
Meta-analysis of transcriptomic studies of cytokinin-treated
rice roots defines a core set of cytokinin response genes

Joanna K. Polko1 , Kevin C. Potter1, Christian A. Burr1, G. Eric Schaller2 and Joseph J. Kieber1*
1Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, and
2Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA

Received 27 April 2021; revised 6 June 2021; accepted 19 June 2021; published online 24 June 2021.

*For correspondence (e-mail jkieber@unc.edu).

SUMMARY

Cytokinins regulate diverse aspects of plant growth and development, primarily through modulation of

gene expression. The cytokinin-responsive transcriptome has been thoroughly described in dicots, espe-

cially Arabidopsis, but much less so in monocots. Here, we present a meta-analysis of five different tran-

scriptomic analyses of rice (Oryza sativa) roots treated with cytokinin, including three previously

unpublished experiments. We developed a treatment method in which hormone is added to the media of

rice seedlings grown in sterile hydroponic culture under a continuous airflow, which resulted in minimal

perturbation of the seedlings, thus greatly reducing changes in gene expression in the absence of exoge-

nous hormone. We defined a core set of 205 upregulated and 86 downregulated genes that were differen-

tially expressed in at least three of the transcriptomic datasets. This core set includes genes encoding the

type-A response regulators (RRs) and cytokinin oxidases/dehydrogenases, which have been shown to be

primary cytokinin response genes. GO analysis revealed that the upregulated genes were enriched for terms

related to cytokinin/hormone signaling and metabolism, while the downregulated genes were significantly

enriched for genes encoding transporters. Variations of type-B RR binding motifs were significantly enriched

in the promoters of the upregulated genes, as were binding sites for other potential partner transcription

factors. The promoters of the downregulated genes were generally enriched for distinct cis-acting motifs

and did not include the type-B RR binding motif. This analysis provides insight into the molecular mecha-

nisms underlying cytokinin action in a monocot and provides a useful foundation for future studies of this

hormone in rice and other cereals.
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INTRODUCTION

Cytokinins are N6-substituted adenine derivatives that reg-

ulate diverse aspects of plant growth and development,

including meristem function, leaf senescence, vascular

development, gynoecium development, and biotic and

abiotic interactions (Davies, 2004; Jameson and Song,

2016; Kieber and Schaller, 2014, 2018; Mok and Mok,

2001; Schaller et al., 2015). Much has been learned in the

past few decades regarding cytokinin metabolism, signal-

ing, and function, primarily from studies of the dicot Ara-

bidopsis thaliana, with additional substantial contributions

from studies in rice (Oryza sativa) and maize (Zea mays).

The biosynthesis of cytokinin starts with the addition of a

prenyl group derived from dimethylallyl diphosphate to

the N6 position of ADP/ATP, catalyzed by isopentenyl-

transferases (IPTs) (Sakakibara, 2006), which are encoded

by a multigene family in most plants (Kakimoto, 2001;

Takei et al., 2001). The iP ribotides made by IPT are subse-

quently converted to trans-zeatin (tZ)-type cytokinins by

hydroxylation of the isoprenoid side chain by the cyto-

chrome P450 enzymes CYP735A1 and CYP735A2 (Takei

et al., 2004). The active forms of cytokinins are the free

bases, which are synthesized from cytokinin ribotides in a

single enzymatic step catalyzed by the LONELY GUY

(LOG) family of cytokinin nucleoside 50 monophosphate

phosphoribohydrolases, which were initially discovered in

rice (Kurakawa et al., 2007; Kuroha et al., 2009). The level

of active cytokinin can be decreased through conjugation

to sugars (Bajguz and Piotrowska, 2009; Hoyerov�a and

Ho�sek, 2020; Sakakibara, 2006) or by degradation by cyto-

kinin oxidases/dehydrogenases (CKXs) (Schm€ulling et al.,

2003; Werner et al., 2006).

The cytokinin signaling pathway is similar to bacterial

two-component phosphorelays and is comprised of sensor
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histidine kinase (HK) receptors, histidine phosphotransfer

proteins (AHPs), and response regulators (RRs) (Figure 1).

The cytokinin signaling elements in rice and other plants

are encoded by small gene families whose members gen-

erally have overlapping functions (Burr et al., 2020; Du

et al., 2007; Pareek et al., 2006; Pils and Heyl, 2009; Tsai

et al., 2012; Worthen et al., 2019). Cytokinin HK receptors

mostly localize to the ER membrane, with the cytokinin-

binding CHASE domain oriented into the lumen (Caesar

et al., 2011; Lomin et al., 2011; Romanov et al., 2018;

Wulfetange et al., 2011), though recent evidence suggests

that a portion of the receptors may also be located at the

plasma membrane (Antoniadi et al., 2020; Kubiasov�a et al.,

2020; Z€urcher et al., 2016). There are four CHASE domain-

containing HKs in rice, and disruption of two of these (HK5

and HK6) reduces the response to cytokinin and has sub-

stantial effects on many aspects of rice growth and devel-

opment (Burr et al., 2020). The AHPs shuttle between the

cytoplasm and the nucleus and act as intermediates in the

transfer of phosphate from the HKs to the downstream

RRs (Hutchison et al., 2006; Suzuki et al., 1998; Tanaka

et al., 2004). The RRs, which fall into two major classes

called types A and B, contain an N-terminal receiver

domain that harbors an Asp residue that is the target of

phosphotransfer. Type-B RRs mediate the transcriptional

response to cytokinin and contain, in addition to the recei-

ver domain, a DNA-binding MYB domain. Based on studies

in Arabidopsis, phosphorylation of the type-B RRs

increases binding to their genomic targets, thus mediating

the initial transcriptional response to cytokinin (Xie et al.,

2018; Zubo et al., 2017). Type-A RRs lack DNA binding out-

put domains, are rapidly and specifically transcriptionally

induced by cytokinin, and function as negative feedback

regulators in cytokinin signaling (Brandstatter and Kieber,

1998; D’Agostino et al., 2000; Jain et al., 2006; To et al.,

2004). In addition to the type-A RRs, cytokinin signaling is

also inhibited by the pseudo-phosphotransfer proteins

(PHPs), in which the conserved His at the phospho-

receiving site is replaced with an Asn or Gln residue

(M€ah€onen et al., 2006; Suzuki et al., 2000; Vaughan-Hirsch

et al., 2020), and by S-nitrosylation of the AHPs (Feng

et al., 2013). There are three PHPs in rice with overlapping

functions, some of which are distinct from the role of

AHP6, the sole PHP in Arabidopsis (Vaughan-Hirsch et al.,

2020).

