracy or error of the prediction itself.

By and large, NLP evaluations of multiclass clas-

sifiers and structured prediction models consider

only the top prediction for an input and how closely

it matches the gold standard. Only in some studies

is the probability assigned to the prediction taken

into account at all (e.g. via a precision-recall curve).

A more comprehensive evaluation would ex-

amine whether the model’s probabilities are well-

calibrated, i.e., whether they correlate well with

empirical accuracy (such that ≈ α% of predictions

with probability close to α are in fact correct). Guo

et al. (2017) showed that despite high accuracy,

modern neural networks can still suffer from severe

miscalibration. Fortunately, calibration error is not

completely random, and can be corrected post hoc

with a second model fit on development data (or

even a separate recalibration set if available) as in

several recalibration techniques (§2).

In domains where NLP models help inform hu-

man decision-making (e.g., medicine), having a

well-calibrated model is essential. Even in less crit-

ical domains, a well-calibrated model has potential

to benefit rare instance discovery, pre-annotation,

and self-training. In this paper we consider a struc-

tured prediction setting of particular relevance in

NLP: tagging tasks with sparse tagsets—output

spaces with a handful of high-frequency tags and

many more rare tags.

Many linguistic phenomena follow power law

distributions and thus feature a long tail of individ-

ually rare events, which, as we will show, makes it

nontrivial to measure calibration error with exist-

ing methods, including marginal calibration error

(MCE), which requires sufficient samples of each

class to produce a reliable estimate (Kumar et al.,

2019). We evaluate two English sentence taggers1

with closed sets of 100s of tags that disambiguate

word tokens: a Combinatory Categorial Grammar

(CCG) syntactic supertagger with 426 tags (Prange

et al., 2021), and a Lexical Semantic Recognition

(LSR) tagger with 598 tags (Liu et al., 2021).

Our main contributions are the following:

• We posit that evaluation of calibration should

go beyond a model’s highest-confidence pre-

diction, extending the arguments of Nixon

et al. (2020), with a particular focus on sparse

tagsets.

• We propose tag frequency grouping (TFG),

a novel technique for evaluating and recali-

brating groups of similarly frequent tags in a

sparse tagging space.

1Data, code, and results are available at https://github.
com/nert-nlp/calibration_tfg. Hyperparameters are de-
scribed in §4.2.
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• We introduce two new error metrics based on

MCE suitable for tasks where insufficient data

is available to apply MCE to all tags.

• We compare TFG and shared class-wise bin-

ning (SCW) on two sequence tagging tasks.

2 Background

Calibration studies have two components: a recali-

bration technique and an evaluation metric. We

use similar notation as Kumar et al. (2019) to

describe both. That is, we assume a multiclass

model f ∶X →Y that produces a real-valued score

f (X)k ∈ [0,1] for each class k ∈Y . In other words,

for any input, the model gives K = ∣Y ∣ scores. If

these predictions are the output of a softmax func-

tion (as is typical for the last layer of neural net-

works), they will sum to 1 and can be interpreted

as uncalibrated confidence scores across the dis-

tribution of possible classes or tags. The goal of

recalibration is to make these confidence scores

more reliable.

2.1 Definition and Measurement

There are several metrics for evaluating calibration

error, including maximum calibration error (Naeini

et al., 2015), Brier Score (Brier, 1950), calibration

error (a term used widely in the literature, but here

we refer to definition 2.1 in Kumar et al. (2019)),

and expected calibration error (Naeini et al., 2015).

We focus on the marginal calibration error (Ku-

mar et al., 2019), which is a multiclass extension of

CE.2 MCE uses the l2-norm to measure, for each

class, “the difference between the model’s proba-

bility and the true probability of that class given

the model’s output”: MCE( f ) =
¿ÁÁÀ 1

K

K

∑
k=1

E[( f (X)k −P(Y = k ∣ f (X)k))2] (1)

This metric is the root mean square error of mea-

surements taken from K binary recalibration mod-

els, where P is the true probability that the class

is k given f (X)k, which is the model’s predicted

probability for class k on input X . But one of the

problems we quickly encounter with this definition

(and similar measures of calibration error) is that

with finite data, we cannot actually measure cali-

bration error, since f outputs values in a continuous

range. In practice, this is overcome using binning

2Kull et al. (2019) introduce a metric similar to MCE they
call classwise-ECE.

schemes to estimate P(Y = k ∣ f (X)k). The range

[0,1] is partitioned into bins; each score is placed

in the appropriate bin; and error is estimated as

the deviation between the average confidence of

the bin and the proportion of positive labels in the

bin (proportion of positive labels is equivalent to

accuracy for top-label calibration).

