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Abstract

Prepositional supersense annotation is time-consuming and requires expert training. Here, we

present two sensible methods for obtaining prepositional supersense annotations indirectly by

eliciting surface substitution and similarity judgments. Four pilot studies suggest that both methods

have potential for producing prepositional supersense annotations that are comparable in quality

to expert annotations.

1 Introduction

Prepositions are highly ambiguous function words which can express a wide variety of relationships

(Litkowski and Hargraves, 2005; Tratz, 2011). Supersenses have been proposed as an analytic framework

for studying their lexical semantics, but extant gold-annotated corpora (e.g. Schneider et al., 2018; Peng

et al., 2020) are small because preposition supersense annotation is a relatively complex annotation task

that requires substantial training and time.

We ask whether preposition supersense annotation could be made cheaper and quicker with crowd-

sourced labor. This will require ªsensibleº annotation tasks accessible to non-experts. In this work we

present two possible designs for proxy tasks for crowdsourcing from which supersense labels can be

recovered indirectly. These designs involve in-context substitution and similarity judgments. Based on

four in-house pilot experiments, we conclude that both designs are promising as methods for building

a large preposition supersense±annotated corpus, and that they differ in how difficult they are for the

workers and for the researchers. However, the setup should be considered a proof of concept, as we work

with an idealized pool of workers (in-house computational linguistics graduate students). Future research

will be necessary to ascertain whether the paradigm is suited to naïve crowdworkers as well.

2 Preposition Supersenses

Prepositions1 can express many different kinds of semantic relations. Schneider et al. (2018) present

SNACS, a coarse-grained annotation framework for prepositions encoding these relations. The meanings

of prepositions are expressed in terms of supersenses, of which there are 50 in SNACS v2.5.2 For instance,

the preposition in can be used to express time, place, and other relations: ªI rented an apartment inLOCUS

Bostonº, ªI hope to see you inTIME the futureº.3

Compared to other tagging tasks, supersense annotation is relatively hard: the SNACS guidelines,

which are only for prepositional supersenses, are around 100 pages in length, and a single preposition can

often have multiple plausible annotations which must be carefully considered before a final decision.

This work is licensed under a Creative Commons Attribution 4.0 International License. Licence details: http://

creativecommons.org/licenses/by/4.0/.
1And adpositions, more generallyÐbut since all data in the present work is from English, we will write preposition throughout.
2See: http://flat.nert.georgetown.edu/supersenses/
3In SNACS, prepositions are actually annotated with two supersenses: one for their scene role, which describes the ªbasic

semantic relation between the preposition-linked elementsº, and one for their function, which captures the ªsemantic relation
literally or metaphorically present in the scene [...] highlighted by the choice of adpositionº. Whenever the scene role does not
match the function role, the two are notationally separated with a pipe, as in ªYou are meticulous in your work and it shows
inMANNER|LOCUS my smile.º For the purposes of the present work, we will simplify our discussion of the prepositional supersense
tagging task and speak of it as if it consisted of assigning a single label (the scene role and function tags, concatenated).
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3 Two Task Designs

Our ultimate goal is to obtain supersense labels for prepositions in context from crowdsourced data. One

possible technique would be to provide definitions and canonical examples of each label, or subsets of

labels, and ask the crowdworker which label most closely applies to the annotation target (Munro et al.,

2010). Another tactic would be to decompose our labels into more readily intuitive semantic features

(Reisinger et al., 2015). But given the extensive semantic range of the many prepositions we seek to

annotate, both of these approaches seem difficult to achieve with crowdworkers.

Instead, we explore what we term proxy tasks:4 rather than teach and elicit supersenses (or semantic

features associated with supersenses) directly, we elicit judgments of surface substitution/similarity, as

has been done by previous work on word sense crowdsourcing (§5). This approach leverages current

annotated data in combination with the proxy annotations to infer supersense labels via crowdsourcing.

Here we outline two different approaches for framing a crowdsourcing task from which annotations can

be derived. Details will be explained in more depth when we turn to discuss our pilot studies.

