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Abstract  24 

The response of the terrestrial biosphere to warming remains one of the most poorly 25 

understood and quantified aspects of the climate system. One way to test the behaviour 26 

of the Earth system in warm climate states is to examine the geological record. The 27 

abundance, distribution, and/or isotopic composition of source-specific organic molecules 28 

(“biomarkers”) have been used to reconstruct terrestrial paleoenvironmental change over 29 

a range of geological timescales. Here, we review new or recently improved biomarker 30 

approaches for reconstructing: (i) physical climate variables (land temperature, rainfall), 31 

(ii) ecosystem state variables (vegetation, fire regime), and (iii) biogeochemical variables 32 

(soil residence time, methane cycling). This review encompasses a range of key 33 

compound classes (e.g., lipids, lignin, and carbohydrates). In each section, we explore 34 

the concept behind key biomarker approaches and discuss their successes as 35 

paleoenvironmental indicators. We emphasize that analyzing several biomarkers in 36 

tandem can provide unique insights into the Earth System. 37 

 38 

Keywords: Biomarkers, lipids, paleoclimate, paleoenvironment, biogeochemistry, 39 

proxies 40 
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1. Introduction  47 

Human activity is fundamentally altering the chemical composition of the atmosphere and 48 

warming the planet. Higher temperatures coupled with changing rainfall patterns will alter 49 

vegetation distributions, soil residence time, and a variety of terrestrial biogeochemical 50 

processes, resulting in feedbacks that can amplify or reduce greenhouse gas forcing 51 

(Rohling et al 2012). Quantifying these feedbacks remains challenging because of large 52 

uncertainties associated with land surface processes and their response to carbon cycle 53 

perturbations (Luo 2007).  54 

 55 

The geological record encompasses a wide range of climate states that can help explore 56 

the response of regional climate and terrestrial ecosystems to external forcing (Tierney 57 

et al 2020). However, direct instrumental records span only the last few centuries. In 58 

deeper time, researchers must rely upon indirect biological, chemical, or physical 59 

indicators (“proxies”) preserved within the sedimentary record. Plant fossils (e.g., leaves, 60 

pollen, spores) reveal information about past ecosystems, but also inform climate through 61 

analysis of leaf physiognomy (e.g., leaf margin analysis; Wilf 1997) and leaf and/or pollen 62 

taxonomy. The stable and clumped isotopic composition of terrestrial carbonates (e.g., 63 

herbivore teeth, soil carbonates) also provide important constraints into terrestrial 64 

ecosystems and climate (e.g., Cerling 1984). However, these archives are often poorly 65 

preserved and/or discontinuous, such that additional techniques are often required. 66 

 67 

The abundance, distribution, and/or isotope composition of source-specific organic 68 

molecules—termed “biomarkers” (Sidebar 1)—preserved in a variety of sedimentary 69 
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deposits provides an additional window into ancient terrestrial environments (Figure 1). 70 

Here, we provide a holistic overview and synthesis of key terrestrial biomarker proxies. 71 

We review biomarker approaches for reconstructing: (i) physical climate variables (land 72 

temperature, rainfall), (ii) ecosystem state variables (vegetation, fire regime), and (iii) 73 

biogeochemical variables (soil residence time, methane cycling). In each section, we 74 

explore the concept behind key biomarker approaches—highlighting their limitations and 75 

challenges—and discuss their successes as paleoenvironmental indicators. We also 76 

highlight emerging terrestrial biomarker proxies and discuss potential for future studies.  77 

 78 

2. Reconstructing terrestrial environmental change using organic biomarkers 79 

  80 

2.1. Temperature proxies 81 

Terrestrial temperature exerts a major control on vegetation distributions (Section 2.2), 82 

the hydrological cycle (Section 2.3) and a variety of biogeochemical cycles (Section 2.4 83 

to 2.6). Yet even for relatively recent, well-studied time intervals (e.g., the Holocene; 12 84 

thousand years (ka) to present), large continental regions lack rigorous temperature 85 

constraints (Kaufman et al 2020). Branched glycerol dialkyl glycerol tetraethers 86 

(brGDGTs) are increasingly used to reconstruct land temperature. Branched GDGTs are 87 

comprised of two n-alkyl chains, each containing 4-6 methyl groups and 0-2 cyclopentane 88 

moieties (Sinninghe Damsté et al 2000). The stereochemistry of the glycerol units 89 

confirms a bacterial—rather than archaeal—source organism, but the exact biological 90 

source organism(s) remain(s) debated (Sinninghe Damsté et al 2018). Acidobacteria are 91 

a potential source organism, due to their widespread abundance in soil and peat (Weijers 92 
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et al., 2009). Various Acidobacterial strains synthesize the presumed “building block” of 93 

brGDGTs (iso-diabolic acid). However, only a few Acidobacterial strains have been 94 

directly shown to produce brGDGTs (Sinninghé Damste et al., 2011; 2018; Halamka et 95 

al., 2021). Recent work demonstrates that oxygen limitation can trigger brGDGT 96 

production in at least one Acidobacterial strain, perhaps explaining why few brGDGTs 97 

had previously been identified in the laboratory (Halamka et al., 2021). Using a global soil 98 

database, Weijers et al. (2007b) first demonstrated that the number of methyl groups 99 

(captured via the methylation of branched tetraethers; MBT) varied as a function of 100 

temperature and pH (Weijers et al 2007b), whereas the number of cyclopentane moieties 101 

(captured via the cyclization of branched tetraethers; CBT) varied as a function of pH 102 

alone (Weijers et al 2007b). This led to the formulation of the MBT/CBT index, which was 103 

correlated to mean annual air temperature (MAAT; i.e., measured 2 m above ground as 104 

determined from climatological reanalysis data) (Weijers et al 2007b).  105 

 106 

The MBT/CBT index was originally applied in a marginal marine setting (Weijers et al 107 

2007a) and revealed that tropical African temperatures increased by ~4°C during the last 108 

deglaciation (Weijers et al 2007a). However, later analytical refinements (Becker et al 109 

2013, De Jonge et al 2013, Hopmans et al 2016) found that penta- and hexa-methylated 110 

brGDGTs contained methyl groups at the C5 (5-methyl brGDGTs) or C6 position (6-111 

methyl brGDGTs) and that these co-eluted in the original method of Weijers et al (2007b). 112 

This led to the formulation of the methylation index of 5-methyl brGDGTs (MBT’5ME). This 113 

metric removes the soil pH dependency that was present in the original MBT index 114 

(Weijers et al 2007b) and yields more accurate MAAT estimates in soils (De Jonge et al 115 
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2014). However, there remains a poor correlation between MBT’5ME and MAAT in soils 116 

with a high abundance of 6-methyl brGDGTs (i.e., arid and/or alkaline soils; Dang et al 117 

2016). Some studies have suggested that samples with a high 6- over 5-methyl brGDGT 118 

ratio (e.g., IR6ME > 0.5) are not reliable for temperature inference (Dang et al 2016), 119 

although in a global analysis of the soil and peat dataset, Crampton-Flood et al., (2020) 120 

did not find support for this particular cut-off. Only core tops with a very high IR6Me value 121 

(> 0.8) showed a high residual error.  122 

 123 

The MBT’5ME index correlates strongly with MAAT in a global peat dataset (Naafs et al 124 

2017) and is comparable to the relationship observed in soils (Crampton-Flood et al 125 

2020). The MBT’5ME index has been increasingly applied in peat archives to reconstruct 126 

land temperatures and can reproduce millennial-scale Holocene climate events (i.e., 127 

Younger Dryas, Bølling-Allerød)  (Zheng et al 2017). However, peat and/or lignite 128 

deposits can be subject to dramatic changes in local hydrology which may lead to an 129 

apparent change in brGDGT-derived temperature estimates. For instance, brGDGT 130 

distributions within a UK lignite deposit imply ~10°C cooling during the onset of the 131 

