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Abstract

In lexical semantics, full-sentence segmen-
tation and segment labeling of various phe-
nomena are generally treated separately, de-
spite their interdependence. = We hypothe-
size that a unified lexical semantic recogni-
tion task is an effective way to encapsulate
previously disparate styles of annotation, in-
cluding multiword expression identification/
classification and supersense tagging. Using
the STREUSLE corpus, we train a neural
CRF sequence tagger and evaluate its perfor-
mance along various axes of annotation. As
the label set generalizes that of previous tasks
(PARSEME, DiMSUM), we additionally eval-
uate how well the model generalizes to those
test sets, finding that it approaches or sur-
passes existing models despite training only on
STREUSLE. Our work also establishes base-
line models and evaluation metrics for inte-
grated and accurate modeling of lexical seman-
tics, facilitating future work in this area.

1 Introduction

Many NLP tasks traditionally approached as tag-
ging focus on lexical semantic behavior—they aim
to identify and categorize lexical semantic units in
running text using a general set of labels. Two ex-
amples are supersense tagging of nouns and verbs
as formulated by Ciaramita and Altun (2006), and
verbal multiword expression (MWE) identification
and classification in the multilingual PARSEME
shared tasks (Savary et al., 2017; Ramisch et al.,
2018, 2020). By analogy with named entity recog-
nition, we can use the term lexical semantic recog-
nition (LSR) for such chunking-and-labeling tasks
that apply to lexical meaning generally, not just
entities. This disambiguation can serve as a foun-
dational layer of analysis for downstream applica-
tions in natural language processing, and provides
an initial level of organization for compiling lexical
resources, such as semantic nets and thesauri.
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In this paper, we tackle a more inclusive LSR
task of lexical semantic segmentation and disam-
biguation. The STREUSLE corpus (see §2) con-
tains comprehensive annotations of MWEs (along
with their holistic syntactic status) and noun, verb,
and preposition/possessive supersenses. We train
a neural CRF tagger (Lafferty et al., 2001) using
BERT embeddings (Devlin et al., 2019) and find
that it obtains strong results as a first baseline for
this task in its full form.

In addition, we ask: Does a tagger trained
on STREUSLE generalize to evaluations like the
PARSEME shared task on verbal MWEs (Ramisch
et al., 2018) and the DIMSUM shared task on
MWEs and noun/verb supersenses (Schneider et al.,
2016)? Results show our LSR model based on
STREUSLE is general enough to capture different
types of analysis consistently, and suggest an inte-
grated full-sentence tagging framework is valuable
for explicit modeling of lexical semantics in NLP.!

2 LSRR Tagging Frameworks

Our tagger is based on STREUSLE (Supersense-
Tagged Repository of English with a Unified Se-
mantics for Lexical Expressions; Schneider and
Smith, 2015; Schneider et al., 2018),2 a corpus of
web reviews annotated comprehensively for lexi-
cal semantic units and supersense labels. Specifi-
cally, there are three annotation layers: multiword
expressions, lexical categories, and supersenses.
The supersenses apply to noun, verb, and preposi-
tional/possessive units. Figure 1 shows an example.

Many of the component annotations have been
applied to other languages: verbal multiword ex-
pressions (Savary et al., 2017; Ramisch et al.,
2018), noun and verb supersenses (e.g., Picca et al.,

ICode, pretrained models, and model and scorer output
(all train/dev/test splits) can be found at https://nelsonliu.
me/papers/lexical-semantic-recognition

2https://github.com/nert—nlp/streusle
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Figure 1: Example annotated sentence from the STREUSLE training set. The (strong) multiword expressions
“took. ..in" and “air conditioning” each receive a single lexcat and supersense. UD syntax is not shown.

2008; Qiu et al., 2011; Schneider et al., 2013;
Martinez Alonso et al., 2015; Hellwig, 2017), and
adposition supersenses (Hwang et al., 2017; Zhu
et al., 2019). In this paper we focus on English,
where comprehensive annotation is available.

2.1 STREUSLE Annotation Layers

STREUSLE comprises the entire 55K-word Re-
views section of the English Web Treebank (Bies
et al., 2012), for which there are gold Universal
Dependencies (UD; Nivre et al., 2020) graphs, and
adopts the same train/dev/test split.

The lexical-level annotations do not make use of
the UD parse directly, but there are constraints on
compatibility between lexical categories and UPOS
tags (see §3).