Here, we examined the transcriptional response of rice

roots to exogenous cytokinin. We performed a meta-

analysis of five distinct transcriptomic studies to define a

core set of cytokinin-responsive genes in a monocot spe-

cies. The core set consists of 205 upregulated and 86

downregulated genes and contains both previously

described and novel cytokinin response genes. This core

dataset defines molecular targets of cytokinin signaling in

rice and should be useful in the analysis of cytokinin in rice

and other monocots.

RESULTS

Treatment methods for phytohormone application can

substantially affect the rice transcriptome in the absence

of hormone

Transcriptional profiling of phytohormone-treated plants

has provided valuable insights into the mechanisms by

which these signaling molecules regulate plant growth and

development. Various methods have been employed to

treat plant tissues with exogenous hormones, including

immersing seedlings or excised tissues in media with or

without added hormone, transferring seedlings grown on

sterile solid media to media containing hormone, and

spraying intact or various plant tissues with the hormone

of interest. All of these methods have potential drawbacks

and likely impact gene expression. For example, removing

seedlings or plant organs followed by immersion in

hormone-containing media can lead to flooding and

hypoxic stress. Furthermore, sterile growth of seedlings on

solid media in an enclosed space (i.e., Petri plate), though

Figure 1. A diagram of the cytokinin signaling pathway in rice. Cytokinin binds to the sensor histidine kinase (HK) receptors, which are localized to the endo-

plasmic reticulum (ER) and the plasma membrane (PM). This induces autophosphorylation on a His residue, and the phosphate group is then relayed to the

response regulators (RRs) through the AHP proteins. The Ds and As indicated in the various domains represent the sites of phosphorylation. Type-B RRs elicit

the cytokinin responses by direct binding to target genes, whereas type-A RRs lack the DNA binding domain and act as negative feedback regulators. Addition-

ally, cytokinin signaling is inhibited by the pseudo-phosphotransfer proteins (PHPs), in which the target His is replaced with a Gln in rice PHPs. The LOG/L and

IPTs play a role in cytokinin biosynthesis, and the CKXs act to degrade cytokinin. The numbers in brackets indicate the numbers of genes encoded for each ele-

ment in the rice genome.
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convenient and reproducible, results in reduced transpira-

tion, which can skew the distribution of endogenous hor-

mones, including cytokinin, which is transported

shootward via the transpiration stream in the xylem. A

recent study has shown that growing Arabidopsis plants

on parafilm-wrapped Petri dishes caused hypoxia, resulted

in higher carbon dioxide concentrations, and led to differ-

ential regulation of multiple stress- and defense-related

genes (Xu et al., 2019).

We sought to develop a method to grow and treat rice

plants in sterile culture with transpiration intact and with

minimal perturbation to the seedlings. As some cytokinin

is synthesized in roots and transported to the shoots via

the transpiration stream (Dur�an-Medina et al., 2017; Kudo

et al., 2010; Osugi et al., 2017), transpiration is likely impor-

tant to maintain a normal endogenous level and distribu-

tion of cytokinin. Further, lowland rice, which includes the

Kitaake variety used here, normally grows with its roots

flooded, and thus growth in hydroponic media can more

closely approximate a natural situation, as opposed to

many plants, including Arabidopsis, in which growth sub-

merged in hydroponic media likely induces flooding stress.

To promote transpiration, sterile rice seedlings were grown

in hydroponic media in a chamber through which a sterile

airstream was maintained prior to and during treatment.

This experimental design promoted transpiration of rice

seedlings in sterile conditions and enabled facile treatment

of roots with phytohormone.

To examine the effect of the treatment method on the

transcriptome, we designed two experiments that differed

in the manner of treating transpiring rice plants with cyto-

kinin. In the first experiment (HM.1), we grew rice seed-

lings in sterile hydroponic culture, and on the day of

treatment we replaced the media with fresh media identi-

cal to the original supplemented either with NaOH (vehicle

control) or with cytokinin (6-benzylaminopurine [BA],

Cf = 5 µM). The second experiment (HM.2) was conducted

in a similar manner, but rather than changing the media,

cytokinin or the control was added to the existing media.

We harvested the entire rice root system from the seed-

lings at the start (0 h) of the experiment and after 2 h of

treatment and performed RNA sequencing (RNA-seq) anal-

ysis. The transcriptome profiling revealed 255 differentially

expressed genes (DEGs) (|log2(fold change [FC])| ≥ 0.7;

false discovery rate [FDR] < 0.05) in the HM.1 experiment

(168 up- and 87 downregulated) after 2 h of cytokinin treat-

ment as compared to the vehicle control (Figure 2). In the

HM.2 experiment, we identified 473 DEGs (284 up- and 189

downregulated) after 2 h of treatment. We hypothesized

that the lower number of DEGs in the HM.1 experiment is

perhaps a result of noise that occurred due to medium

replacement. We therefore examined gene expression

changes over the 2-h time course and found a surprisingly

large number (1170) of DEGs in the control treatment in

this experiment (Figure 2), even though the replaced med-

ium was the same as the original medium used to grow

the seedlings. Moreover, multidimensional scaling (MDS)

analysis demonstrated a very small separation between

the cytokinin and control treatments in HM.1, suggesting a

greater impact of the media replacement on the transcrip-

tome than the cytokinin treatment itself (Figure S2a). To

test whether such a substantial number of DEGs are

indeed a result of the treatment method, we examined

transcriptome changes in the control treatment group in

the HM.2 experiment. In this case, there were very few

genes (16 up- and 3 downregulated) differentially

expressed in the control conditions. Moreover, MDS analy-

sis shows two distinct clusters, representing the control

and cytokinin treatments (Figure S1b). Based on these

results, we concluded that the minimal perturbation treat-

ment used in the HM.2 experiment nearly eliminated tran-

scriptional changes that occur due to the change of media

and potentially increased the ability to detect hormone-

related changes by reducing the noise in the system.

