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ABSTRACT
Recently, several task-parallel programming models have emerged
to address the high synchronization and load imbalance issues as
well as data movement overheads in modern shared memory ar-
chitectures. OpenMP, the most commonly used shared memory
parallel programming model, has added task execution support
with dataflow dependencies. HPX and Regent are two more recent
runtime systems that also support the dataflow execution model
and extend it to distributed memory environments. We focus on
parallelization of sparse matrix computations on shared memory
architectures. We evaluate the OpenMP, HPX and Regent runtime
systems in terms of performance and ease of implementation, and
compare them against the traditional BSP model for two popular
eigensolvers, Lanczos and LOBPCG. We give a general outline in
regards to achieving parallelism using these runtime systems, and
present a heuristic for tuning their performance to balance tasking
overheads with the degree of parallelism that can be exposed. We
then demonstrate their merits on two architectures, Intel Broad-
well (a multicore processor) and AMD EPYC (a modern manycore
processor). We observe that these frameworks achieve up to 13.7×
fewer cache misses over an efficient BSP implementation across L1,
L2 and L3 cache layers. They also obtain up to 9.9× improvement
in execution time over the same BSP implementation.

CCS CONCEPTS
• Computing methodologies→ Shared memory algorithms;
Parallel programming languages.

KEYWORDS
sparse solvers, task parallelism, asynchronous many-task program-
ming, performance optimization, runtime systems, OpenMP, HPX,
Regent.
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1 INTRODUCTION
Sparse matrix computations manifest themselves in many forms
such as the solution of systems of linear equations, matrix factoriza-
tions, linear least squares problems, and eigenvalue problems [10].
As such, they comprise the core component of a broad base of
scientific applications in fields ranging from molecular dynamics
and nuclear physics to data mining and signal processing. In the
presence of large-scale data, sparse matrix computations become
quite challenging as they demand massive parallelism but cannot
effectively utilize compute resources. This underutilization stems
from the memory-bound nature of the computations, which is not
only the result of low arithmetic intensity but also irregular data
access patterns. The latter factor becomes more evident in modern
computer architectures where cache performance holds a greater
significance within deep memory hierarchies with the accumulated
cost of going farther away from the processor.

Challenges posed by large scale sparse matrix computations
are not particularly well addressed by a bulk synchronous parallel
(BSP) approach, which is a type of coarse-grained parallelism, and
imposes a barrier synchronization at the end of each computational
kernel. The two main factors that limit the performance of the BSP
approaches are (i) poor cache performance that can be attributed to
coarse-grain tasks which does not fit into the last level cache (LLC)
and (ii) high synchronization costs that are exacerbated by load
imbalances given the skewed distribution of nonzero values within
the matrices. Therefore, a fundamentally new approach is needed
to tackle these issues, which validate the emergence and increased
use of asynchronous many-task (AMT) programming models.

OpenMP’s task parallelism has been commonly used and well
studied since 2013 [21] as it allows extracting parallelism via sched-
uling and asynchronous execution of fine-grained tasks. This model
has the potential to remedy both deficiencies of the BSP model with
regard to cache performance and load balancing issues.

https://doi.org/10.1145/3472456.3472476
https://doi.org/10.1145/3472456.3472476
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There are other runtime systems that enable fine-grained task
parallelism such as HPX [12]. HPX is an advanced runtime system
and a programming API that conforms to the C++11/14/17/20 stan-
dards while supporting lightweight task scheduling to expose new
levels of parallelism. It also extends the standard to the distributed
case by employing a global address space, which renders efficient
utilization of inter-node parallelism when combined with runtime
adaptive resource management. HPX has demonstrated promising
results in many projects as diverse as astrophysics simulations,
n-body problems and storm surge forecasting [8, 11].

Another runtime system that adopts the AMT model is Re-
gent [24], a programming language and compiler designed for HPC.
Regent programs appear to be sequential codes with calls to tasks,
i.e., functions eligible for parallel execution. Regent runtime system
discovers implicit dataflow parallelism in the code by internally
computing the task dependency graph, eliminating the need for
explicit synchronization. Moreover, through its ability to schedule
and run tasks on distributed machines, Regent frees programmers
from low level distributed memory programming. Regent is shown
to achieve performance comparable to OpenMP and MPI+X for a
variety of applications [24, 27].

Recently, using the AMT model in OpenMP has been shown
to offer important advantages over its BSP model in the context
of sparse solvers with the DeepSparse framework [1]. DeepSparse
adopts a fully integrated task-parallel approach that targets all
computational steps in a sparse solver rather than a single ker-
nel such as SpMV or SpMM. DeepSparse automatically generates
and expresses the entire computation as a task dependency graph
(TDG) and relies on OpenMP for the execution of this TDG. Despite
the larger number of tasks that must be generated and managed,
DeepSparse achieved significant improvements in terms of cache
misses with little overheads through pipelined execution of tasks.
DeepSparse is publicly available at 1.

Having seen the success of OpenMP’s task parallelism on sparse
solvers, and the lack of work on evaluation of other AMT models in
this area, this paper aims to discern how OpenMP, HPX and Regent
compare as well as what they offer over BSP models. Our main
contributions can be summarized as follows:
• a novel task-parallel implementation of two sparse solvers with
different characteristics, i.e., Lanczos and LOBPCG algorithms,
using the HPX and Regent runtime systems by highlighting key
factors to obtain an optimized code,

• an extensive performance evaluation of DeepSparse, HPX and
Regent on multicore and manycore CPU architectures using a
variety of sparse matrices from different domains,

• empirical demonstration of the significant cache miss reduction
across all cache levels and the execution time improvement by
up to 9.9× and 7.5× compared to highly optimized library imple-
mentations for Lanczos and LOBPCG, respectively.

