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Abstract— Quadcopters are increasingly popular for robotics
applications. Being able to efficiently calculate the set of
positions reachable by a quadcopter within a time budget
enables collision avoidance and pursuit-evasion strategies.

This paper examines the set of positions reachable by a
quadcopter within a specified time limit using a simplified 2D
model for quadcopter dynamics. This popular model is used
to determine the set of candidate optimal control sequences
to build the full 3D reachable set. We calculate the analytic
equations that exactly bound the set of positions reachable in a
given time horizon for all initial conditions. To further increase
calculation speed, we use these equations to derive tight upper
and lower spherical bounds on the reachable set.

I. INTRODUCTION

Quadcopters are popular due to their agility, ease of
control, and low cost. All these are improving thanks to
mass production and advances in sensing, batteries, and
computation. The FAA estimates there are 1.25 million
drones identified as model aircraft and predicts an annual
growth of 13 percent [1]. Being able to derive the optimal
control sequence to reach a given position (or alternately,
to escape a current region) is useful for avoiding collisions
with known obstacles [2]-[8], path planning [9]-[14], and
evasion [15]-[18].

The goal of this paper is to calculate the time-limited
reachable set, the set of all position states reachable by
the quadcopter (or drone) at time t. This set is useful for
many applications, including a drone seeking to escape a
region in minimum time (Fig. 1), collision avoidance when
planning trajectories near uncontrolled drones [19], and for
drone counter-measures [20]. The time-limited reachable set
is also useful for pursuit evasion tasks [21], [22]. Drones have
been used for lighting effects at major events [23]. In future
applications, drones could be used to simulate 3D animations
and fireworks. In these applications, the maximum speed
trajectory away from a point becomes significant.

Despite the usefulness of the reachable set, there remains
a need for a closed-form solution. Current efforts have
used numeric computation [24] or approximations [25]. One
reason for this is that the dynamic model for a quadcopter
requires 12 states, 4 inputs, and 8 parameters, as in [26]
and [27]. To make the problem tractable, this paper uses
the simplified 2D model of quadcopter dynamics proposed
by Ritz, Hehn, and D’Andrea [4], [S]. We then integrate
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Fig. 1. Escaping the frame of a camera in minimum time depends on

a drone’s initial pose and velocity. The camera frame is drawn in black
and contours of the drone’s reachable set are drawn every 0.25 seconds. A
slow-moving drone starting in the center of the camera frame can escape
first by moving down (escaping in 2.12 s). A fast-moving drone entering the
camera frame from the left can first escape at 2.11 s by moving at maximum
velocity to the right.

this model using the set of candidate optimal controllers
and determine the extremal sets of inputs that construct the
boundaries of this reachable set as a function of time.

A. 2D Simplified Model for a Quadcopter

The system state is described by the quadcopter’s hor-
izontal position z, vertical position z, pitch angle 6 and
velocity v as shown schematically in Table I. The model
assumes that the angular velocity can be controlled directly.
This assumption is justified because modern quadcopters can
reach high angular accelerations, but the on-board gyroscopic
sensors limit the controllable angular velocity. The resulting
system double integrates linear acceleration and single inte-
grates angular velocity.

T %sinﬂ
2=\ ££cosh-g |- (1)
0 w

Here F7r is the magnitude of the net thrust from the thrusters,
m the mass of the quadcopter, g is the gravitational acceler-
ation, and w the angular velocity. This model has been used
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TABLE I. NOTATION

x £ horizontal position .
z £ vertical position
6 2 pitch angle
w 2 angular velocity
t £  time
g & gravity
A
m =  mass of drone
wp 2 thrust input
ur 2  rotation input
N .
v 2 velocity, v = (v, vz)
Fr £ thrust force 2D drone model
% £ mass normalized thrust X,
tr 2  thrust switching time
tr £  rotational switching time
re = radius of inscribed circle
o £ radius of circumscribed circle
¥ £  maximum value of *
% 2 minimum value of *
*~ 2 non-dimensionalized variable
£ first derivative (velocity)
A

Second derivative (acceleration)

extensively, for instance in planning aggressive maneuvers
through obstacles [11], designing robust controllers [28],
learning optimal quadcopter controllers [6], and for grasping
a moving target with a quadcopter [29].

