

1 **Biomarker approaches for reconstructing terrestrial environmental change**

2

3 **Gordon N. Inglis¹, Tripti Bhattacharya², Jordon D. Hemingway^{3,4}, Emily H.**

4 **Hollingsworth¹, Sarah J. Feakins⁵, Jessica E. Tierney⁶**

5

6

7 *¹ School of Ocean and Earth Science, National Oceanography Centre Southampton, UK*

8 *² Earth and Environmental Sciences, Syracuse University, USA*

9 *³ Department of Earth and Planetary Science, Harvard University, USA*

10 *⁴ Geological Institute, Department of Earth Sciences, ETH Zurich, Switzerland*

11 *⁵ Department of Earth Sciences, University of Southern California, USA*

12 *⁶ Department of Geosciences, University of Arizona, USA*

13

14 **Shortened running title:** Biomarkers in terrestrial environments

15

16

17 *Corresponding author: Gordon N. Inglis*

18

19 *Email: gordon.inglis@soton.ac.uk*

20

21

22

23

24 **Abstract**

25 The response of the terrestrial biosphere to warming remains one of the most poorly
26 understood and quantified aspects of the climate system. One way to test the behaviour
27 of the Earth system in warm climate states is to examine the geological record. The
28 abundance, distribution, and/or isotopic composition of source-specific organic molecules
29 ("biomarkers") have been used to reconstruct terrestrial paleoenvironmental change over
30 a range of geological timescales. Here, we review new or recently improved biomarker
31 approaches for reconstructing: (i) physical climate variables (land temperature, rainfall),
32 (ii) ecosystem state variables (vegetation, fire regime), and (iii) biogeochemical variables
33 (soil residence time, methane cycling). This review encompasses a range of key
34 compound classes (e.g., lipids, lignin, and carbohydrates). In each section, we explore
35 the concept behind key biomarker approaches and discuss their successes as
36 paleoenvironmental indicators. We emphasize that analyzing several biomarkers in
37 tandem can provide unique insights into the Earth System.

38

39 **Keywords:** Biomarkers, lipids, paleoclimate, paleoenvironment, biogeochemistry,
40 proxies

41

42

43

44

45

46

47 **1. Introduction**

48 Human activity is fundamentally altering the chemical composition of the atmosphere and
49 warming the planet. Higher temperatures coupled with changing rainfall patterns will alter
50 vegetation distributions, soil residence time, and a variety of terrestrial biogeochemical
51 processes, resulting in feedbacks that can amplify or reduce greenhouse gas forcing
52 (Rohling et al 2012). Quantifying these feedbacks remains challenging because of large
53 uncertainties associated with land surface processes and their response to carbon cycle
54 perturbations (Luo 2007).

55

56 The geological record encompasses a wide range of climate states that can help explore
57 the response of regional climate and terrestrial ecosystems to external forcing (Tierney
58 et al 2020). However, direct instrumental records span only the last few centuries. In
59 deeper time, researchers must rely upon indirect biological, chemical, or physical
60 indicators (“proxies”) preserved within the sedimentary record. Plant fossils (e.g., leaves,
61 pollen, spores) reveal information about past ecosystems, but also inform climate through
62 analysis of leaf physiognomy (e.g., leaf margin analysis; Wilf 1997) and leaf and/or pollen
63 taxonomy. The stable and clumped isotopic composition of terrestrial carbonates (e.g.,
64 herbivore teeth, soil carbonates) also provide important constraints into terrestrial
65 ecosystems and climate (e.g., Cerling 1984). However, these archives are often poorly
66 preserved and/or discontinuous, such that additional techniques are often required.

67

68 The abundance, distribution, and/or isotope composition of source-specific organic
69 molecules—termed “biomarkers” (Sidebar 1)—preserved in a variety of sedimentary

70 deposits provides an additional window into ancient terrestrial environments (Figure 1).
71 Here, we provide a holistic overview and synthesis of key terrestrial biomarker proxies.
72 We review biomarker approaches for reconstructing: (i) physical climate variables (land
73 temperature, rainfall), (ii) ecosystem state variables (vegetation, fire regime), and (iii)
74 biogeochemical variables (soil residence time, methane cycling). In each section, we
75 explore the concept behind key biomarker approaches—highlighting their limitations and
76 challenges—and discuss their successes as paleoenvironmental indicators. We also
77 highlight emerging terrestrial biomarker proxies and discuss potential for future studies.

78

79 **2. Reconstructing terrestrial environmental change using organic biomarkers**

80

81 **2.1. Temperature proxies**

82 Terrestrial temperature exerts a major control on vegetation distributions (Section 2.2),
83 the hydrological cycle (Section 2.3) and a variety of biogeochemical cycles (Section 2.4
84 to 2.6). Yet even for relatively recent, well-studied time intervals (e.g., the Holocene; 12
85 thousand years (ka) to present), large continental regions lack rigorous temperature
86 constraints (Kaufman et al 2020). Branched glycerol dialkyl glycerol tetraethers
87 (brGDGTs) are increasingly used to reconstruct land temperature. Branched GDGTs are
88 comprised of two *n*-alkyl chains, each containing 4-6 methyl groups and 0-2 cyclopentane
89 moieties (Sinninghe Damsté et al 2000). The stereochemistry of the glycerol units
90 confirms a bacterial—rather than archaeal—source organism, but the exact biological
91 source organism(s) remain(s) debated (Sinninghe Damsté et al 2018). Acidobacteria are
92 a potential source organism, due to their widespread abundance in soil and peat (Weijers

93 et al., 2009). Various Acidobacterial strains synthesize the presumed “building block” of
94 brGDGTs (*iso*-diabolic acid). However, only a few Acidobacterial strains have been
95 directly shown to produce brGDGTs (Sinningh   Damste et al., 2011; 2018; Halamka et
96 al., 2021). Recent work demonstrates that oxygen limitation can trigger brGDGT
97 production in at least one Acidobacterial strain, perhaps explaining why few brGDGTs
98 had previously been identified in the laboratory (Halamka et al., 2021). Using a global soil
99 database, Weijers et al. (2007b) first demonstrated that the number of methyl groups
100 (captured via the methylation of branched tetraethers; MBT) varied as a function of
101 temperature and pH (Weijers et al 2007b), whereas the number of cyclopentane moieties
102 (captured via the cyclization of branched tetraethers; CBT) varied as a function of pH
103 alone (Weijers et al 2007b). This led to the formulation of the MBT/CBT index, which was
104 correlated to mean annual air temperature (MAAT; i.e., measured 2 m above ground as
105 determined from climatological reanalysis data) (Weijers et al 2007b).

106
107 The MBT/CBT index was originally applied in a marginal marine setting (Weijers et al
108 2007a) and revealed that tropical African temperatures increased by ~4  C during the last
109 deglaciation (Weijers et al 2007a). However, later analytical refinements (Becker et al
110 2013, De Jonge et al 2013, Hopmans et al 2016) found that penta- and hexa-methylated
111 brGDGTs contained methyl groups at the C5 (5-methyl brGDGTs) or C6 position (6-
112 methyl brGDGTs) and that these co-eluted in the original method of Weijers et al (2007b).
113 This led to the formulation of the methylation index of 5-methyl brGDGTs (MBT^{5ME}). This
114 metric removes the soil pH dependency that was present in the original MBT index
115 (Weijers et al 2007b) and yields more accurate MAAT estimates in soils (De Jonge et al

116 2014). However, there remains a poor correlation between MBT'5_{ME} and MAAT in soils
117 with a high abundance of 6-methyl brGDGTs (i.e., arid and/or alkaline soils; Dang et al
118 2016). Some studies have suggested that samples with a high 6- over 5-methyl brGDGT
119 ratio (e.g., IR_{6ME} > 0.5) are not reliable for temperature inference (Dang et al 2016),
120 although in a global analysis of the soil and peat dataset, Crampton-Flood et al., (2020)
121 did not find support for this particular cut-off. Only core tops with a very high IR_{6Me} value
122 (> 0.8) showed a high residual error.

123

124 The MBT'5_{ME} index correlates strongly with MAAT in a global peat dataset (Naafs et al
125 2017) and is comparable to the relationship observed in soils (Crampton-Flood et al
126 2020). The MBT'5_{ME} index has been increasingly applied in peat archives to reconstruct
127 land temperatures and can reproduce millennial-scale Holocene climate events (i.e.,
128 Younger Dryas, Bølling-Allerød) (Zheng et al 2017). However, peat and/or lignite
129 deposits can be subject to dramatic changes in local hydrology which may lead to an
130 apparent change in brGDGT-derived temperature estimates. For instance, brGDGT
131 distributions within a UK lignite deposit imply ~10°C cooling during the onset of the
132 Paleocene-Eocene Thermal Maximum (PETM) (Inglis et al 2019a). This coincided with
133 enhanced waterlogging and is consistent with in situ production of aquatic brGDGTs (see
134 below; Weber et al 2018). The application of MBT'5_{ME} in dynamic terrestrial environments
135 (e.g., lake-mire transitions) should therefore be interpreted cautiously and within a multi-
136 proxy and/or data-modelling framework.

137

138 BrGDGTs respond differently in lakes than they do in soils. In particular, the application
139 of mineral soil or peat calibrations in lacustrine settings can yield up to 10°C colder-than-
140 predicted temperatures (Tierney et al 2010). In lake environments, brGDGTs can be
141 produced in situ—possibly by a distinct microbial community (Weber et al 2018)—and
142 regional or global lake-specific calibration models are therefore required (Martínez-Sosa
143 et al 2021). The relationship between MBT'_{5ME} and temperature is stronger in lakes than
144 soils and peats; conversely, the latter have a stronger relationship to pH (Martínez-Sosa
145 et al 2021). This supports the hypothesis that different microbial communities are involved
146 in the production of these compounds. Notably, much like arid and/or alkaline soils,
147 lacustrine brGDGT distributions are distinct in hypersaline and/or alkaline lakes, with
148 higher relative abundance of brGDGT-*la* and more 6' methyl isomers (Martínez-Sosa et
149 al., 2021). Hypersaline and/or alkaline lakes have higher average MBT'_{5ME} values than
150 other lakes for a given temperature, implying that global lake calibrations may
151 overestimate temperature values in such environments. This potentially limits the
152 application of MBT'_{5me} in these environments (Martínez-Sosa et al 2021, Tierney et al
153 2010).

154

155 One of the strengths of the MBT'_{5ME} is that it can be applied in older geological time
156 intervals when other terrestrial temperature proxies (e.g., pollen transfer functions) may
157 be less certain. For example, Tibbott et al (2021) used MBT'_{5ME} to constrain temperatures
158 across the Eocene-Oligocene transition (EOT) and found an abrupt ~4-6°C cooling in
159 East Antarctica (Prydz Bay) prior to the establishment of continental-scale ice sheets
160 (Figure 2). The branched GDGT-inferred cooling is larger, more abrupt and later than that

161 reconstructed from the rock-derived chemical weathering proxies. This is related to
162 catchment sourcing: rock erosion is dominated by the mountainous sectors of
163 catchments, whereas soil-derived biomarkers are dominated by the greater lowland
164 extent of catchments. The two signals together reveal the earlier cooling of the high
165 mountain regions in the rock-derived proxy, whereas the brGDGTs detect the later and
166 more abrupt lowland cooling.

167

168 Despite these successes, MBT'_{5ME} values can be overprinted by brGDGT production in
169 rivers and/or marine sediments (e.g., upland soils, rivers, marine sediments; Crampton-
170 Flood et al 2018, Zell et al 2014). If these sources were substantial, for example in the
171 lowland Amazon River (Zell et al., 2014), they can bias brGDGT temperature estimates.
172 This can be partially resolved by screening for and excluding and/or correcting for
173 possible marine/riverine overprints (Crampton-Flood et al 2018). Marine settings are
174 typically characterised by a high degree of cyclisation of tetramethylated brGDGTs (i.e.,
175 high #rings_{tetra} values; Sinningh   Damste, 2018). This is because marine environments
176 are relatively alkaline compared to soils and peat. As #rings_{tetra} values do not exceed 0.7
177 in modern soils, higher values (i.e., >0.7) are evidence for marine *in situ* production
178 (Sinninghe Damst  , 2016). Rivers often have a higher contribution of 6-methyl brGDGT
179 isomers (de Jonge et al., 2015), yielding high Isomerisation Ratio values (IR; de Jonge et
180 al., 2015). However, diagnosing riverine input using the IR is challenging as both arid and
181 alkaline soils contain a high abundance of 6-methyl brGDGT isomers (Dang et al, 2016).

182

183 The MBT'5_{ME} index also has a theoretical maximum temperature of ~25-30°C in soils and
184 peat (Crampton-Flood et al 2020, De Jonge et al 2014, Naafs et al 2017, Weijers et al
185 2007b), which limits use of this proxy in greenhouse climates (e.g., the Eocene).
186 Branched GDGT distributions in settings that are warmer than modern remain largely
187 unknown, although both soil (Chen et al 2018) and lake water (Martinez-Sosa et al 2020)
188 incubations indicate that organisms can synthesise abundant brGDGTs when grown at
189 temperatures above 35°C.

190

191 Isoprenoidal glycerol dibiphytanyl glycerol tetraethers (isoGDGTs) might help reconstruct
192 temperatures not represented in modern climates. IsoGDGTs are synthesised by archaea
193 and comprised of two isoprenoid side chains containing up to eight cyclopentane moieties
194 (although rarely more than 4 cyclopentane moieties; Schouten et al, 2013 and ref.
195 therein). The number of cyclopentane moieties increases at higher temperatures (De
196 Rosa et al 1980), resulting in a more densely packed and stable membrane. This is the
197 premise of the TEX₈₆ surface water temperature proxy (Schouten et al 2002). In some
198 lacustrine settings—generally large and deep lakes—TEX₈₆ is correlated to annual mean
199 lake temperature (Powers et al 2004) and can be used to infer continental temperatures
200 (Tierney et al 2008). However, various factors can influence TEX₈₆ values in lakes (e.g.
201 input of GDGTs from sources other than Thaumarchaeota) (Blaga et al 2009).

