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ABSTRACT: Previous studies have identified environmental characteristics that skillfully discriminate between severe and

significant-severe weather events, but they have largely been limited by sample size and/or population of predictor variables.

Given the heightened societal impacts of significant-severeweather, this topic was revisited using over 150 000ERA5 reanalysis-

derived vertical profiles extracted at the grid point nearest—and just prior to—tornado and hail reports during the period 1996–

2019. Profiles were quality controlled and used to calculate 84 variables. Several machine learning classification algorithms were

trained, tested, and cross validated on these data to assess skill in predicting severe or significant-severe reports for tornadoes and

hail. Random forest classification outperformed all tested methods as measured by cross-validated critical success index scores

and area under the receiver operating characteristic curve values. In addition, random forest classification was found to bemore

reliable than other methods and exhibited negligible frequency bias. The top three most important random forest classification

variables for tornadoes were wind speed at 500 hPa, wind speed at 850 hPa, and 0–500-m storm-relative helicity. For hail, storm-

relative helicity in the 3–6 km and2108 to2308C layers, along with 0–6-km bulk wind shear, were found to be most important.

A game theoretic approach was used to help explain the output of the random forest classifiers and establish critical feature

thresholds for operational nowcasting and forecasting. A use case of spatial applicability of the random forest model is also

presented, demonstrating the potential utility for operational forecasting. Overall, this research supports a growing number of

weather and climate studies finding admirable skill in random forest classification applications.

SIGNIFICANCE STATEMENT: A majority of losses due to tornadoes and hail are attributable to significant events

[i.e., (E)F21 tornadoes or$50-mmhail]. The decision of whether or not to issue a forecast for significant severe weather

can be reduced to a binary classification problem, optimal for machine learning methodologies. Random forest classi-

fication algorithms are shown to be the most skillful for this application, and their continued implementation in oper-

ational nowcasting and forecasting may aid in better anticipation of significant tornado and hail events.
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1. Introduction

From 2011 to 2020, the United States tallied 77 severe storm

events resulting in at least $1 billion in consumer price index

(CPI) adjusted losses (NCEI 2021). The year 2020 recorded 13

of these events, easily surpassing the previous record of 9 in

2011. The frequency and magnitude of these costly severe

storm events has dramatically increased since 1980 and can be

primarily attributed to rapidly expanding developed land uses

and subsequent increase in exposure to natural hazards (e.g.,

Hall and Ashley 2008; Changnon 2009; Bouwer 2011; Paulikas

and Ashley 2011; Ashley et al. 2014; Rosencrants and Ashley

2015; Strader and Ashley 2015; Strader et al. 2015; Ashley and

Strader 2016; Strader et al. 2017a,b; Strader and Ashley 2018;

Strader et al. 2018; Childs et al. 2020;Ash et al. 2020). In addition

to the expanding footprint of the human-built environment,

climatological analyses of the spatial distributions of tornado

and severe hail reports, and their favorable environment fre-

quencies, reveal increasing trends in recent decades for both

hazards across portions of the midwestern, southeastern, and

northeastern United States. Decreasing frequency trends for

significant tornado events have occurred across the central and

southern Great Plains, whereas negative trends for severe hail

are evident in the immediate lee of the Rocky Mountains in

Colorado (Gensini and Brooks 2018; Moore 2018; Tang et al.

2019; Gensini et al. 2020; Taszarek et al. 2021a). Going forward,

changes in both the human-built environment (i.e., exposure)

and climatological probability (i.e., risk) of severe convective

hazards are important components for assessing the potential

for current and future economic loss, with changes in the

human-built environment projected to play the biggest role in

driving future disasters (Strader et al. 2017b).

Depending on their location and magnitude, severe convec-

tive storm (SCS) events can create vastly different economic

impacts. The current U.S. definition of an SCS event includes

hail with amaximum dimension of at least 25.4mm, a tornado of
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any strength, or a thunderstorm-induced wind gust of at least

25.7m s21. In an effort to distinguish SCS events more likely to

produce significant economic losses, a significant SCS category

was introduced (Hales 1988). Significant thresholds include hail

exceeding a maximum dimension of 50.8mm, a tornado rated

(E)F2 or greater, and a thunderstorm-induced wind gust of at

least 33.4m s21 (Hales 1988). A total of 34% (13%) of U.S.

counties average at least 1 day with a significant hail (tornado)

report per decade, with nearly all of these counties east of the

ContinentalDivide (Brooks et al. 2003a;Allen andTippett 2015).

Though significant-severe is considerably less frequent than se-

vere events (Gensini and Ashley 2011; Taszarek et al. 2020), a

disproportionate share of losses stem from significant-severe

hazards (Agee and Childs 2014; Grieser and Terenzi 2016).

This research was motivated by previous related works and a

hypothesis that environmental variables commonly used to an-

ticipate SCSs can be leveraged as skillful statistical discrimina-

tors between severe and significant-severe tornado and hail

events. To test this hypothesis, all U.S. severe and significant-

severe tornado and hail reports east of the Continental Divide

from 1996 to 2019 were paired with 84 variables derived from

ERA5 reanalysis vertical profiles (i.e., modeled proximity

soundings) and passed to various machine learning classification

algorithms for training, testing, and cross-validation. Machine

learning approaches for severe convective weather diagnostic

and prognostic applications have garnered significant attention

in the last five years, and their value added is demonstrable (e.g.,

Gagne et al. 2017; Lagerquist et al. 2017; McGovern et al. 2017;

Czernecki et al. 2019; Gagne et al. 2019; Mostajabi et al. 2019;

Burke et al. 2020; Hill et al. 2020; Jergensen et al. 2020;

Lagerquist et al. 2020; Loken et al. 2020; Sobash et al. 2020; Flora

et al. 2021).Given that prediction of a severe versus significant

severe weather event can be distilled to a binary classification

problem, it warrants such approaches. Such machine learning

approaches could greatly benefit SCS forecasters and now-

casters that desire to understand the probability of a partic-

ular event occurrence given the background convective

environment.

2. Background

a. Observed and model analysis proximity soundings

Observed proximity sounding studies have been conducted

since the 1940s in an effort to improve our understanding of the

environments that favor SCS. Showalter and Fulks (1943),

Fawbush and Miller (1954), and Beebe (1958) were the first

formal studies that attempted to associate observed vertical

thermodynamic and kinematic profiles with SCS events. The

first definition of a proximity sounding is often credited to

Darkow (1969). By the 1980s and early 1990s, diagnostic and

prognostic fields from NWP were employed to investigate

SCS vertical profiles (Weisman and Klemp 1982; Schaefer

and Livingston 1988; Johns et al. 1990; Davies and Johns

1993). These works helped to conclude that for tornadoes,

deep-layer wind shear, storm-relative helicity (SRH), and

low static stability were fundamental ingredients for SCS

occurrence.