Multiword expressions (MWEs; Baldwin and
Kim, 2010) are expressed as groupings of two or
more tokens into idiomatic or collocational units.
As detailed by Schneider et al. (2014a,b), these
units may be contiguous or gappy (discontinuous).?
Each unit is marked with a binary strength value:
idiomatic/noncompositional expressions are strong;
collocations that are nevertheless semantically com-
positional, like “highly recommended”, are weak.

We use the term lexical unit for any expression
that is either a strong MWE grouping of multiple
tokens, or a token that does not belong to a strong
MWE. Every token in the sentence thus belongs
to exactly one lexical unit. The other layers of se-
mantic annotation augment lexical units, and weak
MWE:s are groupings of (entire) lexical units.

Lexical categories (lexcats) describe the syntax
of lexical units. They are similar to UPOS tags
available in the UD annotations of the corpus, but
are necessary in order to (a) express refinements
relevant to the criteria for the application of super-
senses, and (b) account for the overall syntactic
behavior of strong MWEs, which may not be ob-
vious from their internal syntactic structure.* Ap-
pendix A gives the full list of lexcats.

3The gap in a discontinuous MWE may contain single-
word and/or other multiword expressions, provided that those
embedded MWESs do not themselves contain gaps.

“This is also done in other resources (e.g., Shigeto et al.,
2013; Gerdes et al., 2018).
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Supersenses semantically classify lexical units
and provide a measure of disambiguation in con-
text. There are 3 sets of supersense labels: nominal,
verbal, and prepositional/possessive. The lexcat de-
termines which of these sets (if any) should apply.’

The MWE, lexcat, and supersense information
over lexical units is serialized as per-token tags in
a BIO-based encoding (details in §2.1.1).

2.1.1 Tag Serialization

STREUSLE specifies token-level tags to allow
modeling lexical semantic recognition as sequence
tagging. The BbIiOo_~ tagging scheme (Schnei-
der et al., 2014a) consists of 8 positional flags in-
dicating MWE status: 0 applies to single-word
expressions, B to the start of a new MWE, I_ to
the continuation of a strong MWE, and I~ to the
continuation of a weak MWE (if not continuing a
strong MWE within the weak MWE). The lower-
case counterparts o, b, i_, i~ are the same except
they are used within the gap of a discontinuous
MWE. For MWE identification, local constraints
on tag bigrams—e.g., that the bigrams (B,B) and
(B,0) are invalid, and that the sentence must end
with I_, I~, or 0—ensure a valid overall segmenta-
tion into units (Schneider and Smith, 2015).

The lexcat and (where applicable) supersense
information is incorporated in the first tag of each
lexical unit.® Thus B-N-n.ARTIFACT indicates the

Some preposition units are labeled with two supersenses
drawn from the same label set: the scene role label represents
the semantic role of the prepositional phrase marked by the
preposition, and function label represents the lexical contri-
bution of the preposition in itself (Schneider et al., 2018). The
scene role and the function are identical by default.

f’Though in named entity recognition it is typical to in-
clude the class label on every token in the multiword unit,
STREUSLE does not do this because it would create a non-
local constraint across gaps (that the tags at either end have
matching lexcat and supersense information). A tagger would
either need to use a more expensive decoding algorithm or
would need to greatly enhance the state space so within-gap
tags capture information about the gappy expression.

In STREUSLE there is actually a slight limitation due to
the verbal lexcats, which distinguish between single-word and
strong multiword expressions (see Appendix A): if a B-x or
I~-x tag is followed by a gap, there is no local indication of
whether the expression will be strong or weak (strength is
indicated only after the gap). If the expression being started
is strong, then one of the verbal MWE subtypes (V. VID, etc.)



beginning of an MWE whose lexcat is N and super-
sense is N.ARTIFACT. I_ and i_ tags never contain
lexcat or supersense information as they continue a
lexical unit, whereas 0, B, I~, o, b, and i~ always
do. Figure 2 illustrates the full tagging. All told,
STREUSLE has 601 complete tags.

'We/0-PRON took/B-V.VPC. full-v.Motion
our/o-PRON.P0OSS vehicle/o-N-n.ARTIFACT in/I_|
for/0-P-p.Purpose a/0-DET repair/0-N-n.ACT|
to/0-P-p.Theme the/0-DET air/B-N-n.ARTIFACT]
conditioning/I_

Figure 2: Serialization as token-level tags for the exam-
ple sentence from figure 1.