3.1 Preposition Substitution

This design consists of two crowdsourced tasks and requires an unlabeled corpus U . First, in the

generation task, we identify an unlabeled instance ⟨s,t⟩ ∈ U , where s is a sentence and t ∈ s is the target

preposition to be disambiguated. The sentence s is presented to a crowdworker, and the worker is asked to

provide a substitute t′ for t which approximately preserves the meaning of s when substituted with t and

does not contain t. E.g., for the sentence ªThe book is by the lampº, ªclose toº and ªnearº would both

be good substitutes because ªThe book is close to the lampº and ªThe book is near the lampº both have

similar meanings. Substitutes can be anything: they do not have to be prepositions, and they do not have

to be a single word. By the end of this task, several potential substitutes t′1, . . . ,t
′

n will have been proposed

by workers, but this data alone is not enough to infer a supersense label.

More information is collected in the second task, the selection task. The substitutes from the generation

task t′1, . . . ,t
′

n populate a multiple-choice list, and crowdworkers choose all items on the list which are

acceptable substitutes for t in s. Once enough crowdworkers have completed the selection task, we are left

with a frequency distribution over the substitutes. (For an example of such a distribution, see figure 2.)

These distributions must somehow be turned into supersense labels. One way to do this is to source

labeled instances ⟨s,t,ℓgold⟩ for the tasks above from a gold-labeled corpus L. This would allow a classifier

to predict each instance’s annotation from its substitution distribution, which could then be used to label

unseen data. However, one concern is that a statistical classifier based on substitutes would be no more

accurate for infrequent prepositions than training a supersense classifier directly; a set of heuristic rules

for disambiguating supersenses that could use the selected substitutes may be effective here.

3.2 Neighbor Selection

This design consists of a single crowdsourced task and requires a labeled corpus L, an unlabeled input

corpus U , and some similarity function sim(x,y) that can compare two unlabeled instances ⟨s1,t1⟩, ⟨s2,t2⟩
and represent as a real number how similar the two usages of prepositions t1 and t2 are in their contexts.5

An unlabeled instance ⟨s,t⟩ ∈ U is selected, which we call the target instance. sim is used to com-

pare it to every instance in L, and the top k most similar inst/ances in L are retrieved with their labels,

⟨s1,t1,ℓ1⟩, . . . ,⟨sk,tk,ℓk⟩. We call these retrieved instances the target’s neighbors. Neighbors may option-

ally be filtered, e.g. to ensure that no label ℓ is represented more than once among ℓ1, . . . ,ℓk.

The target sentence s is presented to crowdworkers along with s1, . . . ,sk from the neighbors, with the

target preposition indicated in each, and crowdworkers are asked to select any neighbors for which the

4This is unrelated to the term ªproxy taskº as used by Mostafazadeh et al. (2016), where it is used to refer to intrinsic
evaluations for word embeddings.

5We deliberately do not mention a specific metric or representation here, since there are many ways to implement this design.
As we describe in §4.3, we use cosine distance between supersense membership softmax vectors from a supersense tagger for
our pilots in this work, though one could imagine other implementations, such as Euclidean distance between raw or fine-tuned
BERT embeddings.
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Figure 2: Substitutes from pilot 2. Each ªspokeº represents a substitute, and every point on each colored line represents the
frequency of a substitute used for an instance that was gold-labeled with a particular supersense tag. For instance, in (c), we can
see that of all the instances of ªinº that were gold-tagged with GOAL|LOCUS, with was picked once, into three times, and for
four times. Only substitutes that were picked three or more times across all 5 prepositions are shown. Asterisked paraphrases
were written in by workers during the selection task and were not produced by the generation task.

4.2 Pilot 2: Substitute Selection

In pilot study 2, we carry out the second task of the substitution design, substitute selection. For each

of the 5 prepositions investigated in pilot 1, we select 30 instances from STREUSLE, yielding a total

of 150 instances for this pilot. The substitutes for each preposition are selected by taking the top 8

most commonly provided substitutes for all instances of that preposition in pilot 1. In addition to these

substitutes, workers could also indicate that none of the 8 substitutes are appropriate, either by choosing

ª[Omit]º, or providing an alternative substitute. (See figure 1a.) Seven workers participated in this pilot.

