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Protein folding, the process by which proteins attain a 3-dimensional conformation necessary for their
function, remains an important unsolved problem in biology. A major gap in our understanding is how
local properties of proteins relate to their global properties. In this manuscript, we use the Writhe and
Torsion to introduce a new local topological/geometrical free energy that can be associated to 4 consec-
utive amino acids along the protein backbone. By analyzing a culled protein dataset from the PDB, our
results show that high local topological free energy conformations are independent of sequence and
may be involved in the rate limiting step in protein folding. By analyzing a set of 2-state single domain
proteins, we find that the total local topological free energy of these proteins correlates with the exper-
imentally observed folding rates reported in Plaxco et al. (2000).

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Protein folding is the process by which a protein attains a
unique three-dimensional conformation necessary for its function
(Alberts et al., 2002). Many different models of protein folding have
been proposed, all of which aim to understand the free energy bar-
rier associated with the transition from the unfolded configuration
to the native state of the protein (Stein, 1985; Anfinsen et al., 1961;
Anfinsen, 1973; Lindorff-Larsen et al., 2011; Adhikari et al., 2013;
Levinthal, 1968; Shea and Brooks, 2001; Onuchic et al., 1997;
Oliveberg and Wolynes, 2005; Ivankov and Finkelstein, 2004;
Englander and Mayne, 2017; Englander and Mayne, 2014;
Englander et al., 2016; Hu et al., 2016; Guo and Thirumalai,
1995; Onuchic et al., 1996; Ferreiro et al., 2014; Shakhnovich
et al., 1996; Makarov and Plaxco, 2003). To describe this process,
which involves multiple lengthscales (from the length scale of an
amino acid to that of the entire protein backbone), it is necessary
to have a meaningful characterization of the 3-dimensional config-
uration of proteins across length scales. In this manuscript we
introduce characterizations of protein conformations using tools
from mathematics, related to knot theory, that apply to all protein
length scales. In particular, we focus on characterizing the local
conformations of proteins (those of 4 consecutive a carbon atoms,
denoted CA) and exploring the relation to the global configuration
of the protein and protein kinetics.

Folded proteins are defined by their primary, secondary, tertiary
and quaternary structure (Alberts et al., 2002). The primary struc-
ture refers to the protein amino acid sequence. The secondary
structure refers to a sequence of 3-dimensional building blocks
the protein attains (beta sheets, alpha helices, coils). The tertiary
structure refers to the 3-dimensional conformation of the entire
polypeptide chain. The quaternary structure of a protein comprises
of 2 or more polypeptide chains. More refined methods to charac-
terize protein conformations than these classifications are also
used. For example, at the level of amino acids, the Ramachandran
plot, is a traditional way to capture the geometrical signatures of
amino acids in terms of their dihedral angles in 3-space. At the
length scale of the entire protein, the number of sequence-
distant contacts is a way to describe the conformation of the pro-
tein, which has shown a remarkable correlation with experimen-
tally observed folding rates (Makarov and Plaxco, 2003; Makarov
et al., 2002; Plaxco et al., 1998; Plaxco et al., 2000).