2.2 Related Frameworks

The Universal Semantic Tagset takes a similar ap-
proach (Bjerva et al., 2016; Abzianidze and Bos,
2017; Abdou et al., 2018), and defines a cross-
linguistic inventory of semantic classes for content
and function words, which is designed as a sub-
strate for compositional semantics, and does not
have a trivial mapping to STREUSLE categories.

However, two shared task datasets consist of
subsets of the categories used for STREUSLE an-
notations, on text from different sources.

PARSEME Verbal MWEs. The first such
dataset is the English test set for the PARSEME 1.1
Shared Task (Ramisch et al., 2018), which cov-
ers several genres (including literature and several
web genres) and is annotated only for verbal mul-
tiword expressions. The STREUSLE lexcats for
verbal MWE:s are identical to those of PARSEME;
thus, a tagger that predicts full STREUSLE-style
annotations can be evaluated for verbal MWE iden-
tification and subtyping by simply discarding the
supersenses and the non-verbal MWEs and lexcats
from the output.

DiMSUM. The second shared task dataset is
DiMSUM (Schneider et al., 2016), which was an-
notated in three genres—TrustPilot web reviews,
TED talk transcripts, and tweets—echoing the an-
notation style of STREUSLE when it contained
only MWEs and noun and verb supersenses. DiM-
SUM does not contain prepositional/possessive su-
persenses or lexcats. It also lacks weak MWEs.
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3 Modeling

We develop and evaluate a strong neural sequence
tagger on the full task of lexical semantic recog-
nition with MWESs and noun/verb/preposition/pos-
sessive supersenses to assess the performance of
modern techniques on the full joint tagging task.
Our tagger feeds pre-trained BERT representations
(Devlin et al., 2019) through a biLSTM. An affine
transformation followed by a linear chain condi-
tional random field produces the final output. For
further implementation details, see Appendix B.

The predicted tag for each token is the conjunc-
tion of its MWE, lexcat, and supersense.’” There
are 572 such tags in the STREUSLE training set,
and only 12 unique conjoined tags in the develop-
ment set are unseen during training (#5% of the
development set tagging space, corresponding to
~0.2% of the tokens in the development set).
Constrained Decoding. A few hard constraints
are imposed in tagging. To enforce valid MWE
chunks, we use first-order Viterbi decoding with
the appropriate corpus-specific constraints (e.g.,
for STREUSLE MWEs, the BbIi0o_~ tagset; see
§2.1.1). The MWE constraint is applied during
training and evaluation. In addition, a given token’s
possible lexcats are constrained by the token’s POS
tag and lemma. For instance, a token with the AUX
UPOS tag can only take the AUX lexcat. However,
if the token’s UPOS is AUX and its lemma is “be”,
it can take either the AUX or V lexcats.

The POS and lemma constraints are only ap-
plied during evaluation; to avoid relying on gold
POS/lemma annotations at test time we use an off-
the-shelf system (Qi et al., 2018).

3.1 Experiments

We train the tagger on version 4.3 of the En-
glish STREUSLE corpus and evaluate on the
STREUSLE, English PARSEME, and DiMSUM
test sets (§2). The latter two are (zero-shot) out-of-
domain test sets; the tagger is not retrained on the
associated shared task training data.

We also compare to a model with static word
representations by replacing BERT with the con-
catenation of 300-dimensional pretrained GloVe
embeddings (Pennington et al., 2014) and the out-
put of a character-level convolutional neural net-

should apply; whereas the correct lexcat for a single-word
verb is plain V. In practice this is not a problem.

"For prepositions and possessives, the supersense is either
a pair of labels, or a single label serving dually as scene role
and function (fn. 5).