• presentation of a practical rule of thumb for determining the
ideal task granularity for each runtime system.
After reviewing the related work in Section 2, we discuss how

we leverage the dataflow model in each framework in the context
of sparse matrix computations and point out the key factors for
optimized implementations in Secton 3. Section 4 describes the

1https://gitlab.msu.edu/SParTA/deepsparse

solvers used for benchmarking. Section 5 shows the impact of
the optimizations applied, evaluates the frameworks in terms of
execution time and cache performance, and provides a heuristic for
choosing the task granularity.

2 RELATEDWORK
There are several other AMT frameworks as we try to review below.
Unfortunately, we cannot examine all of them in this paper, but
to the best of our knowledge, cross-examination of end-to-end
sparse solver performances of some important AMT frameworks
constitutes a unique aspect of our work.

PaRSEC is a framework and a runtime system that aims to man-
age tasks through architecture aware scheduling [5]. D-PLASMA
library [6] is developed using PaRSEC, and shows that PaRSEC
can improve the performance of dense linear algebra algorithms
by expressing them as a directed acyclic graph (DAG) of tasks.
However, PaRSEC provides a conservative data-flow model in both
shared and distributed memory as the runtime system works on
the data distribution and task graph information specified by the
user [26]. It also offers limited work stealing on distributed memory
as inter-node scheduling relies on remote completion notifications.

StarPU is a runtime system with a unified execution model at
high level [3]. Its main goal is to facilitate the generation and execu-
tion of parallel tasks on heterogeneous architectures using multiple
scheduling algorithms. Nevertheless, it requires the explicit data
distribution and task creation by the developer and depends on MPI
communications on distributed memory [26].

Legion runtime system extracts parallelism by dynamically iden-
tifying nested parallelism and independent tasks on account of
logical (definition of objects) and physical regions (actual copies of
objects) [4]. Regent compiler is essentially built on top of Legion,
making it simpler to program without sacrificing performance [24].

Charm++ is a C++-based, message-driven, and portable parallel
programming framework and language [13]. It can expose both
task and data level parallelism through the execution of parallel pro-
cesses called “chares”. Charm++ is similar to HPX in that they both
(i) mitigate load imbalances in a distributed system by migrating
part of the data between nodes, (ii) prefer to execute the code close
to where the data resides, (iii) adopt message&data-driven approach,
and (iv) employ a global address space (GAS) environment.

There are several other task-based parallel programming models
such as Intel Threading Building Blocks (TBB) [16], Qthreads [30]
and Intel Cilk Plus [22]. What makes HPX and Regent more ap-
pealing and convenient than these models listed above is that both
can employ the same task parallel approach on distributed mem-
ory systems with automatic data migration, which improves the
programmability on exascale architectures.

Thoman et. al. [26] provide a task-focused taxonomy for HPC
technologies, including HPX, Charm++, Legion, OpenMP, StarPU,
Intel Cilk Plus and TBB. Kulkarni and Lumsdaine [17] theoreti-
cally compare AMT runtimes along programming model, execution
model, and implementation characteristics bases. Stpiczyński [25]
evaluates the performance of OpenMP, TBB and Cilk Plus and ad-
vises how to improve performance using the Belman-Ford algorithm
as an example. Wang [28] provides a guideline to help programmers
select an appropriate task model between Cilk, OpenMP and HPX
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by drawing conclusions from six benchmarks: Fibonacci, Knight,
Pi, Sort, N-Queens, and Unbalanced-Tree-Search. To our knowledge,
our work is the first to compare the empirical performance of three
AMT models; OpenMP, HPX and Regent to an optimized BSP ap-
proach within the context of sparse solvers on both manycore and
multicore architectures.

3 IMPLEMENTATION AND OPTIMIZATIONS
In many large-scale scientific applications, sparse matrix computa-
tions are the most expensive kernels. As such, in all three frame-
works (DeepSparse, HPX and Regent), we define tasks based on
the decomposition of the input sparse matrices. Compared to a 1D
(block row) partitioning, a 2D (sparse block) partitioning is known
to expose a higher degree of parallelism while potentially reducing
data movement [23]. Therefore, we adapt a 2D partitioning scheme
where tasks are defined based on the Compressed Sparse Block
(CSB) [7] representation of the sparse matrix. All three task-parallel
versions start by partitioning the sparse matrix into CSB blocks,
which also dictates the decomposition of all other data structures
involved, such as input/output vectors and/or vector blocks.

Consider the simple code snippet in Listing 1, which we will
utilize to illustrate the salient technical details of the Lanczos and
LOBPCG algorithms and our optimization ideas. This code snippet
includes three of the most common sparse solver kernels. Suppose
that the input matrix A is of size m×m, block size is denoted by b,
and the vector width by n ≥ 1:
• SpMM kernel is partitioned into tasks where each operates on a
b×b block of the matrix A, and b×n block of X and Y as shown
in Fig. 1. Tasks are created only for non-empty blocks.

• In the second kernel, which is a linear combination operation
and will be referred to as the XY kernel, each task operates on a
b×n block of Y, the entire Z matrix (a single n×n block) and b×n
block of Q.

• The third one is the inner product kernel, which will be referred
to as XTY kernel, spawns tasks as shown in Fig. 2, computing
partial results from the multiplication of n×b block of YT and
b×n block of Q. A final task reduces the partial results.