In the last decades, measures from knot theory have been
applied to biopolymers (Pouokam et al., 2019; Rawdon et al.,
2008; Trigueros et al., 2001; Arsuaga et al., 2002; Arsuaga et al.,
2005; Arsuaga et al., 2012; Hua et al., 2007; Stolz et al., 2017;
Sumners and Whittington, 1990; Marenduzo et al., 2009;
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Micheletti et al., 2006; Micheletti and Orland, 2017; Buck and
Flapan, 2007; Buck and Flapan, 2007; Flapan et al., 2019; Darcy
et al., 2009) and in particular to proteins to classify their conforma-
tions (Sulkowska et al., 2012; Baiesi et al., 2016; Baiesi et al., 2017;
Baiesi et al., 2019; Panagiotou and Plaxco, 2020; Shimokawa et al.,
2013; Niemyska et al., 2016; Jamroz et al., 2015; Dabrowski-
Tumanski et al., 2018; Goundaroulis et al., 2017). One of the sim-
plest measures of conformational complexity of proteins that does
not require an approximation of the protein by a knot dates back to
Gauss; the Writhe of a curve. Studies have applied the Gauss link-
ing integral to measure the entanglement of the protein backbone
by taking the entire backbone of the protein or by looking at link-
ing between parts of the protein. Both approaches have found a
correlation between folding rates and these measures of conforma-
tional complexity (Baiesi et al., 2016; Baiesi et al., 2017; Baiesi
et al., 2019; Panagiotou and Plaxco, 2020). However, this does
not answer how local properties of proteins relate to its tertiary
structure. The protein backbone, represented by its CA atoms,
can attain interesting conformations even with as few as 4 amino
acids. To our knowledge no study has focused at exploring the local
topology/geometry of the proteins at the length scale of 4 amino
acids using the Writhe. In this manuscript, we use the Writhe to
define a novel topological/geometrical free energy that can be
assigned locally to the protein. We do the same also using the Tor-
sion. We use this free energy to identify conformations with high
local topological free energy. These high local topological free
energy conformations are rare in the set of folded states studied
in this manuscript (see Section 2.2), and we hypothesize they
may be important in protein folding. Our results show that the
high local topological free energy conformations are independent
of the local sequence and of secondary structure and that they
may be involved in the rate limiting step in protein folding. By ana-
lyzing a set of single domain proteins that have been reported to
fold in a concerted, all-or-none, two-state (ie. with no well popu-
lated intermediate states) fashion, we show that the previously
reported experimental folding rates in Plaxco et al. (2000) correlate
with the total local topological free energy of the proteins, with
slower folding rates associated to higher total local topological/ge-
ometrical free energy.

The paper is organized as follows: Section 2 describes the topo-
logical and geometrical functions for characterizing 3-dimensional
conformations used in this paper. Section 3 describes our results.
Finally, in Section 4, we summarize the findings of our analysis.

2. The local topological/geometrical free energy of proteins

In Section 2.1 we give the definition of the mathematical tools
that we will use in this manuscript. In Section 2.2 we introduce
the novel definition of a local topological free energy of the protein
structure.

2.1. Measures of topological/geometrical complexity

We represent proteins by their CA atoms, as linear polygonal
curves in space. A measure of conformational complexity of curves
in 3-space is the Gauss linking integral. When applied to one curve,
this integral is called the Writhe of a curve:

Definition 2.1. (Writhe). For a curve l with arc-length parameter-
ization cðtÞ, the Writhe, Wr, is the double integral over l (Gauss,
1877):

WrðlÞ ¼ 1
2p

Z
½0;1��

Z
½0;1��

ðc0ðtÞ � c0ðsÞÞ � ðcðtÞ � cðsÞÞ
jjcðtÞ � cðsÞjj3

dtds: ð1Þ
2

where c0 denotes the derivative of c and where the integrals run
over ½0;1�� � ½0;1��, which denotes all s; t 2 ½0;1�, such that s – t.

The Writhe measures the average algebraic sum of crossings of
the projection of the curve with itself over all possible projection
directions. It is a measure of the number of times a chain winds
around itself and can have both positive and negative values.

The total Torsion of the chain, describes how much the chain
deviates from being planar and is defined as:

Definition 2.2. The Torsion of a curve l with arc-length parame-
terization cðtÞ is the integral over l:

TðlÞ ¼ 1
2p

Z
½0;1�

ðc0ðtÞ � c00ðtÞÞ � c000ðtÞ
jjc0ðtÞ � c00ðtÞjj2

dt: ð2Þ

where c0; c00; c000 denote the first, second and third derivatives of c.

The Writhe and the Torsion have successfully been applied to
study entanglement in biopolymers and proteins in particular
(Rogen and Fain, 2003; Panagiotou and Plaxco, 2020; Baiesi et al.,
2016; Baiesi et al., 2017; Baiesi et al., 2019; Norbiato et al., 2020).

For a polygonal curve l of n edges, the Writhe can be expressed
as

WrðlÞ ¼
X

16i<j6n

1
2p

Z
½0;1�

Z
½0;1�

ðc0iðtÞ; c0jðsÞ; ciðtÞ � cjðsÞÞ
jjciðtÞ � cjðsÞjj3

dtds ð3Þ

where ci (resp. cj) denotes the arc-length parametrization of the ith
edge (resp. jth edge) and where the sum is taken over all pairs of
edges i; j such that ji� jj > 1. Each summand in Eq. 3 is then twice
the Gauss linking integral of two straight segments. The Gauss link-
ing integral of two straight segments has a closed form that avoids
numerical integration and can be computed with no approximation
as in Banchoff (1976).