STREUSLE 4.3 Tags NOUN | VERB SNACS MWE VERB

(test, 5,381 words) Full —-LC -SS | Labeled | Labeled | Labeled Role Fxn LinkAvg MWE ID
Accuracy F F F F F P R F F

# Gold 5381 986 697 485 4335 66

BERT Glove (Gold) | 82.5 793 82.7 89.9|69.0 ¢6.1 | 77.1 72.1 | 71.4 61.0 72.4 81.7 ([ 80.0 64.9 71.6 59.5| 63.9 38.6

BERT Glove (Pred.) | 81.0 775 81.7 87.9|68.0 657 |75.1 700 |71.6 580 724 82.8 | 77.6 63.1 69.5 603 | 62.3 43.0

BERT Glove (None) | 82.0 77.1 82.7 89.1 | 69.6 64.9 | 76.8 703 | 70.9 581 71.9 81.0 | 82.0 64.3 72.0 60.3| 63.9 425

Schneider et al. - - - - - 55.7 58.2 66.7 - - - -

Table 1: STREUSLE test set results (%). (Gold): gold POS/lemmas (used in constraints only). (Pred.): predicted
POS/lemmas. (None): MWE constraints only. —LC: excluding lexical category. —SS: excluding supersense.
Labeled F: labeled identification F;j-score. SNACS: preposition supersenses. MWE LinkAvg P, R, F: evaluates
MWE identification with partial credit. Identification of verbal MWEs (exact match) is equivalent to the PARSEME
MWE-based metric. Schneider et al. (2018): previous best full SNACS tagger, reported on STREUSLE 4.0.

PARSEME 1.1 (EN-test, 71,002 words)

DiMSUM 1.0 (test, 16,500 words)

MWE-based Token-based MWEs Supersenses Combined
P R F P R F P R F P R F |Acc P R F
501 1087 # Gold 1115 4745 5860

36.1 45.5 40.3 402 52.0 454 BERT (Gold) 479 522 50.0[52.1 56.5 542769 51.3 55.7 534
34.1 459 39.2(37.1 522 434 BERT (Pred.) 48.8 50.7 49.7 |49.1 539 514|751 49.1 533 51.1
36.2 453 40.3 404 51.8 454 BERT (None) 53.0 49.2 51.0|50.8 551 529|765 512 539 525
33.8 32.7 333[37.3 31.8 344 Nerima+ Kirilin+ 73.5 484 58.4]56.8 59.2 58.0[853 59.0 57.2 58.1

- - 360 - - 40.2  Taslimipoor+

- - 419 - - - Rohanian+

Table 2: PARSEME and DiMSUM zero-shot test set results (%) for BERT models from table 1, compared to prior
published results on the tasks. GloVe F1 scores (not shown) are 17-20 points below the corresponding BERT scores
for PARSEME, and 14-15 for DIMSUM. Kirilin et al. (2016): the best performing system from Schneider et al.
(2016). Kirilin et al. (2016) and other shared task systems had access to gold POS/lemmas and Twitter training
data in addition to all of STREUSLE for training. Nerima et al. (2017): a rule-based system which performed
best for English in the shared task (Ramisch et al., 2018). Taslimipoor et al. (2019), Rohanian et al. (2019): more
recent results on the test set (both used ELMo and dependency parses; only some scores were reported).

work. Finally, we also establish an upper bound
on performance by providing the model with gold
POS tags and lemmas; note that the difference be-
tween gold and predicted POS tags and lemmas
only applies to the constrained decoding.

3.2 Results and Discussion

Table 1 shows all standard STREUSLE evaluation
metrics on the test set. For preposition supersenses
(SNACS), we compare to the results in Schneider
et al. (2018), who performed MWE identification
and supersense labeling for prepositions only. Note
that Schneider et al. (2018) used version 4.0 of
the STREUSLE corpus, which is slightly different
from the version we use (some of the SNACS anno-
tations have been revised). However, our baseline
tagger, even with GloVe embeddings, outperforms
Schneider et al. (2018) on that subset. Using BERT
embeddings with constraints POS tags and lemmas
improves performance substantially; on preposi-
tion supersense tagging, it even outperforms using
gold POS tags and lemmas. Liu et al. (2019) also
found that BERT embeddings improved SNACS
labeling on STREUSLE 4.0, although they study a
simplified setting (gold preposition identification,

52

and only considering single words).

Table 2 shows standard PARSEME and DiM-
SUM test set evaluation metrics, for models trained
on the STREUSLE training set, in a zero-shot out-
of-domain evaluation setting. On the PARSEME
test set, our BERT-based model approaches the
state-of-the-art MWE-based F-score and exceeds
the best reported fully-supervised token-based F-
score. However, on the DIMSUM test set, the
BERT model did not outperform the best shared
task system, likely owing to the comparative diffi-
culty of the full lexical semantic recognition task
versus the restricted DIMSUM setting.