The mid-to-late 1990s and 2000s produced a majority of

SCS proximity sounding literature. Soundings associated with

92mesocyclones illustrated a relationship betweenmesocyclone

maintenance and a balance of SRH, deep-layer wind shear, and

maximum moisture content in the vertical profile (Brooks et al.

1994). To construct a baseline climatology for variables associ-

ated with SCS forecasting (including significant severe events),

all 0000 UTC soundings which possessed nonzero CAPE across

the United States during 1992 were analyzed (Rasmussen and

Blanchard 1998; Rasmussen 2003). Composite parameters such

as the energy–helicity index (EHI) and the vorticity generation

parameter showed more discriminatory skill depending on the

application. An inherent weakness of utilizing observational

proximity soundings is the lack of spatiotemporal coverage they

provide, which may require broad, and potentially unrepresen-

tative spatiotemporal criteria to capture a SCS event (Brooks

et al. 1994; Craven and Brooks 2004; Potvin et al. 2010).

To increase sample size and refine the results of previous

works, Rapid Update Cycle-2 (RUC-2) model proximity

soundings were examined near supercell or discrete non-

supercell storms (Thompson et al. 2003). Larger values of

deep-layer vertical wind shear, 0–1-km SRH, 0–1-km relative

humidity, CAPE, and lower mixed-layer LCL heights dis-

criminated well between significantly tornadic and non-

tornadic supercells (Thompson et al. 2003). The same RUC-2

dataset was used to extract wind profiles and associated kine-

matic diagnostics, indicating that significant tornado environ-

ments were frequently associated with larger ground-relative

wind speeds, 0–1-km SRH, 0–1-km wind shear, and streamwise

vorticity compared to weakly tornadic or nontornadic environ-

ments (Markowski et al. 2003).

Further expansion of this work yielded use of an effective

inflow layer (effective SRH; ESRH) and effective bulk wind

shear, both of which were found to better discriminate between

significantly tornadic, weakly tornadic, and nontornadic super-

cells, as well as between supercell and nonsupercell convective

modes (Thompson et al. 2007). Effective-layer calculations were

applied to the supercell composite parameter (SCP) and sig-

nificant tornado parameter (STP), improving their diagnostic

discriminatory skill. Recent studies have indicated that further

improvements in the skill of STP as a statistical discriminator can

be achieved by using shallower layers for SRH integration

bounds (e.g., 0–500 or 0–100m; Coffer et al. 2019, 2020), and,

generally, stronger ground-relative winds and more rightward-

deviant storm motions contribute to more favorable conditions

for tornadoes (Coniglio and Parker 2020).RUC-2 datawere also

used to stratify large hail events, where significant class overlap

(severe and significant severe classes) was noted for thermody-

namic variables (Johnson andSugden 2014).However, improved

skill was documented by using nontraditional environmental

parameters that resulted in creation of the large hail parameter

(LHP; Johnson and Sugden 2014).

In what are probably the two most similar studies to the

research conducted herein, a multivariate logistic regression

equation was shown to be more skillful in discriminating be-

tween tornadic and significantly tornadic environments versus

just using effective-layer STP (Togstad et al. 2011), especially

when incorporating dominant convective mode. Machine
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learning was also used on a RUC-2 database of 1185 surface-

modified vertical profiles, each classified as nonsupercell,

nontornadic supercell, weak tornadic supercell, or significant

tornadic supercell (Nowotarski and Jensen 2013). Vertical

profiles were fed into a self-organizing maps (SOM) algorithm

and trained to predict storm classification based on the asso-

ciated kinematic and thermodynamic vertical profile diagnos-

tics. In general, Nowotarski and Jensen (2013) revealed that

simple kinematic diagnostics performed better than more

complex kinematic and thermodynamic diagnostics. Ground-

relative winds outperformed storm-relative winds, and the best

performing SOM utilized 0–6-km ground-relative wind speed.

b. Use of reanalyses

Numerous studies have used the increased sample sizes of-

fered by reanalysis data to extract proximity vertical profiles

(e.g., Brooks et al. 2003b, 2007; Gensini and Ashley 2011;

Gensini et al. 2014; Czernecki et al. 2019; King and Kennedy

2019; Taszarek et al. 2020, 2021b). Reanalyses have varying in-

tervals, horizontal grid spacing, vertical resolution, and relative

quality for SCS research (Gensini et al. 2014; King and Kennedy

2019; Taszarek et al. 2021b). Though reanalyses are not a perfect

substitute for direct observations, they can be useful when ob-

servations are not available, whether in space or time.

Brooks et al. (2003b) was the first to implement the use of

reanalysis data for SCS research. Examining NCEP–NCAR

reanalysis (Kalnay et al. 1996) proximity soundings from 1997 to

1999, a linear discriminant analysis (LDA) was developed using

0–6-km shear and CAPE that best stratified between significant

severe and nonsignificant severe/nonsevere environments. LDA

also showed that the combination of mixed-layer LCL, 0–1-km

shear, and station elevation discriminated between significantly

tornadic and nontornadic environments. This led to further re-

search examining SCS annual cycles (Brooks et al. 2007) and

comparisons of this initial work to higher-resolution reanalyses

(Gensini and Ashley 2011; Gensini et al. 2014; King and

Kennedy 2019; Taszarek et al. 2020).

c. Choice of reanalysis

King and Kennedy (2019) incorporated a suite of reanalysis

datasets to compare and contrast their classification ability and

biases against the RUC-2 and results of Thompson et al. (2003,

2007) by testing many sounding-derived diagnostics (e.g., SRH,

CAPE, SCP, and STP). Reanalysis datasets in the analysis in-

cluded NARR (32-km grid, 29 vertical levels), ERA-Interim

(80-km grid, 60 vertical levels), MERRA-2 (50-km grid, 72 ver-

tical levels), JRA-55 (55-km grid, 60 vertical levels), 20CR

(200-km grid, 28 vertical levels), and CFSR (38-km grid, 64 vertical

levels). Kinematic variables were relatively consistent across all

datasets, whereas thermodynamic diagnostics—especially those

dependent on boundary layer moisture—showed the greatest

bias. King and Kennedy (2019) suggest that these thermody-

namic biases were not a by-product of spatiotemporal resolution

differences; rather, they were primarily attributable to differ-

ences in parameter calculation methods and surface/boundary

layer parameterization schemes. Additionally, fixed-layer cal-

culations were more consistent across reanalysis datasets as

compared to effective-layer.