The Torsion of a polygonal curve also has a finite form, as
explained in Banchoff (1976). Namely, for a polygonal curve, the
Torsion is equal to the normalized sum of dihedral angles:

TðlÞ ¼ 1
2p

X
26i6n�1

/ðiÞ ð4Þ

where /ðiÞ denotes the dihedral angle centered at the ith edge.
An important property of the Gauss linking integral and the Tor-

sion which makes them useful in practice is that they can be
applied to polygonal curves of any length to characterize 3-
dimensional conformations at different length scales. In this work,
we use the Writhe and the Torsion to characterize local 3-
dimensional conformations of a protein at the length scale of 4
amino acids, we call this the local Writhe and the local Torsion,
respectively.

Definition 2.3. We define the local Writhe (resp. local Torsion) of an
amino acid represented by the CA atom i to be the Writhe (resp.
Torsion) of the protein backbone connecting the CA atoms
i; iþ 1; iþ 2; iþ 3.

Fig. 1 shows examples of the Writhe and Torsion values when
applied globally to the entire protein or locally, to 4 consecutive
CA atoms of the protein.

We note that in the following we will interchange the name ‘‘CA
atom” with ‘‘amino acid”, since there is a unique CA atom in each
amino acid.

The local Writhe of an amino acid is thus the Writhe of a polyg-
onal curve of 3 edges. The local Writhe of 3 edges is in practice the
Gauss linking integral between the first and third edge (because



Fig. 1. Examples of global and local Writhe and Torsion. (A) Global Writhe (Wr) and
Torsion (T) of PDB1A2P (resp. (B) 1A12, (C) 1A4I). In these exmaples, Wr and T
increase in absolute value as length and complexity of protein increases. (D) Local
Writhe and Torsion values of PDB16PK amino acids 1–4 (E) 16PK amino acids 4–8
and (F) 1GK9 amino acids 92–96 shown.
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consecutive edges have zero linking number). The latter is equal to
the geometric probability that the two straight segments cross in
any projection direction (divided by 2) (Banchoff, 1976). The local
Writhe thus, can take values �1 6 Wr 6 1. The local Writhe is a
measure of the local orientation of a polygonal curve and a mea-
sure of its compactness. For example a tight right-handed turn
(resp. left-handed) may have a positive (resp. negative) Writhe
value close to 1 (resp. �1), while a relatively straight segment will
have a value close to 0. The Torsion of 3 segments is the signed
dihedral angle of the 3 segments divided by 2p and thus takes
the values �0:5 6 T 6 0:5. The Torsion is 0 for a planar segment
and increases to �0:5 as the segment deviates from being planar.
We note that for a fixed dihedral angle, we have an infinite possi-
Fig. 2. Examples of local conformations in the protein sample and their corresponding
different Writhe. C, D: Similar Writhe, different Torsion. We see that we can have same

3

bility of positions of the third edge relative to the first edge, which
can contribute a different local Writhe. Thus, for the same value of
local Torsion, we can have infinitely many different conformations
with different values of local Writhe. For example, it is possible to
have low Writhe and high Torsion, and vice versa (see Fig. 2).

2.2. Topological/geometrical free energy

To assign a local topological/geometrical free energy along a
protein backbone, we use a method inspired by the framework
used in Penner (2020) for identifying exotic geometries of hydro-
gen bonds derived through Density Functional Theory (DFT) calcu-
lations. We first derive the distributions of the local Writhe and
local Torsion in the ensemble of folded proteins. Then for each local
conformation of a given protein we compare its local Writhe (resp.
Torsion) value to those of the ensemble and a free energy is
assigned to it based on the population of that value in the ensem-
ble. We can do the same for the global topology/geometry of the
entire protein.

We compute the distribution of a topological parameter in the
folded state ensemble. To do this in practice, we use a subset of
the structures provided in the PDB which are related to one
another by no more than some fixed percentage sequence identity
(culled subset). Namely, we use the dataset of unbiased, high-
quality 3-dimensional structures with less than 60% homology
identity from Wang and Dunbrack (2003).