Listing 1: An example pseudocode

1 SpMM(A, X, Y, m, n); // A*X = Y

2 cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasNoTrans ,

m, n, n, 1.0, Y, n, Z, n, 0, Q, n); // Y*Z = Q

3 cblas_dgemm(CblasRowMajor , CblasTrans , CblasNoTrans , n,

n, m, 1.0, Y, n, Q, n, 0, P, n); // Y '*Q = P

Notice that there are two different ways to implement the task-
parallel SpMM kernel: (i) to launch all SpMM tasks asynchronously
and keep a partial output vector on each thread/core, or (ii) to
setup dependencies between tasks to ensure no two threads/cores
access the same portion of the output vector. With the latter option,
the maximum degree of concurrency in SpMM is still equal to the
number of blocks in the output vector. Therefore, as long as the
number of blocks in the output vector is greater than the number
of threads, it avoids the memory cost and processing overhead of
the reduction required for the first option. As shown in Section 5,
the degree of parallelism yielded by the optimal block sizes exceeds
the thread count for DeepSparse and HPX. Experimental results on
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Figure 3: Task graph for the pseudocode in listing 1.

Regent pointed out that the dependency based solution achieves
better performance than the buffer based solution even when there
is not enough tasks to keep all threads occupied. As a result, we
adopt the latter approach in all three frameworks.

With this crucial detail in mind, for b =m/3, the computational
DAG for Listing 1 is shown in Fig. 3. Regardless of the underlying
representation of the DAG by the runtime system, the correctness
of computation depends on a valid execution order with respect to
the DAG topology, whereas the performance relies on exploiting
the maximum parallelism available while determining a schedule
that reduces data movement. Next, we discuss how each framework
accomplishes these conflicting goals in detail.

3.1 DeepSparse
DeepSparse [1] consists of two major components:

Primitive Conversion Unit (PCU). PCU essentially provides a high
level front-end scientific application development. Task Identifier
(TI), the first subcomponent of PCU, parses GraphBLAS [14] and
BLAS/LAPACK [2, 19] function calls, which are similar to those in
Listing 1, expressed through DeepSparse API. The output of TI is
a dependency graph at the function call level whereas tasks must
be created at a much finer granularity to expose parallelism and
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to allow control over data movement. Task Dependency Graph
Generator (TDGG), the second subcomponent, accomplishes that
by going over the input/output data information generated by TI
for each function call and decomposing corresponding data struc-
tures. TDGG then generates the dependencies between individual
fine-granularity tasks by examining the function call dependencies
determined by TI, while taking into consideration the non-zero
pattern of the sparse matrix.

Task Executor. DeepSparse provides the OpenMP task-based imple-
mentation of all computational kernels it supports. As such, Task
Executor picks each node from the output of TDGG one by one and
extracts the corresponding task information. Based on the kernel id,
partition id of the input/output data structures and other required
parameters, Task Executor calls the corresponding function found
in the DeepSparse library, effectively spawning an OpenMP task.
In DeepSparse, the master thread spawns all OpenMP tasks in a
depth-first topological order, and relies on OpenMP’s default task
scheduling algorithms for execution of these tasks.

DeepSparse will explicitly generate the task dependency graph
for each algorithm and input sparse matrix combination but the
overhead of this graph generation is negligible for two reasons.
First, each vertex in the graph corresponds to a task operating on a
large set of data in the original problem. Secondly, sparse solvers are
typically iterative, and the same task dependency graph is used for
several iterations. Therefore, such overhead would be insignificant
in comparison to the actual problem size.

3.2 HPX
HPX attains asynchronous parallelism through asynchronous func-
tion execution (async) and future instances: Asynchronous exe-
cution of a function will result in scheduling of it as a new HPX
thread and return a new future instance as HPX threads in the
queue are dynamically managed by the runtime system [12]. A
dataflow object, on the other hand, triggers a predefined function
when a set of futures become ready. Combining a dataflow object
with asynchronous execution provides a powerful mechanism for
maintaining data dependencies and constructing an execution tree.
We show HPX’s dataflow model in Listing 2, which implements the
pseudocode in Listing 1.

Listing 2: HPX code for the pseudocode in Listing 1

1 std::vector <hpx:: shared_future <void >> Y(np);

2 std::vector <hpx:: shared_future <void >> Q(np);

3 std::vector <hpx:: shared_future <void >> P_prtl_ftr(np);

4 hpx:: shared_future <void > P_rdcd_ftr;

5 // np (number of partitions) = ceil(m/blocksize)

6 for(int i = 0; i != np; ++i)

7 Y_ftr[i] = hpx:: make_ready_future ();

8 // to unwrap futures passed to functions

9 auto OpSpMM = hpx::util:: unwrapping (&SpMM);

10 auto OpDGEMV = hpx::util:: unwrapping (& f_dgemm);

11 auto OpDGEMV_T = hpx::util:: unwrapping (& f_dgemm_t);

12 auto OpRed = hpx::util:: unwrapping (& reduce_buf);

13 // Y = A * X

14 for(i = 0; i != np; ++i)

15 for(int j = 0; j != np; ++j)

16 if(A[i * np + j].nnz > 0)

17 Y_ftr[i] = hpx:: dataflow(hpx:: launch ::async

, OpSpMM , Y_ftr[i], A, X, Y, i, j);

18 // Q = Y * Z

19 for(i = 0; i != np; ++i)

20 Q_ftr[i] = hpx:: dataflow(hpx:: launch ::async ,

OpDGEMV , Y_ftr[i], Y, Z, Q, i);

21 // P = Y' * Q

22 for(i = 0; i != np; ++i)

23 P_prtl_ftr[i] = dataflow(hpx:: launch ::async ,

OpDGEMV_T , Y_ftr[i], Q_ftr[i], Y, Q, Pbuf , i);

24 P_rdcd_ftr = dataflow(hpx:: launch ::async , OpRed ,

P_prtl_ftr , Pbuf , P);

Each future defined (line 1-4) indicates whether a task of void
is executed, and thus the futures are of void type as well. We have
four functions that are not given in the code snippet: (i) SpMM for
a single block of the matrix, (ii) f_dgemm and (iii) f_dgemm_t that
are wrapper functions for cblass_dgemm calls to execute XY and
XTY tasks, and (iv) reduce_buffer to accumulate partial results
of P . We define a proxy function for each of these four functions
(line 9-12) whose sole purpose is to unwrap the futures when ready
before passing to the actual function. That enables programmers
to write functions with the same ease as the equivalent sequential
code.