Paleocene-Eocene Thermal Maximum (PETM) (Inglis et al 2019a). This coincided with 132 

enhanced waterlogging and is consistent with in situ production of aquatic brGDGTs (see 133 

below; Weber et al 2018). The application of MBT’5ME in dynamic terrestrial environments 134 

(e.g., lake-mire transitions) should therefore be interpreted cautiously and within a multi-135 

proxy and/or data-modelling framework. 136 

 137 
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BrGDGTs respond differently in lakes than they do in soils.  In particular, the application 138 

of mineral soil or peat calibrations in lacustrine settings can yield up to 10°C colder-than-139 

predicted temperatures (Tierney et al 2010). In lake environments, brGDGTs can be 140 

produced in situ—possibly by a distinct microbial community (Weber et al 2018)—and 141 

regional or global lake-specific calibration models are therefore required (Martínez-Sosa 142 

et al 2021). The relationship between MBT’5ME and temperature is stronger in lakes than 143 

soils and peats; conversely, the latter have a stronger relationship to pH (Martínez-Sosa 144 

et al 2021). This supports the hypothesis that different microbial communities are involved 145 

in the production of these compounds. Notably, much like arid and/or alkaline soils, 146 

lacustrine brGDGT distributions are distinct in hypersaline and/or alkaline lakes, with 147 

higher relative abundance of brGDGT-Ia and more 6′ methyl isomers (Martinez-Sosa et 148 

al., 2021).  Hypersaline and/or alkaline lakes have higher average MBT5ME′ values than 149 

other lakes for a given temperature, implying that global lake calibrations may 150 

overestimate temperature values in such environments. This potentially limits the 151 

application of MBT’5me in these environments (Martínez-Sosa et al 2021, Tierney et al 152 

2010).  153 

 154 

One of the strengths of the MBT’5ME is that is can be applied in older geological time 155 

intervals when other terrestrial temperature proxies (e.g., pollen transfer functions) may 156 

be less certain. For example, Tibbett et al (2021) used MBT’5ME to constrain temperatures 157 

across the Eocene-Oligocene transition (EOT) and found an abrupt ~4-6°C cooling in 158 

East Antarctica (Prydz Bay) prior to the establishment of continental-scale ice sheets 159 

(Figure 2). The branched GDGT-inferred cooling is larger, more abrupt and later than that 160 
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reconstructed from the rock-derived chemical weathering proxies. This is related to 161 

catchment sourcing: rock erosion is dominated by the mountainous sectors of 162 

catchments, whereas soil-derived biomarkers are dominated by the greater lowland 163 

extent of catchments. The two signals together reveal the earlier cooling of the high 164 

mountain regions in the rock-derived proxy, whereas the brGDGTs detect the later and 165 

more abrupt lowland cooling. 166 

 167 

Despite these successes, MBT’5ME values can be overprinted by brGDGT production in 168 

rivers and/or marine sediments (e.g., upland soils, rivers, marine sediments; Crampton-169 

Flood et al 2018, Zell et al 2014). If these sources were substantial, for example in the 170 

lowland Amazon River (Zell et al., 2014), they can bias brGDGT temperature estimates. 171 

This can be partially resolved by screening for and excluding and/or correcting for 172 

possible marine/riverine overprints (Crampton-Flood et al 2018). Marine settings are 173 

typically characterised by a high degree of cyclisation of tetramethylated brGDGTs (i.e., 174 

high #ringstetra values; Sinninghé Damste, 2018). This is because marine environments 175 

are relatively alkaline compared to soils and peat. As #ringstetra values do not exceed 0.7 176 

in modern soils, higher values (i.e., >0.7) are evidence for marine in situ production 177 

(Sinninghe Damsté, 2016). Rivers often have a higher contribution of 6-methyl brGDGT 178 

isomers (de Jonge et al., 2015), yielding high Isomerisation Ratio values (IR; de Jonge et 179 

al., 2015). However, diagnosing riverine input using the IR is challenging as both arid and 180 

alkaline soils contain a high abundance of 6-methyl brGDGT isomers (Dang et al, 2016). 181 

 182 
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The MBT’5ME index also has a theoretical maximum temperature of ~25-30°C in soils and 183 

peat (Crampton-Flood et al 2020, De Jonge et al 2014, Naafs et al 2017, Weijers et al 184 

2007b), which limits use of this proxy in greenhouse climates (e.g., the Eocene). 185 

Branched GDGT distributions in settings that are warmer than modern remain largely 186 

unknown, although both soil (Chen et al 2018) and lake water (Martinez-Sosa et al 2020) 187 

incubations indicate that organisms can synthesise abundant brGDGTs when grown at 188 

temperatures above 35oC.  189 

 190 

Isoprenoidal glycerol dibiphytanyl glycerol tetraethers (isoGDGTs) might help reconstruct 191 

temperatures not represented in modern climates. IsoGDGTs are synthesised by archaea 192 

and comprised of two isoprenoid side chains containing up to eight cyclopentane moieties 193 

(although rarely more than 4 cyclopentane moieties; Schouten et al, 2013 and ref. 194 

therein). The number of cyclopentane moieties increases at higher temperatures (De 195 

Rosa et al 1980), resulting in a more densely packed and stable membrane. This is the 196 

premise of the TEX86 surface water temperature proxy (Schouten et al 2002). In some 197 

lacustrine settings—generally large and deep lakes—TEX86 is correlated to annual mean 198 

lake temperature (Powers et al 2004) and can be used to infer continental temperatures 199 

(Tierney et al 2008). However, various factors can influence TEX86 values in lakes (e.g. 200 

input of GDGTs from sources other than Thaumarchaeota) (Blaga et al 2009). 201 

 202 

The degree of isoGDGT cyclisation is poorly correlated with temperature in soils (Coffinet 203 

et al 2014) and peats (Naafs et al 2018), likely due to the wide range of potential source 204 

organisms in these settings. However, recent work identified isoGDGTs with more than 205 
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four cyclopentane moieties (e.g., GDGT-5 to -7) in tropical (>19.5°C) and acidic (pH < 206 

5.1) peats (Naafs et al 2018). These compounds had previously only been observed in 207 

extremophile cultures and/or hyperthermophilic settings (e.g., hot springs) (Schouten et 208 

al 2013), suggesting that their occurrence in tropical, acidic peats represents an 209 

adaptation to higher temperatures and/or lower pH. Highly-cyclised isoGDGTs (e.g., 210 

isoGDGT-5, but also isoGDGT-6) have been detected in early Eocene (~56 to 48 Ma) 211 

lignite deposits (Naafs et al 2018). This confirms that mid-latitude temperatures were 212 

higher than 19.5°C during the early Eocene, consistent with elevated brGDGT 213 

temperature estimates (>22-29°C) from the same samples (Naafs et al 2018). The 214 

abundance of isoGDGT-5 in low latitude Eocene lignite deposits is higher than that found 215 

in any modern peat, implying MAATs were higher than presently found in the low latitudes. 216 

These results suggest that highly-cyclised isoGDGTs (e.g., isoGDGT-5 to -8) could 217 

potentially be used to reconstruct temperatures >30°C (c.f., the brGDGT temperature 218 

proxy). However, experimental approaches (e.g., mesocosm or microcosm experiments) 219 

are required to decipher the relationship between highly-cyclised isoGDGTs and MAAT 220 

beyond the modern range. Genomic approaches may provide additional insights into the 221 

physiological function of highly-cyclised GDGTs (e.g., Zeng et al., 2019). 222 

 223 

2.2. Vegetation proxies 224 

The geological record can provide insights into the response of plant communities to CO2-225 

induced warming and associated hydroclimate changes. Leaf fossils document local 226 

vegetation change across major climate events (e.g. the PETM; Wing et al., 2005). 227 