202

203 The degree of isoGDGT cyclisation is poorly correlated with temperature in soils (Coffinet
204 et al 2014) and peats (Naafs et al 2018), likely due to the wide range of potential source
205 organisms in these settings. However, recent work identified isoGDGTs with more than

206 four cyclopentane moieties (e.g., GDGT-5 to -7) in tropical ($>19.5^{\circ}\text{C}$) and acidic ($\text{pH} <$
207 5.1) peats (Naafs et al 2018). These compounds had previously only been observed in
208 extremophile cultures and/or hyperthermophilic settings (e.g., hot springs) (Schouten et
209 al 2013), suggesting that their occurrence in tropical, acidic peats represents an
210 adaptation to higher temperatures and/or lower pH. Highly-cyclised isoGDGTs (e.g.,
211 isoGDGT-5, but also isoGDGT-6) have been detected in early Eocene (~ 56 to 48 Ma)
212 lignite deposits (Naafs et al 2018). This confirms that mid-latitude temperatures were
213 higher than 19.5°C during the early Eocene, consistent with elevated brGDGT
214 temperature estimates (>22 - 29°C) from the same samples (Naafs et al 2018). The
215 abundance of isoGDGT-5 in low latitude Eocene lignite deposits is higher than that found
216 in any modern peat, implying MAATs were higher than presently found in the low latitudes.
217 These results suggest that highly-cyclised isoGDGTs (e.g., isoGDGT-5 to -8) could
218 potentially be used to reconstruct temperatures $>30^{\circ}\text{C}$ (c.f., the brGDGT temperature
219 proxy). However, experimental approaches (e.g., mesocosm or microcosm experiments)
220 are required to decipher the relationship between highly-cyclised isoGDGTs and MAAT
221 beyond the modern range. Genomic approaches may provide additional insights into the
222 physiological function of highly-cyclised GDGTs (e.g., Zeng et al., 2019).

223

224 **2.2. Vegetation proxies**

225 The geological record can provide insights into the response of plant communities to CO_2 -
226 induced warming and associated hydroclimate changes. Leaf fossils document local
227 vegetation change across major climate events (e.g. the PETM; Wing et al., 2005).
228 Biomarkers are highly complementary sources of information and provide a more

229 spatially-integrated perspective. The most common biomarkers used to reconstruct
230 changes in the plant community are: i) long-chain *n*-alkyl compounds (e.g., *n*-alkanes, *n*-
231 alcohols, *n*-alkanoic acids) (Eglinton & Hamilton 1967), ii) lignin (e.g., lignin phenols;
232 (Hedges & Mann 1979), and iii) terpenoids (e.g. di- and triterpenoids; Otto & Simoneit
233 2001)

234

235 Long-chain *n*-alkane compounds typically have carbon chain lengths ranging from C₂₅ to
236 C₃₅ and exhibit high odd-over-even ratios, whereas long-chain *n*-alcohols or *n*-alkanoic
237 acids range from C₂₄ to C₃₄ and exhibit high even-over-odd ratios. Various factors
238 determine the abundance of *n*-alkanoic acids vs *n*-alkanes in the sedimentary record.
239 Over short timescales, there can be preferential loss of long-chain *n*-alkanes during
240 soil litter decomposition (Wu et al., 2018). Over longer timescales (i.e., millions of years)
241 or at elevated temperatures, *n*-alkanoic acids are expected to degrade faster due to their
242 functionalized nature. However, laboratory pyrolysis experiments show that they are
243 stable as long as thermal maturity is low (Diefendorf et al., 2015) and remain abundant in
244 some early Cenozoic (Hollis et al., 2021) and late Mesozoic sediments (van Dongen et
245 al., 2006). While both compound classes (*n*-alkanoic acids and *n*-alkanes) are commonly
246 reported separately in paleoclimatic studies, the decision is often guided by absolute
247 abundances, the extent of reworking or petroleum exposure, and/or co-elution with other
248 compounds. To assess this the extent of reworking, we strongly encourage future studies
249 to report thermal maturity ratios (e.g., the carbon preference index (CPI), hopane
250 ββ/(αβ+ββ) ratios., etc). Where possible dual compound classes can be used to reveal

251 productivity or catchment sourcing differences (e.g. Hemingway et al., 2016, Feakins et
252 al., 2018; 2020).

253

254 Studies have looked for patterns in long-chain *n*-alkyl distributions between different plant
255 types (Bush & McInerney 2013, Diefendorf et al 2011) and across climate gradients
256 (Feakins et al 2016b), but recent meta-analyses have found limited value of summary
257 statistics (e.g., average chain length, odd-over-even ratios) as taxonomic or climatic
258 indicators (Bush & McInerney 2013, Diefendorf et al 2011). However, in some low-
259 diversity settings, interpretations of chain length ratios are able to detect plant type
260 variations (Bush & McInerney 2013). For example, in boreal *Sphagnum* moss-dominated
261 peats, the C₂₃/C₂₉ or C₂₃/C₃₁ *n*-alkane ratio has been used to differentiate between
262 *Sphagnum* moss (dominated by mid-chain homologues; e.g., C₂₃) and woody plants or
263 grasses (which are dominated by long-chain homologues; e.g., C₂₉ or C₃₁) and reveals
264 changes in environmental conditions (Nott et al 2000). Certain studies also report a
265 greater predominance of C₃₃ and/or C₃₅ *n*-alkanes in graminoids (e.g., Bush and
266 McInerney, 2013). As tropical trees produce a substantially higher abundance of C₂₉ and
267 C₃₁ *n*-alkanes compared to grasses (Garcin et al., 2014), they dominate the sedimentary
268 C₂₉ and C₃₁ *n*-alkane pool. Thus, longer chain length alkanes (C₃₃ and/or C₃₅) may more
269 strongly detect C₄ grass inputs into sediments (e.g., Schefuß et al., 2003). However, as
270 these chain lengths are not taxon-specific, additional evidence from pollen and spores
271 aids interpretations.

272

273 Other biomarkers can provide additional information on past vegetation. Lignin—a key
274 component of tree wood and other plant tissues—is a heterogeneous polymer containing
275 a variety of monomeric building blocks (see also Section 2.3 below). The ratio of different
276 lignin monomers (i.e., syringyl, vanillyl, and cinnamyl phenols) can differentiate between
277 non-woody angiosperms, woody angiosperms, and woody gymnosperms (Hedges &
278 Mann 1979). Terpenoids can also distinguish between angiosperms and gymnosperms.
279 Triterpenoids (e.g., ursane, lupane, oleanane) are mostly synthesised by angiosperms,
280 whereas diterpenoids (e.g., abietic acid, abietane, pimarane) are more abundant in
281 gymnosperms, especially evergreens (Diefendorf et al 2012). The relative abundance of
282 di- vs triterpenoids has been applied to reconstruct gymnosperms vs angiosperms
283 abundance in the past, although selective loss of triterpenoids can lead to an
284 overestimation of gymnosperms in the sedimentary record (Diefendorf et al 2014).

285
286 Machine learning methods have considerable potential to extract information from
287 vegetation biomarkers, especially the ‘forest’ of peaks present in homologous *n*-alkyl
288 series. Machine learning has detected chemotaxonomic classification power from plant
289 wax distributions, requiring the diagnostic information in molecular distributions across
290 two compound classes (*n*-alkanoic acids and *n*-alkanes) to sufficiently differentiate desert
291 shrub, conifer forest and macrophytes in modern ecosystems and in lake sediments
292 (People et al 2021). These two compound classes are generalist biomarkers, but their
293 proportions and chain length distributions vary across taxa (Diefendorf et al 2011).

294

295 Presumably, additional compound classes and specialist biomarkers would add further
296 skill at chemotaxonomic separations. The machine learning approach has advantages
297 over summary metrics such as the average chain length or carbon preference index on a
298 single compound class (usually only the *n*-alkanes) and appears to perform better than
299 linear mixing models on dual compound classes (Gao et al 2011). Machine learning (e.g.,
300 non-negative matrix factorization, random forests, neural networks) can also help
301 untangle source mixing and/or identify end-member distributions (Peaple et al., 2021;
302 Karp et al., 2021; Polissar et al. 2021). However, machine learning is subject to various
303 uncertainties (e.g., input of *n*-alkyl lipids from plants not represented in the training
304 dataset) or from taphonomic alterations between plant and sediment. Machine learning
305 should always be guided by physical and/or chemical knowledge of the relevant
306 biomarkers – otherwise, the outputs may not have clear physical meaning or may be
307 somewhat uncertain. Machine learning may also require training across a wider variety
308 of plant, soil and sedimentary settings and across ecosystems. It remains to be seen
309 whether it will perform well in ecosystems with greater diversity of plant taxa (e.g.,
310 rainforest) or lower leaf trait variability. It is also unclear how such machine learning
311 approaches will perform in non-analogue settings beyond the training set, although such
312 non-analogue questions also apply to other proxies. In order to enable further testing of
313 these approaches, we recommend collecting multi-compound plant wax abundances
314 (e.g., *n*-alkanoic acids, *n*-alkanes), including the broadest possible range of chain lengths
315 and the non-dominant odd/even chain lengths to develop information about plant wax in
316 a broader range of species and sedimentary settings.

317

318 Another widespread approach for vegetation reconstruction using biomarker methods
319 involves analysing the stable carbon isotopic composition ($\delta^{13}\text{C}$) of long-chain *n*-alkyl
320 compounds. The $\delta^{13}\text{C}$ value of long-chain *n*-alkyl compounds can readily discern the
321 prevalence of C₃ and C₄ plant types (Huang et al 2001). This results from a large
322 fractionation in plant biosynthesis that differs according to photosynthesis pathway (n.b.,
323 the isotopic difference is larger in epicuticular waxes than in bulk tissues). Plant wax from
324 C₄ plants (most tropical grasses and some shrubs) are ¹³C-enriched (~15 ‰) relative to
325 those produced by C₃ plants. This has been exploited to study the Neogene expansion
326 of C₄ grasslands (Freeman & Colarusso 2001, Polissar et al 2019). Plant wax $\delta^{13}\text{C}$
327 records document major expansion of C₄ grasslands on the African continent ~ 10 Ma
328 (Polissar et al 2019). However, C₄ expansion is not globally uniform and plant wax $\delta^{13}\text{C}$
329 records show that C₄ grassland expansion occurs in the Ganges-Brahmaputra catchment
330 ~3 Ma later (Figure 3) (Karp et al 2021).

331
332 Despite the substantial discriminatory difference between photosynthesis pathways, the
333 carbon isotopic composition ($\delta^{13}\text{C}$) C₃ plants has a large spread which introduces
334 uncertainties into linear mixing model interpretations of past vegetation change
335 (Diefendorf et al., 2010). As a partial solution, (Cerling et al 2011) proposed a sinusoidal
336 regression between woody cover and $\delta^{13}\text{C}$ of soil organic matter, which was adapted for
337 plant waxes (Magill et al 2013). However, this only applies to post-Miocene, low-latitude
338 settings dominated by C₄ grasses. $\delta^{13}\text{C}$ variability *within* C₃ plants is also a valuable tool
339 for paleoenvironmental reconstruction. Within C₃ ecosystems there are discernable
340 signals including a primary sensitivity to mean annual precipitation and altitude, but only

341 in wet climates (Wu et al 2017). For further review of carbon isotopes in terrestrial
342 ecosystem reconstructions, other paleoenvironmental interpretations, and areas for
343 future research, readers are referred to a recent review by Diefendorf and Freimuth
344 (2017).

345

346 **2.3. Hydroclimate proxies**

347 Hydroclimate variability exerts an important influence on vegetation patterns (Section
348 2.2), soil residence time (Section 2.4) and a variety of other biogeochemical processes
349 (Section 2.5-2.6). However, there are few continuous and direct records of hydrological
350 change in deep time. The hydrogen isotopic composition ($\delta^2\text{H}$) of long-chain *n*-alkyl lipids
351 (e.g., *n*-alkanes, *n*-alcohols, *n*-alkanoic acids) can provide important insights into the
352 hydrologic cycle. These compounds have a well-constrained source organism (i.e., higher
353 plants) and offer excellent preservation potential in a variety of sedimentary
354 environments. In addition, the hydrogen is bound to the alkyl carbon making it non-
355 exchangeable in most (<150°C) archives. Sachse et al (2004) first demonstrated an
356 empirical correlation between sedimentary long-chain *n*-alkyl lipid $\delta^2\text{H}$ ($\delta^2\text{H}_{\text{wax}}$) and
357 precipitation $\delta^2\text{H}$ in European lakes. This was later corroborated across a variety of
358 environmental gradients (Balascio et al 2018, Daniels et al 2017, Feakins & Sessions
359 2010, Garcin et al 2012) and exploited to reconstruct hydroclimate in the geological record
360 (Bhattacharya et al 2018, Fornace et al 2014, Schefuß et al 2005, Tierney et al 2008,
361 Weijers et al 2007a).

362

363 $\delta^2\text{H}_{\text{wax}}$ is usually employed as a proxy for the isotopic composition of precipitation
364 ($\delta^2\text{H}_{\text{precip}}$). This typically integrates a combination of climatic changes including
365 temperature, rainfall amount and character (e.g., stratiform vs. convective rainfall), as well
366 as atmospheric vapor transport. $\delta^2\text{H}_{\text{wax}}$ records thus benefit from interpretations based
367 on isotope-enabled climate model simulations, which can be used to identify the effects
368 of climatic changes on water isotope compositions (Lee et al 2007, Schmidt et al 2007).
369 However, despite the complexity of water isotopes, paleoclimate $\delta^2\text{H}_{\text{wax}}$ records capture
370 larger-scale hydroclimate shifts than local hydrological proxies (c.f. lake levels). The
371 variety of information in $\delta^2\text{H}_{\text{precip}}$ is also an asset; in the mid-latitudes $\delta^2\text{H}_{\text{wax}}$ can be used
372 to distinguish between different seasonal moisture sources (Bhattacharya et al 2018)
373 while in the tropics $\delta^2\text{H}_{\text{wax}}$ reveals general trends in aridity (Tierney & deMenocal 2013)
374 or atmospheric convection (Windler et al 2021). Comparisons between $\delta^2\text{H}_{\text{wax}}$ and ice
375 core or speleothem $\delta^{18}\text{O}$ demonstrates that $\delta^2\text{H}_{\text{wax}}$ captures similar information and also
376 records rapid climate changes such as the Younger Dryas cooling (Fornace et al 2014)
377 (Figure 4). Furthermore, $\delta^2\text{H}_{\text{wax}}$ can capture climatic changes in the historical period, as
378 demonstrated by the $\delta^2\text{H}_{\text{wax}}$ record from the Gulf of Aden, which documents increasingly
379 arid conditions over the last 200 years (Tierney et al 2015) (Figure 4). Tandem
380 measurements of $\delta^{13}\text{C}_{\text{wax}}$ show the presence of the Suess effect, indicating rapid
381 transport of plant waxes from the terrestrial source (the Horn of Africa) to the coastal
382 ocean (Tierney et al 2015). As discussed further below (Section 2.4), such records
383 demonstrate that a young, rapidly overturning plant wax pool allows for rapid climate
384 changes to be recovered despite the presence of a pre-aged and/or reworked plant wax
385 pool.