We launch an asynchronous SpMM task (line 17) that operates
on sparse matrix block Ai, j and block X j to update block Yi . The
dataflow returns a future to the result of the SpMM task, which
is assigned to Y_f tr [i] (line 17). Since the use of a buffer for the
output Y is avoided through a dependency based approach, this
future depends on itself. To compute blockQi within the XY kernel,
the computation of Yi should be finished, which is indicated by the
readiness ofY_f tr [i] (line 20). Likewise, in the XTY kernel, the task
responsible for ith buffer of P will be triggered when both Y_f tr [i]
and Q_f tr [i] are ready (line 23). Note that checking Y_f tr [i] is
redundant there as Q_f tr [i] already depends on Y_f tr [i]. HPX
allows a vector of futures being provided as a parameter in dataflow
to set the dependencies; we use this feature for P : reduce_buffer
will be invoked once every future in vector P_prtl_f tr is ready
(line 24). Last but not least, we skip the empty matrix blocks (line
16) since they do not contribute to the output, in order to lighten
the burden on the runtime system and improve the performance.

3.3 Regent
Regent is a language, runtime system, and a compiler that exerts
implicit dataflow parallelism through two key abstractions: tasks
and logical regions (or simply regions) [24]. Tasks are functions that
are marked as eligible for parallel execution by the programmer and
regions are collections of structured objects that can be recursively
partitioned to render parallel execution possible. Tasks in Regent
are forced to describe how they interact with each region they
take as argument by declaring privileges: read, write, read/write
or reduce, which in return allows Regent to discover parallelism
in seemingly sequential code. To illustrate this, in Listing 3, we
provide the Regent code of the pseudocode presented in Listing 1.

Listing 3: Regent code for the pseudocode in Listing 1

1 fspace csb_entry{

2 {rloc , cloc}: uint16 , val: double ,

3 }

4 task SpMM(rA: region(ispace(int1d), csb_entry),

5 rX: region(ispace(int1d), double),
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6 rY: region(ispace(int1d), double),

7 s: int , e: int)

8 where reads(rA, rX), reads writes(rY) do
9 -- ... (SpMM implementation)

10 end
11 -- ... (other tasks)

12 task main()

13 -- ... np (num partitions) = ceil(m/blksize)

14 var sparse_matrix_is = ispace(int1d , nnz)

15 var vector_block_is = ispace(int1d , m * n)

16 var Alr = region(sparse_matrix_is , csb_entry)

17 var Xlr = region(vector_block_is , double)

18 -- ... (other region defs , Alr & blkptrs init)

19 var part = ispace(int1d , np)

20 var Xlp = partition(equal , Xlr , part)

21 -- ... (Y and Q partitionings , etc.)

22 -- Y = A * X

23 for i = 0, np do
24 for j = 0, np do
25 if blkptrs[i*np+j] < blkptrs[i*np+j+1] then
26 SpMM(Alr , Xlp[j], Ylp[i], blkptrs[i*np+

j], blkptrs[i*np+j+1])

27 end
28 end
29 end
30 -- Q = Y * Z

31 __demand(__index_launch)

32 for i = 0, np do
33 f_dgemm(Ylp[i], Zlr , Qlp[i], m, n, blksize , i)

34 end
35 -- P = Y' * Q

36 __demand(__index_launch)

37 for i = 0, np do
38 f_dgemm_t(Ylp[i], Qlp[i], Plr , m, n, blksize ,i)

39 end

A region (line 16-17) is the cross-product between an index space
(lines 14-15) and a field space (lines 1-3, like structs in C). A region
can be disjointly partitioned into subregions with a simple use of
partition function (line 20). An index space (line 19) must be provided
to name the respective subregions. CSB format requires each block
(subregion in Regent) to dynamically allocate memory based on
their number of non-zero entries, but Regent does not allow such
allocation. As a workaround, we create a region that contains all
entries (line 14&16) in advance where the entries falling into the
same block are kept contiguous to better utilize the cache.

SpMM task implementation is similar to that of HPX, but here,
rather than passing the pointer to the entire X and Y data and
making sure we access and update the appropriate portion, we
directly pass the corresponding subregion (i.e., X j and Yi in line 26).
By analyzing the privileges defined on each passed region/subregion
(line 8), the runtime system extracts parallelism for SpMM tasks as
shown in Fig. 3. Moreover, the index launch represents a loop of
tasks that are non-interfering and is a compiler-level optimization.
This concept helps the Regent to launch those tasks without any
dependency checks. It is not required, but the programmer can use
it to ensure the implementation is sound (line 31&36), for f_dgemm
and f_dgemm_t tasks (line 33&38), for instance. Although we do not
share it due to space constraints, f_dgemm declares read privilege
on Yi and Z and write privilege on Qi . Slightly different from HPX,
f_dgemm_t declares reduce privilege on P , which is convenient in
contrast to using reduce on Yi for SpMM since P is a much smaller
matrix with a lower overhead.

4 BENCHMARK APPLICATIONS
We evaluate the performance of the task parallel frameworks on two
popular eigensolvers with different characteristics: Lanczos [18],
which is SpMV based, and Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) [15], which is SpMM based.