These results demonstrate that pre-training con-
textualized embeddings on large corpora can help
models generalize to out-of-domain settings.®

Constrained decoding does not substantially im-
pact the performance of our BERT model. In gen-
eral, constraints with gold POS/lemmas perform
the best, while not using POS/lemma constraints is

8 A small fraction of sentences in the PARSEME test set
(194/3965) are EWT reviews sentences that also appear in
STREUSLE’s dev set. The rest of the PARSEME test set con-
tains other web and non-web genres (Walsh et al., 2018), and
thus it is mostly out-of-domain relative to STREUSLE. None
of the PARSEME training set overlaps with STREUSLE.



I have a new  born daughter and she helped me with a lot
O-PRON O-V-v.stative O-DET O-ADJ I_  O-N-n.PERSON O-CCONJ O-PRON O-V-v.social o-PRON O-P-p.Theme B-DET I_
O-PRON O-V-v.stative O-DET B-ADJ I_  O-N-n.PERSON O-CCONJ O-PRON O-V-v.social O-PRON O-P-p.Theme B-DET I _

Go down 1 block to Super 8 .
B-V.VPC.semi-v.motion I_ O-NUM O-N-n.COGNITION O-P-p.Goal B-N-n.LOCATION O-NUM O-PUNCT
O-V-v.motion O-P-p.Direction O-NUM O-N-n.LOCATION O-P-p.Goal B-N-n.LOCATION I_ O-PUNCT
O-V-v.motion O-P-p.Direction O-NUM O-N-n.RELATION O-P-p.Goal B-N-n.GROUP I O-PUNCT
beware they will  rip u off

O-V-v.cognition O-PRON O-AUX O-V-v.contact 0-PRON I_

O-V-v.cognition O-PRON O-AUX B-V.VPC.full-v.social o-PRON I_

Figure 3: Selected examples where the model without MWE constraints (first row under each sentence) produces
a structurally invalid tagging. Incorrect tags are red; the ones that render the tagging structurally invalid are bold.
The last row under each sentence is the gold annotation, and the middle row (if different from gold) is the model
prediction with MWE constraints. (The first sentence ends with a period, omitted for brevity.)

often better than using predicted POS/lemmas. Re- MWESs and noun and verb supersenses with feature-
moving the MWE constraints yields models with ~ based sequence models. Richardson (2017) trained
slightly higher overall tag accuracy, but results in ~ such a model on STREUSLE 3.0 as a noun, verb,
invalid segmentations for a large proportion of sen-  and preposition supersense tagger (without mod-
tences: 14% of STREUSLE sentences in the fully  eling MWEs). For preposition supersenses, Go-
unconstrained model and 17% of sentences if only  nen and Goldberg (2016) incorporated multilingual
predicted POS and lemmas are used for constraints.  cues; Schneider et al. (2018) experimented with
Three sentences out of those 17% appear in fig- feature-based and neural classifiers; and Liu et al.
ure 3. The first shows both an omission of a “B-"  (2019), modeling supersense disambiguation of
tag needed to start an MWE (“new”) and a false  single-word prepositions only, found pretretrained
positive gap without members of an MWE on ei-  contextual embeddings to be much more effective
ther side (“me”). When the full set of constraints is ~ €ven with simple linear probing models.
used, the gold tagging is recovered. In the second
sentence, there is a false positive yet structurally 5 Conclusion
valid MWE (“Go down”) as well as an invalid start
to an MWE that is never continued (“Super”), per-  We study the lexical semantic recognition task de-
haps because it is rare for a number to continue an  fined by the STREUSLE corpus, which involves
MWE (this happens <20 times in the entire cor- joint MWE identification and coarse-grained (su-
pus). Finally, in the third sentence, the model  persense) disambiguation of noun, verb, and prepo-
constrained only by POS and lemma is inclined  sition expressions; this task subsumes and uni-
toward the literal meaning of “rip”, whereas the  fies the previous PARSEME and DiMSUM eval-
MWE-constrained model recovers the gappy verb-  uations. We develop a strong baseline neural se-
particle construction “rip off”. Naturally, in other ~ quence model, and see encouraging results on the
sentences, the MWE-constrained model sometimes  task. Furthermore, zero-shot out-of-domain evalua-
suffers from false positive or false negative MWEs,  tion of our baselines on partial versions of the task

but always produces a coherent segmentation. yields scores comparable to the fully-supervised
in-domain state of the art.

4 Related Work
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