Biomarkers are highly complementary sources of information and provide a more 228 
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spatially-integrated perspective. The most common biomarkers used to reconstruct 229 

changes in the plant community are: i) long-chain n-alkyl compounds (e.g., n-alkanes, n-230 

alcohols, n-alkanoic acids) (Eglinton & Hamilton 1967), ii) lignin (e.g., lignin phenols; 231 

(Hedges & Mann 1979), and iii) terpenoids (e.g. di- and triterpenoids; Otto & Simoneit 232 

2001) 233 

 234 

Long-chain n-alkane compounds typically have carbon chain lengths ranging from C25 to 235 

C35 and exhibit high odd-over-even ratios, whereas long-chain n-alcohols or n-alkanoic 236 

acids range from C24 to C34 and exhibit high even-over-odd ratios. Various factors 237 

determine the abundance of n-alkanoic acids vs n-alkanes in the sedimentary record. 238 

Over short timescales, there can be preferential loss of long-chain n-alkanes during 239 

soil litter decomposition (Wu et al., 2018). Over longer timescales (i.e., millions of years) 240 

or at elevated temperatures, n-alkanoic acids are expected to degrade faster due to their 241 

functionalized nature. However, laboratory pyrolysis experiments show that they are 242 

stable as long as thermal maturity is low (Diefendorf et al., 2015) and remain abundant in 243 

some early Cenozoic (Hollis et al., 2021) and late Mesozoic sediments (van Dongen et 244 

al., 2006). While both compound classes (n-alkanoic acids and n-alkanes) are commonly 245 

reported separately in paleoclimatic studies, the decision is often guided by absolute 246 

abundances, the extent of reworking or petroleum exposure, and/or co-elution with other 247 

compounds. To assess this the extent of reworking, we strongly encourage future studies 248 

to report thermal maturity ratios (e.g., the carbon preference index (CPI), hopane 249 

ββ/(αβ+ββ) ratios., etc). Where possible dual compound classes can be used to reveal 250 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/litter-decomposition
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productivity or catchment sourcing differences (e.g. Hemingway et al., 2016, Feakins et 251 

al., 2018; 2020).  252 

 253 

Studies have looked for patterns in long-chain n-alkyl distributions between different plant 254 

types (Bush & McInerney 2013, Diefendorf et al 2011) and across climate gradients 255 

(Feakins et al 2016b), but recent meta-analyses have found limited value of summary 256 

statistics (e.g., average chain length, odd-over-even ratios) as taxonomic or climatic 257 

indicators (Bush & McInerney 2013, Diefendorf et al 2011). However, in some low-258 

diversity settings, interpretations of chain length ratios are able to detect plant type 259 

variations (Bush & McInerney 2013). For example, in boreal Sphagnum moss-dominated 260 

peats, the C23/C29 or C23/C31 n-alkane ratio has been used to differentiate between 261 

Sphagnum moss (dominated by mid-chain homologues; e.g., C23) and woody plants or 262 

grasses (which are dominated by long-chain homologues; e.g., C29 or C31) and reveals 263 

changes in environmental conditions (Nott et al 2000). Certain studies also report a 264 

greater predominance of C33 and/or C35 n-alkanes in graminoids (e.g., Bush and 265 

McInerney, 2013). As tropical trees produce a substantially higher abundance of C29 and 266 

C31 n-alkanes compared to grasses (Garcin et al., 2014), they dominate the sedimentary 267 

C29 and C31 n-alkane pool. Thus, longer chain length alkanes (C33 and/or C35) may more 268 

strongly detect C4 grass inputs into sediments (e.g., Schefuß et al., 2003). However, as 269 

these chain lengths are not taxon-specific, additional evidence from pollen and spores 270 

aids interpretations. 271 

 272 
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Other biomarkers can provide additional information on past vegetation. Lignin—a key 273 

component of tree wood and other plant tissues—is a heterogeneous polymer containing 274 

a variety of monomeric building blocks (see also Section 2.3 below). The ratio of different 275 

lignin monomers (i.e., syringyl, vanillyl, and cinnamyl phenols) can differentiate between 276 

non-woody angiosperms, woody angiosperms, and woody gymnosperms (Hedges & 277 

Mann 1979). Terpenoids can also distinguish between angiosperms and gymnosperms. 278 

Triterpenoids (e.g., ursane, lupane, oleanane) are mostly synthesised by angiosperms, 279 

whereas diterpenoids (e.g., abietic acid, abietane, pimarane) are more abundant in 280 

gymnosperms, especially evergreens (Diefendorf et al 2012). The relative abundance of 281 

di- vs triterpenoids has been applied to reconstruct gymnosperms vs angiosperms 282 

abundance in the past, although selective loss of triterpenoids can lead to an 283 

overestimation of gymnosperms in the sedimentary record (Diefendorf et al 2014). 284 

 285 

Machine learning methods have considerable potential to extract information from 286 

vegetation biomarkers, especially the ‘forest’ of peaks present in homologous n-alkyl 287 

series. Machine learning has detected chemotaxonomic classification power from plant 288 

wax distributions, requiring the diagnostic information in molecular distributions across 289 

two compound classes (n-alkanoic acids and n-alkanes) to sufficiently differentiate desert 290 

shrub, conifer forest and macrophytes in modern ecosystems and in lake sediments 291 

(Peaple et al 2021). These two compound classes are generalist biomarkers, but their 292 

proportions and chain length distributions vary across taxa (Diefendorf et al 2011).  293 

 294 
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Presumably, additional compound classes and specialist biomarkers would add further 295 

skill at chemotaxonomic separations. The machine learning approach has advantages 296 

over summary metrics such as the average chain length or carbon preference index on a 297 

single compound class (usually only the n-alkanes) and appears to perform better than 298 

linear mixing models on dual compound classes (Gao et al 2011). Machine learning (e.g., 299 

non-negative matrix factorization, random forests, neutral networks) can also help 300 

untangle source mixing and/or identify end-member distributions (Peaple et al., 2021; 301 

Karp et al., 2021; Polissar et al. 2021). However, machine learning is subject to various 302 

uncertainties (e.g., input of n-alkyl lipids from plants not represented in the training 303 

dataset) or from taphonomic alterations between plant and sediment. Machine learning 304 

should always be guided by physical and/or chemical knowledge of the relevant 305 

biomarkers – otherwise, the outputs may not have clear physical meaning or may be 306 

somewhat uncertain. Machine learning may also require training across a wider variety 307 

of plant, soil and sedimentary settings and across ecosystems. It remains to be seen 308 

whether it will perform well in ecosystems with greater diversity of plant taxa (e.g., 309 

rainforest) or lower leaf trait variability. It is also unclear how such machine learning 310 

approaches will perform in non-analogue settings beyond the training set, although such 311 

non-analogue questions also apply to other proxies. In order to enable further testing of 312 

these approaches, we recommend collecting multi-compound plant wax abundances 313 

(e.g., n-alkanoic acids, n-alkanes), including the broadest possible range of chain lengths 314 

and the non-dominant odd/even chain lengths to develop information about plant wax in 315 

a broader range of species and sedimentary settings.  316 

 317 
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Another widespread approach for vegetation reconstruction using biomarker methods 318 

involves analysing the stable carbon isotopic composition (δ13C) of long-chain n-alkyl 319 

compounds. The δ13C value of long-chain n-alkyl compounds can readily discern the 320 

prevalence of C3 and C4 plant types (Huang et al 2001). This results from a large 321 

fractionation in plant biosynthesis that differs according to photosynthesis pathway (n.b., 322 

the isotopic difference is larger in epicuticular waxes than in bulk tissues). Plant wax from 323 