Lanczos computes the k algebraically largest (or smallest) eigen-
values of a symmetric matrix by building the Krylov subspace Q ,
a block of orthogonal vectors. As k ≪ m, it is a relatively simple
algorithm (see Alg. 1) where SpMV is the main kernel. We give the

Algorithm 1: Lanczos Algorithm
1 b = initial vector , Q0 = b/| |b | |2
2 for i = 1 to k do
3 z = AQi−1
4 αi = Qi−1T z

5 q = [Q0, . . . ,Qi−1]

6 z = z − qqT z

7 βi = | |z | |

8 Qi = z/βi
9 end

pseudocode for the LOBPCG solver in Alg. 2. It involves kernels
with much higher arithmetic intensities (such as SpMM and sev-
eral level-3 BLAS calls) compared to Lanczos. The total memory
needed for block vectors Ψ , R, Q and others can easily exceed the
space matrix Ĥ takes up. Figure 4 [1] shows a sample task graph
for LOBPCG for a toy problem, which demonstrates the difficulty
of creating a schedule to attain an efficient execution.

Algorithm 2: LOBPCG Algorithm solving ĤΨ = MΨ

Input: Ĥ , matrix of dimensionsm ×m
Input: Ψ0, a block of vectors of dimensions ofm × n
Output:Ψ andM such that ∥ĤΨ −ΨM ∥F < ϵ , and

ΨTΨ = In
1 Orthonormalize the columns ofΨ0
2 Q0 = 0
3 for i = 0, 1, . . . , until convergence do
4 Mi =Ψ

T
i ĤΨi

5 Ri = ĤΨi −ΨiMi
6 Apply the Rayleigh–Ritz procedure on span{Ψi ,Ri ,Qi }

7 Ψi+1 = argmin
V ∈span{Ψi .Ri ,Qi }, V TV=In

trace(VT ĤV )

8 Qi+1 =Ψi+1 −Ψi
9 end

10 Ψ =Ψi+1

DeepSparse uses the DAG constructed for a single iteration with
barriers in between because the number of iterations until con-
vergence is unknown. HPX and Regent form the DAG internally
on-the-fly, so they might proceed between iterations without a
barrier, but this is hard to achieve in practice due to the conver-
gence check at each iteration. Critical path lengths in Lanczos and
LOBPCG are 5 and 29, respectively. Number of tasks depends on
block and matrix sizes, and ranges from 56 to 6,570,446 per iteration.
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Figure 4: A sample task graph of the LOBPCG algorithm [1].

5 PERFORMANCE EVALUATION
Performance evaluations were carried out on two systems, an In-
tel Broadwell-based multicore cluster and an AMD EPYC-based
manycore cluster. Each Broadwell cluster node has two 14-core
Intel Xeon E5-2680v4 Broadwell 2.4 GHz processors with a 64 KB
L1 cache (32 KB instruction, 32 KB data) and a 256 KB L2 cache per
core, in addition to a 35 MB shared L3 cache. Each EPYC cluster
node has two 64-core AMD EPYC 7H12 2.6 GHz processors. Each
EPYC core has a 64 KB L1 cache (32 KB instruction, 32 KB data), a
512 KB L2 cache and 16 MB L3 cache is shared between every four
cores.

We compare the performance of DeepSparse, HPX and Regent
implementations with two library-based BSP versions: (i) libcsr is
the implementation of the benchmark solvers using thread-parallel
Intel MKL Library calls (including SpMV/SpMM) with CSR stor-
age of the sparse matrix, (ii) libcsb also uses Intel MKL calls, but
with the matrix being stored in the CSB format. We use MKL calls
within each task of the AMT models whenever possible for a fair
comparison. Finally, we do not claim to have the best possible im-
plementation for all solver versions, although we did our best to
optimize them.

We utilized an entire node for our runs on both clusters, i.e., 28
cores on Broadwell and 128 cores on EPYC. For DeepSparse, libcsr
and libcsb, we bind OpenMP threads to cores. For HPX, the number
of OS threads spawned through –hpx:threads argument is the same
as the number of cores. For Regent, the number of cores to be used
for executing the application tasks is specified using -ll:cpu, and
-ll:util determines the number of cores allocated to the runtime
system. Empirically we found that -ll:cpu 24 -ll:util 4 on Broadwell
and -ll:cpu 110 -ll:util 18 on EPYC yield (near-)optimal results on
both benchmark applications.

We selected 14 matrices with varying sizes, sparsity patterns, and
domains from the SuiteSparse Matrix Collection in addition to the
Nm7matrix, which is from a nuclear shell model code (see Tab. 1) [9].
Since both solvers require the input matrix to be symmetric, the
matrices that are not symmetric (shown in bold in Tab. 1) are made
so by copying the transpose of the lower triangular part over the
upper triangular part:Anew = L+LT −D. Matrices shown in italics
were originally binary matrix, and hence were filled with random
values without breaking the symmetry.

Table 1: Matrices used in our evaluation.