386

387 Many studies use $\delta^2\text{H}_{\text{wax}}$ as a qualitative indicator of climatic changes (e.g., Figure 4).
388 However, quantitative inference of $\delta^2\text{H}_{\text{precip}}$ is possible if reasonable constraints can be
389 made on the apparent fractionation between $\delta^2\text{H}_{\text{wax}}$ and $\delta^2\text{H}_{\text{precip}}$ ($= {}^2\epsilon_{\text{wax/w}}$; see Sachse et
390 al 2012, Sessions 2016 for a detailed review). Three key factors have the potential to
391 impact ${}^2\epsilon_{\text{wax/precip}}$: i) soil evaporation, ii) leaf-water transpiration iii) wax biosynthesis (see
392 below).

393

394 Although theoretical models have incorporated evaporative ${}^2\text{H}$ -enrichment of soil water
395 into predictions of ${}^2\epsilon_{\text{wax/w}}$ (Konecky et al 2019, Smith & Freeman 2006), ecohydrological
396 data demonstrates that this effect is minimal. For instance, in drylands, where soil water
397 is readily evaporated and non-bioavailable, woody plants take up rainwater
398 opportunistically via shallow roots and/or seek more consistent water sources by deep
399 rooting strategies (Fan et al 2017), resulting in minimal xylem water ${}^2\text{H}$ -enrichment. In
400 contrast, leaf water ${}^2\text{H}$ -enrichment that occurs during transpiration is more variable,
401 depending on the species and the climatological setting (Daniels et al 2017, Feakins et al
402 2016a, Feakins & Sessions 2010, Kahmen et al 2013a). In mesic environments where
403 lake water evaporation is minimal, pairing of plant wax with aquatic biomarkers has
404 proved useful for disentangling the effect of transpiration on $\delta^2\text{H}_{\text{wax}}$ (Mügler et al 2008,
405 Rach et al 2014).

406

407 An empirical collection of ${}^2\epsilon_{\text{wax/w}}$ values across species and climatic settings implies that
408 it varies widely (up to ~70 ‰) between plant life forms (i.e., trees, shrubs, forbs,

409 graminoids) and physiological groups (i.e., C₃, C₄, CAM) (Sachse et al 2012). Taken at
410 face value, this suggests that biosynthetic differences have a large impact on apparent
411 fractionation. However, these empirical data combine physiological/biochemical and
412 climatic differences, and separating these influences on fractionation can be challenging
413 (Feakins et al 2016a, Kahmen et al 2013b, Sachse et al 2012). Experimental approaches
414 enable biophysical vs. climatic differences on fractionation to be isolated and have found
415 that ${}^2\epsilon_{\text{wax/w}}$ is relatively consistent between species under controlled environmental
416 settings, with the only major physiological/biochemical difference between grasses (which
417 have a more negative ${}^2\epsilon_{\text{wax/w}}$) and eudicots (Gamarra et al 2016, Gao et al 2014). Since
418 paleoclimate records of $\delta^2\text{H}_{\text{wax}}$ integrate across a landscape, this enables the use of plant
419 community-scale ${}^2\epsilon_{\text{wax/w}}$ values in paleoclimate studies to infer $\delta^2\text{H}_{\text{precip.}}$.

420

421 Estimating ${}^2\epsilon_{\text{wax/precip}}$ in the paleoenvironmental record must also account for any seasonal
422 bias relative to annual rainfall. In most environments, plant growth is stimulated by
423 seasonal availability of light and plants often grow using water from the previous season's
424 rainfall. Seasonal studies of modern plant ecohydrology reveal the seasonality of rainfall
425 and plant uptake (Griepentrog et al 2019) and this has been invoked to explain small
426 ${}^2\epsilon_{\text{wax/precip}}$ values observed in alpine gymnosperm flora (Polissar and Freeman, 2010).
427 However, expanded observational and experimental data are required to resolve these
428 uncertainties.

429

430 Several strategies are available for improving ${}^2\epsilon_{\text{wax/w}}$ estimates in the paleoenvironmental
431 record. One strategy employs pollen data from the same samples to calculate plant-

432 specific fractionation factors (Feeakins 2013), thus opening the possibility of developing
433 region- and time-specific vegetation corrections based upon appropriate modern
434 analogues. When applied to the Miocene (Feeakins 2013) and Eocene (Inglis et al 2020),
435 this method can shift inferred δ^2H_{precip} values by >30 ‰. However, pollen-corrected
436 δ^2H_{precip} reconstructions have large uncertainties due to the differential production of
437 pollen between wind and insect-pollinated plants (e.g., pines and grasses are prolific
438 pollen dispersers, whereas tropical forests disperse little pollen). This concern can be
439 qualitatively assessed (e.g., absence of rainforest pollen does not guarantee an absence
440 of rainforest) or quantitatively deconvolved with additional mixing model weighting factors.

441

442 A more common strategy for Neogene (~23 Ma to present) climate reconstructions
443 involves measuring *n*-alkyl lipid $\delta^{13}C$ ($\delta^{13}C_{wax}$) values alongside δ^2H_{wax} in order to infer C₃
444 vs. C₄ plant prevalence (Tipple & Pagani 2010). This is particularly effective in tropical
445 and subtropical regions, where C₄ grasslands are a major component of the ecosystems
446 (Tierney et al 2017, Windler et al 2020) and have a significantly different $^2\varepsilon_{wax/w}$ than C₃
447 dicots (e.g., Gao et al, 2014). Figure 3 demonstrates how $^2\varepsilon_{wax/w}$ can be inferred via pollen
448 data and lipid $\delta^{13}C$ values (Polissar et al 2021) and used to calculate δ^2H_w . Vegetation-
449 corrected δ^2H_w shows a 10 ‰ greater enrichment after 6 Ma than raw δ^2H_{wax} and follows
450 the large C₄ grass expansion that is documented in $\delta^{13}C_{wax}$ (Figure 3). While this is small
451 relative to the large amplitude of change in this particular record, in other settings where
452 δ^2H_{wax} variance is lower, changes in $^2\varepsilon_{wax/w}$ strongly influence overall trends (Tierney et al
453 2017).

454

455 In addition to $\delta^2\text{H}_{\text{wax}}$, the hydrogen isotopic composition of lignin methoxy groups
456 ($\delta^2\text{H}_{\text{methoxy}}$) holds promise as a novel paleohydrologic indicator (Keppler et al 2007). Lignin
457 is a key component (30–50%) of wood and other plant tissues and is a heterogeneous
458 polymer containing a variety of monomeric building blocks. Each monomeric building
459 block contains 0, 1 or 2 methoxy groups (-OCH₃), which are attractive targets for hydrogen
460 isotope analysis because the hydrogens are in non-exchangeable positions. Methoxy
461 groups can be released from wood (Keppler et al 2007), peat (Lee et al 2019a), and lignite
462 (Lee et al 2019a), and spans a wide isotopic range (-325 to -150 ‰) in tree trunk samples
463 (Keppler et al 2007). However, variability between species and trees may complicate
464 detection of hydrologic signals, as shown in a coastal saltwater to freshwater gradient
465 (Feakins et al 2013). Calibration and process-based understanding of drivers of biological
466 variability in $^2\epsilon_{\text{methoxy/w}}$ remains in the early stages, but recent analytical method
467 development (Greule et al 2008, Lee et al 2019a) has enabled successful applications in
468 Eocene-aged wood (Anhäuser et al 2018) and Neogene-aged sediments (Lee et al
469 2019b).

470

471 **2.4. Terrestrial carbon cycling proxies**

472 Carbon export from the terrestrial biosphere is a significant component of the global
473 carbon cycle (Hilton & West 2020). One of the main unquantified processes is the lateral
474 transport of terrestrial organic carbon (OC) along the aquatic continuum from upland
475 terrestrial ecosystems to the ocean. Biomarker abundance (Bianchi et al 2004, Goñi et al
476 1997), $\delta^{13}\text{C}$ values (Feakins et al 2018, Hemingway et al 2016) and radiocarbon (^{14}C)
477 content (Feng et al 2013, Kusch et al 2010) can be used to study changes in the storage,

478 aging, and mobilization of different components of the terrestrial OC cycle. This may
479 encompass plants (e.g., plant wax, lignin) or soils (e.g., brGDGTs), and can reveal the
480 spatial and temporal scale of their integration before delivery to depositional basins (Feng
481 et al 2013, Hemingway et al 2016, Kusch et al 2010).

482

483 Plant or soil derived biomarkers transported by rivers are often assumed to reflect a
484 catchment-integrated signal, but the spatial and temporal integration may vary by
485 compound type and/or change through time. Soils and rivers are typically dominated by
486 long-chain *n*-alkanoic acids (Feakins et al., 2018) due to preferential loss of long-chain *n*-
487 alkanes during soil litter decomposition (Wu et al., 2018). Studies also suggest that long-
488 chain *n*-alkanoic acids respond more rapidly to proximal changes in climate, whereas
489 long-chain *n*-alkanes have a greater spatial and temporal range and also have more risk
490 of petrogenic input (Feakins et al 2018, Hemingway et al 2016) (see Section 2.2). In a
491 global river dataset, Eglinton et al (2021) found that the age of exported plant wax (*n*-
492 alkanoic acids) ranged from 1-2ka in the tropics to up to 8ka in the high latitudes. They
493 found the strongest correlation between climatic variables (MAAT and MAP) and fluvial
494 *n*-alkanoic acid ^{14}C ages occurred when using an e-folding distance of ~500 km, implying
495 that this is roughly the spatial extent of plant wax *n*-alkanoic acid integration in large river
496 systems. The e-folding distance will likely be different for other compound classes (e.g.,
497 *n*-alkanes, lignin) and requires additional investigation.

498

499 Bomb-spike ^{14}C (produced during nuclear weapons detonation and testing that began in
500 1945 and increased until 1963) can also be detected in OC, including plant wax

501 biomarkers in soils and sediments. Biomarker $^{14}\text{C}/^{12}\text{C}$ ratios in soils or river sediments
502 that are higher than modern (natural) concentrations indicate the presence of bomb-
503 produced ^{14}C and can be used to track the mean age of biomarkers in storage or fluvial
504 transit. Using a two-pool mixing model approach, French et al. (2018) estimates that
505 ~80% of the *n*-alkanoic acids in the Bengal Fan have a reservoir age of ~1000 years, with
506 the remainder stored on the landscape for only ~15 yr (French et al 2018). This approach
507 has been extended to other river catchments (including the Mackenzie River, Saanich
508 Inlet, and Cariaco Basin) and shows a similar distribution of "fast-cycling" vs. "slow-
509 cycling" *n*-alkanoic acids (Vonk et al 2019), with high-latitude (permafrost-dominated)
510 catchments exhibiting the longest carbon storage. However, this approach requires
511 assumptions about the age distributions of each compound class and requires further
512 validation.

513

514 Carbon storage on land has profound implications for modern carbon cycle feedbacks
515 and may be illuminated by the study of past climate perturbations. Pairing of $\delta^{2}\text{H}_{\text{wax}}$ and
516 $^{14}\text{C}_{\text{wax}}$ (e.g., across the last deglaciation; Figure 5) provides a powerful tool to probe the
517 relationships between climate and the carbon cycle, from the deglaciation into the
518 Anthropocene. In the low-latitudes, there is a negative relationship between $\delta^{2}\text{H}_{\text{wax}}$ and
519 mean transit times across the deglaciation (reported as F^{14}R , or the plant-wax ^{14}C content
520 relative to that of the contemporaneous atmosphere at the time of deposition (Fornace
521 2016, Hein et al 2020, Schefuß et al 2016) (Figure 5). This implies wetter conditions are
522 associated with shorter OC residence times in both large river systems (Hein et al 2020,
523 Schefuß et al 2016) and in a more restricted lake catchment (Fornace 2016). The

524 observations that large portions of the plant wax pool being “old” (i.e., 1000 yr residence
525 times) and the inference that plant waxes are mobilized more quickly in wetter climates
526 raises the possibility that $\delta^2\text{H}_{\text{wax}}$ records are affected by changing spatiotemporal
527 integration in terrestrial catchments. The effect of “pre-aging” of plant wax would be to
528 smooth, dampen, and delay the original $\delta^2\text{H}_{\text{precip}}$ signature (French et al 2018). Some
529 $\delta^2\text{H}_{\text{wax}}$ records (e.g., the time series from the Congo Basin) have a smooth character that
530 might imply substantial spatiotemporal averaging (Schefuß et al 2005) compared to the
531 smaller and more abrupt changes recorded elsewhere (e.g., Lake Tanganyika; Tierney
532 et al., 2008). However, in many cases $\delta^2\text{H}_{\text{wax}}$ captures rapid climate changes with little
533 apparent delay, including decadal-scale historical climate shifts (Figure 4). Fornace
534 (2016) found plant wax reservoir ages of ~8,000 years in Lake Titicaca, yet $\delta^2\text{H}_{\text{wax}}$ shows
535 rapid changes and millennial-scale events similar to the Huascarán ice core (Figure 4),
536 indicating that the “decadal” plant-wax pool must be very responsive to climate change.
537 In the open ocean, but also in arid (coastal) regions, plant waxes may be exported
538 primarily via aeolian processes (Pagani et al., 2000; Eglinton et al., 2002) (e.g., Gulf of
539 Aden, Figure 4a). Wind transport of plant wax is able to capture seasonal variations in C₃
540 vs C₄ vegetation (Conte & Weber 2002) and provides another explanation for why $\delta^2\text{H}_{\text{wax}}$
541 captures rapid climate change.