As described in §3.1, in a full implementation of this task, the next step would be to train classifiers to

predict the tag for each instance from its substitute distribution. However, our dataset is too small to train

a classifier, so we inspect our results qualitatively.

6Strictly speaking, this design could be implemented with or without any formal guidance given to workers on what should
count as ªsimilar enoughº for this task, but for our pilot studies, we deliberately choose not to give workers any guidance. Our
motivation for this was to see what kind of granularity we would get from worker judgments without any explicit instruction.
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Strategy Votes Majority

None 21 6
Random, same-word, same-supersense 22 8
Random, same-word 10 2
Cosine, same-word, same-supersense 74 24
Cosine, same-word 79 27
Cosine, same-supersense 74 24
Cosine, no constraints 79 27

Theoretical Maximum 120 40

(a) A tabulation of the number of times a strategy’s retrieved
neighbor was selected by a worker in pilot 3. Three workers
examined 40 instances, so the maximum possible tally is 120,
shown in the ªvotesº column. The ªMajorityº column tallies
the neighbors that received a majority among the workers (ties
possible).

Case Tagger Crowd ªNoneº

1 (Tagger correct, gold present) 17/17 17/17 0/17
2 (Tagger incorrect, gold present) 0/12 6/12 5/12
3 (Tagger correct, gold absent) 3/3 0/3 2/3
4 (Tagger incorrect, gold absent) 0/8 0/8 5/8

(b) Tagger and crowd accuracy for pilot 4 grouped by whether
the tagger correctly predicted the target’s gold tag and whether
the target’s gold tag was present among the 5 neighbors.
ªNoneº column indicates how many times ªNoneº was chosen
by the crowd. (These results should not be taken to be in-
dicative of real-world performance, since pilot 4’s dataset was
deliberately constructed to include correctly and incorrectly
tagged instances in equal proportions, while in a real scenario
we expect the tagger would be correct more often than not.)

Table 1: Data from pilots 3 and 4.

Recall that for a single instance ⟨s,t⟩, the substitute selection task leaves us with a frequency distribution

over t’s substitutes t′1, . . . ,t
′

k. If we aggregate these distributions over every instance of t, and then group

them by the supersense label ℓ, we are left with distributions as shown in figure 2, each of which tells

us the number of times a particular substitute was chosen across all instances of t that had the tag ℓ.

While no firm conclusions can be drawn because of the limited size of the data, we see enough separation

between regions to suggest that supersenses have distinguishable substitute distributionsÐand therefore,

the distributions obtained from crowdworkers would be effective for classifying the supersense.

4.3 Pilot 3: Neighbor Selection Retrieval Strategy

The neighbor selection design retrieves similar sentences from a labeled corpus for a similarity judgment.

This design critically relies on the quality of the top k instances which are retrieved. In pilot 3 we compare

several strategies for retrieving the top k instances.

Our sim(⟨s1,t1⟩,⟨s2,t2⟩) relies on Liu et al.’s (2020) supersense tagger, and is implemented as the

cosine similarity between the tagger’s vectors of supersense label probabilities for t1 and t2 as they are

used in s1 and s2. In order to obtain high-quality vectors for the entire corpus, we use a strategy similar to

jackknife resampling: we partition the corpus’s documents so that they are approximately balanced by

token count, yielding 5 splits L1, . . . ,L5. Now, for each Li, the vectors for instances contained within Li

are obtained by training the tagger on the other 4 splits and predicting on Li.

For each of the same 5 prepositions as above, we first identify from the STREUSLE test and development

sets 8 instances: 4 of which the tagger correctly predicts, and 4 of which it incorrectly predicts. We focus

on incorrect predictions especially because it is important to understand how well this method works

when the tagger’s predictions are wrong. (There would be little purpose to crowdsourcing if it were only

accurate for instances that the tagger already classified correctly!)