2.2 Recalibration Techniques

We use three techniques for recalibration: his-

togram binning (Zadrozny and Elkan, 2001), iso-

tonic regression (Zadrozny and Elkan, 2002), and

scaling binning (Kumar et al., 2019). All of these

are post-hoc techniques—they are applied after the

model has been trained. In general, recalibration

techniques fit into one of two categories: scaling or

binning. Binning techniques quantize the interval

of confidence scores and only output a fixed num-

ber of unique calibrated scores equal to the number

of bins used for recalibration. Scaling techniques

output continuous calibrated scores. Scaling tech-

niques are generally better at reducing error, but

because their output domain is continuous, the bin-

ning techniques used for evaluation are prone to

underestimating true calibration error. Kull et al.

(2019) showed this with experiments on CIFAR-10

(Krizhevsky, 2009) and ImageNet (Russakovsky

et al., 2015).

Histogram Binning. Histogram binning is a pop-

ular recalibration technique that is simple and fast.

The interval [0,1] is subdivided into B subintervals

using the confidence scores from the development

set.3 The bin boundaries can be set such that each

bin covers a fixed interval (fixed-width binning), or

such that each bin includes the same number of data

points (adaptive binning; Nguyen and O’Connor,

2015).

Using the boundaries for these B bins, a confi-

dence score from the test set is calibrated by finding

the bin it belongs to and outputting the empirical

proportion of positive labels among the develop-

ment scores in that bin. This definition assumes a

binary classification setting, but histogram binning

can be extended to a multiclass scenario by build-

ing a one-vs.-rest model for each class, by using

shared classwise binning (SCW; Patel et al., 2021),

or by using TFG, described in §3.3.

Isotonic Regression. Isotonic regression is a

scaling technique that fits a non-decreasing piece-

3This is also referred to as a recalibration set in the litera-
ture, though they need not necessarily be disjoint.
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wise linear function on the recalibration set by

minimizing the square error subject to the non-

decreasing constraint. It produces calibrated scores

in a continuous range via linear interpolation.

Scaling Binning. Scaling techniques and bin-

ning techniques each have disadvantages. For ex-

ample, histogram binning usually yields worse re-

sults than temperature scaling (another scaling tech-

nique), but its error measurement is reliable (Kumar

et al., 2019). Scaling binning combines the best

of both approaches by first learning a scaling func-

tion. Uncalibrated scores are binned, and instead

of outputting the proportion of positive labels (as

in histogram binning), the calibrated score is the

average output of the scaling function on the devel-

opment scores in the bin. In our experiments with

scaling binning, we use isotonic regression as the

scaling function.

2.3 Related Work

Zadrozny and Elkan (2002) initially proposed the

one-vs.-rest approach for multiclass probabilities.

Kuleshov and Liang (2015) recognize the sparsity

problem and suggest reducing multiclass calibra-

tion of structured prediction to targeted “events

of interest” and training a binary forecaster to

learn calibrated probabilities of the event happen-

ing. This work is extended by Jagannatha and Yu

(2020), who treat a sequence of tags as a com-

positional model output and develop a forecaster

based on gradient boosted decision trees. They

achieve reductions in expected calibration error and

a slight increase in model performance after rerank-

ing. Reranking refers to the process of normalizing

calibrated scores and reordering them. With most

recalibration techniques, it is rare for the ranking to

be affected, and with some techniques like isotonic

regression, the ranking of calibrated confidence

scores will always match the uncalibrated ones.

3 Designing and Evaluating

Recalibration Models for Sparse

Tagsets

The long tail of tags for CCG and LSR is of par-

ticular interest with respect to calibration. Kumar

et al. (2019) point out that most studies of multi-

class calibration focus primarily on top-label cali-

bration (reducing calibration error for only the top

prediction out of the model for each input), also

called top-1 or top-k when looking at several of the

model’s top predictions. While top-label scores are

an important component of calibration, they don’t

tell the whole story, and we argue that the rest of

the distribution (marginal calibration) shouldn’t

be ignored. Recent works that address marginal

calibration (Kumar et al., 2019; Patel et al., 2021;

Nixon et al., 2020) make similar arguments but

still tend to focus on balanced datasets like CIFAR-

100, which contains 600 examples for each of 100

classes, or datasets with fewer tags like MNIST

(LeCun et al., 1998), MNIST Fashion (Xiao et al.,

2017), and CIFAR-10, which each have 10 classes.

In our analysis of marginal calibration, we study

two long tails of distributions related to calibrating

a sparse tagset: low confidence scores and low-

frequency tags. We show how the standard one-

vs.-rest approach to multiclass calibration becomes

infeasible as the size of the tagging space grows,

and we provide specific recommendations for quan-

tifying calibration error with sparse tagsets, where

the lack of instances of rare tags poses unique chal-

lenges.