C4 plants (most tropical grasses and some shrubs) are 13C-enriched (~15 ‰) relative to 324 

those produced by C3 plants. This has been exploited to study the Neogene expansion 325 

of C4 grasslands (Freeman & Colarusso 2001, Polissar et al 2019). Plant wax δ13C 326 

records document major expansion of C4 grasslands on the African continent ~ 10 Ma 327 

(Polissar et al 2019). However, C4 expansion is not globally uniform and plant wax δ13C 328 

records show that C4 grassland expansion occurs in the Ganges-Brahmaputra catchment 329 

~3 Ma later (Figure 3) (Karp et al 2021).  330 

 331 

Despite the substantial discriminatory difference between photosynthesis pathways, the 332 

carbon isotopic composition (δ13C) C3 plants has a large spread which introduces 333 

uncertainties into linear mixing model interpretations of past vegetation change 334 

(Diefendorf et al., 2010). As a partial solution, (Cerling et al 2011) proposed a sinusoidal 335 

regression between woody cover and δ13C of soil organic matter, which was adapted for 336 

plant waxes (Magill et al 2013). However, this only applies to post-Miocene, low-latitude 337 

settings dominated by C4 grasses. δ13C variability within C3 plants is also a valuable tool 338 

for paleoenvironmental reconstruction. Within C3 ecosystems there are discernable 339 

signals including a primary sensitivity to mean annual precipitation and altitude, but only 340 
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in wet climates (Wu et al 2017). For further review of carbon isotopes in terrestrial 341 

ecosystem reconstructions, other paleoenvironmental interpretations, and areas for 342 

future research, readers are referred to a recent review by Diefendorf and Freimuth 343 

(2017).  344 

 345 

2.3. Hydroclimate proxies 346 

Hydroclimate variability exerts an important influence on vegetation patterns (Section 347 

2.2), soil residence time (Section 2.4) and a variety of other biogeochemical processes 348 

(Section 2.5-2.6). However, there are few continuous and direct records of hydrological 349 

change in deep time. The hydrogen isotopic composition (δ2H) of long-chain n-alkyl lipids 350 

(e.g., n-alkanes, n-alcohols, n-alkanoic acids) can provide important insights into the 351 

hydrologic cycle. These compounds have a well-constrained source organism (i.e., higher 352 

plants) and offer excellent preservation potential in a variety of sedimentary 353 

environments. In addition, the hydrogen is bound to the alkyl carbon making it non-354 

exchangeable in most (<150°C) archives. Sachse et al (2004) first demonstrated an 355 

empirical correlation between sedimentary long-chain n-alkyl lipid δ2H (δ2Hwax) and 356 

precipitation δ2H in European lakes. This was later corroborated across a variety of 357 

environmental gradients (Balascio et al 2018, Daniels et al 2017, Feakins & Sessions 358 

2010, Garcin et al 2012) and exploited to reconstruct hydroclimate in the geological record 359 

(Bhattacharya et al 2018, Fornace et al 2014, Schefuß et al 2005, Tierney et al 2008, 360 

Weijers et al 2007a).  361 

 362 
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δ2Hwax is usually employed as a proxy for the isotopic composition of precipitation 363 

(δ2Hprecip). This typically integrates a combination of climatic changes including 364 

temperature, rainfall amount and character (e.g., stratiform vs. convective rainfall), as well 365 

as atmospheric vapor transport. δ2Hwax records thus benefit from interpretations based 366 

on isotope-enabled climate model simulations, which can be used to identify the effects 367 

of climatic changes on water isotope compositions (Lee et al 2007, Schmidt et al 2007). 368 

However, despite the complexity of water isotopes, paleoclimate δ2Hwax records capture 369 

larger-scale hydroclimate shifts than local hydrological proxies (c.f. lake levels). The 370 

variety of information in δ2Hprecip is also an asset; in the mid-latitudes δ2Hwax can be used 371 

to distinguish between different seasonal moisture sources (Bhattacharya et al 2018) 372 

while in the tropics δ2Hwax reveals general trends in aridity (Tierney & deMenocal 2013) 373 

or atmospheric convection (Windler et al 2021). Comparisons between δ2Hwax and ice 374 

core or speleothem δ18O demonstrates that δ2Hwax captures similar information and also 375 

records rapid climate changes such as the Younger Dryas cooling (Fornace et al 2014) 376 

(Figure 4). Furthermore, δ2Hwax can capture climatic changes in the historical period, as 377 

demonstrated by the δ2Hwax record from the Gulf of Aden, which documents increasingly 378 

arid conditions over the last 200 years (Tierney et al 2015) (Figure 4). Tandem 379 

measurements of δ13Cwax show the presence of the Suess effect, indicating rapid 380 

transport of plant waxes from the terrestrial source (the Horn of Africa) to the coastal 381 

ocean (Tierney et al 2015). As discussed further below (Section 2.4), such records 382 

demonstrate that a young, rapidly overturning plant wax pool allows for rapid climate 383 

changes to be recovered despite the presence of a pre-aged and/or reworked plant wax 384 

pool. 385 
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 386 

Many studies use δ2Hwax as a qualitative indicator of climatic changes (e.g., Figure 4). 387 

However, quantitative inference of δ2Hprecip is possible if reasonable constraints can be 388 

made on the apparent fractionation between δ2Hwax and δ2Hprecip (= 2ɛwax/w; see Sachse et 389 

al 2012, Sessions 2016 for a detailed review).  Three key factors have the potential to 390 

impact 2ɛwax/precip: i) soil evaporation, ii) leaf-water transpiration iii) wax biosynthesis (see 391 

below).  392 

 393 

Although theoretical models have incorporated evaporative 2H-enrichment of soil water 394 

into predictions of 2ɛwax/w (Konecky et al 2019, Smith & Freeman 2006), ecohydrological 395 

data demonstrates that this effect is minimal. For instance, in drylands, where soil water 396 

is readily evaporated and non-bioavailable, woody plants take up rainwater 397 

opportunistically via shallow roots and/or seek more consistent water sources by deep 398 

rooting strategies (Fan et al 2017), resulting in minimal xylem water 2H-enrichment. In 399 

contrast, leaf water 2H-enrichment that occurs during transpiration is more variable, 400 

depending on the species and the climatological setting (Daniels et al 2017, Feakins et al 401 

2016a, Feakins & Sessions 2010, Kahmen et al 2013a). In mesic environments where 402 

lake water evaporation is minimal, pairing of plant wax with aquatic biomarkers has 403 

proved useful for disentangling the effect of transpiration on δ2Hwax (Mügler et al 2008, 404 

Rach et al 2014). 405 

 406 

An empirical collection of 2ɛwax/w values across species and climatic settings implies that 407 

it varies widely (up to ~70 ‰) between plant life forms (i.e., trees, shrubs, forbs, 408 
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graminoids) and physiological groups (i.e., C3, C4, CAM) (Sachse et al 2012). Taken at 409 

face value, this suggests that biosynthetic differences have a large impact on apparent 410 

fractionation. However, these empirical data combine physiological/biochemical and 411 

climatic differences, and separating these influences on fractionation can be challenging 412 

(Feakins et al 2016a, Kahmen et al 2013b, Sachse et al 2012). Experimental approaches 413 

enable biophysical vs. climatic differences on fractionation to be isolated and have found 414 

that 2ɛwax/w is relatively consistent between species under controlled environmental 415 

settings, with the only major physiological/biochemical difference between grasses (which 416 

have a more negative 2ɛwax/w) and eudicots (Gamarra et al 2016, Gao et al 2014). Since 417 

paleoclimate records of δ2Hwax integrate across a landscape, this enables the use of plant 418 

community-scale 2ɛwax/w values in paleoclimate studies to infer δ2Hprecip. 419 

 420 

Estimating 2ɛwax/precip in the paleoenvironmental record must also account for any seasonal 421 

bias relative to annual rainfall. In most environments, plant growth is stimulated by 422 

seasonal availability of light and plants often grow using water from the previous season’s 423 

rainfall. Seasonal studies of modern plant ecohydrology reveal the seasonality of rainfall 424 

and plant uptake (Griepentrog et al 2019) and this has been invoked to explain small 425 