Comparative analysis of the cytokinin-induced

transcriptional changes reveals a suite of core cytokinin

response genes

To define a core set of cytokinin-regulated genes, we per-

formed a comparative analysis of five differently con-

ducted transcriptomic studies of cytokinin-treated rice

roots, including four RNA-seq experiments (including the

previously published study by (Raines et al., 2016a) and

one Affymetrix GeneChip� microarray experiment (Hirose

Figure 2. The number of up- and downregulated genes in the two hydro-

ponic medium experiments, HM.1 and HM.2. The differentially expressed

genes were identified between cytokinin- and control-treated roots and over

the 2-h control treatment (2 h versus 0 h) (|log2FC| ≥ 0.7, FDR < 0.05).
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et al., 2007)) (Table 1). The RNA-seq studies included the

HM.1 and HM.2 experiments, an additional new study in

which rice seedlings were grown in sterile conditions on

solid agar medium (AM) and subsequently removed and

treated with cytokinin in liquid media in Petri dishes while

shaking. It is noteworthy that the ‘Hirose’ and ‘Raines’

experiments differed in several important aspects from the

other three analyses. In the ‘Hirose’ study, the rice plants

were grown in pH-adjusted water rather than nutrient

media, and the treatment utilized trans-zeatin rather than

the BA that was used in the other experiments. Moreover,

in both the ‘Raines’ and ‘Hirose’ experiments, seedlings

were grown in non-sterile hydroponic conditions, which

likely substantially impacts gene expression and the

response to hormones. To minimize differences resulting

from data analyses, the raw data from the four RNA-seq

experiments (including the previously published ‘Raines’

dataset) were analyzed (or re-analyzed) using the EdgeR

package in R (Nikolayeva and Robinson, 2014; Robinson

et al., 2010) as described in the Experimental Procedures

section.

To empirically establish the optimal log2FC cut-off for

the DEG discovery, we examined the two most divergent

RNA-seq experiments (HM.2 and ‘Raines’, as determined

by hierarchical clustering) and the two most similar ones

(HM.1 and HM.2) (Figure S2). Using the lowest applied

log2FC cut-off (|log2FC| ≥ 0.4), the number of DEGs in the

‘Raines’ dataset was 6517, while there were only 473 DEGs

in the HM.2 dataset, 391 of which were shared with

‘Raines’ (Figure S2a). We explored how more stringent

cut-off values affected the shared versus unique DEGs in

these two datasets, reasoning that the optimal cut-off

would reduce the number of DEGs unique to each dataset,

but would reduce the number of shared genes, which in

general are more likely to be authentic, to a much lesser

extent. Balancing the reduction in unique DEGs versus

common DEGs between these datasets, we settled on a

cut-off value of |log2FC| ≥ 0.7 (Figure S2a). In the more sim-

ilar HM.1 and HM.2 datasets, the |log2FC| ≥ 0.7 cut-off value

did not affect either shared or common DEGs as compared

to lower cut-off values, and indeed these numbers were

only nominally affected at even more stringent values (Fig-

ure S2b). We thus used a cut-off value of |log2FC| ≥ 0.7 for

all four RNA-seq analyses and used the original published

parameters for the ‘Hirose’ microarray dataset.

Using these parameters, we found that the ‘Raines’ data-

set contained the highest number of DEGs (4075) and

HM.1 had the smallest number of DEGs (255) (Table 2). We

defined a core suite of genes involved in mediating cytoki-

nin responses in roots as those identified as differentially

expressed in a majority (three out of five) of the experi-

ments. There was a relatively small number of DEGs

shared by all experiments (eight up- and seven downregu-

lated DEGs), with more genes shared by four out of five T
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experiments (57 up- and 26 downregulated DEGs) (Fig-

ure 3, Table S1). The core set of genes that were shared by

at least three datasets consisted of 205 up- and 86 down-

regulated genes, representing a high-confidence core set

of cytokinin-regulated genes in rice roots.

We queried this core set of cytokinin-regulated genes for

overrepresented gene ontology (GO) terms using the g:

GOst function on the g:Profiler webserver (Raudvere et al.,

2019). The analysis revealed a number of significant GO

terms in the molecular function (MF), biological process

(BP), cellular component (CC), and Kyoto Encyclopedia of

Genes and Genomes (KEGG) categories (Figure 4a,b,

Table S2). As expected, for the upregulated genes, among

the top GO terms within the MF category was ‘cytokinin

dehydrogenase’, which was previously found to be

enriched among cytokinin-induced genes in Arabidopsis

and suggests a feedback mechanism between cytokinin

signaling and its metabolism (Bhargava et al., 2013; Bren-

ner et al., 2005; Rashotte et al., 2003). The next most over-

represented terms were ‘heme’ and ‘tetrapyrrole binding’,

perhaps related to the activation of enzymes such as cyto-

chrome P450, which participates in the synthesis of trans-

zeatin and requires heme as a cofactor (Li et al., 2008;

Takei et al., 2004). Alternatively, since ‘oxidoreductase

activity’ emerged as another enriched GO term, the pres-

ence of heme and tetrapyrrole binding could indicate acti-

vation of stress signaling pathways and/or autophagy

(Nagahatenna et al., 2015; Shanmugabalaji et al., 2020),

the latter of which has recently been linked to cytokinin

(Acheampong et al., 2020). ‘Adenine/purine phosphoribo-

syltransferase’ (APT) activity was also overrepresented,

which may reflect cytokinin metabolic processes (Zhang

et al., 2013). The BP category included terms such as

‘cytokinin-activated signaling pathway’, ‘amine metabolic

process’, ‘response to hormone’, ‘adenine salvage’, and

‘oxidation-reduction process’. The enriched terms in the

KEGG category were ‘zeatin biosynthesis’ and ‘plant hor-

mone signal transduction’, consistent with a response to

the applied BA (Figure 4a).