This model is more complicated than the venerable Dubins
car model [30] because it has an initial velocity, the effects
of gravity, two control inputs, and doubly integrates the
actuation. Details and a visual comparison between the
Dubins car model and 2D quadrotor model are given in the
appendix [31].

The system can then be non-dimensionalized using the
following substitutions from [4]:

t =wt, 5= "2z )
Here w is the maximum rotational rate. These substitutions
enable the following dynamic model:
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In this model, up is the thrust control input, ugr is the
rotational control input, and ur and ug are the transformed
control vector:

ur = )
mg
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The non-dimensionalized system describes the quadcopter
dynamics with only two model parameters, (ur,ur), the
maximum and minimum net thrust of the motors. ur and
up have the following ranges:

ur < up < U, (5
—1<ur <L (6)

The analysis in this paper is valid for any values of
(w,ur,ur). To generate plots requires picking values for
these parameters. As in [4], for the plots in this paper we
assume the rotation input is saturated to w = 10 rad/s. We
examine several sets of thrust parameters.

B. Candidate optimal controllers to bound the reachable set

The controls that bring the system to the boundary of the
reachable set must satisfy Pontryagin’s maximum principle
(PMP). The candidate PMP controls to reach a desired
orientation and position state were identified in [4]. They
proved that the optimal thrust is a bang-bang control input
where ur is always either minimized or maximized: up =
{ur,u7}. The rotational input was identified to always be
either —1lor + 1, unless it is in a singular arc.

In this work we are only interested in the reachable
positions, not orientations. Our candidate controllers are
therefore a subset of those from [4]. We use a process
similar to that used to calculate the sets reachable by a
Dubins car in [32]-[35] and a Reed-Shepp car in [36]. The
optimal paths are specified by letters, with C standing for
a path segment at the maximum turning rate and S for a
straight path segment. Although moving a Dubins car from
one (x,y,6) configuration to another may require at most
three path segments, reaching the position isochrones never
requires more than two path segments. This is because any
position that can be accessed by a CSC path can be accessed
in less time by a CS path that first turns the robot to point
to the goal and then moves straight to the goal. Similarly, to
move a drone outwards in minimum time, the drone should
be turned (at the maximum rotation rate) such that its velocity
vector points toward the target, and then fly with no rotation
towards the target at the maximum velocity. For small time
budgets, the reachable set is also bounded by first rotating in
one direction and then the other while moving at minimum
velocity.

Like the Dubins car, the drone can follow a CS path by first
spinning and then going straight. This is accomplished by
switching ur from 1 to 0 at some time t . Unlike the Dubins
car, we can also control thrust. Because all acceleration
inputs are double integrated, it is sometimes optimal to move
with minimum thrust until some time fT, when the drone is
pointing more in the direction it needs to move, and then
switch to maximum thrust. These will be clarified in the
following section.

II. GENERATING THE REACHABLE SET

The reachable set is generated by a subset of the candidate
optimal controllers, and requires only two switching times.
This section defines these switching times, and explains how
to compute the reachable set with arbitrary initial conditions,
extends the analysis to 3D, and provides equations for circles
that upper and lower bound the reachable set (spheres in 3D).

A. Two switching times form the reachable set

Trajectories that span the range of reachable positions can
be parameterized using just two switching times: the thrust



switching time #7 and the rotational switching time 7. For
the thrust switching time, if { < tr then the thrust will be
ur and otherwise the drone will fly with thrust wr. For the
rotational switching time there are two cases: curve straight
(CS) and curve curve (CC). If the trajectory is in CS then
if t < tp the drone will rotate clockwise and otherwise the
drone will move straight. If the trajectory is in CC then if
t < tg the drone will rotate clockwise and otherwise will
rotate counter clockwise.