The most recent global reanalysis product is the ECMWF

ERA5, which possesses a horizontal grid spacing of 31 km, 137

vertical levels, and a 1-h output interval (Hersbach et al. 2020).

These data, along with radar reflectivity, observed lightning

data, and large hail reports, were used in a machine learning

algorithm to improve the prediction of large hail events over

Poland (Czernecki et al. 2019). A decision tree classification

model was trained using various combinations of 35 predictors

across ERA5 derived diagnostics and remote sensing data.

ERA5-derived indices such as the hail size index (HSI) and

significant hail parameter (SHIP) were shown to have skill in

forecasting for large hail in Europe, but combining ERA5 data

with observed radar and lightning data produced the best

model performance.

ERA5’s vertical resolution of 137 hybrid-sigma levels is far

superior to any global reanalysis dataset currently available,

which permits better depiction of rapidly changing profiles

(e.g., sharp temperature inversions) that are vital to any ver-

tically integrated calculations (e.g., CAPE, CIN). An analysis

of over 3.7 million soundings from the United States and

Europe illustrates that ERA5 is the most reliable available

reanalysis dataset for SCS climatological research, with cor-

relations to observed soundings of 0.8 for thermodynamic and

0.9 for kinematic parameters, respectively (Taszarek et al.

2021b). Thus, we use ERA5 reanalysis proximity vertical

profiles to build on previous research, using large sample sizes,

84 diagnostic variables, andmodernmachine learning methods

described in the next section to approach the issue of severe

versus significant-severe tornado/hail report classification in a

novel way.

3. Data and methods

a. SCS reports

Hail and tornado report data from 1996 to 2019 were

obtained from the Storm Prediction Center public web page

at https://www.spc.noaa.gov/wcm/ (Schaefer and Edwards

1999). Though reports are commonly used as ground-truth

data for SCS climatological studies, it is important to ex-

plicitly mention their caveats herein. For tornadoes, reports

do not consistently capture hazard magnitude, as they rely

on a damage-based scale (Fujita 1971; Doswell III et al.

2009; McDonald et al. 2010; Edwards et al. 2013; Wurman

et al. 2021). Tornadoes of the same pathlength, width, and

intensity can produce vastly different societal impacts de-

pending on their geographic location and underlying af-

fected assets (Ashley et al. 2014; Ashley and Strader 2016;

Strader and Ashley 2018; Strader et al. 2018). Hail reports at

the surface are often subject to melting before they can be

reported and have been shown to have a positive frequency

bias toward higher population and road network densities

(Tippett et al. 2015; Blair et al. 2017). Report collection in-

volves measured and estimated hazard magnitudes, loca-

tions, and timing—also increasing uncertainty (Allen and

Tippett 2015). While they do have significant societal im-

pact, thunderstorm-induced severe wind reports were not

assessed in this study due to their relatively poor reliability
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and quality compared to tornadoes and hail (Trapp et al.

2006; Smith et al. 2013; Edwards et al. 2018). It is important

to emphasize that these are simply reported events, where a

point-specific location and magnitude of the associated haz-

ard are often approximated. Tornado reports from 1 January

1996 to 31 January 2006 utilized the Fujita scale, whereas all

tornado reports from 1 February 2006 to 31 December 2019

used the enhanced Fujita scale (McDonald et al. 2010). This

data discontinuity offers negligible implications for this research

as the two scales differ little when binning nonsignificant and

significant tornadoes. Hail reports contain maximum hailstone

diameter, reported in 0.25 in. (6.35mm) increments. Prior to

5 January 2010, the hail criterion for a severe thunderstorm

was $0.75 in. (’19mm), which was thereafter increased to $1

in. (25.4mm; NWS 2010). A severe hail size $ 25.4-mm

threshold was implemented for the entire study to maintain

physical consistency of the severe hail class.

b. Study area, proximity definition, and calculation
of variables

The study area (Fig. 1) focuses on areas mostly east of the

CONUS Continental Divide, covering the greatest climato-

logical frequencies of SCSs (Brooks et al. 2003b, 2007;

Gensini and Ashley 2011; Tippett et al. 2015; Gensini et al.

2020; Taszarek et al. 2020). For each tornado and hail

report, a vertical profile (using all 137 ERA5 hybrid-sigma

levels) of temperature, specific humidity, geopotential height,

pressure, and (u, y) wind was extracted from the ERA5 grid

cell nearest report location. To reduce soundings that were

contaminated from the parent convective system, each ver-

tical profile was extracted from the reanalysis interval 1 h

prior to the hour floor of the associated report time. For

example, a report time of 1835 UTC would yield a reanalysis

sounding for 1700 UTC. Thus, all utilized model profiles were

valid 60–119min before report time. If multiple reports for

the same hazard were recorded for the same ERA5 vertical

profile, the highest report magnitude was assigned. To quality

control for any issues related to boundary propagation and

convective contamination, each sounding must have recorded

nonzero MUCAPE, similar to previous research (Brooks

et al. 2003b, 2007). In addition, profiles with average RH $

90% in the 0.002–6-km layer were treated as contaminated

and removed from the study (total of 192 and 645 for torna-

does and hail, respectively). Final sample sizes associated

with each hazard class are as follows:

d Severe hail: 25.4 , 50.8mm (1 , 2 in.): 112 027 profiles
d Significant-severe hail: $50.8mm ($2 in.): 13 225 profiles
d Tornado: (E)F0 or (E)F1: 25 782 profiles
d Significant tornado: $(E)F2: 3401 profiles

For each vertical profile, an assortment of 84 thermodynamic

and kinematic variables (Table 1) were extracted or calculated

using MetPy and SHARPpy (Unidata 2020; Blumberg et al.

2017) for use as predictors in each hazard class. Each profile

FIG. 1. Study domain and frequency of (a) (E)F0–1 tornadoes, (b) significant tornadoes, (c) severe hail, and

(d) significant-severe hail assigned to the nearest ERA5 gridpoint. Sample sizes (n) for the study period (1996–

2019) are also shown.
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TABLE 1. Variables examined in this study.