542
543 Beyond the late Pleistocene (ca. 40 to 50 ka), ¹⁴C-based dating techniques are not
544 applicable and additional approaches are required to assess terrestrial OC cycling. The
545 ratio of brGDGTs to crenarchaeol (i.e., the Branched-versus-Isoprenoid Tetraether (BIT)
546 index) tracks the amount of terrestrial input in marine environments and ranges between

547 0 (marine-dominated) and 1 (terrestrial-dominated) (Hopmans et al 2004). The BIT index
548 typically decreases from the river, through the estuary, and into the open shelf (Hopmans
549 et al 2004). However, it can be controlled strongly by crenarchaeol—rather than
550 brGDGT—concentrations, leading to a decoupling between BIT values and other
551 terrestrial OC tracers (e.g., lignin concentrations) (Smith et al 2012). Due to these
552 challenges, brGDGT concentrations (rather than the BIT index) may be a more robust
553 tracer for soil OC (Smith et al 2012) and has shown promise in mountainous catchments
554 (Kirkels et al 2020). However, branched GDGTs degrade more quickly than other soil OC
555 tracers (e.g., long-chain *n*-alkanes, lignin phenols) (Zhu et al 2013) and caution is required
556 when applying this approach (and/or the BIT index) to represent bulk soil OC, especially
557 when the system is characterized by extensive OM degradation (e.g., large floodplains).
558 We therefore argue that future studies should employ multiple proxies when attempting
559 to trace soil OC export (e.g., lignin, *n*-alkyl lipids, brGDGTs).

560

561 **2.5. Fire proxies**

562 Reconstructing fire regimes usually relies upon the preservation of charcoal. However,
563 charcoal abundance can be over- or under exaggerated by preservation biases (Vachula
564 & Cheung 2021). Biomarkers offer a complementary view on the relationships between
565 fire regime, climate, and vegetation in past terrestrial ecosystems. The most common
566 approach involves analyzing the distribution of polycyclic aromatic hydrocarbons (PAHs),
567 which can form rapidly at high (>300°C) temperatures (i.e., during the combustion of fossil
568 fuels or biomass) or slowly at low (<150°C) temperatures (i.e., during petroleum
569 formation). Previous studies have argued that PAH distributions are linked to changes in

570 fire temperature and/or intensity (e.g., Denis et al. 2012). However, a recent meta-
571 analysis of PAHs in natural burn experiments (Karp et al., 2020) reveals that PAH
572 distributions are linked to burn phase, not temperature. PAHs formed in smoke are
573 typically smaller than those formed in residues. PAH size distributions also reflect
574 transport processes. As smaller PAHs are preferentially emitted into the aerosol phase,
575 they can be aerially transported far from the original combustion source. In contrast, larger
576 PAHs are less volatile and more likely to be stored in soils. This approach was employed
577 by Lyons et al. (2020) to show that PAHs were transported long distances following the
578 Cretaceous/Paleogene asteroid impact.

579

580 PAHs also provide insights into the fuel source: combusted vegetation yields PAHs with
581 no alkyl substitutions, whereas fossil carbon (e.g., oil or coal) is associated with one or
582 more alkyl substitutions. This is assessed via the methylphenanthrene to phenanthrene
583 ratio (Yunker et al 2002), non-negative matrix factorization (Karp et al 2021), and/or the
584 alkylated PAH derivative index (APDI; Karp et al, 2018). Positive APDI values (>10; i.e.,
585 no alkyl substitutions) imply biomass burning, whereas negative APDI values (< -10; one
586 or more alkyl substitutions) imply a fossil fuel carbon source (Karp et al 2020). However,
587 burned conifers can exhibit negative APDI values and may therefore resemble a fossil
588 fuel carbon source. PAH studies reveal that Neogene fire dynamics differed between
589 continents (Karp et al 2018, Karp et al 2021) and that fire occurrence often coincided with
590 hydrologic shifts and C₄ expansion (Figure 3). Carbon isotopic measurements of specific
591 PAH molecules provide additional information about the fuel source (Karp et al 2021). For
592 example, $\delta^{13}\text{C}$ analysis of pyrene indicates an increasing proportion of C₄ grasses burning

593 between 6 and 8 Ma, coeval with a shift in plant wax $\delta^{13}\text{C}$ to more C₄-like values (Figure
594 3).

595

596 Levoglucosan and its isomers (mannosan, galactosan) provide further detail about the
597 fire regime. Levoglucosan is a thermal by-product of cellulose or hemicellulose generated
598 during biomass burning and forms at relatively low temperatures (~100 to 400°C)
599 (Simoneit et al 1999). This compound is relatively labile and thus geological applications
600 may be limited to late Quaternary sediments. However, recent methodological advances
601 have lowered the limits of detection (~5 pg) (Schreuder et al 2018) and may enable
602 detection in older sediments and/or settings where oxygen exposure is low (e.g., anoxic
603 peats, water-saturated soils). Benzene polycarboxylic acids (BPCAs; benzene rings with
604 a differing number of carboxylic-acid groups) offer an additional approach and are more
605 likely to represent the bulk pyrogenic carbon pool (Glaser et al 1998). BPCAs form at
606 relatively high temperatures (>300-600°C, but up to 1000°C) and are produced by
607 oxidative chemical degradation of the condensed aromatic phase. BPCA distributions are
608 unable to differentiate between fuel sources (fossil fuel vs. biomass), but improved source
609 apportionment in modern or Holocene-aged samples is possible using ^{14}C dating since
610 different fuel sources (e.g., vegetation, pre-aged soils, fossil carbon) carry unique ^{14}C
611 signatures (Coppola et al 2018). The combined analysis of PAHs, levoglucosan, and
612 BPCAs can differentiate between low (<300°C) and high temperature fires (>300-
613 1000°C) and thus can provide a nuanced perspective on fire dynamics (Hanke et al 2016).

614

615 **2.6. Methane cycling proxies**

616 Atmospheric methane (CH_4) is a potent greenhouse gas second only to carbon dioxide
617 in its importance to climate change (Dean et al 2018). Higher temperatures and
618 associated changes in rainfall patterns are expected to enhance CH_4 emissions, resulting
619 in further warming. However, there have been few tools to test these predictions. Below
620 we discuss biomarker-based approaches used to study two key aspects of the methane
621 cycle: 1) methanogenesis (Section 2.6.1) and ii) methanotrophy (Section 2.6.2).

622

623 **2.6.1. Methanogenesis**

624 Methanogens thrive within water-saturated and anoxic environments (e.g., peatlands,
625 permafrost, anoxic lakes) and synthesise a suite of diether- and/or tetraether membrane
626 lipids (Schouten et al 2013). Archaeol (2,3-diphytanyl-O-sn-glycerol) is the most common
627 archaeal lipid in cultured methanogens (Bauersachs et al 2015, Koga et al 1993) and
628 shows promise as an indicator of methanogen biomass (Pancost et al 2011, Zheng et al
629 2014). Archaeol has been applied to reconstruct methanogen abundance in Holocene-
630 aged peat archives and reveals a minimum in methanogenesis in China between ~6 and
631 4 ka (Zheng et al, 2014). This suggests that archaeol may be a useful methanogen
632 biomarker in older (> 1 Ma) sediments. However, direct estimates of methanogen
633 biomass from archaeol should be approached with caution as there can be differing
634 concentrations of archaeol per methanogen cell (McCartney et al 2013). The acyclic
635 isoGDGT (i.e., isoGDGT-0) is also abundant in methanogens (Bauersachs et al 2015,
636 Koga et al 1993, Schouten et al 2013) and may provide complementary insights into
637 methanogenesis (e.g., peatlands, permafrost, lakes).

638 Both isoGDGT-0 and archaeol have diverse source organisms, perhaps limiting their
639 utility as methanogen biomarkers. In contrast, a sub-set of methanogens (e.g.,
640 *Methanococcus*, *Methanosarcina*) are known to synthesise *sn*-2-hydroxyarchaeol (Koga
641 et al 1993); this is structurally similar to archaeol but contains a hydroxyl group at the C-
642 3 position of the *sn*-2 phytanyl chain (Hinrichs et al 2000). Due to the labile nature of *sn*-
643 2-hydroxyarchaeol, this biomarker holds promise as a marker for living methanogen
644 biomass (Pancost et al 2011). There is also growing evidence that methanogens may
645 synthesise unusual butanetriol and pentanetriol dibiphytanyl glycerol tetraethers (BDGTs
646 and PDGTs, respectively). BDGTs and PDGTs have been identified in different
647 environments—including wetlands (Blewett et al 2020)—and have been assigned to the
648 methanogen order *Methanomassiliicoccales* (Becker et al 2016). Analogous to other
649 archaeal lipids (e.g., archaeol, GDGT-0), BDGTs and PDGTs in wetlands increase in
650 concentration below the anoxic layer and are nearly absent from oxygenated layers. This
651 is consistent with observations that only methanogens synthesize BDGTs and PDGTs
652 (Becker et al 2016). These compounds—alongside other ‘minor’ GDGTs (Bauersachs et
653 al 2015)—are promising methanogen-specific biomarkers that warrant further study.

654

655 **2.6.2. Methanotrophy**

656 Microbes capable of consuming methane are known as methanotrophs. Aerobic
657 methanotrophs can synthesise diagnostic hopanoids, including 35-
658 aminobacteriohopanepentol (i.e., aminopentol) and 35-aminobacteriohopanetetrol (i.e.,
659 aminotetrol) (Rush et al 2016, Talbot & Farrimond 2007). Both compounds are present in
660 terrestrial environments, especially peats (Van Winden et al 2012) and lakes (Talbot &

661 Farrimond 2007), and can persist in the sedimentary record for >50 Ma under favorable
662 conditions (e.g., anoxia). Both compounds have been used to reconstruct aerobic
663 methanotrophy during the Quaternary (Talbot et al 2014) and early Eocene (Talbot et al
664 2016), but typically lose their functionalized amino side group during diagenesis.

665

666 Analysis of hopanoid $\delta^{13}\text{C}$ provides an alternative means to reconstruct methanotrophy.
667 Hopanoid $\delta^{13}\text{C}$ is primarily determined by the $\delta^{13}\text{C}$ of the substrate, carbon assimilation
668 pathways and an organism's source ecology (Hayes 1993, Pancost & Sinninghe Damsté
669 2003). Heterotrophic organisms consuming organic substrates (e.g., organic acids,
670 sugars) will typically yield hopanoid $\delta^{13}\text{C}$ values which are similar to the food source (ca.
671 -20 to -30 ‰), whereas methanotrophic organisms (consuming methane) will yield
672 hopanoid $\delta^{13}\text{C}$ values which are lower (ca. -40 to -60 ‰, but up to -100 ‰) and more
673 variable (Pancost & Damsté 2003). A recent survey of hopanoid $\delta^{13}\text{C}$ values in peatlands
674 from different geographic regions shows that the $\delta^{13}\text{C}$ composition of the C₃₁ hopane—
675 one of the most abundant hopanoids in peats—spans a relatively narrow range (-22 to
676 -32 ‰ VPDB) and is ¹³C-enriched relative to bulk organic matter and co-occurring plant
677 wax biomarkers (Inglis et al 2019b). This suggests the C₃₁ hopane is derived from a
678 heterotrophic source organism(s) and has limited utility as a methanotroph biomarker. In
679 contrast, other hopanoids (e.g., hop-22(29)-ene) yields lower $\delta^{13}\text{C}$ values (e.g., up to -45
680 ‰) (Inglis et al 2019b), suggesting that in some settings this compound is derived from a
681 mixed suite of bacterial sources consuming both ¹³C-enriched carbohydrates and ¹³C-
682 depleted, methane-derived CO₂. Low hopanoid $\delta^{13}\text{C}$ values (ca. -60 to -80 ‰) have also
683 been found in modern (e.g., Naeher et al 2014), Holocene (e.g., Elvert et al 2016, Naeher

684 et al 2014), and Eocene lakes (e.g., Collister et al 1992, Freeman et al 1990). These
685 values are considerably lower than in wetlands and indicate more vigorous methane
686 consumption in lakes.

687

688 Hopanoid $\delta^{13}\text{C}$ values have successfully been applied as a proxy for methanotrophy
689 across the Paleocene-Eocene Thermal Maximum (PETM). Pancost et al (2007) first
690 observed a sudden decrease in hopanoid $\delta^{13}\text{C}$ values (to -75 ‰) in the Cobham lignite,
691 UK, an ancient wetland deposited during the onset of the PETM (Figure 6). These low
692 values lie outside the modern range (Inglis et al 2019b) and coincided with an increase in
693 methanotroph (e.g., aminoBHPs) (Talbot et al 2016) and methanogen biomarkers
694 (GDGT-0) (Inglis et al 2019a). This implies enhanced methane cycling at this site during
695 the PETM. Recent work provides additional evidence that enhanced methanotrophy
696 occurred the onset of the PETM, with low hopanoid $\delta^{13}\text{C}$ values observed in PETM-aged
697 terrestrial/marine deposits from New Zealand (up to -60 ‰) (Inglis et al 2021). Hopanoid
698 $\delta^{13}\text{C}$ values rapidly returned to pre-event values even though brGDGT-derived
699 temperatures remain high for the duration of the PETM (Inglis et al, 2021) (Figure 6). This
700 suggests it is the onset of rapid global warming that is particularly disruptive to methane
701 cycling in wetlands, a finding that is particularly concerning given the rapid global warming
702 we are currently experiencing.

703

704 Methane can also be oxidised anaerobically (anaerobic oxidation of methane; AOM) by
705 a consortium of anaerobic methanotrophic archaea and sulfate reducing bacteria (SRB)
706 (Hinrichs et al., 1999). Anaerobic methanotrophs produce diagnostic isoGDGT

707 distributions, with a high abundance of isoGDGT-0 to -3 relative to crenarchaeol (Pancost
708 et al 2000). This is captured in the Methane Index (Zhang et al 2011), whereby high values
709 (> 0.5) suggest extensive anaerobic methanotrophy. This ratio is mainly used in marine
710 settings but has utility in terrestrial settings where AOM is elevated (e.g., freshwater
711 wetlands). To confirm the presence of AOM, other biomarkers can be analysed (e.g., ^{13}C -
712 depleted pentamethylicosane and/or crocetane)

713

714

715 **Summary Points:**

716

717 **1. Temperature** – Bacterial-derived branched GDGTs provide insights into terrestrial
718 temperatures up to the maximum theoretical limit of present calibrations (~30°C).
719 Mesocosm experiments and new GDGT proxies may offer insights into higher
720 terrestrial temperatures observed in the geological past.