The GO analysis of the downregulated genes revealed

an enrichment of distinct terms, most notably several

related to transmembrane transport (Figure 4b; Table S2).

Previous studies have linked cytokinin to the acquisition of

multiple nutrients, including iron (Fe), zinc (Zn), phospho-

rus (P), sulfur (S), potassium (K), and nitrogen (N) (Argueso

et al., 2009; Gao et al., 2019; Kamada-Nobusada et al.,

2013; Kiba et al., 2011; Pavl�u et al., 2018; Salama and Waer-

ing, 1979; S�egu�ela et al., 2008). Together, these results con-

firm findings from previous studies regarding processes

regulated by cytokinin in roots and indicate potential novel

interactions.

Genes encoding proteins involved in cytokinin signaling

and metabolism are overrepresented in the rice core list

We investigated the expression of the core set of genes

across the five experiments using hierarchical clustering

(Figure 5; Figure S3, Table S1). As expected for robustly

regulated genes, the core DEGs are predominantly regu-

lated in the same direction and rarely show opposing

Table 2 Number of differentially regulated genes in discussed
experiments (|log2FC| ≥ 0.7; FDR ≤ 0.05, except for ‘Hirose’)

Name Upregulated Downregulated Total

Hirose (H) 611 737 1348
Raines (R) 2438 1637 4075
Agar medium (AM) 686 538 1224
Hydroponic medium 1
(HM.1)

168 87 255

Hydroponic medium 2
(HM.2)

284 189 473

Figure 3. Identification of the core cytokinin response genes in rice roots.

The Venn diagrams show overlaps between (a) the upregulated and (b) the

downregulated genes from the five datasets discussed in this work

(|log2FC| ≥ 0.7 [except for Hirose], FDR < 0.05).

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
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Figure 4. Gene ontology analysis. Overrepresented gene ontology terms in (a) the upregulated and (b) the downregulated genes from the core rice cytokinin

set as determined by g:Profiler (version e102_eg49_p15_7a9b4d6). The g:SCS multiple testing correction method was used, applying a significance threshold of

0.05 (for the detailed g:Profiler results, see Table S2).

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2021), 107, 1387–1402

1392 Joanna K. Polko et al.



Figure 5. Heatmap of the differentially expressed genes shared by at least four datasets, which represents a subset of 86 genes from the ‘core list’ of 291 genes.

Hierarchical clustering was done in R using the pheatmap package. The color scale represents the log2FC value. CKX2 (LOC_Os01g10110) was excluded from

the clustering analysis due to the high expression levels (Table S1). For the heatmap of all the 291 DEGs, see Figure S3. Genes related to cytokinin signaling/

metabolism are highlighted in red. Genes encoding transporters are depicted in blue.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2021), 107, 1387–1402
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dynamics across the five datasets. The exceptions gener-

ally come from the ‘Hirose’ microarray experiment, which

may reflect differences in the experimental design

(Table 1). We also observed two distinctive subclades that

contained highly and moderately upregulated DEGs. The

two upregulated clusters included most of the type-A RRs

(RR1, 2, 4, 6, 9, and 10), CKX4 and CKX5 (CKX2 was

excluded from the heatmap due to its extremely high

log2FC values), and 1-AMINOCYCLOPROPANE-1-

CARBOXYLIC ACID OXIDASE 3 (ACO3). The type-A gene

RR7 is differentially expressed only in the ‘Raines’ and

HM.1 datasets and, therefore, does not meet the criteria of

the core list (Figure 3a). RR3 is not differentially expressed

in any of the datasets and RR5, 8, 11, 12, and 13 are gener-

ally not expressed at detectable levels or are present at

very low levels, consistent with a previous analysis of the

expression of these genes in response to cytokinin in rice

roots using NanoString technology (Tsai et al., 2012). In

addition, the highly upregulated clusters contain a CYTO-

CHROME P450 and three genes encoding unknown bHLH

transcription factors (LOC_09g28210, LOC_Os03g46860,

and LOC_Os0151140). Overall, the two most highly upregu-

lated sets of genes were the RRs and CKXs (Figure 5, Fig-

ures S4 and S5). Some of the cytokinin response genes

exhibit a high degree of variance, which likely reflects their

relatively low expression in the absence of cytokinin (Fig-

ure 6, Figures S4 and S5). Surprisingly, the core list con-

tains no WRKY genes despite these transcription factors

being highly overrepresented in the ‘Raines’ dataset

(Raines et al., 2016a). This may reflect the non-sterile con-

ditions in which the seedlings were grown for this experi-

ment, as multiple WRKY genes have been linked to biotic

interactions (Eulgem and Somssich, 2007; Ryu et al., 2006).

In agreement with the GO analysis, among the most highly

downregulated genes, we found a number of transporters

(Figure 5; highlighted in blue). In conclusion, the genes in

the core list display a fairly similar expression pattern

across the experiments and contain many previously

described, well-characterized cytokinin response genes, as

well as novel loci.