2ɛwax/precip values observed in alpine gymnosperm flora (Polissar and Freeman, 2010). 426 

However, expanded observational and experimental data are required to resolve these 427 

uncertainties. 428 

 429 

Several strategies are available for improving 2ɛwax/w estimates in the paleoenvironmental 430 

record. One strategy employs pollen data from the same samples to calculate plant-431 
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specific fractionation factors (Feakins 2013), thus opening the possibility of developing 432 

region- and time-specific vegetation corrections based upon appropriate modern 433 

analogues. When applied to the Miocene (Feakins 2013) and Eocene (Inglis et al 2020), 434 

this method can shift inferred δ2Hprecip values by >30 ‰. However, pollen-corrected 435 

δ2Hprecip reconstructions have large uncertainties due to the differential production of 436 

pollen between wind and insect-pollinated plants (e.g., pines and grasses are prolific 437 

pollen dispersers, whereas tropical forests disperse little pollen). This concern can be 438 

qualitatively assessed (e.g., absence of rainforest pollen does not guarantee an absence 439 

of rainforest) or quantitatively deconvolved with additional mixing model weighting factors.   440 

 441 

A more common strategy for Neogene (~23 Ma to present) climate reconstructions 442 

involves measuring n-alkyl lipid δ13C (δ13Cwax) values alongside δ2Hwax in order to infer C3 443 

vs. C4 plant prevalence (Tipple & Pagani 2010). This is particularly effective in tropical 444 

and subtropical regions, where C4 grasslands are a major component of the ecosystems 445 

(Tierney et al 2017, Windler et al 2020) and have a significantly different 2ɛwax/w than C3 446 

dicots (e.g., Gao et al, 2014). Figure 3 demonstrates how 2ɛwax/w can be inferred via pollen 447 

data and lipid δ13C values (Polissar et al 2021) and used to calculate δ2Hw. Vegetation-448 

corrected δ2Hw shows a 10 ‰ greater enrichment after 6 Ma than raw δ2Hwax and follows 449 

the large C4 grass expansion that is documented in δ13Cwax (Figure 3). While this is small 450 

relative to the large amplitude of change in this particular record, in other settings where 451 

δ2Hwax variance is lower, changes in 2ɛwax/w strongly influence overall trends (Tierney et al 452 

2017).   453 

 454 
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In addition to δ2Hwax, the hydrogen isotopic composition of lignin methoxy groups 455 

(δ2Hmethoxy) holds promise as a novel paleohydrologic indicator (Keppler et al 2007). Lignin 456 

is a key component (30–50%) of wood and other plant tissues and is a heterogeneous 457 

polymer containing a variety of monomeric building blocks. Each monomeric building 458 

block contains 0, 1 or 2 methoxy groups (-OCH3), which are attractive targets for hydrogen 459 

isotope analysis because the hydrogens are in non-exchangeable positions. Methoxy 460 

groups can be released from wood (Keppler et al 2007), peat (Lee et al 2019a), and lignite 461 

(Lee et al 2019a), and spans a wide isotopic range (-325 to -150 ‰) in tree trunk samples 462 

(Keppler et al 2007). However, variability between species and trees may complicate 463 

detection of hydrologic signals, as shown in a coastal saltwater to freshwater gradient 464 

(Feakins et al 2013). Calibration and process-based understanding of drivers of biological 465 

variability in 2ɛmethoxy/w remains in the early stages, but recent analytical method 466 

development (Greule et al 2008, Lee et al 2019a) has enabled successful applications in 467 

Eocene-aged wood (Anhäuser et al 2018) and Neogene-aged sediments (Lee et al 468 

2019b). 469 

 470 

2.4. Terrestrial carbon cycling proxies 471 

Carbon export from the terrestrial biosphere is a significant component of the global 472 

carbon cycle (Hilton & West 2020). One of the main unquantified processes is the lateral 473 

transport of terrestrial organic carbon (OC) along the aquatic continuum from upland 474 

terrestrial ecosystems to the ocean. Biomarker abundance (Bianchi et al 2004, Goñi et al 475 

1997), δ13C values (Feakins et al 2018, Hemingway et al 2016) and radiocarbon (14C) 476 

content (Feng et al 2013, Kusch et al 2010) can be used to study changes in the storage, 477 
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aging, and mobilization of different components of the terrestrial OC cycle. This may 478 

encompass plants (e.g., plant wax, lignin) or soils (e.g., brGDGTs), and can reveal the 479 

spatial and temporal scale of their integration before delivery to depositional basins (Feng 480 

et al 2013, Hemingway et al 2016, Kusch et al 2010). 481 

 482 

Plant or soil derived biomarkers transported by rivers are often assumed to reflect a 483 

catchment-integrated signal, but the spatial and temporal integration may vary by 484 

compound type and/or change through time. Soils and rivers are typically dominated by 485 

long-chain n-alkanoic acids (Feakins et al., 2018) due to preferential loss of long-chain n-486 

alkanes during soil litter decomposition (Wu et al., 2018). Studies also suggest that long-487 

chain n-alkanoic acids respond more rapidly to proximal changes in climate, whereas 488 

long-chain n-alkanes have a greater spatial and temporal range and also have more risk 489 

of petrogenic input (Feakins et al 2018, Hemingway et al 2016) (see Section 2.2). In a 490 

global river dataset, Eglinton et al (2021) found that the age of exported plant wax (n-491 

alkanoic acids) ranged from 1-2ka in the tropics to up to 8ka in the high latitudes. They 492 

found the strongest correlation between climatic variables (MAAT and MAP) and fluvial 493 

n-alkanoic acid 14C ages occurred when using an e-folding distance of ~500 km, implying 494 

that this is roughly the spatial extent of plant wax n-alkanoic acid integration in large river 495 

systems.  The e-folding distance will likely be different for other compound classes (e.g., 496 

n-alkanes, lignin) and requires additional investigation.  497 

 498 

Bomb-spike 14C (produced during nuclear weapons detonation and testing that began in 499 

1945 and increased until 1963) can also be detected in OC, including plant wax 500 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/litter-decomposition
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biomarkers in soils and sediments. Biomarker 14C/12C ratios in soils or river sediments 501 

that are higher than modern (natural) concentrations indicate the presence of bomb-502 

produced 14C and can be used to track the mean age of biomarkers in storage or fluvial 503 

transit. Using a two-pool mixing model approach, French et al. (2018) estimates that 504 

~80% of the n-alkanoic acids in the Bengal Fan have a reservoir age of ~1000 years, with 505 

the remainder stored on the landscape for only ~15 yr (French et al 2018). This approach 506 

has been extended to other river catchments (including the Mackenzie River, Saanich 507 

Inlet, and Cariaco Basin) and shows a similar distribution of ”fast-cycling” vs. “slow-508 

cycling” n-alkanoic acids (Vonk et al 2019), with high-latitude (permafrost-dominated) 509 

catchments exhibiting the longest carbon storage. However, this approach requires 510 

assumptions about the age distributions of each compound class and requires further 511 

validation. 512 

 513 

Carbon storage on land has profound implications for modern carbon cycle feedbacks 514 

and may be illuminated by the study of past climate perturbations. Pairing of δ2Hwax and 515 

14Cwax (e.g., across the last deglaciation; Figure 5) provides a powerful tool to probe the 516 

relationships between climate and the carbon cycle, from the deglaciation into the 517 

Anthropocene. In the low-latitudes, there is a negative relationship between δ2Hwax and 518 

mean transit times across the deglaciation (reported as F14R, or the plant-wax 14C content 519 

relative to that of the contemporaneous atmosphere at the time of deposition (Fornace 520 