Extending section 4 of Nixon et al. (2020) with a

particular focus on sparse tagsets, we now discuss

the many design decisions that need to be made

regarding multiclass calibration.

3.1 Thresholding

While we are interested in calibrating more of the

distribution than is addressed with top-label calibra-

tion, it would be unwise to include all confidence

scores. This is more an issue for evaluation than

for recalibration. The justification for this deci-

sion is made clear in the distribution of the confi-

dence scores and in prior work (Nixon et al., 2020).

We observe that more than 98% of our two mod-

els’ (which each have hundreds of possible tags)

confidence scores are below 0.0001. Evaluating

a recalibration model on all scores is likely to un-

derestimate the error of the model, where the error

on more likely output candidates will be washed

out by excessively many near-zero scores that often

have little error (particularly on a highly accurate

model).

Instead, we select a threshold t and if any scores

are below this threshold, they are excluded from the

recalibration and evaluation sets. For isotonic re-

gression, including the scores below t would have

little effect as this scaling technique produces a

piecewise function independent of any hyperparam-

eter for the number of recalibration bins required

for other techniques. However, if a threshold is

not applied with binning techniques, many bins
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will contain only near-zero scores. For this reason

(and consistency), we apply the threshold t before

both recalibration and evaluation for all techniques.

Consequently, in our results we report calibration

error on unnormalized scores, since thresholding

excludes data and prevents us from obtaining cali-

brated scores for all tags in the distribution.

3.2 Binning

How should bin boundaries be determined?

With a sparse tagset, it is even more important to

avoid fixed-width binning, especially as the number

of bins increases. Fixed-width binning will lead to

significant imbalance, whereby the bins covering

intervals of lowest and highest confidence scores

will have many more items per bin, and the bins in

the middle of the range will have very few items,

causing high variance in estimates of calibration

error. Thresholding does make the distribution less

skewed, but many of the confidence scores in both

of our datasets are low even after a threshold is

applied. The alternative to fixed-width binning,

adaptive binning (Nguyen and O’Connor, 2015),

puts the same number of items in each bin, leading

to wider bins in the middle of the range, but guar-

antees each bin will have a sufficient number of

data points for recalibration to overcome sampling

error.

How to avoid too-small bins due to rare tags?

Marginal calibration error as defined in eq. (1)

treats each class as a binary recalibration problem

and averages the error in each recalibration model

that was estimated by binning. Nixon et al. (2020)

highlight that a finer-grained, per-class approach to

evaluation analagous to MCE is ideal because it al-

lows “systematic differences in the calibration error

between classes to be evaluated without washing

each other out.” In contrast to MCE, the top-label

approach measures error only among the model’s

highest confidence score for each input (i.e. the con-

fidence score associated with the model’s predicted

label). This is done by binarizing the multiclass

problem via one-hot labels. The top prediction of

the model is selected and its gold label is taken to

be 1 if that class is the true class and 0 otherwise.

In this way, confidence scores for multiple tags can

be evaluated together. This idea is key to how we

modify MCE to evaluate our recalibration models.

While MCE is the gold standard, it requires am-

ple data in all tags in order to get a reliable mea-

surement. With our sparse tagsets, measuring MCE

separately for each tag is unfortunately infeasible,

since we would not have enough samples in each

bin. Nguyen and O’Connor (2015), for instance,

recommend 200 samples per bin to reduce sam-

pling error. In the literature, the floor for the num-

ber of bins used in evaluation is around 5. As-

suming 5 bins at ≥200 samples each, that means

creating a tag-specific recalibration model would

require 1000 confidence scores.

On its face, this is not a huge ask for marginal

calibration with no thresholding, since having a

recalibration set of 1000 tokens will produce 1000

confidence scores for each tag. But the number

of near-zero confidence scores will increase as the

tagset grows, and these near-zero scores are not as

relevant to a discussion about calibration as actual

candidate outputs from the model. For top-label

calibration, it is possible to build a strong recalibra-

tion model, but in order to measure MCE for that

model (with our assumption of 5 bins and at least

200 scores per bin), we would need at least 1000

tokens where each tag is predicted. So the relative

frequency of the rarest tag controls the total num-

ber of instances required for reliable binning (e.g.,

a tag occurring at a rate of 1% would necessitate a

recalibration set of 100,000 instances).

We experiment with two strategies to overcome

this and derive a modified MCE metric. First, we

extend the binarization approach of top-label er-

ror measurement to all labels, effectively creating

a shared binning model for collective evaluation.

This approach, shared classwise binning (SCW),

was introduced by Patel et al. (2021) for recali-

bration, but is extendable to evaluation. (We will

introduce TFG, a generalization of SCW giving

finer control over the sharing, in §3.3.)