Ortholog and motif enrichment analysis

Bhargava et al. (2013) constructed the Arabidopsis ‘Golden

list’ by performing a meta-analysis of 13 microarray experi-

ments of cytokinin-treated Arabidopsis seedlings and

incorporating genes that were >1.5-fold differentially regu-

lated in 40% of the experiments. Some of the genes from

the ‘Golden list’ were further validated through an RNA-

seq experiment, targeted quantitative real-time PCR, and/

or a NanoStrings nCounter system. The Arabidopsis

‘Golden list’ consists of 226 DEGs, many of which are

related to the cytokinin response and metabolism, sec-

ondary metabolite synthesis, and regulation of the redox

state of the cell (Bhargava et al., 2013), similar to what we

find with the rice core set. We sought to determine

whether any of the core rice genes are shared with the Ara-

bidopsis ‘Golden list’ (Table 3). Overall, we found a fairly

modest overlap that, perhaps unsurprisingly, included the

type-A RRs, CKXs, a CYP450, ADENINE PHOSPHORIBO-

SYLTRANSFERASE 3 (APT3), and CYTOKININ RESPONSE

FACTOR 5 (CRF5). Additionally, we found several genes

encoding transcription factors whose orthologs appear in

the Arabidopsis list, including the multifunctional tran-

scription factor TGACG SEQUENCE-SPECIFIC BINDING

Table 3 Orthologs of the core rice genes shared with the Arabidopsis ‘Golden list’ (Bhargava et al., 2013)

Rice locus ID Ortholog locus ID Ortholog name Description

LOC_Os01g09260
LOC_Os01g10110
LOC_Os01g56810

N/D CKX Cytokinin dehydrogenase

LOC_Os02g56310 AT3G04530 PPCK2 Phosphoenolpyruvate carboxylase kinase 2
LOC_Os03g04190 AT2G46660 CYP78A6 Cytochrome P450 78A6
LOC_Os03g42710 AT1G49450 AT1G49450 F13F211 protein
LOC_Os04g31290 AT2G28160 FIT Transcription factor FER-LIKE IRON DEFICIENCY-INDUCED

TRANSCRIPTION FACTOR
LOC_Os04g44670 AT2G46310 CRF5 Ethylene-responsive transcription factor CRF5
LOC_Os04g45690 AT4G39070 BBX20 B-box zinc finger protein 20
LOC_Os04g49550 AT1G76410 ATL8 RING/U-box superfamily protein
LOC_Os04g54474 AT5G65210 TGA1 TGACG SEQUENCE-SPECIFIC BINDING PROTEIN 1
LOC_Os04g57720
LOC_Os11g04720
LOC_Os12g04500

N/D ARR Type-A ARR

LOC_Os05g44210 AT1G78580 TPS1 TPS1
LOC_Os06g03830 AT1G64590 AT1G64590 NAD(P)-binding Rossmann-fold superfamily protein
LOC_Os07g30150 AT4G22570 APT3 Adenine phosphoribosyltransferase 3
LOC_Os08g36040 AT1G49470 AT1G49470 Transmembrane epididymal protein (DUF716)
LOC_Os12g06060 AT5G04770 CAT6 Cationic amino acid transporter 6

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2021), 107, 1387–1402

1394 Joanna K. Polko et al.



PROTEIN 1 (TGA1). TGA1 plays a central role in the

response to nitrate levels, perhaps reflecting a link

between cytokinin and nitrogen uptake/response, as well

as defense, abiotic stress responses, and development

(Alvarez et al., 2014; Canales et al., 2017; Li et al., 2019;

Sun et al., 2018; Wang et al., 2019). Genes from an inde-

pendent meta-analysis of Arabidopsis cytokinin transcrip-

tomic studies (Brenner and Schm€ulling, 2015) show a

similarly small number of shared orthologs (11), which

included all of the abovementioned genes.

To identify transcription factor families involved in medi-

ating the transcriptional response to cytokinin in rice, we

performed a de novo motif enrichment analysis of the pro-

moters of the core genes. We examined the 1-kb regions

upstream of the transcription start sites of up- and down-

regulated genes using the findMotifs function in HOMER

(Heinz et al., 2010) and focused on the motifs with

P < 1 9 10�4 (Figure 7). Consistent with the known role of

the type-B RRs in mediating the transcriptional response to

cytokinin, we found several motifs that contained the

canonical [A/G]TAG core sequence of type-B-binding site

(Godoy et al., 2011; Hosoda et al., 2002; Imamura et al.,

2003; Taniguchi et al., 2007; Xie et al., 2018; Zubo et al.,

2017) upstream of the upregulated DEGs (Figure 7a), similar

to what was found in the Arabidopsis ‘Golden list’ (Bhar-

gava et al., 2013). This element was found in nearly 20% of

all the upregulated genes, consistent with a primary role in

mediating cytokinin induction of gene expression (Mason

et al., 2005; Worthen et al., 2019). Interestingly, this motif

was not found enriched in the downregulated genes, which

was also true of the Arabidopsis ‘Golden list’ (Bhargava

et al., 2013). Other enriched motifs among the upregulated

genes include binding sites for the CRFs, which have been

linked to mediating a subset of the cytokinin-responsive

transcriptome in Arabidopsis (Raines et al., 2016b) and

WRKYs, which is consistent with their overrepresentation in

the ‘Raines’ dataset, despite their not being present in the

core gene list. A binding motif for the SQUAMOSA PROMO-

TER BINDING-LIKE (SPL) family of transcription factors

(Birkenbihl et al., 2005; Yamasaki et al., 2009) was found

enriched in both the up- and downregulated genes. SPLs

are involved in a multitude of developmental processes,

including floral transition and lateral root development

(Chen et al., 2010; Liang et al., 2008; Xu et al., 2016). We also

identified the Teosinte branched/Cycloidea/PCF (TCP)

Figure 6. Expression levels of the upregulated genes present in the ‘core

list’ related to cytokinin signaling and cytokinin metabolism. (a) Log2FC val-

ues of the rice type-A RRs. (b) Log2FC values of the rice cytokinin oxidase/

dehydrogenase (CKX) genes. Each colored datapoint represents a log2FC

value from an individual experiment.

Figure 7. Motif enrichment analysis. Motif enrichment within 1-kb regions

upstream of the transcriptional start sites of the upregulated (a) and down-

regulated (b) transcripts from the ‘core list’. The list was generated using

the findMotifs function in HOMER (Heinz et al., 2010) and the elements with

P < 1 9 10�4 were considered to be enriched.
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binding motifs in both the up- and downregulated genes,

consistent with studies linking TCPs to cytokinin (Das Gupta

et al., 2014; Efroni et al., 2013; Lucero et al., 2015; Steiner

et al., 2012, 2016). These results are in agreement with a

recent study of cytokinin-induced open chromatin that iden-

tified a number of similar enriched elements, including the

type-B’s, TCPs, and C2H2 zinc finger elements (Potter et al.,

2017).