Variable

short name Description Units

Meltlvl Height of 08C T m AGL

WetBulb0C Height of 08C Tw m AGL

T_Sfc 2m AGL T 8C
T_1km 1 km AGL T 8C
T_3km 3 km AGL T 8C
T_850 hPa 850-hPa T 8C
T_700 hPa 700-hPa T 8C
T_500 hPa 500-hPa T 8C
Theta_e_Sfc 2m AGL ue 8C
Theta_e_1km 1 km AGL ue 8C
Theta_e_3km 3 km AGL ue 8C
Theta_e_850 hPa 850 hPa AGL ue 8C
Theta_e_700 hPa 700 hPa AGL ue 8C
Theta_e_500 hPa 500 hPa AGL ue 8C
Theta_e_Sfc1km Avg ue between 2m and 1 km AGL 8C
Theta_e_

MDiff03km

Max difference in ue between 2m

and 3 km AGL

8C

Theta_Sfc 2m AGL u 8C
Theta_1km 1 km AGL u 8C
Theta_3km 3 km AGL u 8C
Theta_850 hPa 850-hPa u 8C
Theta_700 hPa 700-hPa u 8C
Theta_500 hPa 500-hPa u 8C
MR1km Meanw between 2m and 1 kmAGL g kg21

MR2km Meanw between 2m and 2 kmAGL g kg21

MR3km Meanw between 2m and 3 kmAGL g kg21

MR4km Meanw between 2m and 4 kmAGL g kg21

MR5km Meanw between 2m and 5 kmAGL g kg21

MR6km Meanw between 2m and 6 kmAGL g kg21

MREL Mean w of effective inflow layer g kg21

RH_Sfc500 hPa Mean RH between 2m AGL and

500 hPa

%

RH_Sfc500m Mean RH between 2m and

500m AGL

%

RH_Sfc1km Mean RH between 2m and

1 km AGL

%

RH_Sfc2km Mean RH between 2m and

2 km AGL

%

RH_Sfc3km Mean RH between 2m and

3 km AGL

%

RH_Sfc4km Mean RH between 2m and

4 km AGL

%

RH_Sfc5km Mean RH between 2m and

5 km AGL

%

RH_Sfc6km Mean RH between 2m and

6 km AGL

%

SRH05km Storm-relative helicity between 10

and 500m AGL using Bunker’s

storm motion

m2 s22

SRH1km Storm-relative helicity between 10m

and 1 km AGL using Bunker’s

storm motion

m2 s22

SRH2km Storm-relative helicity between 10m

and 2 km AGL using Bunker’s

storm motion

m2 s22

SRH3km Storm-relative helicity between 10m

and 3 km AGL using Bunker’s

storm motion

m2 s22

TABLE 1. (Continued)

Variable

short name Description Units

SRH36km Storm-relative helicity between 3

and 6 km AGL using Bunker’s

storm motion

m2 s22

SRHEL Storm-relative helicity in the

effective inflow layer using

Bunker’s storm motion

m2 s22

SRH020C Storm-relative helicity in the 08 to
2208C layer using Bunker’s storm

motion

m2 s22

SRH1030C Storm-relative helicity in the2108 to
2308C layer using Bunker’s storm

motion

m2 s22

Z020C Thickness of 08 to 2208C layer m AGL

Z1030C Thickness of 2108 to 2308C layer m AGL

Shear05km Bulk wind difference between 10

and 500m AGL

kt

Shear1km Bulk wind difference between 10

and 1 km AGL

kt

Shear2km Bulk wind difference between 10m

and 2 km AGL

kt

Shear3km Bulk wind difference between 10m

and 3 km AGL

kt

Shear6km Bulk wind difference between 10m

and 6 km AGL

kt

Shear8km Bulk wind difference between 10m

and 8 km AGL

kt

ShearEL Bulk wind difference in the effective

inflow layer

kt

WS_850 hPa 850-hPa wind speed kt

WS_500 hPa 500-hPa wind speed kt

WS_250 hPa 250-hPa wind speed kt

Crit_Angle Critical angle 8
LR700500 700–500-hPa lapse rate 8C

km21

LR01km 2 m–1 km AGL lapse rate 8C
km21

LR03km 2 m–3 km AGL lapse rate 8C
km21

LR26km 2–6 km AGL lapse rate 8C
km21

LCL_Sfc Surface-based lifting condensation

level (parcel from lowest

model level)

m AGL

LCL_MU Most-unstable lifting condensation

level (most-unstable parcel in

the profile)

m AGL

LCL_ML Mixed-layer lifting condensation

level (mean T and w of lowest

100 hPa)

m AGL

LCL_EL Effective-layer lifting condensation

level (mean T and w of

effective layer)

m AGL

LFC_Sfc Surface-based level of free

convection (parcel from lowest

model level)

m AGL

LFC_MU Most-unstable level of free

convection (most-unstable parcel

in the profile)

m AGL

DECEMBER 2021 GEN S IN I E T AL . 2147



was then assigned a label of 0 or 1 for a severe or significant-

severe event, respectively.

c. Machine learning classification

Logistic regression, Gaussian naive Bayes, support vector

machines, adaptive boosting, gradient boosting, decision trees,

and random forests were all explored as potential classification

models using Python’s scikit-learn library (Pedregosa et al. 2011).

Only logistic regression (Kleinbaum et al. 2002) and random

forest classification (Breiman 2001) are discussed hereafter, as

they were found to be the most skillful for this particular ap-

plication. First, it should be noted that both tornado and hail

reports have a class imbalance problem (i.e., there are ap-

proximately an order of magnitude more severe reports than

significant-severe reports). Training any model designed to

optimize accuracy on such data will simply predict the severe

class only. This will lead to highmodel accuracy scores, but will

also exhibit a critical success index (CSI) of 0. To overcome

this, oversampling techniques are often performed on the mi-

nority class (in this case, significant-severe). The significant-

severe class for both tornado and hail were oversampled

using a borderline approach, where a support vector machine

(SVM) is used to locate the decision boundary (Nguyen et al.

2011). The borderline area (i.e., decision boundary between

classes) is approximated by the support vectors obtained after

training a standard SVM classifier on the original training set.

New instances will be randomly generated along the lines

joining each minority class support vector with a number of its

nearest neighbors using the interpolation. In addition to

using an SVM, the technique attempts to select regions

where there are fewer examples of the minority class and

tries to extrapolate toward the class boundary. Samples

from k nearest neighbors [set to 7; tested (3, 5, 7, 9, 15)] from

the significant-severe class near the support vector bound-

ary are the focus for generating synthetic samples to in-

crease n for the minority class.

Training and evaluation of the classification models was

performed using a leave-one-year-out-cross-validation ap-

proach. For instance, all models were trained on data from

1996 to 2018 and evaluated by predicting the outcome of

unseen data from 2019. The process is then repeated for each

year to create a diverse sample (N5 24) of model skill scores.

Oversampling was only performed on the training data to

prohibit synthetic overfitting. To ensure the model was not

overfit to the hyperparameters, an 80%/20% random split of

the training data (e.g., 1996–2018) was used for training and

validation before applying to the testing data (e.g., 2019). We

saw no differences in the optimal tuning parameters shown in

Table 2, but the overall CSI of the models were marginally

degraded (in some cases CSI values up to 0.02 points, likely

due to the reduced amount of training data), but not statis-

tically significant.