Ocs(t,tr) = min(t, tg) @)

Oco(t,tr) = min(f, ip — 1) (8)
~oa o ul ES I?T

urtiin) = { 2 {5 ®

(10)
r) -1 (1)

The equations for & and Z are obtained by double inte-
grating £ and Z. Because these useful equations are long,
they are listed in the appendix [31] and Fig. 11. Ani-
mations and interactive demonstrations aide understanding
both the configuration space and the reachable set. See
https://youtu.be/FidivwO_yfs and [37] for these
visualizations.
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B. Reachable set from zero initial conditions
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Fig. 2. The reachable set (left) and the configuration space (right) at =
10. The two switching times (£g,%7) form a configuration space. While
any configuration space pair is feasible and map to (&, 2) coordinates, the
colored lines in the configuration space map to the maximal bounds of the
reachable set. Circled dots in the configuration space correspond with the
four drones and their paths in the workspace. Knowing that (up,ur) =
(0.102,2.04) T

The plots in this subsection assume that the quadcopter
starts at zero state in an obstacle-free workspace. Converting
these plots from the non-dimensionalized coordinate space
is a simple scaling derived by inverting (2).

For a drone that starts with initial conditions set to zero,
Fig. 2 shows two plots. The left plot of Fig. 2 is the reachable
set of (&,Z) positions. The colored boundary lines match
those in the configuration space plot at the right of Fig. 2. The
configuration space plots i R VS. tr, with ¢ R on the x-axis and
t on the y-axis. For CS the blue line represents candidate
control inputs that use full thrust all the time, which occurs
when #7 = 0. The magenta line represents when the drone
moves straight always (fz = 0). The green line represents
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Fig. 3. The CC region must be computed if the uz > 0. This plot shows
the reachable set when { = 5, ur = 4 and ur = 4.5. The blue regions
are accessed by CS trajectories, the pink regions by CC trajectories, and the
yellow by controllers that are not optimal candidates.

control sequences that always move with minimum thrust
(tp = t). The brown line are inputs that always rotate (fr =
t), and red when tp = tp — /2.

If ur = 0, then CS covers the entire reachable set. If
ur > 0, then CS upper bounds the reachable set and CC
under bounds the set. This is shown in Fig. 3, which also
shows the CC and CS configuration space.

In the CC configuration space plots shown in Fig. 3, the
cyan, black, gray and orange lines correspond to the blue,
brown, magenta and green lines in the CS region. However,
the yellow line occurs when {7 ~ (23 + 1.5(f — 2)).

Isochrones at four different times are shown in Fig. 4.

C. Reachable set from non-zero initial conditions

The reachable set for a drone has the same shape for
all initial velocities, positions, and orientations. However,
initial velocities and positions translate the set and initial
orientations rotate the set, as shown in Fig. 1.

If the drone starts at (Z,2p) with initial velocity
(vz,, vz, ), the final reachable set at time £ is translated by

(£0 + tvzg, 20 + tvs,), (12)

which is computed by integrating the initial conditions. For
non-zero initial orientations, rotate the reachable set

about the point (0, —#%/2) by 6 (13)

before applying the translation (12). This point is the final
position of an unpowered drone accelerated by gravity in the
non-dimensionalized system.

D. 2D to 3D

To generate the 3D reachable workspace, we rotate the
2D reachable set about the line where ¢z = 0. This line
is drawn in magenta in Fig. 5. This simplification assumes
that the drone has the same maximum rotation rate in any
combination of roll and pitch. This assumption is reasonable
because the maximum rotation rate is limited by the sensor
data rate [4], not the torque generated by the motors. So even
though an x-shaped configuration of thrusters can roll and
pitch more quickly than a +-shaped configuration, these do
not change the reachable set.
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Fig. 4. Reachable set isochrones at t=1,n /2,7, and 5. A 20 cm drone (grey) is drawn at the same scale in each. The inset plots show the corresponding
(tr,tr) configuration-space diagrams. The reachable set for CS inputs is drawn in blue, and for CC inputs in pink. The top row uses ur = 0 and the

bottom row uses ur = 1.5. Both use u7 = 2.04. Dashed lines are the CS path from the origin to the location at (f R fT)
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Fig. 5. The 3D reachable set is formed by rotating the 2D plot about the
axis where {r = 0 (the magenta line). The blue manifold represents the
limit for a drone with maximum thrust at all times, and the red manifold
shows the set reachable for a drone starting with minimum thrust until {7
and maximum rotation until £, with maximum thrust and straight flying
otherwise. Shown with (up,w7) = (0,2.04), £ = 10 and with 8y = 5