Definition 2.4. Let dWr denote the density (ie. the number of
occurrences) of Wr in the folded ensemble. Let mWr denote the
maximum occurrence value for Wr. To any value p of Wr, we
associate a normalized quantity, which we will call, topological free
energy:
PðpÞ ¼ ln½dðmÞ=dðpÞ� ð5Þ
The same definition can be applied for T. We denotePWr ;PT the

topological free energy in Writhe and Torsion, respectively.
local Writhe and local Torsion values (axes units are in Å). A, B: Similar Torsion,
local Writhe and different local Torsion values and vice versa.
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We note that the above definition of topological free energy can
be applied to different lengths of the protein, by measuring Wr for
n consecutive amino acids at a time. In this manuscript, we will
focus at n ¼ 4 which is the smallest possible n that can be used
to define Writhe and Torsion.

Definition 2.5. We will call the topological free energy of confor-
mations of 4 consecutive amino acids, the local topological free
energy.
Definition 2.6. We will say that an amino acid has a high local
topological free energy in Wr (or is rare in Wr) if it is the first amino
acid in a local conformation with value Wr ¼ p is such that
PðpÞ P c, where c is a threshold corresponding to the 95th per-
centile of P-values across the set of folded proteins.

The same definition applies for the Torsion. We stress that we
call rare an amino acid that is at the beginning of a rare conforma-
tion. However, a rare conformation is composed by 4 consecutive
amino acids. We will say that an amino acid belongs to a rare con-
formation when it is one of these four amino acids.

We note that the free energy that we defined captures topolog-
ical effects in long chains. For short sequences of 4 amino acids, the
topology is trivial, but the geometry is not. Nevertheless, since we
use the Writhe, defined through the Gauss linking integral, a con-
ventional tool in topology, we will use the term topological free
energy at all length scales, as short as 4 amino acids.

Using the local topological free energy at each local conforma-
tion of a protein, we can assign a local topological free energy to
the entire protein as follows:

Definition 2.7. The total local topological free energy of a protein
is the sum of all the local topological free energies of each local
conformation in the protein.
Fig. 3. Distribution of the local topology in the PDB. (A) The local Writhe. (B) The local Tor
global Writhe and Torsion distributions shown in the. (C, D) The local PWr and PT value
conformations withPWr > 2:6 correspond to the complement of the 95th percentile of th
local conformations withPT > 3:5 correspond to the complement of the 95th percentile o
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The calculation of the total local topological free energy of a
protein follows a sliding window approach, where the local topo-
logical free energy of each local conformation of 4 consecutive
CA atoms is added.
3. Results

In Section 3.1 we present our results on the local topology/ge-
ometry of the culled PDB dataset of unbiased, high-quality 3-
dimensional structures with less than 60% homology identity from
Wang and Dunbrack (2003) (a total of 13,192 proteins). In Sec-
tion 3.2 we examine local conformations of high topological/geo-
metrical free energy. In Section 3.3 we analyze a set of 2-state
single domain proteins to examine the relation between the total
local topological free energy along the protein backbone and the
experimentally observed folding rate of the protein.
3.1. Local topology in the PDB

In this section we present the analysis of the local topology/ge-
ometry of the sample of the PDB proteins at 4 consecutive amino
acids at a time along the entire backbone.

Fig. 3A and B show the local Writhe and local Torsion distribu-
tions in the PDB culled ensemble, respectively. Note that the
Writhe and the Torsion of a random polygonal curve of 3 edges fol-
low normal distributions centered at zero (Panagiotou et al., 2010).
The distributions of the local Writhe and local Torsion of proteins
are clearly not those of random polygonal curves. The local Writhe
and local Torsion show one local maximum at positive values and
one at negative. This suggests a well defined pattern in the local
conformation of folded proteins, which may be due to the sec-
ondary structure elements and other characteristics of the amino
acids. A peak at a positive Writhe or Torsion value suggests
sion. Both distributions are bimodal but very different from each other, and from the
s as a function of Wr and T, respectively. High density is indicated by yellow. Local
e Writhe distribution (meaning that they are higher than 95% of thePWr values) and
f the Torsion distribution (meaning that they are higher than 95% of thePT values).
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presence of right-handed local conformations. A peak at a negative
Writhe or Torsion value suggests presence of left-handed local con-
formations. This could be a manifestation of the secondary struc-
ture of the proteins analyzed: Namely, 98% of the proteins in our
sample contain at least one helix which contribute positive Writhe
values and 91% contain at least one beta sheet, and b-strands may
contribute small negative Writhe values (Panagiotou and Plaxco,
2020). The local Writhe values are concentrated between �0.2
and 0.2. The local Writhe maxima occur at approximately �0:01
and 0:8. Interestingly, the local Torsion distribution seems to be
almost entirely concentrated in two values, a positive (0:25) and
a negative (�0:25). Examples of local conformations at the peaks
of the distribution of local Torsion are shown in Fig. 4. This strong
pattern in the dihedral angles between CA atoms may be expected
due to the strong patterns observed in the /;w and x dihedral
angles in proteins (Alberts et al., 2002). We see that conformations
with low values of Writhe in absolute value can have high values of
Torsion and vice versa (see Fig. 2 and also Fig. 14 in the Supple-
mentary Information). Both distributions of local Writhe and Tor-
sion have more pronounced peaks than the global Writhe and
Torsion distributions discussed in Appendix 5.