2016, Hein et al 2020, Schefuß et al 2016) (Figure 5). This implies wetter conditions are 521 

associated with shorter OC residence times in both large river systems (Hein et al 2020, 522 

Schefuß et al 2016) and in a more restricted lake catchment (Fornace 2016). The 523 
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observations that large portions of the plant wax pool being “old” (i.e., 1000 yr residence 524 

times) and the inference that plant waxes are mobilized more quickly in wetter climates 525 

raises the possibility that δ2Hwax records are affected by changing spatiotemporal 526 

integration in terrestrial catchments. The effect of “pre-aging” of plant wax would be to 527 

smooth, dampen, and delay the original δ2Hprecip signature (French et al 2018). Some 528 

δ2Hwax records (e.g., the time series from the Congo Basin) have a smooth character that 529 

might imply substantial spatiotemporal averaging (Schefuß et al 2005) compared to the 530 

smaller and more abrupt changes recorded elsewhere (e.g., Lake Tanganyika; Tierney 531 

et al., 2008). However, in many cases δ2Hwax captures rapid climate changes with little 532 

apparent delay, including decadal-scale historical climate shifts (Figure 4). Fornace 533 

(2016) found plant wax reservoir ages of ~8,000 years in Lake Titicaca, yet δ2Hwax shows 534 

rapid changes and millennial-scale events similar to the Huascarán ice core (Figure 4), 535 

indicating that the “decadal” plant-wax pool must be very responsive to climate change. 536 

In the open ocean, but also in arid (coastal) regions, plant waxes may be exported 537 

primarily via aeolian processes (Pagani et al., 2000; Eglinton et al., 2002) (e.g., Gulf of 538 

Aden, Figure 4a). Wind transport of plant wax is able to capture seasonal variations in C3 539 

vs C4 vegetation (Conte & Weber 2002) and provides another explanation for why δ2Hwax 540 

captures rapid climate change.   541 

 542 

Beyond the late Pleistocene (ca. 40 to 50 ka), 14C-based dating techniques are not 543 

applicable and additional approaches are required to assess terrestrial OC cycling. The 544 

ratio of brGDGTs to crenarchaeol (i.e., the Branched-versus-Isoprenoid Tetraether (BIT) 545 

index) tracks the amount of terrestrial input in marine environments and ranges between 546 
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0 (marine-dominated) and 1 (terrestrial-dominated) (Hopmans et al 2004). The BIT index 547 

typically decreases from the river, through the estuary, and into the open shelf (Hopmans 548 

et al 2004). However, it can be controlled strongly by crenarchaeol—rather than 549 

brGDGT—concentrations, leading to a decoupling between BIT values and other 550 

terrestrial OC tracers (e.g., lignin concentrations) (Smith et al 2012). Due to these 551 

challenges, brGDGT concentrations (rather than the BIT index) may be a more robust 552 

tracer for soil OC (Smith et al 2012) and has shown promise in mountainous catchments 553 

(Kirkels et al 2020). However, branched GDGTs degrade more quickly than other soil OC 554 

tracers (e.g., long-chain n-alkanes, lignin phenols) (Zhu et al 2013) and caution is required 555 

when applying this approach (and/or the BIT index) to represent bulk soil OC, especially 556 

when the system is characterized by extensive OM degradation (e.g., large floodplains). 557 

We therefore argue that future studies should employ multiple proxies when attempting 558 

to trace soil OC export (e.g., lignin, n-alkyl lipids, brGDGTs).  559 

 560 

2.5. Fire proxies 561 

Reconstructing fire regimes usually relies upon the preservation of charcoal. However, 562 

charcoal abundance can be over- or under exaggerated by preservation biases (Vachula 563 

& Cheung 2021). Biomarkers offer a complementary view on the relationships between 564 

fire regime, climate, and vegetation in past terrestrial ecosystems. The most common 565 

approach involves analyzing the distribution of polycyclic aromatic hydrocarbons (PAHs), 566 

which can form rapidly at high (>300°C) temperatures (i.e., during the combustion of fossil 567 

fuels or biomass) or slowly at low (<150°C) temperatures (i.e., during petroleum 568 

formation). Previous studies have argued that PAH distributions are linked to changes in 569 
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fire temperature and/or intensity (e.g., Denis et al. 2012). However, a recent meta-570 

analysis of PAHs in natural burn experiments (Karp et al., 2020) reveals that PAH 571 

distributions are linked to burn phase, not temperature. PAHs formed in smoke are 572 

typically smaller than those formed in residues. PAH size distributions also reflect 573 

transport processes. As smaller PAHs are preferentially emitted into the aerosol phase, 574 

they can be aerially transported far from the original combustion source. In contrast, larger 575 

PAHs are less volatile and more likely to be stored in soils. This approach was employed 576 

by Lyons et al. (2020) to show that PAHs were transported long distances following the 577 

Cretaceous/Paleogene asteroid impact.  578 

 579 

PAHs also provide insights into the fuel source: combusted vegetation yields PAHs with 580 

no alkyl substitutions, whereas fossil carbon (e.g., oil or coal) is associated with one or 581 

more alkyl substitutions. This is assessed via the methylphenanthrene to phenanthrene 582 

ratio (Yunker et al 2002), non-negative matrix factorization (Karp et al 2021), and/or the 583 

alkylated PAH derivative index (APDI; Karp et al, 2018). Positive APDI values (>10; i.e., 584 

no alkyl substitutions) imply biomass burning, whereas negative APDI values (< -10; one 585 

or more alkyl substitutions) imply a fossil fuel carbon source (Karp et al 2020). However, 586 

burned conifers can exhibit negative APDI values and may therefore resemble a fossil 587 

fuel carbon source. PAH studies reveal that Neogene fire dynamics differed between 588 

continents (Karp et al 2018, Karp et al 2021) and that fire occurrence often coincided with 589 

hydrologic shifts and C4 expansion (Figure 3). Carbon isotopic measurements of specific 590 

PAH molecules provide additional information about the fuel source (Karp et al 2021). For 591 

example, δ13C analysis of pyrene indicates an increasing proportion of C4 grasses burning 592 
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between 6 and 8 Ma, coeval with a shift in plant wax δ13C to more C4-like values (Figure 593 

3).   594 

 595 

Levoglucosan and its isomers (mannosan, galactosan) provide further detail about the 596 

fire regime. Levoglucosan is a thermal by-product of cellulose or hemicellulose generated 597 

during biomass burning and forms at relatively low temperatures (~100 to 400°C) 598 

(Simoneit et al 1999). This compound is relatively labile and thus geological applications 599 

may be limited to late Quaternary sediments. However, recent methodological advances 600 

have lowered the limits of detection (~5 pg) (Schreuder et al 2018) and may enable 601 

detection in older sediments and/or settings where oxygen exposure is low (e.g., anoxic 602 

peats, water-saturated soils).  Benzene polycarboxylic acids (BPCAs; benzene rings with 603 

a differing number of carboxylic-acid groups) offer an additional approach and are more 604 

likely to represent the bulk pyrogenic carbon pool (Glaser et al 1998). BPCAs form at 605 

relatively high temperatures (>300-600°C, but up to 1000°C) and are produced by 606 

oxidative chemical degradation of the condensed aromatic phase. BPCA distributions are 607 

unable to differentiate between fuel sources (fossil fuel vs. biomass), but improved source 608 

apportionment in modern or Holocene-aged samples is possible using 14C dating since 609 

different fuel sources (e.g., vegetation, pre-aged soils, fossil carbon) carry unique 14C 610 

signatures (Coppola et al 2018). The combined analysis of PAHs, levoglucosan, and 611 

BPCAs can differentiate between low (<300°C) and high temperature fires (>300- 612 

1000°C) and thus can provide a nuanced perspective on fire dynamics (Hanke et al 2016). 613 