E. Reachable set inscribed and circumscribed circles

To simplify analysis, we can upper and lower bound the
reachable set by circles in 2D (or spheres in 3D). We call
these the inscribed and circumscribed circles with symbols &
and . Dimensionalised and non-dimensionalized inscribed
and circumscribed circle radii as a function of time are
plotted in Fig. 6 and Fig. 7, along with the bounding circles
in three times, where (ur, %) = (0,2.04) for both figures.
These figures and analysis are given for a drone with an zero
initial configuration, but nonzero initial configurations rotate
these circles by (13) and then translate them by (12).

The maximum inscribed circle for time # > %77 is defined
by two points: the maximum and the minimum distance
travelled along the initial orientation, 5. The maximum
distance is 2(,0,0), with maximum thrust and no turning.
The minimum distance is achieved by the red boundary
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Fig. 6. Dimensionalized maximum inscribed and minimum circumscribed
radii 74 (t) and rgy(t) as a function of time for curve-straight CS inputs.
The fit is generated analytically using (14), (15), (16), and (17).

control inputs from Fig. 2 that rotate to invert the drone and
switch to maximum thrust to intercept the 2z axis. We define
the rotation switching time as r4 and the thrust switching
time as i7,. With these, the inscribed circle center is at
(0,24(%)) and has radius 74(f), as given by (14) and (15):

fall) = 5 : (14)
~ 2(£,0,0) + 2(t, tpa, t
For time # < %77, the maximum circle is defined by

multiple points, and is solved numerically.
The minimum circumscribed circle has a simple analytic
solution for ¢ > 37 with center at (0, 25(%)) and has radius
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Fig. 7. Non-dimensionalized maximum inscribed and minimum circum-
scribed radii 7 4, (£) and #¢y(£) as a function of £ for curve-straight CS inputs.
Dashed lines are numerical solutions while the solid lines are analytical
solutions using (15) and (17)

Fo(t):
2@(5) = é(t} 5, 0)
:_%+W1_7+£>, (16)
_ %((W—Zf)Q—FS(f— 1)). (17)

For time £ < %w, the minimum circle is defined by either
two or three points, and is solved numerically. These circles
can be converted to spheres that bound the 3D set following
the procedure in Section II-D.

III. APPLICATIONS

This section presents three representative applications for
using a drone’s reachable set.

A. Escaping a bounded region

If a drone is attempting to remain unobserved and is
caught in the frame of a camera, it must determine which
direction to move in order to escape the camera frame in the
minimum time. The solution is to compute the reachable set
as a function of time, and then calculate the first time that
the reachable set intersects the edge of the camera frame.
This procedure is illustrated in Fig. 1. Escaping the frame
of a camera in minimum time depends on the drone’s initial
pose and velocity, as calculated in Section II-C. For each
example, the camera frame corresponds to an HD camera
that observes a region 192mx108 m. This camera frame is
drawn in black and contours of the drone’s reachable sets are
drawn every 0.25 seconds. A slow-moving drone starting in
the center of the camera frame can escape first by moving
down (escaping in 2.12s). A fast-moving drone entering the
camera frame from the left can first escape at 2.11s by
moving at maximum velocity to the right. The escape times
are computed using a binary search over the reachable set
equations in the Appendix [31] using Mathematica. With a

2M) (24, 20, 020, V20, 00 )unconwotied = (30m, 10m, 20m /s, 10m /s, )
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Fig. 8. Contours of the reachable set enable worst-case analysis for collision
avoidance. In this image, the controlled drone has planned a linear flight
trajectory (shown in blue). The uncontrolled drone’s reachable set is plotted
every 0.25 seconds. The controlled drone’s position is disjoint from the
reachable set until £ = 1.198 s, which is the first possible collision, and is
illustrated by a black point.

3.1 GHz Intel Core i7 laptop and a resolution of 0.001 s this
calculation required 0.42s and 0.44 s for the top and bottom
drones respectively, but only 0.048s and 0.047s using the
circumscribed circle fit (17).