Among the downregulated genes, there are two unique

overrepresented motifs. The first corresponds to the bind-

ing motif for MAGPIE (MGP), a C2H2 zinc finger transcrip-

tion factor that regulates asymmetric cell division in

Arabidopsis root meristems (Welch et al., 2007a). The

expression of MGP is downregulated by cytokinin in Ara-

bidopsis calli (Furuta et al., 2011). The second unique over-

represented element in the downregulated genes

corresponds to the binding motif for AUXIN RESPONSE

FACTORs (ARFs), which is present in nearly 14% of the

sequences. There is a substantial interaction between

auxin and cytokinin in many developmental programs, and

cytokinin and auxin regulate the expression of subsets of

genes involved in each other’s signaling (Moubayidin

et al., 2009; Schaller et al., 2015). For example, auxin regu-

lates the expression of a subset of type-A RRs in Arabidop-

sis (Hwang and Sheen, 2001) and cytokinin regulates the

expression of several Aux-IAA genes (Ioio et al., 2008). In

conclusion, we confirmed that the promoters of core genes

contain a number of known motifs involved in cytokinin

responses in other species and contexts. Despite some

overlap, there are interesting differences in the motifs of

the upregulated and downregulated genes that may reflect

the involvement of distinct partner transcription factors

involved in mediating cytokinin induction versus repres-

sion by the type-B RRs.

DISCUSSION

While there have been multiple studies examining gene

expression in response to cytokinin in dicots, including

two meta-analyses of such data (Bhargava et al., 2013;

Brenner and Schm€ulling, 2015), there are relatively few

such analyses in monocots. In any transcriptome study,

given the large number of genes being analyzed, there will

be false positives and false negatives among the defined

DEGs. Various criteria are applied to reduce the number of

false positives while only minimally eliminating authentic

positives, including minimal FDR values, minimal log2FC

cut-off values, and minimal expression values. Noise in the

system resulting from the treatment method likely exacer-

bates this problem as it can contribute to increased biolog-

ical variation in the expression of many genes. Here, we

attempted to address this issue in three ways. First, we

examined several transcriptomic experiments, reasoning

that genes whose expression is truly influenced by cytoki-

nin would be identified in multiple studies. Second, we

used an empirical method to identify optimal FC cut-off

values for the RNA-seq experiments. Finally, we developed

a method that minimized the effects of treatment to reduce

the noise in the system. Using these approaches allowed

us to define a core set of genes that we conclude with

fairly high confidence are regulated by cytokinin in rice

roots. Nevertheless, it is likely that this list still contains a

small number of false positives and that some cytokinin

DEGs have been missed. This latter category will include

genes whose expression is only modestly affected by

exogenous cytokinin or which are expressed at low levels,

genes that are only induced in particular conditions, or

genes that are regulated in only a subset of cells within the

root or only in other tissues not included in this analysis.

Nonetheless, we suggest that this core list will be a valu-

able resource in the analysis of cytokinin function in rice

and other cereal crops.

To construct the list, we first established the optimal

log2FC cut-off by comparing the two most similar (HM.1

and HM.2) and dissimilar (‘Raines’ and HM.2) RNA-seq

experiments and selected an empirically determined rea-

sonable cut-off (|log2FC| ≥ 0.7). We concluded that this cut-

off likely eliminated the majority false positives without

affecting the abundance of true positive genes. We consid-

ered only genes that were differentially expressed in the

same manner in at least three out of five experiments to

be included in the core gene list. We suggest that this rela-

tively stringent criterion should increase the robustness

and, therefore, the usefulness of the core gene list. When

comparing the core gene dynamics within each dataset,

we found that the ‘Hirose’ experiment is quite distinctive

from the rest of the datasets, which may reflect the method

of treatment (trans-zeatin versus BA) or analysis (microar-

ray versus RNA-seq) or the developmental stage of the

plants (14 versus 10 days). Both the ‘Hirose’ and ‘Raines’

data were generated from plants grown in non-sterile con-

ditions, which may contribute to expression differences

observed. Furthermore, biotic interactions may potentiate

the regulation of some genes by cytokinin, potentially

accounting for the large number of DEGs in response to

cytokinin.

As expected, the GO analysis of the 205 upregulated

genes from the core list revealed overrepresentation of the

terms ‘cytokinin signaling’ and ‘cytokinin metabolism’.

Nearly all of the type-A RRs that were reproducibly

detected at significant levels in the root (RR1, RR2, RR4,

RR6, RR9, and RR10) were highly upregulated in response

to cytokinin, consistent with previous studies in various

species, including rice (e.g., Camacho et al., 2008; Cortizo

et al., 2010; D’Agostino et al., 2000; He et al., 2020; Ishida

et al., 2008; Lohar et al., 2004; Papon et al., 2003; Tsai et al.,

2012). The one exception is RR3, which is expressed in

roots but not significantly induced after 2 h of cytokinin

treatment here or in prior studies (Tsai et al., 2012).
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Consistent with Tsai et al. (2012), we found that RR8, 11,

12, and 13 were not expressed at all in any of the root

RNA-seq datasets. Other highly induced genes from this

category were six CKX genes (CKX1, CKX2, CKX3, CKX4,

CKX5, and CKX11), which likely reflect a negative feedback

between cytokinin signaling and synthesis (Reid et al.,

2016; Sakakibara, 2006; Schm€ulling et al., 2003; Werner

et al., 2006). The upregulation of the ACO gene in all data-

sets likely reflects crosstalk between cytokinin and ethylene

biosynthesis (Hansen et al., 2009; Lee and Yoon, 2018;

Vogel et al., 1998).