 614 

2.6. Methane cycling proxies 615 
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Atmospheric methane (CH4) is a potent greenhouse gas second only to carbon dioxide 616 

in its importance to climate change (Dean et al 2018). Higher temperatures and 617 

associated changes in rainfall patterns are expected to enhance CH4 emissions, resulting 618 

in further warming. However, there have been few tools to test these predictions. Below 619 

we discuss biomarker-based approaches used to study two key aspects of the methane 620 

cycle: 1) methanogenesis (Section 2.6.1) and ii) methanotrophy (Section 2.6.2). 621 

 622 

2.6.1. Methanogenesis 623 

Methanogens thrive within water-saturated and anoxic environments (e.g., peatlands, 624 

permafrost, anoxic lakes) and synthesise a suite of diether- and/or tetraether membrane 625 

lipids (Schouten et al 2013). Archaeol (2,3-diphytanyl-O-sn-glycerol) is the most common 626 

archaeal lipid in cultured methanogens (Bauersachs et al 2015, Koga et al 1993) and 627 

shows promise as an indicator of methanogen biomass (Pancost et al 2011, Zheng et al 628 

2014). Archaeol has been applied to reconstruct methanogen abundance in Holocene-629 

aged peat archives and reveals a minimum in methanogenesis in China between ~6 and 630 

4 ka (Zheng et al, 2014). This suggests that archaeol may be a useful methanogen 631 

biomarker in older (> 1 Ma) sediments. However, direct estimates of methanogen 632 

biomass from archaeol should be approached with caution as there can be differing 633 

concentrations of archaeol per methanogen cell (McCartney et al 2013).The acyclic 634 

isoGDGT (i.e., isoGDGT-0) is also abundant in methanogens (Bauersachs et al 2015, 635 

Koga et al 1993, Schouten et al 2013) and may provide complementary insights into 636 

methanogenesis (e.g., peatlands, permafrost, lakes).  637 
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Both isoGDGT-0 and archaeol have diverse source organisms, perhaps limiting their 638 

utility as methanogen biomarkers. In contrast, a sub-set of methanogens (e.g., 639 

Methanococcus, Methanosarcina) are known to synthesise sn-2-hydroxyarchaeol (Koga 640 

et al 1993); this is structurally similar to archaeol but contains a hydroxyl group at the C-641 

3 position of the sn-2 phytanyl chain (Hinrichs et al 2000). Due to the labile nature of sn-642 

2-hydroxyarchaeol, this biomarker holds promise as a marker for living methanogen 643 

biomass (Pancost et al 2011). There is also growing evidence that methanogens may 644 

synthesise unusual butanetriol and pentanetriol dibiphytanyl glycerol tetraethers (BDGTs 645 

and PDGTs, respectively). BDGTs and PDGTs have been identified in different 646 

environments—including wetlands (Blewett et al 2020) —and have been assigned to the 647 

methanogen order Methanomassiliicoccales (Becker et al 2016). Analogous to other 648 

archaeal lipids (e.g., archaeol, GDGT-0), BDGTs and PDGTs in wetlands increase in 649 

concentration below the anoxic layer and are nearly absent from oxygenated layers. This 650 

is consistent with observations that only methanogens synthesize BDGTs and PDGTs 651 

(Becker et al 2016). These compounds—alongside other ‘minor’ GDGTs (Bauersachs et 652 

al 2015)—are promising methanogen-specific biomarkers that warrant further study. 653 

 654 

2.6.2. Methanotrophy 655 

Microbes capable of consuming methane are known as methanotrophs. Aerobic 656 

methanotrophs can synthesise diagnostic hopanoids, including 35-657 

aminobacteriohopanepentol (i.e., aminopentol) and 35-aminobacteriohopanetetrol (i.e., 658 

aminotetrol) (Rush et al 2016, Talbot & Farrimond 2007). Both compounds are present in 659 

terrestrial environments, especially peats (Van Winden et al 2012) and lakes (Talbot & 660 
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Farrimond 2007), and can persist in the sedimentary record for >50 Ma under favorable 661 

conditions (e.g., anoxia). Both compounds have been used to reconstruct aerobic 662 

methanotrophy during the Quaternary (Talbot et al 2014) and early Eocene (Talbot et al 663 

2016), but typically lose their functionalized amino side group during diagenesis.  664 

 665 

Analysis of hopanoid δ13C provides an alternative means to reconstruct methanotrophy. 666 

Hopanoid δ13C is primarily determined by the δ13C of the substrate, carbon assimilation 667 

pathways and an organism’s source ecology (Hayes 1993, Pancost & Sinninghe Damsté 668 

2003). Heterotrophic organisms consuming organic substrates (e.g., organic acids, 669 

sugars) will typically yield hopanoid δ13C values which are similar to the food source (ca. 670 

-20 to -30 ‰), whereas methanotrophic organisms (consuming methane) will yield 671 

hopanoid δ13C values which are lower (ca. -40 to -60 ‰, but up to -100 ‰) and more 672 

variable (Pancost & Damsté 2003). A recent survey of hopanoid δ13C values in peatlands 673 

from different geographic regions shows that the δ13C composition of the C31 hopane—674 

one of the most abundant hopanoids in peats—spans a relatively narrow range (−22 to 675 

−32 ‰ VPDB) and is 13C-enriched relative to bulk organic matter and co-occurring plant 676 

wax biomarkers (Inglis et al 2019b). This suggests the C31 hopane is derived from a 677 

heterotrophic source organism(s) and has limited utility as a methanotroph biomarker. In 678 

contrast, other hopanoids (e.g., hop-22(29)-ene) yields lower δ13C values (e.g., up to −45 679 

‰) (Inglis et al 2019b), suggesting that in some settings this compound is derived from a 680 

mixed suite of bacterial sources consuming both 13C-enriched carbohydrates and 13C-681 

depleted, methane-derived CO2. Low hopanoid δ13C values (ca. -60 to -80 ‰) have also 682 

been found in modern (e.g., Naeher et al 2014), Holocene (e.g., Elvert et al 2016, Naeher 683 
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et al 2014), and Eocene lakes (e.g., Collister et al 1992, Freeman et al 1990). These 684 

values are considerably lower than in wetlands and indicate more vigorous methane 685 

consumption in lakes.  686 

 687 

Hopanoid δ13C values have successfully been applied as a proxy for methanotrophy 688 

across the Paleocene-Eocene Thermal Maximum (PETM). Pancost et al (2007) first 689 

observed a sudden decrease in hopanoid δ13C values (to -75 ‰) in the Cobham lignite, 690 

UK, an ancient wetland deposited during the onset of the PETM (Figure 6). These low 691 

values lie outside the modern range (Inglis et al 2019b) and coincided with an increase in 692 

methanotroph (e.g., aminoBHPs) (Talbot et al 2016) and methanogen biomarkers 693 

(GDGT-0) (Inglis et al 2019a). This implies enhanced methane cycling at this site during 694 

the PETM. Recent work provides additional evidence that enhanced methanotrophy 695 

occurred the onset of the PETM, with low hopanoid δ13C values observed in PETM-aged 696 

terrestrial/marine deposits from New Zealand (up to -60 ‰) (Inglis et al 2021). Hopanoid 697 

δ13C values rapidly returned to pre-event values even though brGDGT-derived 698 

temperatures remain high for the duration of the PETM (Inglis et al, 2021) (Figure 6). This 699 

suggests it is the onset of rapid global warming that is particularly disruptive to methane 700 

cycling in wetlands, a finding that is particularly concerning given the rapid global warming 701 

we are currently experiencing.  702 

 703 

Methane can also be oxidised anaerobically (anaerobic oxidation of methane; AOM) by 704 

a consortium of anaerobic methanotrophic archaea and sulfate reducing bacteria (SRB) 705 