721

722 **2. Plant ecosystems** – Lignin and plant wax molecular compositions and their stable
723 carbon isotopic composition ($\delta^{13}\text{C}$) carry signals of plant community composition
724 and paleoenvironmental change. Machine learning of higher plant biomarkers
725 offers promise in terms of reconstructing ecosystem turnover.

726

727 **3. Hydroclimate** – Recent advances, including tandem reconstruction of ecosystem
728 change with pollen or plant wax $\delta^{13}\text{C}$ and paired analysis of isotope-enabled model
729 simulations, have improved constraints on the interpretation of plant wax $\delta^2\text{H}$

730 values in the geological record. Lignin methoxy $\delta^2\text{H}$ values similarly records the
731 hydrological cycle, but the proxy is in comparatively early stages of development.

732

733 **4. Carbon cycling** – Plant - and soil-derived biomarkers provide insights into the
734 storage, aging, and mobilization of different terrestrial OC pools along the
735 terrestrial-aquatic continuum. Pairing of plant wax $\delta^2\text{H}$ and ^{14}C provides a powerful
736 tool to probe the relationships between climate and the carbon cycle during the
737 late Quaternary.

738

739 **5. Fire regime** - The analysis of multiple fire biomarkers provides a holistic
740 perspective on fire dynamics and can reveal the temperature history, fuel source
741 and burn conditions.

742

743 **6. Methane cycling** – The $\delta^{13}\text{C}$ of bacterial hopanoids provides unique (qualitative)
744 insights into methanotrophy throughout the geological record. Coupling this
745 approach alongside archaeal biomarkers for methanogenesis may corroborate
746 detection of changes in the terrestrial methane cycle.

747

748 **Acknowledgments:** GNI is supported by a GCRF Royal Society Dorothy Hodgkin
749 Fellowship (DHF\R1\191178). TB is supported by NSF P2C2 Grant Numbers OCE
750 1903148 and OCE 2103015 and MRI Grant EAR 2018078. SF is supported by NSF-OPP-
751 1908548. We thank Kate Freeman and one anonymous reviewer whose constructive

752 feedback improved this review. We are grateful to the organic geochemical community
753 whose innovative work inspired this review.

754

755 **Literature Cited**

756 Anhäuser T, Hook BA, Halfar J, Greule M, Keppler F. 2018. Earliest Eocene cold period
757 and polar amplification-Insights from $\delta^{2\text{H}}$ values of lignin methoxyl groups of
758 mummified wood. *Palaeogeography, Palaeoclimatology, Palaeoecology* 505: 326-
759 36

760 Balascio NL, D'Andrea WJ, Anderson RS, Wickler S. 2018. Influence of vegetation type
761 on n-alkane composition and hydrogen isotope values from a high latitude
762 ombrotrophic bog. *Organic Geochemistry* 121: 48-57

763 Bauersachs T, Weidenbach K, Schmitz RA, Schwark L. 2015. Distribution of glycerol
764 ether lipids in halophilic, methanogenic and hyperthermophilic archaea. *Organic
765 Geochemistry* 83: 101-8

766 Becker KW, Elling FJ, Yoshinaga MY, Söllinger A, Urich T, Hinrichs K-U. 2016. Unusual
767 butane-and pentanetriol-based tetraether lipids in *Methanomassiliicoccus*
768 *luminyensis*, a representative of the seventh order of methanogens. *Applied and
769 Environmental Microbiology* 82: 4505-16

770 Becker KW, Lipp JS, Zhu C, Liu X-L, Hinrichs K-U. 2013. An improved method for the
771 analysis of archaeal and bacterial ether core lipids. *Organic Geochemistry* 61: 34-
772 44

773 Bhattacharya T, Tierney JE, Addison JA, Murray JW. 2018. Ice-sheet modulation of
774 deglacial North American monsoon intensification. *Nature Geoscience* 11: 848-52

775 Bianchi TS, Filley T, Dria K, Hatcher PG. 2004. Temporal variability in sources of
776 dissolved organic carbon in the lower Mississippi River. *Geochimica et
777 Cosmochimica Acta* 68: 959-67

778 Blaga CI, Reichart G-J, Heiri O, Damsté JSS. 2009. Tetraether membrane lipid
779 distributions in water-column particulate matter and sediments: a study of 47
780 European lakes along a north–south transect. *Journal of Paleolimnology* 41: 523-
781 40

782 Blewett J, Naafs B, Gallego-Sala A, Pancost RD. 2020. Effects of temperature and pH on
783 archaeal membrane lipid distributions in freshwater wetlands. *Organic
784 Geochemistry* 148: 104080

785 Bush RT, McInerney FA. 2013. Leaf wax n-alkane distributions in and across modern
786 plants: implications for paleoecology and chemotaxonomy. *Geochimica et
787 Cosmochimica Acta* 117: 161-79

788 Cerling TE. 1984. The stable isotopic composition of modern soil carbonate and its
789 relationship to climate. *Earth and Planetary science letters* 71: 229-40

790 Cerling TE, Wynn JG, Andanje SA, Bird MI, Korir DK, et al. 2011. Woody cover and
791 hominin environments in the past 6 million years. *Nature* 476: 51-6

792 Chen Y, Zheng F, Chen S, Liu H, Phelps TJ, Zhang C. 2018. Branched GDGT production
793 at elevated temperatures in anaerobic soil microcosm incubations. *Organic
794 Geochemistry* 117: 12-21

795 Coffinet S, Huguet A, Williamson D, Fosse C, Derenne S. 2014. Potential of GDGTs as
796 a temperature proxy along an altitudinal transect at Mount Rungwe (Tanzania).
797 *Organic Geochemistry* 68: 82-9

798 Collister JW, Summons RE, Lichfouse E, Hayes JM. 1992. An isotopic biogeochemical
799 study of the Green River oil shale. *Organic Geochemistry* 19: 265-76

800 Conte MH, Weber JC. 2002. Plant biomarkers in aerosols record isotopic discrimination
801 of terrestrial photosynthesis. *Nature* 417: 639-41

802 Coppola AI, Wiedemeier DB, Galy V, Haghipour N, Hanke UM, et al. 2018. Global-scale
803 evidence for the refractory nature of riverine black carbon. *Nature Geoscience* 11:
804 584-8

805 Crampton-Flood ED, Peterse F, Munsterman D, Damsté JSS. 2018. Using tetraether
806 lipids archived in North Sea Basin sediments to extract North Western European
807 Pliocene continental air temperatures. *Earth and Planetary Science Letters* 490:
808 193-205

809 Crampton-Flood ED, Tierney JE, Peterse F, Kirkels FM, Damsté JSS. 2020. BayMBT: A
810 Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in
811 soils and peats. *Geochimica et Cosmochimica Acta* 268: 142-59

812 Dang X, Yang H, Naafs BDA, Pancost RD, Xie S. 2016. Evidence of moisture control on
813 the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and
814 arid soils. *Geochimica et Cosmochimica Acta*

815 Daniels WC, Russell JM, Giblin AE, Welker JM, Klein ES, Huang Y. 2017. Hydrogen
816 isotope fractionation in leaf waxes in the Alaskan Arctic tundra. *Geochimica et*
817 *Cosmochimica Acta* 213: 216-36

818 De Jonge C, Hopmans EC, Stadnitskaia A, Rijpstra WIC, Hofland R, et al. 2013.
819 Identification of novel penta- and hexamethylated branched glycerol dialkyl

820 glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS. *Organic*
821 *Geochemistry* 54: 78-82

822 De Jonge C, Hopmans EC, Zell CI, Kim J-H, Schouten S, Damsté JSS. 2014. Occurrence
823 and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils:
824 Implications for palaeoclimate reconstruction. *Geochimica et Cosmochimica Acta*
825 141: 97-112

826 De Rosa M, Esposito E, Gambacorta A, Nicolaus B, Bu'Lock JD. 1980. Effects of
827 temperature on ether lipid composition of *Caldariella acidophila*. *Phytochemistry*
828 19: 827-31

829 Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, et al. 2018. Methane
830 feedbacks to the global climate system in a warmer world. *Reviews of Geophysics*
831 56: 207-50

832 Diefendorf, A.F., Sberna, D.T. and Taylor, D.W., 2015. Effect of thermal maturation on
833 plant-derived terpenoids and leaf wax n-alkyl components. *Organic*
834 *Geochemistry*, 89, pp.61-70.

835 Diefendorf AF, Freeman KH, Wing SL. 2012. Distribution and carbon isotope patterns of
836 diterpenoids and triterpenoids in modern temperate C3 trees and their
837 geochemical significance. *Geochimica et Cosmochimica Acta* 85: 342-56

838 Diefendorf AF, Freeman KH, Wing SL. 2014. A comparison of terpenoid and leaf fossil
839 vegetation proxies in Paleocene and Eocene Bighorn Basin sediments. *Organic*
840 *Geochemistry* 71: 30-42

841 Diefendorf AF, Freeman KH, Wing SL, Graham HV. 2011. Production of n-alkyl lipids in
842 living plants and implications for the geologic past. *Geochimica et Cosmochimica
843 Acta* 75: 7472-85

844 Diefendorf AF, Freimuth EJ. 2017. Extracting the most from terrestrial plant-derived n-
845 alkyl lipids and their carbon isotopes from the sedimentary record: A review.
846 *Organic Geochemistry* 103: 1-21

847 Denis, E.H., Toney, J.L., Tarozzo, R., Anderson, R.S., Roach, L.D. and Huang, Y., 2012.
848 Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire
849 events: Validation using HPLC-fluorescence detection. *Organic Geochemistry*, 45,
850 7-17.

851 Eglinton G, Hamilton RJ. 1967. Leaf epicuticular waxes. *Science* 156: 1322-35

852 Eglinton TI, Galy VV, Hemingway JD, Feng X, Bao H, et al. 2021. Climate control on
853 terrestrial biospheric carbon turnover. *Proceedings of the National Academy of
854 Sciences* 118

855 Eglinton, T.I., Eglinton, G., Dupont, L., Sholkovitz, E.R., Montluçon, D. and Reddy, C.M.,
856 2002. Composition, age, and provenance of organic matter in NW African dust
857 over the Atlantic Ocean. *Geochemistry, Geophysics, Geosystems*, 3, 1-27.

858 Elvert M, Pohlman JW, Becker KW, Gaglioti B, Hinrichs K-U, Wooller MJ. 2016. Methane
859 turnover and environmental change from Holocene lipid biomarker records in a
860 thermokarst lake in Arctic Alaska. *The Holocene* 26: 1766-77

861 Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero-Casal C. 2017. Hydrologic
862 regulation of plant rooting depth. *Proceedings of the National Academy of
863 Sciences* 114: 10572-7

864 Feakins SJ. 2013. Pollen-corrected leaf wax D/H reconstructions of northeast African
865 hydrological changes during the late Miocene. *Palaeogeography,*
866 *Palaeoclimatology, Palaeoecology* 374: 62-71

867 Feakins SJ, Bentley LP, Salinas N, Shenkin A, Blonder B, et al. 2016a. Plant leaf wax
868 biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes
869 and Amazon. *Geochimica et Cosmochimica Acta* 182: 155-72

870 Feakins SJ, Ellsworth PV, Sternberg LdSL. 2013. Lignin methoxyl hydrogen isotope ratios
871 in a coastal ecosystem. *Geochimica et cosmochimica acta* 121: 54-66

872 Feakins SJ, Peters T, Wu MS, Shenkin A, Salinas N, et al. 2016b. Production of leaf wax
873 n-alkanes across a tropical forest elevation transect. *Organic Geochemistry* 100:
874 89-100

875 Feakins SJ, Sessions AL. 2010. Controls on the D/H ratios of plant leaf waxes in an arid
876 ecosystem. *Geochimica et Cosmochimica Acta* 74: 2128-41

877 Feakins SJ, Wu MS, Ponton C, Galy V, West AJ. 2018. Dual isotope evidence for
878 sedimentary integration of plant wax biomarkers across an Andes-Amazon
879 elevation transect. *Geochimica et Cosmochimica Acta* 242: 64-81

880 Feng X, Vonk JE, Van Dongen BE, Gustafsson Ö, Semiletov IP, et al. 2013. Differential
881 mobilization of terrestrial carbon pools in Eurasian Arctic river basins. *Proceedings*
882 *of the National Academy of Sciences* 110: 14168-73

883 Fornace KL. 2016. *Late Quaternary climate variability and terrestrial carbon cycling in*
884 *tropical South America.* Massachusetts Institute of Technology

885 Fornace KL, Hughen KA, Shanahan TM, Fritz SC, Baker PA, Sylva SP. 2014. A 60,000-
886 year record of hydrologic variability in the Central Andes from the hydrogen

887 isotopic composition of leaf waxes in Lake Titicaca sediments. *Earth and Planetary*
888 *Science Letters* 408: 263-71

889 Freeman KH, Colarusso L. 2001. Molecular and isotopic records of C4 grassland
890 expansion in the late Miocene. *Geochimica et Cosmochimica Acta* 65: 1439-54

891 Freeman KH, Hayes J, Trendel J-M, Albrecht P. 1990. Evidence from carbon isotope
892 measurements for diverse origins of sedimentary hydrocarbons. *Nature* 343: 254-
893 6

894 French KL, Hein CJ, Haghipour N, Wacker L, Kudrass HR, et al. 2018. Millennial soil
895 retention of terrestrial organic matter deposited in the Bengal Fan. *Scientific*
896 *reports* 8: 1-8

897 Gamarra B, Sachse D, Kahmen A. 2016. Effects of leaf water evaporative 2H-enrichment
898 and biosynthetic fractionation on leaf wax n-alkane δ 2H values in C3 and C4
899 grasses. *Plant, Cell & Environment* 39: 2390-403

900 Gao L, Edwards EJ, Zeng Y, Huang Y. 2014. Major evolutionary trends in hydrogen
901 isotope fractionation of vascular plant leaf waxes. *PLoS one* 9: e112610

902 Gao L, Hou J, Toney J, MacDonald D, Huang Y. 2011. Mathematical modeling of the
903 aquatic macrophyte inputs of mid-chain n-alkyl lipids to lake sediments:
904 Implications for interpreting compound specific hydrogen isotopic records.
905 *Geochimica et Cosmochimica Acta* 75: 3781-91