Hierarchical clustering of the core DEGs shows that the

type-A RRs, CKXs, CYP450, and ACOs belong to the same

highly induced clade. Interestingly, this group also

includes three genes encoding bHLH transcription fac-

tors (LOC_Os09g28210, LOC_Os03g46860, and LOC_

Os01g51140). LOC_Os09g28210 was identified in a quanti-

tative trait locus study for root length and thickness in

upland rice and has been shown to be induced under abi-

otic stress conditions, including drought and salt stress

and ABA (Li et al., 2015). LOC_Os03g46860 is transcription-

ally induced by rice blast (Magnaporthae oryzae) infection

and is suppressed by NH4
+ (Kumar et al., 2021; Wang et al.,

2017). Thus, these bHLH transcription factors may play a

role in the cytokinin - stress response crosstalk.

The GO analysis of the 86 downregulated genes showed

a distinct pattern of enriched GO terms, including signifi-

cant overrepresentation in the ‘transporters’ category,

which included transporters from multiple classes, such as

amino acid, peptide, metal, and ammonium transporters.

Cytokinin has been linked to the assimilation and metabo-

lism of many micro- and macronutrients such as Pi, N, S,

and Fe (Argueso et al., 2009; Pavl�u et al., 2018). In Ara-

bidopsis, cytokinin reduces iron responses, possibly

through its negative effect on plant growth rates (S�egu�ela

et al., 2008). Interestingly, our core list of downregulated

transcripts contains a gene encoding a putative transcrip-

tion factor, LOC_Os04g31290, whose ortholog, the Ara-

bidopsis Fe DEFICIENCY-INDUCED TRANSCRIPTION

FACTOR1 (FIT1), plays a central role in mediating

responses to Fe deficiency (Colangelo and Guerinot, 2004;

Schwarz and Bauer, 2020). A recent study demonstrated

that rice plants with lower endogenous cytokinin levels

have higher accumulation of Zn (Gao et al., 2019). The

availability of Zn transporters is regulated by cytokinin sig-

naling and, conversely, Zn availability feeds back to cytoki-

nin metabolism (Gao et al., 2019). Lower cytokinin levels

induce the expression of Pi transporters and, conversely,

addition of exogenous cytokinin negatively affects the Pi

starvation responses in Arabidopsis and rice (Franco-

Zorrilla et al., 2002; Martin et al., 2000). Cytokinin also

downregulates the expression of root sulfate transporter

genes SULTR1;1 and SULTR1;2 (Maruyama-Nakashita

et al., 2004), and tobacco (Nicotiana tabacum) plants

overexpressing CKX1 retained high chlorophyll content

under S deficiency (Werner et al., 2010). Similarly, reduc-

tion in cytokinin levels leads to higher tolerance to K deficit

(Nam et al., 2012).

Low nitrogen has been shown to reduce cytokinin

biosynthesis in rice shoots, and its optimal availability

enhances cytokinin biosynthesis by promoting the expres-

sion of IPT genes (Kiba et al., 2011; Sakakibara et al., 2006).

In Arabidopsis, cytokinin affects the systemic N demand

signaling and the root–shoot–root communication regulat-

ing compensatory architectural changes (Poitout et al.,

2018; Ruffel and Gojon, 2017). Furthermore, in rice and

other plants, organic N is primarily transported in the form

of amino acids (Tegeder and Masclaux-Daubresse, 2018),

and the regulation of amino acid/peptide transporters by

cytokinin may reflect the link between cytokinin and nitro-

gen levels.

Our analysis of the motif enrichment in the cis-

regulatory elements of the core genes consistently

revealed the presence of the canonical type-B binding

sites, consistent with their role in mediating the transcrip-

tional induction of genes in response to cytokinin (Mason

et al., 2005; Nguyen et al., 2016; Worthen et al., 2019).

Interestingly, the type-B motifs are present only in the

upregulated genes in agreement with what was observed

in the Arabidopsis ‘Golden list’ (Bhargava et al., 2013). This

result is at odds with the finding that Arabidopsis RR10

binds to the promoters of both up- and downregulated

genes (Zubo et al., 2017). Only 25% of the downregulated

Arabidopsis ‘Golden list’ genes were direct targets of

ARR10 as determined by ChIP-seq (Zubo et al., 2017); the

enrichment of the type-B binding motif may not be found

when such a small fraction of the genes is directly tar-

geted. The most overrepresented motif in terms of P-value

is the AP2/ERF motif, which includes the binding site for

the CRFs. CRFs are involved in the response to cytokinin

and regulate different aspects of plant development

(Raines et al., 2016b; Rashotte et al., 2006). Interestingly,

the promoters of the core genes are also enriched for

WRKY binding sites, which is consistent with a link

between cytokinin and abiotic/biotic stress responses,

despite the absence of WRKYs from the core DEGs. It is

plausible that the regulation of WRKYs by cytokinin is

potentiated by biotic interactions, which would explain

why they are highly enriched in the ‘Raines’ cytokinin

DEGs, but not in datasets derived from plants grown in

sterile conditions. We also found that both the up- and

downregulated DEGs contain the SPL and TCP binding

motifs. A member of the SPL family, UNBRANCHED3

(UB3), has recently been shown to play a role in regulating

endogenous cytokinin levels and cytokinin signaling (Du

et al., 2017). UB3 negatively regulates tillering and panicle

branching, and directly binds to the promoters of LOG1,

RR1 and RR6 (type-A RRs), and CKX2. The presence of the
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MGP binding motif suggests a link between rice root stem

cell function and cytokinin. In Arabidopsis, MGP is

involved in regulating asymmetric cell division in root api-

cal meristems (Welch et al., 2007b).

In contrast to the Arabidopsis ‘Golden list’ (Bhargava

et al., 2013), our rice core gene set consists only of tran-

scriptomes derived from roots of comparable ages, and

thus genes specifically regulated in other tissues will not

be identified. Nevertheless, we found a number of ortholo-

gous genes shared between the two lists – namely the

type-A RRs, CKXs, CYP450, and CRFs. Interestingly, both

sets contain the TGA1 transcription factor, which regulates

a plethora of biological pathways, including stress and

developmental pathways (Gatz, 2013; Jakoby et al., 2002).