(Hinrichs et al., 1999). Anaerobic methanotrophs produce diagnostic isoGDGT 706 
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distributions, with a high abundance of isoGDGT-0 to -3 relative to crenarchaeol (Pancost 707 

et al 2000). This is captured in the Methane Index (Zhang et al 2011), whereby high values 708 

(> 0.5) suggest extensive anaerobic methanotrophy.  This ratio is mainly used in marine 709 

settings but has utility in terrestrial settings where AOM is elevated (e.g., freshwater 710 

wetlands). To confirm the presence of AOM, other biomarkers can be analysed (e.g., 13C-711 

depleted pentamethylicosane and/or crocetane)  712 

 713 

 714 

Summary Points: 715 

 716 

1. Temperature – Bacterial-derived branched GDGTs provide insights into terrestrial 717 

temperatures up to the maximum theoretical limit of present calibrations (~30°C). 718 

Mesocosm experiments and new GDGT proxies may offer insights into higher 719 

terrestrial temperatures observed in the geological past. 720 

 721 

2. Plant ecosystems – Lignin and plant wax molecular compositions and their stable 722 

carbon isotopic composition (δ13C) carry signals of plant community composition 723 

and paleoenvironmental change. Machine learning of higher plant biomarkers 724 

offers promise in terms of reconstructing ecosystem turnover. 725 

 726 

3. Hydroclimate – Recent advances, including tandem reconstruction of ecosystem 727 

change with pollen or plant wax δ13C and paired analysis of isotope-enabled model 728 

simulations, have improved constraints on the interpretation of plant wax δ2H 729 
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values in the geological record. Lignin methoxy δ2H values similarly records the 730 

hydrological cycle, but the proxy is in comparatively early stages of development.  731 

 732 

4. Carbon cycling – Plant - and soil-derived biomarkers provide insights into the 733 

storage, aging, and mobilization of different terrestrial OC pools along the 734 

terrestrial-aquatic continuum. Pairing of plant wax δ2H and 14C provides a powerful 735 

tool to probe the relationships between climate and the carbon cycle during the 736 

late Quaternary. 737 

 738 

5. Fire regime - The analysis of multiple fire biomarkers provides a holistic 739 

perspective on fire dynamics and can reveal the temperature history, fuel source 740 

and burn conditions. 741 

 742 

6. Methane cycling – The δ13C of bacterial hopanoids provides unique (qualitative) 743 

insights into methanotrophy throughout the geological record. Coupling this 744 

approach alongside archaeal biomarkers for methanogenesis may corroborate 745 

detection of changes in the terrestrial methane cycle. 746 
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[Sidebar 1] 1216 

Title: Organic biomarkers 1217 

Organisms produce a wide range of organic compounds, including proteins, 1218 

carbohydrates and lipids. Organic compounds undergo various structural transformations 1219 

during diagenesis, but can retain structural or isotopic information that enables insights 1220 

into their biological precursor organism (“biomarkers”). Treibs (1934) first demonstrated 1221 

that organic pigments (porphyrins) preserved within ancient soil, shale and coal deposits 1222 

were derived from chlorophyll-a, a light-harvesting pigment found in all photosynthetic 1223 

organisms.  In general, a robust biomarker must be: (i) diagnostic of some species, taxa, 1224 

or process; (ii) well preserved over long timescales (103 to 108 yr); and/or (iii) responsive 1225 

to environmental perturbations (e.g., temperature).  1226 
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Summary phrases: 1239 

- Biomarkers can be used to reconstruct terrestrial environmental change over a 1240 

range of geological timescales 1241 

- Analyzing several biomarkers in tandem can provide unique insights into the Earth 1242 

System 1243 

  1244 
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 1246 

 1247 

 1248 

 1249 
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Captions 1262 

Figure 1 Key terrestrial biomarkers in the environment. Biomarkers provide insights into 1263 

physical climate variables (land temperature, rainfall), ecosystem state variables 1264 

(vegetation, fire regime), and biogeochemical variables (soil residence time, methane 1265 

cycling). Abbreviation: brGDGT, branched glycerol dialkyl glycerol tetraether.  1266 

Figure 2 brGDGTs indicate a rapid drop in terrestrial temperatures in Prydz Bay, East 1267 

Antarctica across the Eocene–Oligocene transition (~34 million years ago). (a) Benthic 1268 

foraminiferal δ18O values (Westerhold et al. 2020). (b) brGDGT-inferred MAAT 1269 

estimates (Tibbett et al. 2021). The shaded region in panel b represents 1σ uncertainty. 1270 

Abbreviations: brGDGT, branched glycerol dialkyl glycerol tetraether; MAAT, mean 1271 

annual air temperature. 1272 

Figure 3 Coupling of hydrology, vegetation, and fire regime on the Indian subcontinent 1273 

during the late Miocene (~10 million years ago to present). (a) δ2H values from the C31 1274 

n-alkane (Karp et al. 2021) (black) and δ2H values corrected for vegetation fractionation 1275 

to generate estimates of environmental water δ2H (blue), following Polissar et al. (2021). 1276 

Colored shaded areas represent 1-sigma errors. (b) δ13C values from pyrene (dark red) 1277 

and C31 n-alkane (orange), both corrected for δ13C changes in CO2 (Karp et al. 2021). 1278 

(c) Total pyrogenic PAH concentrations normalized to tetra aromatic β-amyrin 1279 

derivative, following the method of Karp et al. (2021b). Abbreviation: PAH, polycyclic 1280 

aromatic hydrocarbons. 1281 

Figure 4 Carbon and hydrogen isotopic compositions of plant wax biomarkers capture 1282 
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rapid climate changes. (a) Long-chain n-alkanoic acid δ2H data from the Gulf of Aden 1283 

(blue) track northern hemisphere temperature anomaly (gray), indicating regional aridity 1284 

accompanies twentieth-century warming, and n-alkanoic acid δ13C data (orange) 1285 

capture the Suess effect, as represented by δ13C of atmospheric CO2 (Tierney et al. 1286 

2015). (b) Long-chain n-alkanoic acid δ2H values from Lake Titicaca capture millennial-1287 

scale climate shifts during the last deglaciation (Fornace et al. 2014) that are as rapid—1288 

if not more—than the record of δ18O from the Huascarán ice core in Peru (Thompson et 1289 

al. 1995). 1290 

Figure 5 Relationships between lipid 14C and δ2Hwax values since the last deglaciation 1291 

(~17 thousand years ago to present). Results show a general negative relationship 1292 

between δ2Hwax and plant-wax mean transit time [reported as the ratio of 14C activity 1293 

between plant waxes and the contemporaneous atmosphere at the time of deposition 1294 

(F14R)] and indicate shorter terrestrial residence times under wetter climates. Data from 1295 

Fornace (2016) (Lake Titicaca), Hein et al. (2020) (Bay of Bengal), and Schefuß et al. 1296 

(2016) (Congo Fan). Uncertainty for Lake Titicaca is taken as either the propagated 1297 

analytical uncertainty for combined chain lengths or the maximum-minimum difference 1298 

between values for different chain lengths, whichever is greater. Uncertainty for other 1299 

records is taken as that propagated in the original publications. 1300 

Figure 6 Enhanced terrestrial methane cycling in Otaio River, New Zealand, during the 1301 

onset of the Paleocene-Eocene Thermal Maximum (~56 million years ago). (a) Bulk 1302 

organic matter δ13C values. (b) C30 hop-17(21)-ene δ13C values. (c) brGDGT-inferred 1303 

MAAT estimates in marine interbeds only. The light blue shaded region in panel c 1304 
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indicates 1σ error. Data from Inglis et al. (2021). Abbreviations: MAAT, mean annual air 1305 

temperature; brGDGT, branched glycerol dialkyl glycerol tetraether. 1306 

 1307 
 1308 
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