Matrix #Rows #Non-zeros
inline1 503,712 36,816,170

dielFilterV3real 1,102,824 89,306,020
Flan_1565 1,564,794 117,406,044
HV15R 2,017,169 281,419,743

Bump_2911 2,911,419 127,729,899
Queen4147 4,147,110 329,499,284

Nm7 4,985,422 647,663,919
nlpkkt160 8,345,600 229,518,112
nlpkkt200 16,240,000 448,225,632
nlpkkt240 27,993,600 774,472,352
it-2004 41,291,594 1,120,355,761
twitter7 41,652,230 868,012,304
sk-2005 50,636,154 1,909,906,755

webbase-2001 118,142,155 1,013,570,040
mawi_201512020130 128,568,730 270,234,840

All presented performance data come solely from the solver
iteration parts, excluding any I/O, initialization and setup parts.
Performance data were averaged over multiple iterations (20 for
Lanczos, 10 for LOBPCG). For the last two matrices, number of
iterations was 10 for Lanczos and 5 for LOBPCG due to their size.
Our comparison criteria are L1, L2, LLC (L3) misses (unavailable
on EPYC due to root access requirement) and execution times for
both solvers and architectures. Cache misses were normalized with
respect to that of libcsr, and speedups were calculated over libcsr.
Cache miss data was obtained using “perf stat” command.

We note that performance data from where a single socket is
used on both architectures (14 cores on Broadwell and 64 cores on
EPYC) are similar to the case presented here, where both sockets are
used. The only difference is, on EPYC, the task parallel frameworks
seem to be affected less by the NUMA-related performance issues
as their speedup numbers improve going from a single socket to
the entire node. The single socket results are not presented due to
space constraints.

The impact of the degree of parallelism is measured by conduct-
ing tests for several different block sizes. However, for a given block
size, all AMT models are essentially presented the same DAG, i.e.,
the available degree of parallelism are identical across all runtimes.
Since all runtimes are executing the same DAG, we believe their
performance differences are due to the different scheduling algo-
rithms employed as this directly impacts thread idling and cache
utilization.

Scheduling policies of the runtimes studied here are either opaque
or are not well documented, making a detailed comparison of the
impact of the different scheduling policies difficult. For instance,
OpenMP’s task scheduling is left to the implementation and not
well documented; task priorities are only ignorable hints. For HPX,
NUMA-aware scheduling made a big difference in cache utiliza-
tion and performance, but their scheduling algorithms are not well
documented either. Regent gives task mapping options, which is,
however, mainly recommended for heterogeneous computing.

In Sect. 5.2 and 5.3, we share the results from the experiments
where the optimal block size is employed, which depends on the
solver, architecture, runtime system andmatrix type. Then in Sec. 5.4,
we present a practical rule of thumb for determining the ideal task
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granularity by choosing the ideal block size for each runtime sys-
tem.

5.1 The Effect of Optimizations
We tried to optimize the code at the same level for each task parallel
system using the techniques discussed below. Although each frame-
work benefits from all optimizations, due to space constraints we
only share the results of every optimization for a certain framework,
solver and architecture combination where the impact is the most
evident. In all following optimization plots, compared implementa-
tions incorporate all other optimization techniques so that the only
variable is the selected optimization at hand.

First-Touch Placement Policy. This policy refers to allocation of a
data page in the memory closest to the thread accessing it first.
When a single thread initializes all data structures, the data ends up
residing in the memory of a single NUMA node, which increases
access times, consequently hurting the performance. Leveraging
this policy would simply require the initialization of vector blocks
and the sparse matrix in parallel in the case of sparse solvers. The
128 cores on an EPYC node are internally organized into 8 NUMA
subregions, 4 per socket. As shown in Fig. 5 for DeepSparse, this
optimization is vital for good performance (up to 2.5 fold) for the
small and mid-sized matrices on the EPYC system. We also utilize
it in the BSP versions (libcsr and libcsb) for a fair comparison.
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Figure 5: Execution time of DeepSparse for Lanczos on EPYC
wrt first-touch policy.

Skipping Empty Tasks. Depending on the sparsity pattern of a ma-
trix and chosen CSB block size, there are empty blocks which do
not contribute to the result of SpMV/SpMM operation. Spawning
tasks for those blocks creates scheduling overheads for the runtime
system. Figure 6 shows that skipping such tasks may speed up the
execution time by 30% on average, albeit not as effective on some
matrices. We attribute the lack of improvement in those cases to the
fact that both implementations use the optimal block size for each
matrix, which in general does not yield too many empty blocks.
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Figure 6: Execution time of HPX for Lanczos on Broadwell
wrt skipping empty tasks.

Eliminating Reduction for SpMV/SpMMOutput. As discussed in Sec-
tion 3, the dependency based approach is used on all frameworks to
eliminate the reduction overheads. In Fig. 7, we show the empirical
advantage of this decision on Regent for the LOBPCG algorithm.
We observe that the reduce-based approach yields an extremely
poor performance on large matrices, and we believe this is due to
large buffers that need to be allocated by each core. Furthermore,
Regent runtime system manages the reduce operation internally
(recall that one of the region privileges was reduce). Given the prob-
lematic scaling behavior of Regent with regard to the number of
tasks (discussed in Sect. 5.4), poor performance of the reduce based
approach on Regent is not a surprise.
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Figure 7: Execution time of Regent for LOBPCG on Broad-
well wrt two SpMV/SpMM computation approaches.

Other Attempts. We also attempted several framework-specific op-
timizations. For instance, HPX allows passing scheduling hints to
their scheduler in an effort to create executors that target a spe-
cific NUMA domain or to pin HPX threads to a particular core. We
employed scheduling hints to achieve a locality-aware scheduling
for both solvers. This technique improved HPX’s both Lanczos and
LOBPCG performance significantly on EPYC, where there exist 8
NUMA domains (16 cores each). Regent provides a technique called
dynamic tracing [20] to reduce the task management overhead for it-
erative solvers. This technique relies on capturing the task graph in
the first iteration and replaying it for subsequent iterations through
memoization to avoid the dependence analysis. However, this last
attempt did not yield any significant performance improvement.