All data values were kept in their raw units and not scaled

(scaling had negligible impacts and did not greatly improve

skill for any of the tested models). Performance diagram

variables (i.e., probability of detection and success ratio)

were calculated for each model iteration using the deter-

ministic 2 3 2 contingency table predictions through mod-

el.predict(). For random forest classification, the predicted

class of an input sample is a vote by the trees in the forest,

weighted by their probability estimates. That is, the predicted

class is the one with highest mean probability estimate across

the trees. For logistic regression, the probability threshold for

classification was chosen by using the class with the highest

probability (essentially a probability threshold of 0.5). Receiver

operating characteristic (ROC) curves and attributes diagrams

were created from the model predictions using model.predict_

proba() to further assessmodel skill and reliability (Wilks 2011).

TABLE 1. (Continued)

Variable

short name Description Units

LFC_ML Mixed-layer level of free convection

(mean T and w of lowest 100 hPa)

m AGL

LFC_EL Effective-layer level of free

convection (mean T and w of

effective layer)

m AGL

CAPE_Sfc Surface-based convective available

potential energy (parcel from

lowest model level)

J kg21

CAPE_MU Most-unstable convective available

potential energy (most-unstable

parcel in the profile)

J kg21

CAPE_ML Mixed-layer convective available

potential energy (meanT andw of

lowest 100 hPa)

J kg21

CAPE_EL Effective-layer convective available

potential energy (meanT andw of

effective layer)

J kg21

CAPE_Sfc03 2 m–3 km AGL surface-based con-

vective available potential energy

(parcel from lowest model level)

J kg21

CAPE_MU03 2 m–3 km AGL most-unstable con-

vective available potential energy

(most-unstable parcel in low-

est 3 km)

J kg21

CAPE_ML03 2 m–3 km AGL mixed-layer con-

vective available potential energy

(mean T and w of lowest 100 hPa)

J kg21

CAPE_EL03 2 m–3 km AGL Effective-layer

convective available potential en-

ergy (mean T and w of effec-

tive layer)

J kg21

CIN_Sfc Surface-based convective inhibition

(parcel from lowest model level)

J kg21

CIN_MU Most-unstable convective inhibition

(most-unstable parcel in

the profile)

J kg21

CIN_ML Mixed-layer convective inhibition

(mean T and w of lowest 100 hPa)

J kg21

CIN_EL Effective-layer convective inhibition

(mean T and w of effective layer)

J kg21

GRW_aEL Difference of the effective layer and

3–6 km AGL average wind

direction

8

SRW_aMid Difference of the 10 m–1 km AGL

and 3–6 km AGL layer average

storm relative wind direction

8
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Both random forest and logistic regression models were

tuned using a ‘‘grid search’’ (Pedregosa et al. 2011) approach to

achieve optimal CSI scores. For logistic regression, the only

nondefault setting (scikit-learn v0.24.1) was the inverse of

regularization strength parameter C (set to 25 for tornado and

5 for hail). For random forest classification, nondefault settings

include the number of trees in the forest (set to 250 for both

hazards) and the minimum number of samples required to be

at a leaf node (set to 4 for tornado and 8 for hail). Other model

parameters tested can be found in Table 2.

In the context of comparing different models, statistical

significance was tested using 1000 bootstrapped (random

resampling with replacement) samples of pairwise model

scores (e.g., CSI). Models were deemed to be statistically sig-

nificantly different if the bootstrapped p value was #0.05.

Thus, the use of ‘‘statistically significant’’ hereafter should be

interpreted as having at least 95% confidence that the com-

pared models differ in skill.

d. Multicollinearity and variable importance

Some predictors in Table 1 exhibit multicolinearity (e.g.,

R2 $ 0.7 between variables). This does not have a significant

consequence for the RFC model, as correlated values can be

used as predictors at decision points (testing for mean re-

duction in gini impurity at each node) without a preference

for a single variable. However, this can mask relative variable

importance measurements in the RFC, making their inter-

pretation more difficult. For example, perhaps 0–1-km SRH

for tornado class forecasts is important, but assessing its value

added relative to a model that also has 0–500-m SRH as a

predictor reduces the relative importance of both variables

given the colinearity. To address this, conditional permuta-

tion importance (Strobl et al. 2008) and Shapley additive

explanations (SHAP) were used to evaluate the importance

of each variable to the skillful model prediction of the severe

report class.

Conditional permutation feature importance measures fea-

ture importance by observing how random reshuffling (thus

preserving the distribution of the variable) of each predictor

influences model performance. This is only possible with the

RFC model, and not with logistic regression.

SHAP values follow a game theoretic approach to help ex-

plain the output of certain types of machine learning models

(Shapley 2016; Lundberg et al. 2018, 2020). In this application,

SHAP values allow for the evaluation of how each variable

changes the log odds of the severe versus significant-severe

class prediction. Useful thresholds can then be created at which

each predictor begins to increase or decrease its probabilistic

contribution to the forecast outcome.

Multicolinearity can be an important issue for logistic re-

gression models. Thus, recursive feature elimination (RFE)

was utilized. RFE starts with all features in the training dataset,

ranks features by importance, discards the least important

features, and refits the model (Guyon et al. 2002). This process

is repeated until a specified number of features remains. The

number of retained features was tested (3, 5, 10, 20, 40, 60, all),

but the overall change in skill of various logistic regression

models was negligible (skill tended to slowly increase with

increasing n features before hitting an asymptote at n ’ 15).

Further sensitivity tests conducted to see if model skill/feature

importance changed by removing variables with high covari-

ance (R2 values $ 0.7) revealed negligible change in model

skill and no change in variable importance rankings (unless the

variable was specifically removed) as indicated by the training

weights. RFE for logistic regression was set to find the 10 most

important features for comparison to the top 10 variables for

the RFC model. One potential issue with RFE is that one can

obtain different variable importances by scaling and/or simply

omitting variables. Thus, the authors are more confident in the

ML interpretation methods for the RFC that uses the condi-

tional permutation importance, and these variables can be

further interpreted by examining the SHAP values.