Fig. 3C and D show the PWr-values and PT-values as a function
of Wr and T, respectively. We see that most P values are less than
2, indicative of low topological free energy. Note that conforma-
tions with low PWr values can have high PT values and vice versa
(See Fig. 5).

3.2. High local topological free energy conformations in proteins

In this Section we will focus on those conformations outside the
95th percentile of the distributions, which correspond to high P
values (values greater than 95% of the distribution of P), and that
we associate with high local topological/geometrical free energy.
For simplicity, we will also refer to them as rare conformations.
The complement of the 95th percentile of the PWr-value distribu-
tion in the PDB corresponds approximately to absolute Writhe val-
ues greater than 0.1. The complement of the 95th percentile of the
PT-value distribution in the PDB corresponds approximately to
Fig. 4. Examples of local conformations with Torsion values at the tw

Fig. 5. Examples of local conformations in the protein sample with (
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absolute Torsion values greater than 0.3 or smaller than 0.1. Thus,
rare local Writhe values correspond to high Writhe in absolute
value, while rare local Torsion values may be values close to 0 in
absolute value. This suggests that rare conformations in Writhe
may not necessarily be rare in Torsion and vice versa (see Fig. 5).
In general, the high local Writhe values could correspond to tight
right-handed turns and the low local Torsion values could corre-
spond to almost planar conformations.

In Sections 3.2.1 and 3.2.2, respectively, we examine if high
local topological free energy conformations are related to sec-
ondary structure elements and/or specific amino acid types.

3.2.1. High local topological free energy conformations and secondary
structure in the PDB

To better understand the meaning of values of local Writhe and
Torsion at the complement of the 95th percentile of the P-value
distribution, we examine the correlation between these values
and secondary structure elements.

Fig. 6 shows the distribution of secondary structure elements in
the protein sample and the distribution of the first, second, third
and fourth amino acid in rare local conformations in Writhe in sec-
ondary structure elements. The distribution of the rare local con-
formations in Torsion is shown in the Supplementary
information. We see that 42% of the rare conformations in both
local Writhe are in helices, 37% in coils and 21% in b sheets, which
are very similar with the percentages of helices, coils and b sheets
in the protein sample. Similar results are found for Torsion (see
Supplementary information). Therefore, high local topological
energy conformations are independent of secondary structure.
We stress that even if the locations of rare conformations inWrithe
and Torsion are similarly distributed across secondary structures,
they are not pointing to the same amino acids.

3.2.2. High local topological free energy conformations and amino acid
type in the PDB

Amino acids have preferred dihedral angle distributions, speci-
fic sizes and other amino acid type dependent physical properties.
It is natural therefore to examine whether there is a correlation
o peaks of the distribution shown in Fig. 3B (axes units .are in Å).

A) high PT , low PWr , (B) high PWr , low PT (axes units are in Å).



Fig. 6. (Top) The distribution of secondary structures in the protein sample.
(Bottom 4 Figures) The distribution in secondary structure elements of the first,
second, third and fourth amino acid in high local topological/geometrical free
energy configurations in Writhe in the PDB culled data set. We notice that the
distributions of rare conformations in secondary structure elements are similar to
the distribution of secondary structure elements in the PDB sample, indicating that
the high local topological free energy conformations are independent of secondary
structure. The Torsion distribution is similar (shown in the Supplementary
Information).
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between an amino acid being part of a rare conformation and its
amino acid type.