5.2 Lanczos Evaluation
Lanczos algorithm is a relatively simple algorithm in the sense that
it has much fewer types and number of tasks than LOBPCG because
it essentially consists of one SpMV and one inner product kernel at
each iteration. As such, scheduling decisions are simpler and there
are fewer data reuse opportunities. Consequently, we observe that
the task parallel systems often lead to little to no improvement in
terms of cache misses. This can be seen in Fig. 8 where the cache
misses comparison on EPYC for different Lanczos versions is shown.
No framework achieves consistent reduction in cache misses on L1
level. Moreover, the improvements on L2 level can be attributed to
the matrices being stored in the CSB format since libcsb, the other
BSP version, yields similar improvements.

Most importantly, all three task-parallel versions give decent
speedups on both architectures as shown in Fig. 9. On Broadwell
(the top subplot), DeepSparse, HPX and Regent achieve up to 2.3×,
4.3× and 2.0× improvement although on average, the speedup
achieved is somewhat modest (1.5×, 2.2× and 1.1×, respectively).
Task parallel versions perform better when we go from a multi-
core (Broadwell) to a manycore (EPYC) architecture. DeepSparse
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Figure 8: L1 and L2 misses of different Lanczos versions on EPYC normalized wrt libcsr.
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Figure 9: Speedup of different Lanczos versions on Broadwell (top) and EPYC (bottom) over libcsr.

achieves as high as 6.5× speedup, HPX up to 9.9× speedup and Re-
gent up to 2.7× speedup. On average, DeepSparse, HPX and Regent
achieve 3.3×, 4.9× and 1.6× speedup, the majority of which comes
from the large matrices.

We attribute the speedups observed across the board to the
increased parallelism with tasking and reduced synchronization
overheads. In fact, a further investigation of the execution flow
graph of tasks in Fig. 10 shows that the manycore architecture
provides a greater level of parallelism for the task parallel systems
to fill the gap resulting from load imbalances of SpMV with the
succeeding tasks. Therefore, each iteration is completed not long
after the execution of the last SpMV task on EPYC, providing the
AMT approaches with a greater success.

5.3 LOBPCG Evaluation
LOBPCG is a complex algorithm with several different kernel types;
its task graph may result in millions of tasks depending on the block
size. In LOBPCG, vector blocks have only 8-16 columns, hence there
is no tiling in the column dimension. Block sizes refer to the number
of rows in each chunk, they ranged from 1K to 16M. Since LOBPCG
requires several vector operations consecutively, there are plenty
of data reuse opportunities for vector chunks.

In Fig. 11, we show the cache misses and speedup comparison
on Broadwell for all five LOBPCG versions. The libcsr and libcsb
versions achieve similar number of cache misses, while the task-
parallel versions demonstrate an outstanding cache performance:
• DeepSparse yields a consistent improvement throughout all cache
levels: It achieves 3.0× - 10.4× fewer L1 misses, 3.8× - 12.0× fewer
L2 misses and 1.4× - 4.7× fewer L3 cache misses than libcsr.

• HPX’s cache performance is on par with DeepSparse: It achieves
2.8× - 13.7× fewer L1 misses, 3.7× - 13.1× fewer L2 misses and
1.4× - 5.2× fewer L3 cache misses than libcsr.

• Regent has competitive cache utilization too, as it produces 4.3×
- 9.6× fewer L1 misses, 4.0× - 12.3× fewer L2 misses and 1.6× -
6.2× fewer L3 cache misses compared to libcsr.
As the top subplot of Fig. 12 shows that on Broadwell, even with

the implicit task graph creation and execution overheads of the
runtime systems, this significant reduction in cache misses leads
to 1.8× - 3.0× speedup for DeepSparse, 1.5× - 4.4× speedup for
HPX and 0.8× - 1.9× speedup for Regent (slowdown occurring on a
few smaller matrices) over the execution times of libcsr. Given the
highly complex underlying task dependency graph of LOBPCG and
abundant data re-use opportunities available, we attribute these
improvements to the pipelined execution of tasks which belong to
different computational kernels but use the same data structures.

AMT models continue their superior performance in terms of
execution time on EPYC as shown in the bottom subplot of Fig. 12.
As a matter of fact, DeepSparse and HPX improve their perfor-
mance further compared to Broadwell: DeepSparse achieves 1.2× -
5.5× speedups and HPX achieves 1.7× - 7.5× speedups over libcsr.
However, Regent demonstrate a similar performance on this ar-
chitecture achieving 0.8× - 2.3× speedup where the performance
degradation is again being observed on the smaller matrices.

AMT models achieve up to 99% L1 hits for LOBPCG, compared
to the 85-90% hit ratio of loop-parallel versions. Considering AMT
models’ outstanding cache miss performance as well, we conclude
that cache utilization is an important factor with LOBPCG due to
data reuse opportunities. The improved performance observed in
HPX by switching to NUMA-aware scheduling, which is around
50%, also supports this view.

The pipelined execution of tasks in DeepSparse and HPX in
comparison to libcsr can be observed in Fig. 13. The performance
on XTY kernel accounts for the main difference in timing (see
Fig. 13a & Fig. 13b). Data parallel execution of this kernel in the
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Figure 10: Execution flow graph of nlpkkt240 from first three iterations of Lanczos for different versions and architectures.

BSP model considerably hurts the performance, which seems to
be avoided in task parallel execution to a great extent through the
re-use of involved matrix blocks in kernels such as XY or SpMM
after the execution of XTY tasks. There also exist characteristic
differences within the task parallel models as seen in Fig. 13c &
Fig. 13d: Both DeepSparse and HPX give the best result on the
nlpkkt240 matrix with 256K CSB block size whereas their execution
flow graphs do not show much resemblance to each other. HPX
in general seems to place less value on prioritization of the tasks
that are launched earlier, which consequently produces a more
shuffled graph where the overlap in each kernel’s start and finish
time increases. Regardless of that difference, their execution times
are similar in this example (≈ 3.0sec).