Next, six retrieval strategies are identified. These strategies differ in three parameters: their ranking

method (cosine ranking, versus random ranking as a baseline); whether neighbors are required to feature

the same preposition as the target (the same-word constraint); and whether neighbors are required to be

tagged with the same supersense as the target (the same-supersense constraint; this is an oracle of sorts to

potentially reduce situations where none of the options are relevant). This yields 8 possibilities, but we

exclude random ranking without the same-word constraint because it would obviously yield bad results.

For each of the 40 instances, each strategy contributes a single neighbor, and these neighbors are

deduplicated before being presented to a worker so they could choose the best neighbors (possibly

multiple if there is a tie), as shown in figure 1b. A ªNoneº option is again provided in case no neighbor is

close enough to the target. In order to determine the success of each strategy, we simply tally the number

of times a neighbor that was contributed by that strategy was selected by a worker, of which there were

three for this study. The results are given in table 1a. The results show that, on the whole, unconstrained

cosine ranking successfully finds neighbors that workers deem relevant. Moreover, overall, strategies

with the same-word and same-supersense constraints do not outperform cosine without constraints. That
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Target sentence: One time we even left after sit-
ting at the table for 20 minutes and not being greeted
withMEANS,POSSESSION|ACCOMPANIER a drink order .

Neighbor sentences:
(1) I can not tell you how often I am complimented onTOPIC

my hair ( style AND color ) !
(2) A simple follow - up phone call withCO-AGENT a woman
quickly turned into a nightmare .
(3) wow , the representative went way above and beyond in
helping me withTHEME my account set up .
(4, selected) This store is proof that you can fool people
withMEANS good advertising .
(5) She has taken care of my sweet girl for almost 4 years
now and I would not let Gracee go withACCOMPANIER|CO-AGENT

anyone besides her !!!
(6) None

(a) A case 2 instance from pilot 4 where workers identified
the neighbor with the gold label.

Target sentence: The atmosphere is your typical in-
die outfit with old movie posters and memorabilia
fromSTARTTIME,ORIGINATOR|SOURCE the 70’s and 80’s .

Neighbor sentences:
(1) I just got back fromSOURCE france yesterday and just
missed the food already !
(2) prepared the road test with a driving ... prepared the road
test with a driving school in edmonton , but my instructor only
trained me in a narrow street , hence I took one 90 minute
lesson fromORGROLE|SOURCE the Noble driving school to learn
the skill of changing lane , and found them very friendly and
professional .
(3) yet again it was a great stay fromSTARTTIME begiinning to
end .
(4) We order take out fromORIGINATOR|SOURCE here all the time
and we are never disappointed .
(5) # 2 the decor is tasteful and artistic ,
fromPARTPORTION|SOURCE the comfortable chairs to the
elegant light fixtures .... and ( most importantly ) # 3 the food
is FANTASTIC .
(6, selected) None

(b) A case 2 instance from pilot 4, where workers chose ªNoneº
even though a gold-tagged neighbor was present.

Figure 3: Two instances from Pilot 4. Tags from the gold-annotated source corpus are given in blue, and the supersense tagger’s
predictions (which in these two examples are also incorrect) are given in red.

the same-supersense methods, which have access to the gold label for the target, do not outperform the

unconstrained cosine strategy suggests that the latter is reasonably robust on its own. It remains possible

that these strategies could have complementary strengths, though our data here is too limited to speculate.

4.4 Pilot 4: Neighbor Selection

In pilot 4, we carry out a small-scale version of the neighbor selection design, using the same 40 instances

from pilot 3 and using cosine ranking to identify 5 neighbors for each instance. We do not use the

same-word or same-supersense constraints from pilot 3, but we do introduce a diversity constraint, which

requires that all neighbors have different supersense tags. This maximizes our odds that one of the 5

neighbors will have the correct tag for the target.