906 Garcin Y, Schwab VF, Gleixner G, Kahmen A, Todou G, et al. 2012. Hydrogen isotope
907 ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology:
908 insights from a calibration transect across Cameroon. *Geochimica et*
909 *Cosmochimica Acta* 79: 106-26

910 Glaser B, Haumaier L, Guggenberger G, Zech W. 1998. Black carbon in soils: the use of
911 benzenecarboxylic acids as specific markers. *Organic geochemistry* 29: 811-9

912 Goñi MA, Ruttenberg KC, Eglinton TI. 1997. Sources and contribution of terrigenous
913 organic carbon to surface sediments in the Gulf of Mexico. *Nature* 389: 275-8

914 Greule M, Mosandl A, Hamilton JT, Keppler F. 2008. A rapid and precise method for
915 determination of D/H ratios of plant methoxyl groups. *Rapid Communications in*
916 *Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination*
917 *of Up-to-the-Minute Research in Mass Spectrometry* 22: 3983-8

918 Griepentrog M, De Wispelaere L, Bauters M, Bodé S, Hemp A, et al. 2019. Influence of
919 plant growth form, habitat and season on leaf-wax n-alkane hydrogen-isotopic
920 signatures in equatorial East Africa. *Geochimica et Cosmochimica Acta* 263: 122-
921 39

922 Halamka, T.A., McFarlin, J., Younkin, A.D., Depoy, J., Dildar, N., and Kopf, S.H. 2021.
923 Oxygen limitation can trigger the production of branched GDGTs in culture.
924 *Geochemical Perspectives*.19. 36-39. doi: 10.7185/geochemlet.2132

925 Hanke UM, Eglinton TI, Braun AL, Reddy CM, Wiedemeier DB, Schmidt MW. 2016.
926 Decoupled sedimentary records of combustion: Causes and implications.
927 *Geophysical Research Letters* 43: 5098-108

928 Hayes JJMG. 1993. Factors controlling ^{13}C contents of sedimentary organic compounds:
929 principles and evidence. 113: 111-25

930 Hedges JI, Mann DC. 1979. The characterization of plant tissues by their lignin oxidation
931 products. *Geochimica et Cosmochimica Acta* 43: 1803-7

932 Hein CJ, Usman M, Eglinton TI, Haghipour N, Galy VV. 2020. Millennial-scale
933 hydroclimate control of tropical soil carbon storage. *Nature* 581: 63-6

934 Hemingway JD, Schefuß E, Dinga BJ, Prysor H, Galy VV. 2016. Multiple plant-wax
935 compounds record differential sources and ecosystem structure in large river
936 catchments. *Geochimica et Cosmochimica Acta* 184: 20-40

937 Hilton RG, West AJ. 2020. Mountains, erosion and the carbon cycle. *Nature Reviews
938 Earth & Environment* 1: 284-99

939 Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF. 1999. Methane-consuming
940 archaeabacteria in marine sediments. *Nature* 398: 802-5

941 Hinrichs KU, Pancost RD, Summons RE, Sprott GD, Sylva SP, et al. 2000. Mass spectra
942 of sn-2-hydroxyarchaeol, a polar lipid biomarker for anaerobic methanotrophy.
943 *Geochemistry, Geophysics, Geosystems* 1

944 Hopmans EC, Schouten S, Damsté JSS. 2016. The effect of improved chromatography
945 on GDGT-based palaeoproxies. *Organic Geochemistry* 93: 1-6

946 Hopmans EC, Weijers JW, Schefuß E, Herfort L, Damsté JSS, Schouten S. 2004. A novel
947 proxy for terrestrial organic matter in sediments based on branched and isoprenoid
948 tetraether lipids. *Earth and Planetary Science Letters* 224: 107-16

949 Huang Y, Street-Perrott FA, Metcalfe SE, Brenner M, Moreland M, Freeman KH. 2001.
950 Climate change as the dominant control on glacial-interglacial variations in C3 and
951 C4 plant abundance. *Science* 293: 1647-51

952 Inglis GN, Carmichael MJ, Farnsworth A, Lunt DJ, Pancost RD. 2020. A long-term, high-
953 latitude record of Eocene hydrological change in the Greenland region.
954 *Palaeogeography, Palaeoclimatology, Palaeoecology* 537: 109378

955 Inglis GN, Farnsworth A, Collinson ME, Carmichael MJ, Naafs BDA, et al. 2019a.

956 Terrestrial environmental change across the onset of the PETM and the associated

957 impact on biomarker proxies: A cautionary tale. *Global and Planetary Change* 181:

958 102991

959 Inglis GN, Naafs BDA, Zheng Y, Schellekens J, Pancost RD. 2019b. $\delta^{13}\text{C}$ values of

960 bacterial hopanoids and leaf waxes as tracers for methanotrophy in peatlands.

961 *Geochimica et Cosmochimica Acta* 260: 244-56

962 Inglis GN, Rohrissen M, Kennedy EM, Crouch EM, Raine JI, et al. 2021. Terrestrial

963 methane cycle perturbations during the onset of the Paleocene-Eocene Thermal

964 Maximum. *Geology* 49: 520-4

965 Kahmen A, Hoffmann B, Schefuß E, Arndt SK, Cernusak LA, et al. 2013a. Leaf water

966 deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants

967 II: Observational evidence and global implications. *Geochimica et Cosmochimica*

968 *Acta* 111: 50-63

969 Kahmen A, Schefuß E, Sachse D. 2013b. Leaf water deuterium enrichment shapes leaf

970 wax n-alkane δD values of angiosperm plants I: Experimental evidence and

971 mechanistic insights. *Geochimica et Cosmochimica Acta* 111: 39-49

972 Karp AT, Behrensmeyer AK, Freeman KH. 2018. Grassland fire ecology has roots in the

973 late Miocene. *Proceedings of the National Academy of Sciences* 115: 12130-5

974 Karp AT, Holman AI, Hopper P, Grice K, Freeman KH. 2020. Fire distinguishers: Refined

975 interpretations of polycyclic aromatic hydrocarbons for paleo-applications.

976 *Geochimica et Cosmochimica Acta* 289: 93-113

977 Karp AT, Uno KT, Polissar PJ, Freeman KH. 2021. Late Miocene C4 grassland fire
978 feedbacks on the Indian Subcontinent. *Paleoceanography and Paleoclimatology*
979 36: e2020PA004106

980 Kaufman D, McKay N, Routson C, Erb M, Davis B, et al. 2020. A global database of
981 Holocene paleotemperature records. *Scientific data* 7: 1-34

982 Keppler F, Harper DB, Kalin RM, Meier-Augenstein W, Farmer N, et al. 2007. Stable
983 hydrogen isotope ratios of lignin methoxyl groups as a paleoclimate proxy and
984 constraint of the geographical origin of wood. *New Phytologist* 176: 600-9

985 Kirkels FM, Ponton C, Galy V, West AJ, Feakins SJ, Peterse F. 2020. From Andes to
986 Amazon: Assessing branched tetraether lipids as tracers for soil organic carbon in
987 the Madre de Dios River system. *Journal of Geophysical Research: Biogeosciences* 125: e2019JG005270

988 Koga Y, Nishihara M, Morii H, Akagawa-Matsushita M. 1993. Ether polar lipids of
989 methanogenic bacteria: structures, comparative aspects, and biosyntheses.
990 *Microbiological Reviews* 57: 164-82

991 Konecky B, Noone D, Cobb K. 2019. The influence of competing hydroclimate processes
992 on stable isotope ratios in tropical rainfall. *Geophysical Research Letters* 46: 1622-
993 33

994 Kusch S, Rethemeyer J, Schefuß E, Mollenhauer G. 2010. Controls on the age of
995 vascular plant biomarkers in Black Sea sediments. *Geochimica et Cosmochimica
996 Acta* 74: 7031-47

998 Lee H, Feng X, Mastalerz M, Feakins SJ. 2019a. Characterizing lignin
999 phenol, methoxy quantification, and dual stable carbon and hydrogen isotopic
1000 techniques. *Organic Geochemistry* 136: 103894

1001 Lee H, Galy V, Feng X, Ponton C, Galy A, et al. 2019b. Sustained wood burial in the
1002 Bengal Fan over the last 19 My. *Proceedings of the National Academy of Sciences*
1003 116: 22518-25

1004 Lee JE, Fung I, DePaolo DJ, Henning CC. 2007. Analysis of the global distribution of
1005 water isotopes using the NCAR atmospheric general circulation model. *Journal of*
1006 *Geophysical Research: Atmospheres* 112

1007 Luo Y. 2007. Terrestrial carbon–cycle feedback to climate warming. *Annu. Rev. Ecol.*
1008 *Evol. Syst.* 38: 683-712

1009 Lyons, S.L., Karp, A.T., Bralower, T.J., Grice, K., Schaefer, B., Gulick, S.P., Morgan, J.V.
1010 and Freeman, K.H., 2020. Organic matter from the Chicxulub crater exacerbated
1011 the K–Pg impact winter. *Proceedings of the National Academy of Sciences*, 117,
1012 25327-25334.

1013 Magill CR, Ashley GM, Freeman KH. 2013. Ecosystem variability and early human
1014 habitats in eastern Africa. *Proceedings of the National Academy of Sciences* 110:
1015 1167-74

1016 Martinez-Sosa P, Tierney JE, Meredith LK. 2020. Controlled lacustrine microcosms show
1017 a brGDGT response to environmental perturbations. *Organic Geochemistry* 145:
1018 104041

1019 Martínez-Sosa P, Tierney JE, Stefanescu IC, Crampton-Flood ED, Shuman BN, Routson
1020 C. 2021. A global Bayesian temperature calibration for lacustrine brGDGTs.
1021 *Geochimica et Cosmochimica Acta* 305: 87-105

1022 McCartney C, Bull I, Yan T, Dewhurst R. 2013. Assessment of archaeol as a molecular
1023 proxy for methane production in cattle. *Journal of dairy science* 96: 1211-7

1024 Mügler I, Sachse D, Werner M, Xu B, Wu G, et al. 2008. Effect of lake evaporation on δD
1025 values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and
1026 Holzmaar (Germany). *Organic Geochemistry* 39: 711-29

1027 Naafs B, Rohrissen M, Inglis G, Lähteenoja O, Feakins S, et al. 2018. High temperatures
1028 in the terrestrial mid-latitudes during the early Palaeogene. *Nature Geoscience* 11:
1029 766-71

1030 Naafs BDA, Inglis GN, Zheng Y, Amesbury M, Biester H, et al. 2017. Introducing global
1031 peat-specific temperature and pH calibrations based on brGDGT bacterial lipids.
1032 *Geochimica et Cosmochimica Acta* 208: 285-301

1033 Naehler S, Niemann H, Peterse F, Smittenberg RH, Zigah PK, Schubert CJ. 2014. Tracing
1034 the methane cycle with lipid biomarkers in Lake Rotsee (Switzerland). *Organic
1035 geochemistry* 66: 174-81

1036 Nott CJ, Xie S, Avsejs LA, Maddy D, Chambers FM, Evershed RP. 2000. n-Alkane
1037 distributions in ombrotrophic mires as indicators of vegetation change related to
1038 climatic variation. *Organic Geochemistry* 31: 231-5

1039 Otto A, Simoneit BR. 2001. Chemosystematics and diagenesis of terpenoids in fossil
1040 conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany.
1041 *Geochimica et Cosmochimica Acta* 65: 3505-27

1042 Pagani, M., Freeman, K.H. and Arthur, M.A., 2000. Isotope analyses of molecular and
1043 total organic carbon from Miocene sediments. *Geochimica et Cosmochimica
1044 Acta*, 64, 37-49.

1045 Pancost RD, Damsté JSS. 2003. Carbon isotopic compositions of prokaryotic lipids as
1046 tracers of carbon cycling in diverse settings. *Chemical Geology* 195: 29-58

1047 Pancost RD, McClymont EL, Bingham EM, Roberts Z, Charman DJ, et al. 2011. Archaeol
1048 as a methanogen biomarker in ombrotrophic bogs. *Organic Geochemistry* 42:
1049 1279-87

1050 Pancost RD, Sinninghe Damsté JS. 2003. Carbon isotopic compositions of prokaryotic
1051 lipids as tracers of carbon cycling in diverse settings. *Chemical Geology* 195: 29-
1052 58

1053 Pancost RD, Sinninghe Damsté JS, de Lint S, van der Maarel MJ, Gottschal JC, Party‡
1054 MSS. 2000. Biomarker evidence for widespread anaerobic methane oxidation in
1055 Mediterranean sediments by a consortium of methanogenic archaea and bacteria.
1056 *Applied and environmental microbiology* 66: 1126-32

1057 Pancost RD, Steart DS, Handley L, Collinson ME, Hooker JJ, et al. 2007. Increased
1058 terrestrial methane cycling at the Palaeocene–Eocene thermal maximum. *Nature*
1059 449: 332-5

1060 People MD, Tierney JE, McGee D, Lowenstein TK, Bhattacharya T, Feakins SJ. 2021.
1061 Identifying plant wax inputs in lake sediments using machine learning. *Organic
1062 Geochemistry* 156: 104222

1063 Polissar PJ, Rose C, Uno KT, Phelps SR, deMenocal P. 2019. Synchronous rise of
1064 African C4 ecosystems 10 million years ago in the absence of aridification. *Nature
1065 Geoscience* 12: 657-60

1066 Polissar, P.J. and Freeman, K.H., 2010. Effects of aridity and vegetation on plant-wax δD
1067 in modern lake sediments. *Geochimica et Cosmochimica Acta*, 74, 5785-5797.