4. Results

a. Model performance

1) TORNADOES

Random forest classification (RFC) exhibited the greatest

skill for classification of a tornado (TOR) versus significant

tornado (SIG TOR) event with a cross-validated mean area

under the ROC curve (AUROC) value of 0.785 and a mean

CSI value of 0.23. RFC classification skill was compared to

three logistic regression models, one using logistic regression

on all variables (hereafter LOGIT), another using Eq. (1) from

Togstad et al. (2011) (hereafter T2011), and another using

effective-layer STP (STPEFF), mirroring the logistic regression

benchmark of Togstad et al. (2011) (Fig. 2a). The improvement

noted by Togstad et al. (2011) in AUROC when comparing

STPEFF to T2011 was replicated herein (5.1%) using a much

larger sample size (T2011 reported a 5.3% AUROC improve-

ment), and represents a statistically significant increase in CSI

and AUROC. Only minor improvement (not statistically sig-

nificant) was noted over T2011 when using all variables in the

LOGIT model. Thus, if using logistic regression for this clas-

sification task, the simpler (i.e., fewer variables) equation used

in T2011 is likely an optimal choice. However, the RFC model

provided statistically significant improvements in skill over all

logistic regressionmodels, withmeanCSI increases found to be

TABLE 2. Parameters tested during model tuning. Bold values

indicate final model selections that produced the highest critical

success index values.

Model parameter RFC model (Tor) RFC model (hail)

n_estimators [50, 100, 200, 250,

500, 750]

[50, 100, 200, 250,

500, 750]

criterion [gini, entropy] [gini, entropy]
min_samples_split [2, 3, 4, 5] [2, 3, 4, 5]

min_samples_leaf [1, 2, 4, 6, 8, 10] [1, 2, 4, 6, 8, 10]

bootstrap [True, False] [True, False]

Model parameter LOGIT (Tor) LOGIT (Hail)

C [0.1, 1, 5, 25, 100] [0.1, 1, 5, 25, 100]

penalty [l1, l2] [l1, l2]
solver [liblinear, lbfgs, saga] [liblinear, lbfgs, saga]
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2.9%, 4.1%, and 6.3% over LOGIT, T2011, and STPEFF, re-

spectively (Fig. 2b). RFC also exhibited a modest lift in the

mean AUROC when compared to LOGIT (3.7%), T2011

(5.4%), and, especially, STPEFF (10.5%; Fig. 2c). In fact, the

interquartile range of RFC cross-validated CSI and AUROC

scores were greater than—and had no overlap with—LOGIT,

T2011, or STPEFF. To summarize classification skill of a TOR

versus SIG TOR report, the ensemble of cross-validated re-

sults for all four models were plotted on a performance dia-

gram (Fig. 2d). CSI increases as one moves from bottom left to

top right of a performance diagram. Perhaps most notable here

are the model frequency biases, noted as black dashed lines on

the performance diagram. The mean RFC model has a fre-

quency bias very close to 1, indicating that a SIG TOR is

forecast by theRFC classifier exactly often as it is observed.All

logistic regression techniques have a low frequency bias, pre-

dicting the SIG TOR class about half as often as they are ob-

served in the report database.

An attributes diagramwas also examined to assess the need

for forecast calibration (Fig. 3). The one-to-one line (blue

dashed) on an attributes diagram indicates perfect reliability.

The solid blue vertical and horizontal lines represent clima-

tological frequencies, and the black dotted line represents no

skill (the line halfway between perfect reliability and the

FIG. 2. (a) TOR vs SIG TOR classification mean receiver operating characteristic (ROC) curves for random

forest classification (RFC), logistic regression using all variables (LOGIT), logistic regression using Eq. (1) from

Togstad et al. (2011) (T2011), and logistic regression using effective-layer STP (STPEFF). (b) CSI and (c) AUROC

value distributions (1000 random bootstrapped samples with replacement) from the leave-one-year-out cross

validation are shown. Dashed lines on the box plots indicate the median value. Boxes display the interquartile

range, and whiskers extend to the 10th and 90th percentiles (circles indicate outliers). (d) A performance diagram is

shown comparing all models. Mean result from leave-one-year-out-cross validation (n5 24; 1996–2020) is noted by

filled symbol and outlined in black, whereas all other years are noted as non-filled symbols. Black dashed lines on

the performance diagram indicate frequency bias.
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horizontal climatological frequency). To show positive fore-

cast skill, points on the right side of the vertical climatological

frequency line must lie above the no-skill line, and on the left

side must be below the no-skill line. Spread among the cross-

validated runs for RFC indicate good reliability, with median

values falling along the one-to-one line of forecast probability

and observed frequency, suggesting that the RFC classifier is

skillful at all forecast probabilities (Fig. 3a). All logistic re-

gression models showed tendencies to overforecast at fore-

cast probabilities higher than climatology (Figs. 3b–d). Most

of the classification skill associated with logistic regression

models stems from lower-probability forecasts, similar to

results shown in Togstad et al. (2011). Using T2011 (Fig. 3c),

when a SIG TOR category has a forecast probability equal to

45% the actual chance of observing the event is closer to 20%.

This is a nearly identical result to that presented in T2011.

Overall, this analysis indicates that the RFC model is well

calibrated, whereas the logistic regression models would re-

quire calibration to become more reliable.

2) HAIL

Overarching results for severe hail (HAIL) versus

significant-severe hail (SIG HAIL) are similar. The RFCmodel

again exhibited the greatest skill, with a cross-validated mean

AUROC value of 0.772 and a mean CSI value of 0.237. RFC

was benchmarked against three logistic regression models

comprised of all variables (LOGIT), the significant hail pa-

rameter (SHIP), and the large hail parameter (LHP; Johnson

and Sugden 2014). RFC AUROC lift was marked (and statis-

tically significant) over these benchmark models, recorded

as 9.7%, 12.9%, and 15.7%, respectively (Figs. 4a,c). Logistic

regression with SHIP performed slightly better (as in-

terpreted by AUROC) than LHP, particularly at probability

of detection values $ 0.5, but CSI distributions were nearly

identical and not statistically significantly different. LOGIT

performed statistically significantly better than SHIP and

LHP, with AUROC lift at most values of probability of

detection and false alarm rate (Fig. 4a). Interestingly, the

lowest performing cross-validated RFC CSI (AUROC)

score was still a 4% (3.6%) improvement over the best

performing LOGIT score (Figs. 4b,c). RFC classification

was found to have a mean frequency bias’1 and was clearly

a superior performing model on the performance diagram

(Fig. 4d). All logistic regression techniques exhibited fre-

quency biases, 0.5 and were not able to reach deterministic

probability of detection values exceeding 0.2. SHIP and

LOGIT models performed better than LHP by reducing the

false alarm rate.

FIG. 3. Attributes diagram for (a) RFC, (b) LOGIT, (c) T2011, and (d) STPEFF to classify TOR vs SIG TOR

reports. Solid lines on the box plots indicate the median value. Boxes display the interquartile range, and whiskers

extend to the 10th and 90th percentiles (circles indicate outliers). Vertical and horizontal solid blue lines indicate

climatology. Dashed blue line indicates perfect reliability. Dotted black line indicates no skill. Inset histograms

indicate the respective forecast sharpness, with the y axis scaled to the fractional forecast frequency.
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HAIL versus SIGHAILmodel attributes diagrams indicated

one notable difference when compared to tornado classification.