Fig. 7 shows the frequency of each amino acid in the PDB culled
dataset versus the frequency each amino acid appears as part of a
high local topological free energy conformation in Writhe in the
1st, 2nd, 3rd or 4th position. The same is shown for Torsion in
the Supplementary Information. Overall, we see that the frequency
by which an amino acid occurs in a rare conformation is the same
as the frequency by which it appears in the PDB culled dataset. This
suggests that high local topological free energy configurations are
independent of their sequence. Exceptions might be Phenylalanine
and Histidine in both local Writhe and Torsion. Phenylalanine
appears to be favoring rare local conformations while Histidine is
not favored in rare local conformations. To quantify this we exam-
ined the absolute difference between the presence of an amino acid
in a rare conformation and the frequency of the amino acid in the
culled data set in general in Fig. 8. This shows that Phenylalanine
appears to be favoring rare local conformations by 3% while His-
tidine is not favored in rare local conformations by 2%, indepen-
dently of the location within the local conformation.
6

We next examine the handedness of the high local topological
free energy configurations led by each amino acid. As a proxy for
handedness we simply use the sign of the Writhe, where positive
sign indicates right-handed, while negative sign indicates left-
handed. Note that the distribution of Writhe in Fig. 3A points to
a higher number of positive local Writhe conformations. However,
it does not exclude the possibility that some amino acid types are
involved in conformations that create negative Writhe values dis-
proportionally. We find that the percentage of positive Writhe val-
ues for each amino acid fall within the range of 56–65% (with the
exception of Methionine which is 69% positive in local Writhe and
cysteine which is 49% positive in local Writhe). Similar results hold
for Torsion, ie. positive Torsion values for each amino acid fall
within the range of 51-68%. These results suggest a small but con-
sistent preference for positive local Writhe and Torsion values for
high local topological free energy conformations, representative
of right-handed conformations.

We also examine the average absolute local Writhe and Torsion
for each amino acid in a high local topological free energy confor-
mation, shown in Fig. 9 (Left). The local Writhe varies between
0:009762 and 0:030401158 and the local Torsion varies from
0:027668472 to 0:06821071. The outlier, Cysteine, has a Torsion
value between this range, but has a Writhe of 0:009, indicative of
more extended conformations.

Fig. 9 (Right) shows the average local topological free energy for
local Writhe and Torsion for each amino acid when involved in a
high topological free energy configuration. Our results show that
Asparagine, Glutamic acid, Lysine, Histidine and Methionine have
on average low PT values.

3.3. Local topological free energy and protein folding rates

In the previous paragraph we found that the frequency of a
specific amino acid type in a high local topological free energy con-
formation was on average the same as its frequency in the protein
sample, suggesting no significant amino acid preference for being
in a high local topological free energy conformation, with the pos-
sible exception of phyenylalanine. We may thus infer that the rare
local conformations are not related to the local protein sequence.
In this section we will examine how the local conformation of pro-
teins may be related to protein folding kinetics. Our hypothesis is
that unusual local topological/goemetrical properties in the PDB
structures indicate rare local topologies/geometries in the
unfolded state ensemble of proteins. This suggests that proteins
need to search more in the unfolded state ensemble for such rare
conformations and overcome energy barriers.

We analyze the native states of a set of simple, single domain,
non-disulfide-bonded proteins that have been reported to fold in
a concerted, all-or-none, two-state fashion, whose experimental
folding rates in water were obtained in Plaxco et al. (2000). In
Panagiotou and Plaxco (2020) it was shown that the logarithm of
the experimental folding rate decreases with decreasing global
Writhe and Torsion of the protein backbone. We point out that
other parameters in the literature are known to correlate with fold-
ing rates. The number of sequence-distant contacts is the simplest
parameter that shows the best correlation to date (Plaxco et al.,
1998). This parameter may be a proxy to some other more physical
aspect related to the 3-dimensional conformation of proteins that
could provide understanding to mechanisms of protein folding.
Several parameters based on the global topology of proteins have
been used and have shown a strong correlation with protein fold-
ing rates (Panagiotou and Kauffman, 2020; Baiesi et al., 2016;
Baiesi et al., 2017; Baiesi et al., 2019). All these efforts focus on
either the entire protein or on large parts of proteins (concatenated
loops). In this Section we focus at the smallest lengthscale possible
for analysis of Writhe and Torsion and show that topological/