For SCW evaluation, we modify MCE and in-

troduce shared marginal calibration error (SMCE).

When operationalized with binning, we get eq. (2).

D contains the set of above-threshold confidence

scores for all tokens and tags in the data. In this

equation, qb is the average confidence score of the

b-th bin and pb is the average of the binary labels

associated with each confidence score in the b-th

bin. N is the total number of confidence scores

being recalibrated. AdaBin(D,β) is our adaptive

binning function that partitions the sorted confi-

dence scores into bins of size β . A key difference

between this metric and MCE is that scores for

multiple tags are included in the square.

SMCE(D,β) =
¿ÁÁÀ ∑

b∈AdaBin(D,β)

∣b∣
N
(qb− pb)2 (2)
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Using SCW for recalibration simply means learn-

ing a single recalibration model, pooling together

all confidence scores from all tags.

How many bins should we use? We report re-

sults using 10 bins for recalibration and evaluation

in our experiments, to ensure each bin has a suffi-

cient number of datapoints.

3.3 Tag Frequency Grouping

As we have explained, SCW solves the problem

of rare tags by pooling all tags together when re-

calibrating or evaluating calibration error. But a

concern is that this may be too coarse-grained: all

tags are not necessarily created equal with respect

to their calibration. We therefore propose a new

technique, TFG, to strike a balance between the

two extremes of treating all tags together or inde-

pendently with respect to calibration. TFG, like

SCW, can be used for recalibration, evaluation, or

both.

The intuition is simple. We often find that mod-

els are overconfident with tags seen frequently in

the training data and underconfident with tags seen

less frequently. Therefore, we hypothesize that

tags that are similarly frequent in the training

data will be miscalibrated in similar ways, and

that by grouping together tags of similar frequen-

cies and developing a separate recalibration model

for each group, we can achieve improved results

over SCW and calibrate tags that lack sufficient

data for a class-specific recalibration model. The

number of groups G should be selected such that

G≪K, and in this paper, we report results where

G = 5.4

Choosing an optimal value of G is tricky. As G

increases, the amount of recalibration data avail-

able for each group decreases, making each recal-

ibration model less reliable. However, too low a

value can lead to a reduced benefit over SCW with

the loss of granularity (both in the recalibration

models and in evaluation). Higher values for G

are likely suitable for larger datasets that still suffer

from sparsity. However, if the dataset is sufficiently

large and balanced, we recommend that indepen-

dent recalibration models be created for each tag

instead of using TFG or SCW.

4Patel et al. (2021) explored a similar idea in one of their
experiments on digit recognition: digits with similar class
priors were grouped together manually for recalibration. How-
ever, Patel et al. did not propose a general grouping technique,
nor did they address large sparse tagsets as we do here.

In order to maximize generalization, we propose

constructing tag groups based not on a model’s out-

put, but on the gold tag frequencies in the training

data. The procedure is simple—sort the tags by de-

scending frequency, and add the next most frequent

tag to the group until the number of instances with

gold tags in that group is greater than or equal to

1/G.

Figure 1 depicts a hypothetical example of TFG

on a training set with 45 instances. Note that there’s

some overflow in the first group. This overflow can

occur in any group except the last one, and in theory

could lead to a worst-case scenario where the last

group is much smaller than the others. In practice,

this is unlikely to occur, but making sure all tag

groups encompass a similar amount of training data

is a good step to take prior to recalibration.

SMCE (eq. (2)) can be adapted to grouped

marginal calibration error (GMCE) for TFG by

replacing D, which contains confidence scores for

all tags, with G ⊆ D, which contains confidence

scores for one group (a subset of tags):

GMCE(G,β) =
¿ÁÁÀ ∑

b∈AdaBin(G,β)

∣b∣
N
(qb− pb)2 (3)

4 Experiments

In our experiments, we develop recalibration mod-

els for two taggers with sparse tagsets and measure

the improvement over the uncalibrated confidence

scores with SMCE (overall error) and GMCE (per-

group error).

4.1 Taggers

We consider two supervised tagging tasks trained

and evaluated on different English datasets: CCG

supertagging—a syntactic task with a large amount

of training data and a high-accuracy model, and

Lexical Semantic Recognition—a semantic task

with less data and a lower-accuracy model.

4.1.1 CCG Supertagging

CCG is a lexicalized grammar formalism that is

frequently used for syntactic and semantic parsing.

CCG supertagging is the task of labeling each token

with a complex, structured label that belies its func-

tion (Clark, 2002; Bangalore and Joshi, 2010). Ban-

galore and Joshi (1999) describe supertagging as

“almost parsing”, because a sequence of supertags

maps a sentence to a small set of possible parses—

the CCGBank (Hockenmaier and Steedman, 2007)
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