The RFC classifier is less reliable at forecast probabilities be-

tween 0.3 and 0.9 (overforecasting bias), and garners most of its

skill outside of that range (Fig. 5a). Recall the RFC TOR versus

SIG TOR model was reliable at all forecast probabilities sug-

gesting that the greatest signal for a HAIL versus SIG HAIL

report classification forecast originates from relatively low or

high forecast probabilities. Logistic regressionmethodswere not

as reliable and exhibit little-to-no skill at most forecast proba-

bilities (Figs. 5b–d). We reiterate that all models may benefit

from some degree of calibration to increase reliability.

b. Variable importance

1) TORNADO

The 500-hPa wind speed, 850-hPa wind speed, 0.01–3-km

bulk wind shear, effective-layer SRH, and 2–6-km lapse rate all

ranked in the top 10 most important variables for both LOGIT

and RFCmodels (Table 3). Low-level SRH ranked in the top 5

for both models, but with different choices of integration

bounds (10–500m for RFC, and 0.01–1 km for LOGIT). A

majority (7 of the top 10) of predictors for the RFCmodel were

noted as being kinematic, which agrees with previous research

examining the best environmental discriminators for tornadoes

of various magnitudes (e.g., Brooks et al. 2003a; Rasmussen

2003; Markowski et al. 2003; Thompson et al. 2003; Nowotarski

and Jensen 2013; Hampshire et al. 2018; Coffer et al. 2019; King

and Kennedy 2019; Coffer et al. 2020). LOGIT had fewer ki-

nematic variables (5) in the top 10. Results of relative impor-

tance through conditional permutation were not sensitive to

the number of times permuting a variable or random shuffling.

2) HAIL

Variable importance for HAIL versus SIG HAIL was mixed

betweenRFC and LOGITmodels. Surface-based CAPE, 850-hPa

ue, 2–6-km lapse rate, freezing level, 0.002–2-km average RH, and

FIG. 4. As in Fig. 2, but for HAIL vs SIG HAIL classification using RFC, LOGIT, logistic regression using the

significant hail parameter (SHIP), and logistic regression using the large hail parameter (LHP).
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mixed-layer LCL height were the thermodynamic variables

with greatest importance from the LOGIT model. 0.01–3-km

bulk shear was again in the top 10 for both models, along with

0.01–6-kmbulk shear and 2–6-km lapse rate. LOGITparameters

were nearly evenly split between thermodynamic and kinematic

variables, whereas 8 of the top 10 most important variables for

SIG HAIL classification by the RFC model were kinematic in

nature. Interestingly, the RFC model indicated that 3–6-km

SRH and SRH in the 2108 to 2308C layer were the two most

important predictors. Details of the storm-relative hodograph

have been hypothesized to play an important role in the hail

growth (Kumjian and Lombardo 2020), and these results suggest

that mid-to-upper-level SRH plays an important role in deter-

mining the likelihood of the environment supporting SIGHAIL.

3) EVALUATING RFC WITH SHAP

The SHAP value (�Strumbelj and Kononenko 2014) from

Shapley game theory (Shapley 2016) for each predictor tries to

identify the correct weight such that the sum of all Shapley

values is the difference between the predictions and average

FIG. 5. As in Fig. 3, but for HAIL vs SIG HAIL classification using RFC, LOGIT, SHIP, and LHP.

TABLE 3. TOR vs SIG TOR and HAIL vs SIG HAIL relative variable importance (1 highest; 10 lowest) for LOGIT and RFC models.

FI indicates the feature importance value scaled from 0 to 1 using recursive feature elimination (LOGIT) and conditional permutation

importance (RFC).

TOR vs SIG TOR HAIL vs SIG HAIL

Rank LOGIT FI RFC FI LOGIT FI RFC FI

1 SRH1km 1 WS_500 hPa 1 T_1km 1 SRH36km 1

2 WS_500 hPa 0.764 WS_850 hPa 0.567 WS_500 hPa 0.583 SRH1030C 0.874

3 CAPE_ML 0.568 SRH05km 0.491 Shear3km 0.436 Shear6km 0.771

4 LCL_EL 0.507 CAPE_EL 0.365 Theta_e_850 hPa 0.342 Shear3km 0.753

5 CAPE_EL03 0.284 LR_26km 0.349 Theta_e_1km 0.337 Crit_Angle 0.377

6 SRH05km 0.232 CAPE_ML 0.316 Shear1km 0.319 WS_500 hPa 0.356

7 CIN_EL 0.162 Shear6km 0.306 Shear6km 0.294 GRW_aEL 0.309

8 RH_Sfc500m 0.117 ShearEL 0.303 RH_Sfc2km 0.284 LR_26km 0.306

9 Shear6km 0.116 Shear3km 0.291 T_850 hPa 0.239 Shear8km 0.24

10 Shear1km 0.113 SRHEL 0.284 Theta_3km 0.222 LR700500 0.162
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value of the model. Essentially, Shapley values correspond to

the contribution of each variable toward pushing the prediction

away from the expected value. Shapley values consider all

possible predictions for an instance using all inputs from the

variable set. When fitting a polynomial to the distribution of

SHAPx 5 f(x), one can examine the critical value(s) of x that

solve 05 f(x). These can be thought of as critical x values that

demarcate a 6 directional change toward contribution of a

prediction. Figure 6 displays SHAPx5 f(x) plots for the top ten

variables from the RFC TOR versus SIG TORmodel. As an

example, the critical SHAP value for 500-hPa wind speed is

46 kt (25.7 m s21), essentially meaning that values below

(above) 46 kt negatively (positively) contributed to the log

odds of a SIGTOR (Fig. 6a).Unsurprisingly, best-fit polynomial

FIG. 6. Random forest classification SHAP values for the top-10 variables from Table 3 for TOR (blue dots) vs

SIGTOR (red dots). The vertical black dashed line and associated x-axis variable value indicates the intersection of

the SHAP 5 f(x) polynomial (black solid line) with the 0 SHAP value.
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shape/structure of SHAP changes depending on the variable

(e.g., cubic for Fig. 6b, parabolic for Fig. 7e).