Fig. 7. Frequency of amino acid types in the first, second, third and fourth amino acid, respectively, in high local topological free energy configurations in Writhe as a function
of the frequency of amino acid types in the PDB in general. We find a linear fit with R2 ¼ 0:8852 for the first amino acid (R2 ¼ 0:8585;R2 ¼ 0:8696;R2 ¼ 0:8697 for the second,
third and fourth, respectively) suggesting that high local topological free energy configurations in Writhe are not related to local amino acid sequence.

Fig. 8. The difference of the frequency of an amino acid in a rare local conformation versus its frequency in the PDB as a percentage. This shows that Phenylalanine appears to
be favoring rare local conformations by 3% while Histidine is not favored in rare local conformations by 2%, independently of the location within the local conformation.
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geometrical parameters at the length scale of 4 consecutive CA
atoms also correlate with protein folding rates.

Fig. 10 shows the logarithm of the experimental folding rate
versus the normalized total local topological free energy in Torsion
(total sum of PT values along the backbone divided by the length
of the protein). Our results show that the folding rate decreases
with increasing total local topological free energy in Torsion along
the entire backbone (with R2 ¼ 0:38).

We also examine the logarithm of the experimental folding rate
versus the number of rare (high local topological free energy)
amino acids a protein has in Fig. 11. We find that the folding rate
7

decreases weakly with increasing number of high local topological
free energy in Writhe local conformations, with Spearman coeffi-
cient s ¼ �0:274 and Kendall coefficient s ¼ �0:17. This correla-
tion supports the hypothesis that conformations of proteins that
are rare in the sample of native states may also be rare in the
unfolded state ensemble of proteins and thus related to global
energy barriers in the protein.

3.4. Local topological free energy and / values

The effect of amino acid sequence on the tertiary structure of a
protein is studied experimentally though chemical scannings



Fig. 9. Left: The Average absolute Writhe values and Average absolute Torsion values of high local topological free energy conformations containing each amino acid type.
Right: The Average PWr values and PT values of high local topological free energy conformations containing each amino acid type.

Fig. 10. The logarithm of the experimentally observed folding rate of a set of 2-state
proteins as a function of the normalized sum of local topological free energy in
Torsion (the sum of PT -values along the protein backbone).

Fig. 11. The logarithm of the experimentally observed folding rate of a set of 2-state
proteins as a function of the normalized number of high local topological free
energy conformations in Writhe, with Spearman coefficient s ¼ �0:274 and Kendall
coefficient s ¼ �0:17.
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(Gromiha and Selvaraj, 2002; Daggett et al., 1998). Chemical scan-
ning consists in substituting amino acids along a protein backbone
(for a protein known to fold) and exploring its folding after the sub-
stitution to its native state. This comparison is done using a quan-
tity called / value, which reflects how much the mutated amino
acid is involved in the key contacts established during the folding
process. A / value that is equal to 0, suggests that the mutation has
no effect on the structure and that the region surrounding the
mutation is unfolded in the transition state. A / value that is equal
to 1 means that the local structure around the mutation closely
8

resembles the structure of the native state. Therefore, the / value
represents how a specific amino acid in the sequence has an effect
in the global structure of the protein, with / ¼ 1 suggesting it is
not important at the rate limiting step. Here we focus on exploring
whether there is a relation between P-values and experimentally
observed / values for a set of well studied proteins: barnase,
FK506 binding protein (FKBP12), chrymotypsin inhibitor (CI2)
and src SH3 domain (SH3).