1068 Polissar PJ, Uno KT, Phelps SR, Karp AT, Freeman KH, Pensky JL. 2021. Hydrologic
1069 Changes Drove the Late Miocene Expansion of C4 Grasslands on the Northern
1070 Indian Subcontinent. *Paleoceanography and Paleoclimatology* 36:
1071 e2020PA004108

1072 Powers LA, Werne JP, Johnson TC, Hopmans EC, Damsté JSS, Schouten S. 2004.
1073 Crenarchaeotal membrane lipids in lake sediments: a new paleotemperature proxy
1074 for continental paleoclimate reconstruction? *Geology* 32: 613-6

1075 Rach O, Brauer A, Wilkes H, Sachse D. 2014. Delayed hydrological response to
1076 Greenland cooling at the onset of the Younger Dryas in western Europe. *Nature
1077 Geoscience* 7: 109-12

1078 Rohling EJ, Sluijs A, Dijkstra HA, Köhler P, van de Wal RS, et al. 2012. Making sense of
1079 palaeoclimate sensitivity. *Nature* 491: 683

1080 Rush D, Osborne KA, Birgel D, Kappler A, Hirayama H, et al. 2016. The
1081 bacteriohopanepolyol inventory of novel aerobic methane oxidising bacteria
1082 reveals new biomarker signatures of aerobic methanotrophy in marine systems.
1083 *PLoS One* 11: e0165635

1084 Sachse D, Billault I, Bowen GJ, Chikaraishi Y, Dawson TE, et al. 2012. Molecular
1085 paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers

1086 from photosynthesizing organisms. *Annual Review of Earth and Planetary*
1087 *Sciences* 40: 221-49

1088 Sachse D, Radke J, Gleixner G. 2004. Hydrogen isotope ratios of recent lacustrine
1089 sedimentary n-alkanes record modern climate variability. *Geochimica et*
1090 *Cosmochimica Acta* 68: 4877-89

1091 Schefuß E, Eglinton TI, Spencer-Jones CL, Rullkötter J, De Pol-Holz R, et al. 2016.
1092 Hydrologic control of carbon cycling and aged carbon discharge in the Congo River
1093 basin. *Nature Geoscience* 9: 687-90

1094 Schefuß, E., Ratmeyer, V., Stuut, J.B.W., Jansen, J.F. and Damsté, J.S.S., 2003. Carbon
1095 isotope analyses of n-alkanes in dust from the lower atmosphere over the central
1096 eastern Atlantic. *Geochimica et Cosmochimica Acta*, 67, 1757-1767.

1097 Schefuß E, Schouten S, Schneider RR. 2005. Climatic controls on central African
1098 hydrology during the past 20,000 years. *Nature* 437: 1003-6

1099 Schmidt GA, LeGrande AN, Hoffmann G. 2007. Water isotope expressions of intrinsic
1100 and forced variability in a coupled ocean-atmosphere model. *Journal of*
1101 *Geophysical Research: Atmospheres* 112

1102 Schouten S, Hopmans EC, Damsté JSS. 2013. The organic geochemistry of glycerol
1103 dialkyl glycerol tetraether lipids: A review. *Organic geochemistry* 54: 19-61

1104 Schouten S, Hopmans EC, Schefuß E, Damste JSS. 2002. Distributional variations in
1105 marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea
1106 water temperatures? *Earth and Planetary Science Letters* 204: 265-74

1107 Schreuder LT, Hopmans EC, Stuut J-BW, Damsté JSS, Schouten S. 2018. Transport and
1108 deposition of the fire biomarker levoglucosan across the tropical North Atlantic
1109 Ocean. *Geochimica et Cosmochimica Acta* 227: 171-85

1110 Sessions AL. 2016. Factors controlling the deuterium contents of sedimentary
1111 hydrocarbons. *Organic Geochemistry* 96: 43-64

1112 Simoneit BR, Schauer JJ, Nolte C, Oros DR, Elias VO, et al. 1999. Levoglucosan, a tracer
1113 for cellulose in biomass burning and atmospheric particles. *Atmospheric
1114 Environment* 33: 173-82

1115 Sinninghe Damsté JS, Hopmans EC, Pancost RD, Schouten S, Geenevasen JA. 2000.
1116 Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in
1117 sediments. *Chemical Communications*: 1683-4

1118 Sinninghe Damsté JS, Rijpstra WIC, Foesel BU, Huber KJ, Overmann J, et al. 2018. An
1119 overview of the occurrence of ether-and ester-linked iso-diabolic acid membrane
1120 lipids in microbial cultures of the Acidobacteria: Implications for brGDGT
1121 paleoproxies for temperature and pH. *Organic Geochemistry* 124: 63-76

1122 Sinninghe Damsté, J.S., Rijpstra, W.I.C., Hopmans, E.C., Weijers, J.W., Foesel, B.U.,
1123 Overmann, J. and Dedysh, S.N., 2011. 13, 16-Dimethyl octacosanedioic acid (iso-
1124 diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions
1125 1 and 3. *Applied and environmental microbiology*, 77(12), pp.4147-4154.

1126 Smith FA, Freeman KH. 2006. Influence of physiology and climate on δD of leaf wax n-
1127 alkanes from C3 and C4 grasses. *Geochimica et Cosmochimica Acta* 70: 1172-87

1128 Smith RW, Bianchi TS, Li X. 2012. A re-evaluation of the use of branched GDGTs as
1129 terrestrial biomarkers: Implications for the BIT Index. *Geochimica et*
1130 *Cosmochimica Acta* 80: 14-29

1131 Stogiannidis E, Laane R. 2015. Source characterization of polycyclic aromatic
1132 hydrocarbons by using their molecular indices: an overview of possibilities.
1133 *Reviews of environmental contamination and toxicology*: 49-133

1134 Talbot HM, Bischoff J, Inglis GN, Collinson ME, Pancost RD. 2016. Polyfunctionalised
1135 bio-and geohopanoids in the Eocene Cobham Lignite. *Organic Geochemistry* 96:
1136 77-92

1137 Talbot HM, Farrimond P. 2007. Bacterial populations recorded in diverse sedimentary
1138 biohopanoid distributions. *Organic Geochemistry* 38: 1212-25

1139 Talbot HM, Handley L, Spencer-Jones CL, Dinga BJ, Schefuß E, et al. 2014. Variability
1140 in aerobic methane oxidation over the past 1.2 Myrs recorded in microbial
1141 biomarker signatures from Congo fan sediments. *Geochimica et Cosmochimica
1142 Acta* 133: 387-401

1143 Tibbott EJ, Scher HD, Warny S, Tierney JE, Passchier S, Feakins SJ. 2021. Late Eocene
1144 record of hydrology and temperature from Prydz Bay, East Antarctica.
1145 *Paleoceanography and Paleoclimatology* 36: e2020PA004204

1146 Tierney JE, deMenocal PB. 2013. Abrupt shifts in Horn of Africa hydroclimate since the
1147 Last Glacial Maximum. *Science* 342: 843-6

1148 Tierney JE, Pausata FS, deMenocal PB. 2017. Rainfall regimes of the Green Sahara.
1149 *Science advances* 3: e1601503

1150 Tierney JE, Poulsen CJ, Montañez IP, Bhattacharya T, Feng R, et al. 2020. Past climates
1151 inform our future. *Science* 370

1152 Tierney JE, Russell JM, Eggermont H, Hopmans E, Verschuren D, Damsté JS. 2010.
1153 Environmental controls on branched tetraether lipid distributions in tropical East
1154 African lake sediments. *Geochimica et Cosmochimica Acta* 74: 4902-18

1155 Tierney JE, Russell JM, Huang Y, Damsté JSS, Hopmans EC, Cohen AS. 2008. Northern
1156 hemisphere controls on tropical southeast African climate during the past 60,000
1157 years. *Science* 322: 252-5

1158 Tierney JE, Ummenhofer CC, Demenocal PB. 2015. Past and future rainfall in the Horn
1159 of Africa. *Science advances* 1: e1500682

1160 Tipple BJ, Pagani M. 2010. A 35 Myr North American leaf-wax compound-specific carbon
1161 and hydrogen isotope record: Implications for C4 grasslands and hydrologic cycle
1162 dynamics. *Earth and Planetary Science Letters* 299: 250-62

1163 Vachula R, Cheung A. 2021. Late Neogene surge in sedimentary charcoal fluxes partly
1164 due to preservation biases, not fire activity. *Palaeogeography, Palaeoclimatology,*
1165 *Palaeoecology* 567: 110273

1166 Van Winden JF, Talbot HM, Kip N, Reichart G-J, Pol A, et al. 2012. Bacteriohopanepolyol
1167 signatures as markers for methanotrophic bacteria in peat moss. *Geochimica et*
1168 *Cosmochimica Acta* 77: 52-61

1169 Vonk JE, Drenzek NJ, Hughen KA, Stanley RH, McIntyre C, et al. 2019. Temporal
1170 deconvolution of vascular plant-derived fatty acids exported from terrestrial
1171 watersheds. *Geochimica et Cosmochimica Acta* 244: 502-21

1172 Weber Y, Damsté JSS, Zopfi J, De Jonge C, Gilli A, et al. 2018. Redox-dependent niche
1173 differentiation provides evidence for multiple bacterial sources of glycerol
1174 tetraether lipids in lakes. *Proceedings of the National Academy of Sciences* 115:
1175 10926-31

1176 Weijers JW, Schefuß E, Schouten S, Damsté JSS. 2007a. Coupled thermal and
1177 hydrological evolution of tropical Africa over the last deglaciation. *Science* 315:
1178 1701-4

1179 Weijers JW, Schouten S, van den Donker JC, Hopmans EC, Damsté JSS. 2007b.
1180 Environmental controls on bacterial tetraether membrane lipid distribution in soils.
1181 *Geochimica et Cosmochimica Acta* 71: 703-13

1182 Wilf P. 1997. When are leaves good thermometers? A new case for leaf margin analysis.
1183 *Paleobiology*: 373-90

1184 Windler G, Tierney JE, Anchukaitis KJ. 2021. Glacial-interglacial shifts dominate tropical
1185 Indo-Pacific hydroclimate during the late Pleistocene. *Geophysical Research
1186 Letters*: e2021GL093339

1187 Windler G, Tierney JE, Zhu J, Poulsen CJ. 2020. Unraveling Glacial Hydroclimate in the
1188 Indo-Pacific Warm Pool: Perspectives From Water Isotopes. *Paleoceanography
1189 and Paleoclimatology* 35: e2020PA003985

1190 Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH. 2005. Transient
1191 floral change and rapid global warming at the Paleocene-Eocene boundary.
1192 *Science* 310: 993-6

1193 Wu MS, Feakins SJ, Martin RE, Shenkin A, Bentley LP, et al. 2017. Altitude effect on leaf
1194 wax carbon isotopic composition in humid tropical forests. *Geochimica et*
1195 *Cosmochimica Acta* 206: 1-17

1196 Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S. 2002.
1197 PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of
1198 PAH source and composition. *Organic geochemistry* 33: 489-515

1199 Zell C, Kim J-H, Hollander D, Lorenzoni L, Baker P, et al. 2014. Sources and distributions
1200 of branched and isoprenoid tetraether lipids on the Amazon shelf and fan:
1201 Implications for the use of GDGT-based proxies in marine sediments. *Geochimica*
1202 *et Cosmochimica Acta* 139: 293-312

1203 Zhang YG, Zhang CL, Liu X-L, Li L, Hinrichs K-U, Noakes JE. 2011. Methane Index: A
1204 tetraether archaeal lipid biomarker indicator for detecting the instability of marine
1205 gas hydrates. *Earth and Planetary Science Letters* 307: 525-34

1206 Zheng Y, Pancost RD, Liu X, Wang Z, Naafs B, et al. 2017. Atmospheric connections with
1207 the North Atlantic enhanced the deglacial warming in northeast China. *Geology*
1208 45: 1031-4

1209 Zheng Y, Singarayer JS, Cheng P, Yu X, Liu Z, et al. 2014. Holocene variations in
1210 peatland methane cycling associated with the Asian summer monsoon system.
1211 *Nature communications* 5: 1-7

1212 Zhu C, Wagner T, Talbot HM, Weijers JW, Pan J-M, Pancost RD. 2013. Mechanistic
1213 controls on diverse fates of terrestrial organic components in the East China Sea.
1214 *Geochimica et Cosmochimica Acta* 117: 129-43

1215

1216 **[Sidebar 1]**

1217 **Title: Organic biomarkers**

1218 Organisms produce a wide range of organic compounds, including proteins,
1219 carbohydrates and lipids. Organic compounds undergo various structural transformations
1220 during diagenesis, but can retain structural or isotopic information that enables insights
1221 into their biological precursor organism (“biomarkers”). Treibs (1934) first demonstrated
1222 that organic pigments (porphyrins) preserved within ancient soil, shale and coal deposits
1223 were derived from chlorophyll-a, a light-harvesting pigment found in all photosynthetic
1224 organisms. In general, a robust biomarker must be: (i) diagnostic of some species, taxa,
1225 or process; (ii) well preserved over long timescales (10^3 to 10^8 yr); and/or (iii) responsive
1226 to environmental perturbations (e.g., temperature).