5.4 Block Size Selection
The CSB block size has a significant effect on the performance of
task parallel models as the factors such as task granularity, degree
of parallelism, and scheduling overhead of the runtime systems are
directly shaped by the block size for a given matrix and solver type.
This is because we use this block size as a uniform partitioning
factor whether it is for a 2D (e.g., SpMV and SpMM) or 1D (e.g.,
all vector operations) kernel. Therefore, by the “block count”, we
simply mean the number of tiles/blocks in each dimension, which
is determined by the row count of matrices/vectors and the CSB
block size. Choosing a small block size creates a large number of
small tasks, which is preferable on a parallel architecture, but the
large number of tasks may lead to significant scheduling overheads.
Increasing the block size reduces such overheads, but this may then
lead to increased thread idle times and load imbalances. Therefore,
finding the sweet spot between these two extremes is important.

We found the optimal block size, which differs for each matrix,
solver architecture, and runtime system combination by trying a
variety of numbers from 210 to 224. This brute-force search may not
always be practical. Thus, analyzing the data further, we have come
to notice that the optimal block size would always yield a block
count between 8 and 511 regardless of the case. As such, picking
the optimal one boils down to the comparison of the six block sizes,
the ones that result in 8 to 15, 16 to 31, 32 to 63, 64 to 127, 128 to
255 or 256 to 511 block counts.

We show the performance profiles in Fig. 14 to compare these
six block counts for each runtime system and architecture. Note
that our findings on LOBPCG solver match the ones from Lanczos
solver. So, to avoid redundancy, we only share LOBPCG results
here. In the performance profiles, we plot the percentages of the
instances in which a block count yields an execution time on a

matrix that is no longer than τ times the best execution time found
by any block count for that matrix. Therefore, the higher a profile
at a given τ , the better a heuristic is. We observe the following:
• For DeepSparse, 32-63 block count is the best option and it is
always within 1.15× the best option on Broadwell. On EPYC, 64-
127 block count have the top spot and 32-63 block count provides
a comparable performance.

• For HPX, 64-127 block count gives the optimal performance in
general on both Broadwell and EPYC. However, 32-63 and 128-
255 block count configurations perform similarly well regardless
of the architecture.

• Regent prefers more coarse-grained tasks as 16-31 block count
performs the best on both architectures. Considering that bottom
three spots belong to highest three options suggests that Regent
has scaling issues with regard to creation or scheduling of large
number of tasks. In fact, going beyond 64 block count can cause
5× - 10× slowdowns although we cannot see it here as τ is shown
for between 1.0 and 2.0 for all systems.
As a practical rule of thumb, we can say that 32-63 block count

on Broadwell and 64-127 block count on EPYC for DeepSparse and
HPX are good choices. Even though we have slightly less than a task
per thread per kernel with the 64-127 block count, there are many
kernels in LOBPCG to be executed in parallel. In fact, the execution
flow graphs verify that this kernel-level parallelism might be just
enough to keep all threads occupied by exposing more than a task
per thread.

We know from the speedup plots that DeepSparse and HPX are
the best two versions by far. Taking into account these block counts,
they achieve high performance by over-decomposing the work to
yield more than one task per thread for load balancing purposes
while limiting that task to thread ratio to avoid scheduling overhead.

Tuning the block size is very important for best results. However,
this is a complicated choice that depends on the specific problem,
architecture and compiler. We note that even for the easier-to-
characterize dense linear algebra kernels, auto-tuning is necessary
(e.g., ATLAS library [29]). Hence, for sparse solvers this is a very
difficult problem. Nevertheless, we tried to illustrate the trade-offs
and give some insights which we hope could be helpful to others.

6 CONCLUSION
Several AMT frameworks emerged as we move towards exascale,
and there is a lack of comparative studies, by third party users in
particular. We believe a fair evaluation on various application do-
mains would benefit readers in helping them make a well-informed
decision in preparing for exascale. This is precisely the motivation
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Figure 11: L1, L2 and LLC (L3) misses of different LOBPCG versions on Broadwell normalized wrt libcsr.
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Figure 12: Speedup of different LOBPCG versions on Broadwell (top) and EPYC (bottom) over libcsr.
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(b) DeepSparse on Broadwell
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(c) DeepSparse on EPYC
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(d) HPX on EPYC
Figure 13: Execution flow graph of nlpkkt240 from two iterations of LOBPCG for different versions and architectures.

for our evaluation of three runtime systems in the context of sparse
solvers. To our knowledge, this is the first such comparative work.

We introduced optimized implementations of LOBPCG and Lanc-
zos eigensolvers using the task-parallel paradigm using three run-
time systems: OpenMP (through the DeepSparse framework), HPX
and Regent.We show that these task-parallel systems achieve signif-
icantly fewer cachemisses across different cache layers for LOBPCG,
a fairly complex solver. They also provide promising improvements
in the execution time over a traditional optimized BSP implementa-
tion for both solvers on two different architectures: Broadwell, an
Intel-based multicore system, and EPYC, an AMD-based manycore
system. Moreover, they allow achieving such performance improve-
ments without sacrificing the ease of high-level programming.

We conclude that OpenMP tasking and HPX are setting them-
selves apart from others. OpenMP’s great performance is commend-
able, but so is HPX’s because it generates the DAG itself as it goes
along and is extensible to distributed memory architectures. Future

work will be in the direction of testing HPX in a distributed memory
environment using large-scale sparse solvers and graph analytics
kernels, and comparing these to hybrid MPI+OpenMP solutions.
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