Low-level, upper-level, and deep-layer winds/shear exhibit dis-

tributions that suggest the greatest change in SHAPx [i.e., f
0(x) ]

happens within close proximity to the critical value and contribu-

tions toward the prediction of a SIG event do not changemuch for

certain f(x) values (Figs. 6a,b,g,h,i; 7c,d,f,i). This suggests that, for

example, once wind speed at 500 hPa reaches ’ 70kt (36ms21),

no changes in the log odds of prediction occur (Fig. 6a). Other

variables (e.g., MLCAPE and SRHEL for tornadoes) tend to

scale SHAPx in an approximately linear manner (Figs. 6f,j),

and some even substantially reintersect the critical 0 5 f(x)

value to again change the direction of contribution toward

prediction (Figs. 7e,g). This is clear with critical angle for SIG

HAIL, which shows a positive contribution to the outcome

of a SIG HAIL event if the angle is between 608 and 1628.
Physically, this would suggest a range of optimal angles be-

tween surface storm relative wind and the low-level shear

FIG. 7. As in Fig. 6, but for top-10 variables from Table 3 for HAIL (blue dots) vs SIG HAIL (red dots).

DECEMBER 2021 GEN S IN I E T AL . 2155



vectors. This also relates to storm relative helicity which is

important for mesocyclone formation and maintenance

(Thompson et al. 2007; Esterheld and Giuliano 2008). While

SIG events do occur on either side of the critical SHAPx

value, these thresholds serve as potential discriminating

values from an aggregate climatological approach when

considering game theory. In short, they offer a simple,

yet statistically meaningful, value that can be used by

forecasters or normalization techniques in composite

parameters. At the very least, SHAP value analysis per-

mits the interpretation of an otherwise ‘‘black box’’ of

decision-making in certain machine learning algorithms

(McGovern et al. 2019).

c. Example RFC use case: 17 May 2019

The model training set from 1996 to 2018 was used to

predict spatial locations favoring SIG TOR and SIG HAIL

in a hindcast setting using ERA5 input from 2100 UTC

17 May 2019. This essentially resembles a quasi-operational

setting in which a tool could ingest real-time environmental

variables and provide a classification prediction. The pre-

diction takes a matter of seconds once the variables are

ingested, which is important for rapidly updating operational

systems. The longest part of the process is training the RFC

models, which could be done antecedently. The date 17 May

2019 exhibited broad southwesterly upper-level flow over the

High Plains atop favorable boundary layer mixing ratio profiles

and southerly winds east of a dryline positioned near a line

extending from Imperial, Nebraska (KIML), to Dodge City,

Kansas (KDDC), to Childress, Texas (KCDS), to Fort Stockton,

Texas (KFST), at 2100 UTC (https://www.spc.noaa.gov/exper/

archive/event.php?date520190517).

RFC TOR versus SIG TORmodels indicated that—should a

severe weather report occur—the environment favored SIG

TOR reports in portions of northwest Kansas and southwest

Nebraska at 2100 UTC (Fig. 8). Two EF2 tornado reports (2250

and 2358 UTC) were recorded in the three hours following

2100UTC in southwest Nebraska in the northwest quadrant of a

surface ue axis. A tornado did occur near theDavisMountains in

Texas between 2100 and 0000 UTC, but it was not significant.

The RFC SIGHAILmodel highlighted a narrow zonal corridor

just east of the surface dryline favoring SIG HAIL reports

(Fig. 8b). A majority (13 of 15) of hail reports in far western

Nebraska and northeast Colorado were not significant and were

outside of the delineated SIG HAIL area. The environment

further south into western Kansas and the eastern Texas

Panhandle favored SIG HAIL, but convection had not

initiated/matured there by 0000 UTC 18 May 2019.

Additional knowledge about the probability of convective

initiation would certainly be beneficial to reduce false alarm

area. In addition, 12 hail reports were recorded in West

Virginia–Oklahoma–Kentucky between 2100 and 0000

UTC, but none of them were significant as correctly indi-

cated by the RFC model (Figs. 8b,d). While this is only one

FIG. 8. Example use case for 2100 UTC 17May 2019 using RFCmodels trained on data from 1996 to 2018 showing

deterministic yes/no predictions (yes; yellow fill) for (a) SIG TOR and (b) SIGHAIL and the corresponding forecast

probabilities for (c) SIGTORand (d) SIGHAIL.Black dots indicate severe reports. Red and green dots indicate SIG

TOR and SIG HAIL reports, respectively. All reports valid between 2100 UTC 17 May 2019 and 0000 UTC

18 May 2019.
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example case, it demonstrates feasibility as a tool for op-

erational applications.

5. Discussion and conclusions

Over 150 000ERA5 reanalysis vertical profiles were extracted

near severe weather reports in an attempt to investigate the

ability of 84 atmospheric variables to stratify environments fa-

vorable for severe versus significant-severe tornadoes and hail.

Key results of this study include:

d Random forest classification models were the most skillful in

predicting whether or not a tornado or hail report would be

classified as severe or significant-severe.
d Random forest classification models were more reliable and

had less frequency bias compared to logistic regression.
d Conditional permutation importance indicated that kine-

matic variables generally showed greater discriminatory

power for both tornadoes and hail.
d Shapley values from game theory were found to be useful for

assessing individual contributions from each variable to the

random forecast classification models.

Some study caveats are worthy of additional discussion. First,

vertical profiles were uniformly assessed across the entire study

domain and temporal record. Previous studies have examined

SCS environments as a function of space and time, noting that a

variety of parameters used in this study displayed geographic

and/or seasonal relevance (e.g., Davies and Johns 1993; Johns

et al. 1993; Brooks et al. 2003b; Gensini and Ashley 2011;

Thompson et al. 2012; Sherburn and Parker 2014; Sherburn et al.

2016; Coffer et al. 2019; Gensini and Bravo de Guenni 2019;

Taszarek et al. 2020). Seasonal and geographic variability was

not examined in this study, however, as performing this for the

current study design would lead to significant reduction in

sample sizes associated with SIG events, both seasonally and

geographically. Second, though the study temporal record was

chosen based on previous literature, issues still likely remain in

the quantification of SCS report magnitude (Tippett et al.

2015; Gensini et al. 2020). Such inconsistencies in the report

data may also introduce additional variability in the skill of

machine learning models. Finally, limitations do exist in the

use of a reanalysis dataset as the baseline for the generation

of a proximity sounding profile (Gensini et al. 2014; King and

Kennedy 2019; Taszarek et al. 2021b).

There does not exist a ‘‘silver bullet’’ for the discrimination

between severe and significant-severe events. Yet, results herein,

and derivatives of this type of analysis, should aid in operational

forecasting skill. Future work may specifically benefit by incor-

porating aspects related to convective mode using convection-

allowing models (Smith et al. 2012; Thompson et al. 2012; Ashley

et al. 2019; Sobash et al. 2020). Emerging techniques in data sci-

ence—especially random forest algorithms—appear to be prom-

ising tools for certain diagnostic and prognostic applications in

weather analysis and forecasting.
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