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239 **Summary phrases:**

1240 - Biomarkers can be used to reconstruct terrestrial environmental change over a
1241 range of geological timescales

1242 - Analyzing several biomarkers in tandem can provide unique insights into the Earth
1243 System

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

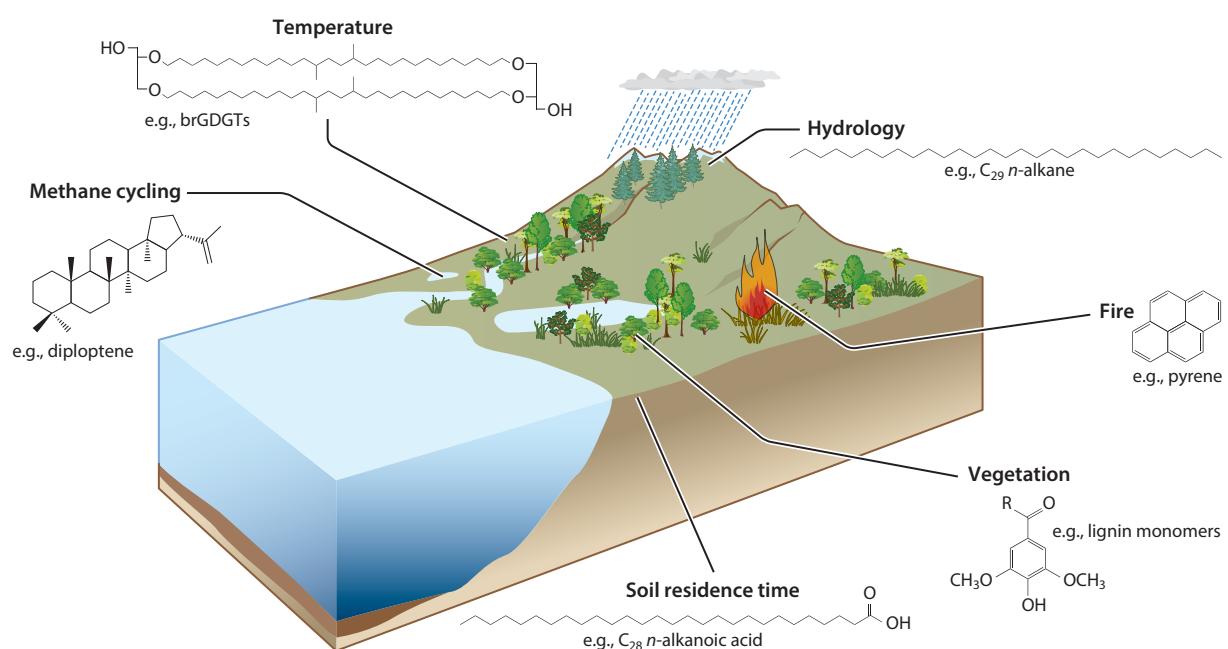
1262 **Captions**

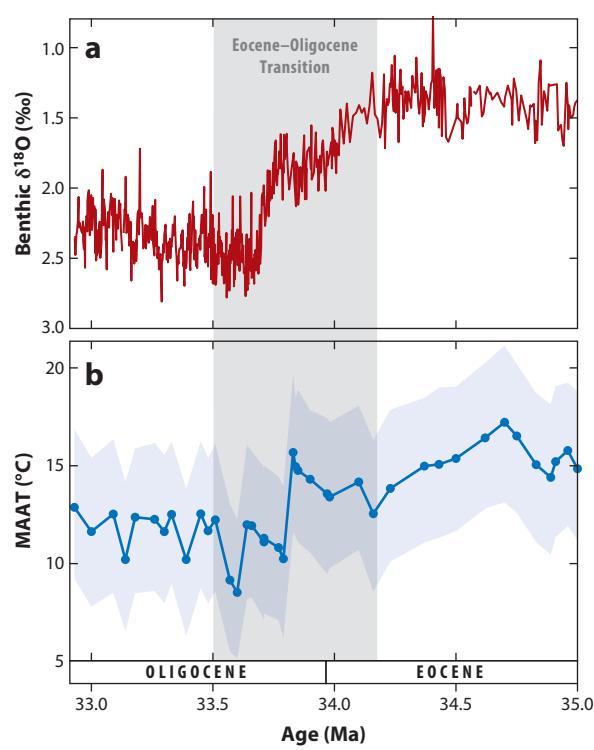
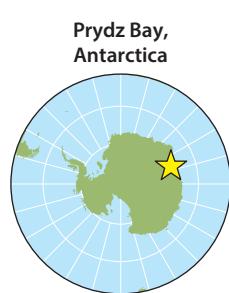
1263 [Figure 1](#) Key terrestrial biomarkers in the environment. Biomarkers provide insights into
1264 physical climate variables (land temperature, rainfall), ecosystem state variables
1265 (vegetation, fire regime), and biogeochemical variables (soil residence time, methane
1266 cycling). Abbreviation: brGDGT, branched glycerol dialkyl glycerol tetraether.

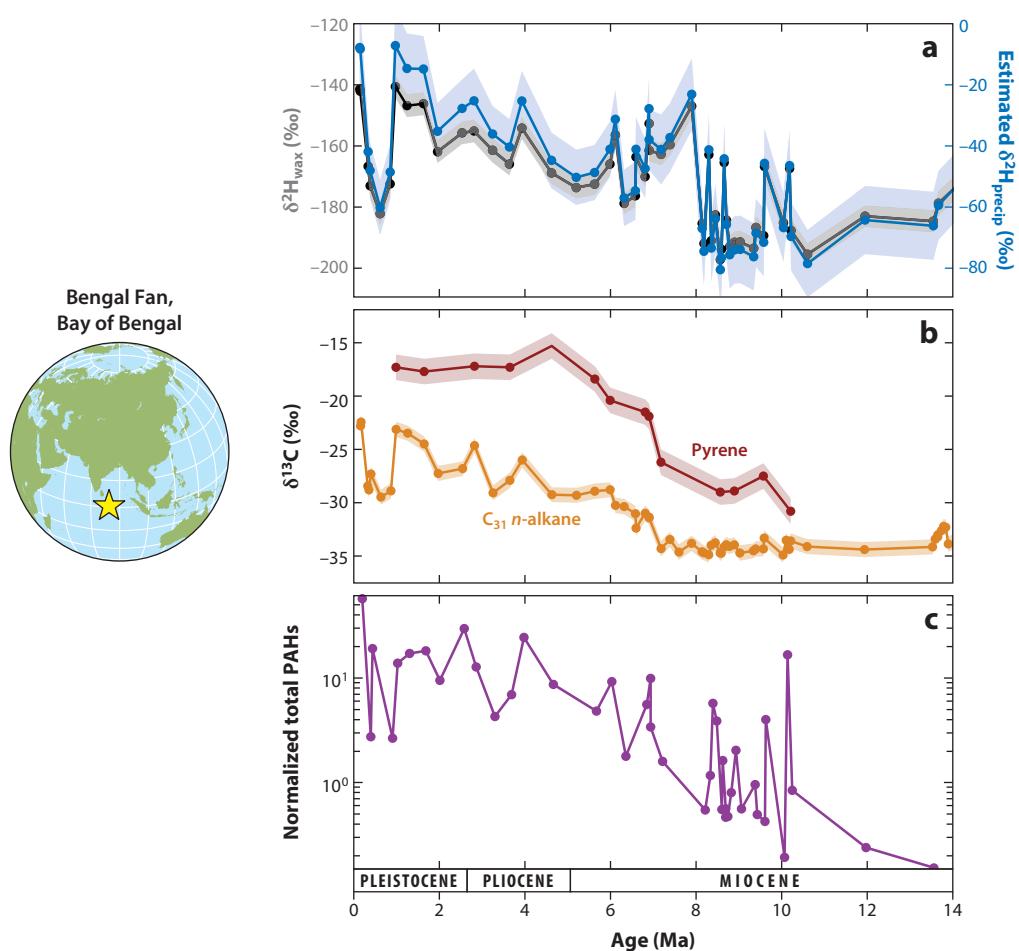
1267 [Figure 2](#) brGDGTs indicate a rapid drop in terrestrial temperatures in Prydz Bay, East
1268 Antarctica across the Eocene–Oligocene transition (~34 million years ago). (a) Benthic
1269 foraminiferal $\delta^{18}\text{O}$ values (Westerhold et al. 2020). (b) brGDGT-inferred MAAT
1270 estimates ([Tibbett et al. 2021](#)). The shaded region in panel *b* represents 1σ uncertainty.
1271 Abbreviations: brGDGT, branched glycerol dialkyl glycerol tetraether; MAAT, mean
1272 annual air temperature.

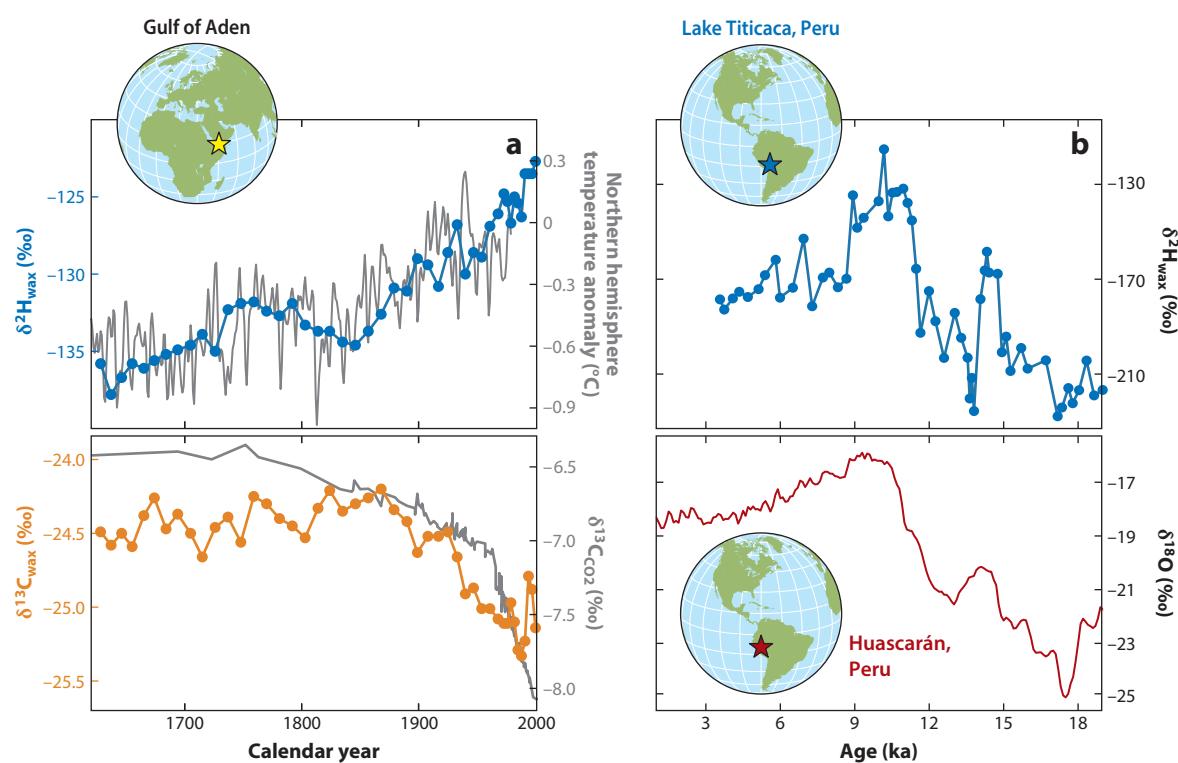
1273 [Figure 3](#) Coupling of hydrology, vegetation, and fire regime on the Indian subcontinent
1274 during the late Miocene (~10 million years ago to present). (a) $\delta^2\text{H}$ values from the C₃₁
1275 *n*-alkane ([Karp et al. 2021](#)) (black) and $\delta^2\text{H}$ values corrected for vegetation fractionation
1276 to generate estimates of environmental water $\delta^2\text{H}$ (blue), following [Polissar et al. \(2021\)](#).
1277 Colored shaded areas represent 1-sigma errors. (b) $\delta^{13}\text{C}$ values from pyrene (dark red)
1278 and C₃₁ *n*-alkane (orange), both corrected for $\delta^{13}\text{C}$ changes in CO₂ ([Karp et al. 2021](#)).
1279 (c) Total pyrogenic PAH concentrations normalized to tetra aromatic β -amyrin
1280 derivative, following the method of [Karp et al. \(2021b\)](#). Abbreviation: PAH, polycyclic
1281 aromatic hydrocarbons.

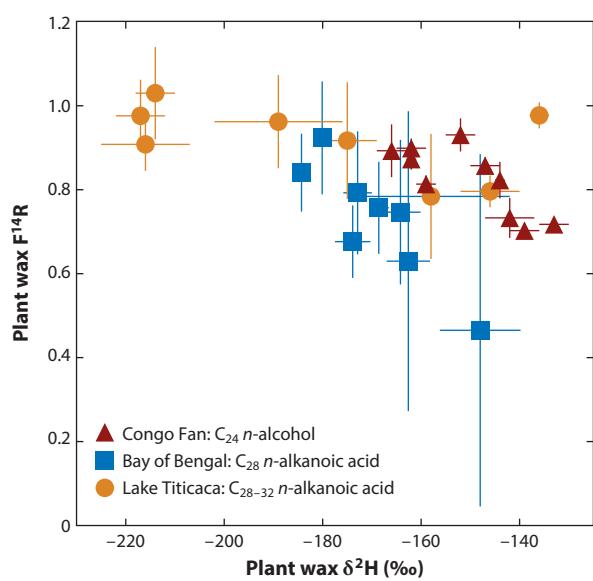
1282 [Figure 4](#) Carbon and hydrogen isotopic compositions of plant wax biomarkers capture


1283 rapid climate changes. (a) Long-chain *n*-alkanoic acid $\delta^2\text{H}$ data from the Gulf of Aden
1284 (*blue*) track northern hemisphere temperature anomaly (*gray*), indicating regional aridity
1285 accompanies twentieth-century warming, and *n*-alkanoic acid $\delta^{13}\text{C}$ data (*orange*)
1286 capture the Suess effect, as represented by $\delta^{13}\text{C}$ of atmospheric CO_2 ([Tierney et al.](#)
1287 [2015](#)). (b) Long-chain *n*-alkanoic acid $\delta^2\text{H}$ values from Lake Titicaca capture millennial-
1288 scale climate shifts during the last deglaciation ([Fornace et al. 2014](#)) that are as rapid—
1289 if not more—than the record of $\delta^{18}\text{O}$ from the Huascarán ice core in Peru (Thompson et
1290 al. 1995).



1291 [Figure 5](#) Relationships between lipid ^{14}C and $\delta^2\text{H}_{\text{wax}}$ values since the last deglaciation
1292 (~17 thousand years ago to present). Results show a general negative relationship
1293 between $\delta^2\text{H}_{\text{wax}}$ and plant-wax mean transit time [reported as the ratio of ^{14}C activity
1294 between plant waxes and the contemporaneous atmosphere at the time of deposition
1295 ($F^{14}\text{R}$)] and indicate shorter terrestrial residence times under wetter climates. Data from
1296 [Fornace \(2016\)](#) (Lake Titicaca), [Hein et al. \(2020\)](#) (Bay of Bengal), and [Schefuß et al.](#)
1297 [\(2016\)](#) (Congo Fan). Uncertainty for Lake Titicaca is taken as either the propagated
1298 analytical uncertainty for combined chain lengths or the maximum-minimum difference
1299 between values for different chain lengths, whichever is greater. Uncertainty for other
1300 records is taken as that propagated in the original publications.


1301 [Figure 6](#) Enhanced terrestrial methane cycling in Otaio River, New Zealand, during the
1302 onset of the Paleocene-Eocene Thermal Maximum (~56 million years ago). (a) Bulk
1303 organic matter $\delta^{13}\text{C}$ values. (b) C_{30} hop-17(21)-ene $\delta^{13}\text{C}$ values. (c) brGDGT-inferred
1304 MAAT estimates in marine interbeds only. The light blue shaded region in panel c


1305 indicates 1σ error. Data from [Inglis et al. \(2021\)](#). Abbreviations: MAAT, mean annual air
1306 temperature; brGDGT, branched glycerol dialkyl glycerol tetraether.


1307
1308