B. Collision Avoidance

The reachable set has applications for many pursuit-
evasion problems. A common problem arises in air traffic
control: given a drone with a known trajectory (the controlled
drone), and other drones with known initial position and
velocity, but unknown future trajectories (the uncontrolled
drones), when is the first possible collision? Using the
full reachable set enables anticipating all scenarios. Figure
8 shows a representative example. The controlled drone
coordinates are (20, 15), and it is following a linear trajectory
(x,z) = (2.94t + 20,1.18t + 15). The uncontrolled drone
starts at (30,10) with velocity (vg,v.) = (20,10). The
controlled drone’s flight path is not guaranteed to be clear.
The controlled drone’s position is disjoint from the reachable
set until ¢ = 1.198 s, which is the first possible collision,
generated by the uncontrolled drone using ¢ = 0, i = 0.74.
This type of worst case planning is becoming more relevant
as learning-based automatic controllers have enabled flight
acrobatics that exceed the capabilities of human pilots [38].

C. Drone countermeasures

The circumscribed set can be used for drone countermea-
sures if the effect of the counter measure has a circular
cross section. Examples include the anti-drone net-deploying
system in [20], or the use of flak, explosive anti-aircraft
shells [39], [40]. To compute if a net-deploying system can
guarantee capture with a net of radius 7, and a delivery
time t,, calculate the circumscribed circle for the drone.
If ry(thet) < Tnet» the drone can be captured and the net
should be launched at the (x, z) center of the reachable set,
as specified in Section II-E.

IV. EXPERIMENT

Our experiment replicated, with a physical drone, the
optimal control sequences that generate the reachable set
isochrones shown in Fig. 2. We selected an Emax TinyHawk



Fig. 9. Composite image with TinyHawk drone in acro mode (red) and
horizon mode (blue). The composite image shows that the drone in both
modes matches the predicted isochrone produced by Fig. 2.
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Fig. 10. (Left) Video from the pilot’s FPV goggles while performing path
2 in Fig. 2. (Right) Photo of the experiment setup, including the Jumper
T12 flight controller, the modified TinyHawk drone, the modified transmitter
setup, and a FPV video screen.

1.1 drone, a model commonly used in drone racing. We
connected a Jumper T-12 radio controller to a Arduino-
compatible Teensy 3.2 micro-controller. The Teensy then
mirrors the pulse-position modulation signal created by the
pilot to a commercial RC transmitter module. The transmitter
controls the TinyHawk which runs BetaFlight, a popular
operating system for quadcopters. Figure 10 shows the
hardware setup and a frame from the pilots FPV feed. The
drone was placed in a zero-initial condition on a table to
provide a safety offset from the ground. A stationary camera
mounted to a tripod was setup to photograph the drone flights
for approximately ¢ = 1 second. The camera captured still
frames of the flight at eight frames per second.

A trained pilot then replicated optimal trajectories similar
to the four paths generated in Fig. 2 by applying an w
change to meet the desired angle. Betaflight provides two
flight modes used for the test [41], acro which provides
no stabilization, and horizon attempts to keep the drone
at level position, trying to keep 6 close to 0. Using both
flight modes, the pilot was able to replicate the movement
of optimal trajectories. These trajectories are drawn in Fig. 9,
showing that this reachable set is a good indicator of possible
movements a drone can perform in the real world. We
recorded IMU data through a attached data recorder, as well

as other information including flight footage, which we plan
to use in future experiments and calculations.

V. CONCLUSION

This paper presented analytical equations for calculating
the set of positions reachable by a quadcopter as a function
of time, using a common non-dimensionalized quadcopter
dynamics model. Solutions were provided for all initial
conditions. Equations for the curve that bounds this set were
given. Also provided were equations for the inscribed and
the circumscribed circle of this set.

Future work will include the addition of terminal velocity
in the model, and also the examination of the 3D (z,y,6)
reachable sets and the bounding curves for this expanded
set. There are also opportunities to extend the experimental
results with physical quadcopters, including exciting experi-
ments of inverted flight under maximum thrust.

APPENDIX: 2D DRONE REACHABLE SET EQUATIONS: &(f, i g, i), (I ir, i)
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Fig. 11. The equations for the reachable set of a quadcopter. See Ap-
pendix [31] for a full-size version.
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