In contrast to the Arabidopsis ‘Golden list’, we found that

the rice core list is enriched for a relatively small number

of consistent GO terms. The list of cytokinin DEGs

described here should prove useful in the analysis of cyto-

kinin function in monocots. Further, some of the genes

identified here may provide direct clues to the molecular

mechanisms underpinning the response to cytokinin in

rice. Linking these datasets to other ‘omics’ datasets

derived from the response to cytokinin perturbation in rice

should further illuminate how this important signaling

molecule modulates plant growth and development in

monocots.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions for agar medium

experiments

Rice seeds (cultivar Nipponbare) were surface-sterilized for 30 min
in 25 ml of 2.5% sodium hypochlorite, washed with 50 ml sterile
water five times, and then germinated on moist Whatman filter
paper in the dark, overnight at 37°C. Eight germinated seeds were
transferred into sterile cups with lids, each containing 250 ml
Kimura B nutrient solution (Ma et al., 2001) solidified with 1% gel-
lan gum (PhytoTech Labs, Lenexa, KS, USA), and grown at 14 h
light (28°C)/10 h dark (23°C). On day 10, eight plants were removed
from the solid medium and treated with 5 µM BA dissolved in 40 ml
Kimura B solution for 2 h while gently shaking at room tempera-
ture. NaOH (50 µM) was used as a vehicle control and added to the
Kimura B solution. Three true biological replicates of the entire root
system (from different cups and consisting of eight roots per repli-
cate) were harvested and flash frozen in liquid nitrogen.

Plant material and growth conditions for hydroponic

experiments 1 and 2 (HM.1 and HM.2)

Rice seeds (cultivar Kitaake) were sterilized and germinated as
described in the previous subsection for the agar medium experi-
ments. To maintain sterility, the following steps were performed
in a laminar flow hood. On day 2, 60 germinated seeds were trans-
ferred to racks (see below) and placed in polycarbonate containers
(13.5 9 9 9 7 cm) containing 500 ml sterile liquid Kimura B nutri-
ent solution. The racks consisted of two ‘tip wafers’ (USA Scien-
tific, Ocala, FL, USA; 1111–1810; 11 9 8 cm) with a 1-mm
fiberglass mesh (Saint-Gobain ADFORS, La D�efense, France)
pressed in between. A single germinated seed was placed into a

well of a ‘tip wafer’; the buoyancy of the rack resulted in the ger-
minated seeds floating in the media; however, they were not fully
submerged. Four polycarbonate containers with a sterile stir bar
were placed into a (64 9 35 9 21 cm) plexiglass chamber (the
transpiration chamber). The transpiration chamber had been ster-
ilized by washing with 20% bleach followed by 70% ethanol and
the inlet and outlet ports of the chamber were covered with sterile
aluminum foil. The chamber was closed, placed into a growth cab-
inet (14 h light [28°C]/10 h dark [23°C]) and placed on a digital stir-
rer (Thermolyne Cellgro 45700, Marshall Scientific, Hampton, NH,
USA). On day 7, plants were transferred (under a laminar flow
hood to maintain sterility) to new containers with fresh media and
returned to the transpiration chamber, and a constant stream of
sterile air filtered through a 0.2-lm venting filter (Whatman, Sigma
Aldrich, St. Louis, MO, USA WHA2108) was initiated using the
ports at a pressure of 75 kPa. On day 8, the medium was changed
with fresh medium containing either 5 µM BA (dissolved in NaOH)
or 50 µM NaOH (control) (HM.1). Alternatively, 25 µl of 0.1 M BA
dissolved in 1 M NaOH (BA) or 25 µl of 1 M NaOH was added to
the existing media (HM.2). Three true biological replicates (each
replicate originated from a different experiment) consisting of five
entire root systems per treatment were harvested (i) at the start of
the experiment and (ii) after 2 h of treatment and flash frozen in
liquid nitrogen.

Library preparation, sequencing (AM, HM.1, and HM.2),

and data processing

Total RNA was extracted using the QIAGEN RNeasy Mini Kit as
described by the manufacturer and samples were DNase-treated
using the TURBO DNA-free kit (Thermo Fisher Scientific, Waltham,
MA, USA). Libraries were prepared using the TruSeq Stranded
mRNA preparation Kit (AM; Illumina, San Diego, CA, USA) or the
KAPA Biosystems Stranded RNA-seq kit (HM.1 and HM.2), as
described by the manufacturer (Roche Sequencing and Life
Science Kapa Biosystems, Wilmington, MA, USA). Samples were
sequenced on one lane of a HiSeq2000 (AM) or HiSeq4000 (HM.1
and HM.2) platform with 50-bp single-end (AM) or paired-end
(HM.1 and HM.2) reads. Sequences were trimmed using the
BBDuk tool (BBMap v.37.50 package; https://sourceforge.net/pro
jects/bbmap), aligned to the Oryza sativa genome (MSU6) using
TopHat (Trapnell 2009) and Bowtie v.1.2.0 (Langmead 2009).
Reads were quantified using featureCounts from subread v.1.5.2
(Liao 2014). RNA-seq analysis for each dataset was conducted
with the EdgeR package (Nikolayeva and Robinson, 2014; Robin-
son et al., 2010) in R with a cut-off value of |log2FC| ≥ 0.7 and an
FDR below 5%.

Gene ontology, hierarchical clustering, and motif analyses

The functional enrichment analysis was performed using g:Profiler
(version e102_eg49_p15_7a9b4d6) with the g:SCS multiple testing
correction method applying a significance threshold of 0.05 (Raud-
vere et al., 2019). Data sources were the MF, BP, CC, and KEGG
categories. Hierarchical clustering was done in R using the pheat-
map v.1.0.12 (Pretty Heatmaps) package. Motif enrichment analy-
sis was performed within 1-kb regions upstream of the
transcriptional start sites using findMotifs HOMER v.4.9.2 and the
following length parameters: -len 6, 8, 10, 12.
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