We calculate the PWr values along the backbone of the proteins
and compare them to the experimentally reported / values along
their backbone (Gromiha and Selvaraj, 2002; Daggett et al.,
1998). Our results, shown in Fig. 12, display an overall decrease
in / as PWr increases. The Kendall coefficient is s ¼ �0:1286 and
the Spearman coefficient is s ¼ �0:1968. This weak decreasing
trend is also supported by the trend of the moving average. This
further supports our findings showing that high PWr values are
associated with high free energy conformations which are sensi-
tive in the rate-limiting step of the folding process.
4. Discussion

We used the local topology/geometry of protein structures
alone to associate a novel local topological/geometrical free energy
to the protein backbone amino acids. By using a culled protein data
set from the PDB we derived the distributions of the local Writhe
and local Torsion values. Using these, we computed a local topolog-
ical free energy for each protein. For the data set we studied in this
manuscript (a data set with less than 60% homology identity), our
results showed that high local topological free energy conforma-
tions are independent of secondary structure and sequence. Inter-
estingly, our results suggest that these high local topological free
energy conformations are related to the global conformations of
the proteins. Namely, by focusing on a well studied set of 2-state
proteins, we found that the logarithm of experimental folding rates
decreases with the total local topological free energy in Torsion
along the protein backbone. We also found a weak decrease of
the logarithm of the folding rate with the number of high local
topological free energy conformations in Writhe per protein. Our
results also showed that / values decrease with increasing local
topological free energy in Writhe. These results point to the fact
that the local topological free energy in Torsion and in Writhe cap-
ture different information about proteins. Namely, the total local
topological free energy in Torsion better captures a free energy
for the entire protein backbone, while the local topological free
energy in Writhe can be better used to identify local conformations
which capture important features of the entire protein
conformation.



Fig. 12. Left: /-values versus theP-values of proteins barnase (PDB ID:1BRS), FKBP12 (PDB ID:1FJK), CI2 (2CI2) and SH3 (PBD ID: 1SRL). Right: Moving average of / values as
a function of PWr values.

Fig. 13. Distribution of the global topology/geometry of the PDB culled dataset. (A) Writhe of a protein normalized by the length of the protein. (B) Torsion of a protein
normalized by the length of the protein. Both the normalizedWrithe and normalized Torsion of the proteins in the PDB ensemble show a bimodal distribution with a peak at a
positive and a negative value, skewed to the right. However, the two distributions are different, indicating that the two parameters capture different aspects of the protein
conformation.
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Our results suggest that the local topological free energy in
Writhe and Torsion captures characteristics of the 3-dimensional
conformation of proteins that can be helpful in understanding pro-
tein folding and function. For example, the local topological free
energy of proteins can be applied to families of proteins to detect
similarities and possible selection mechanisms based on tertiary
structure. The local topological free energy of proteins can also
be applied to compare how mutations in proteins known to stabi-
lize or destabilize protein structure, affect their 3-dimensional con-
formation. Moreover, the local topological free energy in Writhe
and Torsion can be easily calculated for protein trajectories
obtained through simulations to study the topological landscape
of unfolded proteins and to study protein folding. Eventually, the
local topological free energy could be a useful parameter in the
search of a predictive model of protein folding.
5. The global topology of proteins in the PDB

In this section we analyze the three-dimensional configuration
of the entire protein backbone of the proteins in PDB culled protein
dataset as a whole and not at the local length scale.

The normalized values of the Writhe by the length of the pro-
teins is shown in Fig. 13(A). We see a bimodal distribution with
a peak at positive values of Writhe and a smaller one at negative
Writhe values. The distribution is overall skewed to the positive
values of Writhe, ranging from �0.2 to 0.6. The skewness of the
distribution to positive Writhe values indicates a preference for
right-handed conformations in the proteins. This is in agreement
with results in Panagiotou and Kauffman (2020) where it was
shown that the logarithm of the experimental folding rate
9

decreases when the Writhe of the native state becomes negative.
Note that the Writhe and Torsion of random polygonal curves fol-
lows a normal distribution centered at the origin (Panagiotou et al.,
2010; Diao et al., 2010). Clearly, proteins cannot be modeled by
random polygonal curves. The skewness of the distribution could
be a manifestation of the secondary structure of the proteins ana-
lyzed or of the local Writhe values, discussed in Section 3.1. How-
ever, we note that even though the secondary structure element
Writhe values add to the global Writhe of the protein, there can
be helical proteins with negative Writhe and proteins with no
helices that have positive Writhe.

The normalized Torsion values are shown in Fig. 13(B). We
point out that the distributions of Writhe and Torsion are appar-
ently different, which may be expected, since the two parameters
capture different characteristics of the 3-dimensional conforma-
tion of the proteins. Similarly to the Writhe, the Torsion values
may be affected by the secondary structure elements.
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