We analyze results from 5 workers, who were shown each target with its 5 neighbors and asked to

choose the most relevant neighbors, or ªNoneº, similar to figure 1b. We use the workers’ plurality vote to

select a neighbor, and use the neighbor’s gold tag as the target’s predicted tag. Ideally, our participants

will arrive on a plurality vote for the correct neighbor when the gold tag is present among them, and if the

gold tag is not present, they will either select ªNoneº or choose neighbors with gold tags that are similar,

but not identical, to the target’s gold tag.

Our results show that our participants performed fairly close to this ideal: broadly, whenever the crowd

selects a neighbor it usually has the correct gold label, and when no neighbor is a good choice or there

is something pathological about the instance, the crowd often selects ªNoneº. In our discussion we will

partition this pilot’s results according to two parameters: whether the tagger correctly predicted the target

preposition’s supersense tag, and whether a neighbor was retrieved whose gold tag matched the target

preposition’s tag (thereby affording workers the opportunity to correctly label the instance). A summary

of results is given in table 1b.

Case 1: tagger correct, gold-tagged neighbor present When the tagger produces the correct super-

sense label for the target preposition and also succeeds in finding a gold-tagged neighbor, the crowd always

chooses the correct neighbor. This is an encouraging result for the question of whether crowdworkers can

perform worse than the tagger: it seems that in cases where the tagger finds it easy to tag correctly and

produce a gold-tagged neighbor, humans are also able to easily recognize the right answer.

Case 2: tagger incorrect, gold-tagged neighbor present The case when the tagger was incorrect but

still manages to retrieve a relevant neighbor is an important one, because it is where humans have the
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opportunity to improve on the tagger’s performance, rather than keep up with it (case 1) or fall behind it

(cases 3 and 4). In case 2, workers managed to retrieve the correct tag 6/12 times and in the remaining

cases unambiguously choose ªNoneº or tie vote for ªNoneº 5/6 times. This result tells us that in case 2,

workers are able to either choose the neighbor with the correct tag or refuse to choose a neighbor most

of the time. A representative example is given in figure 3a: here, the gold label of ªwithº in the target

sentence is MEANS, while the model gives the similar but mistaken tag POSSESSION|ACCOMPANIER.7

A more interesting instance is given in figure 3b. The tagger has mistagged the target instance,

ªfromSTARTTIME the 70’s and 80’sº, and although it still manages to find a gold neighbor ªfromSTARTTIME

beginning to endº, the crowd rejects it in favor of ªNoneº. Although SNACS assigns STARTTIME to both

instances, this obscures a notable difference in meaning: the former use describes when an object was

made, and the latter use the beginning of an event. The most likely explanation, then, is that the crowd

perceived this difference in meaning and decided the latter instance was not similar enough in meaning

to be acceptable. This instance therefore constitutes evidence that workers are capable of making some

distinctions that are more nuanced than those made by SNACS.

The remaining instances from case 2 mostly either demonstrated the tagger’s misunderstanding of

subtle distinctions which humans were able to recover from (either by choosing ªNoneº or the gold

neighbor), although some other instances featured metaphor which posed a challenge for both the tagger

and humans. The instance ªFood is awful and the place caters toBENEFICIARY|GOAL the yuppy crowd .º has

the expression caters to which has a literal sense (‘serving food to’) that differs from its metaphorical

sense (‘pandering to’). Interpreting a metaphorical expression literally or metaphorically will almost

always entail a difference in supersense and is an issue for SNACS in general.

Case 3: tagger correct, no gold-tagged neighbor The 3 times where the tagger correctly predicted the

target’s gold tag but did not manage to retrieve any neighbors with this tag were all somehow exceptional.

Looking into them, we determined that in one case, the target was not well treated by the SNACS

guidelines and could plausibly have been annotated differently, and that the two other instances were

metaphorical and similarly could have been annotated differently (cf. case 2). While it is difficult to

generalize from so few instances, we see that the tagger’s top predicted supersense is sometimes not

represented in the cosine-retrieved neighbors, even though the cosine measure makes use of the tagging

model. This suggests that it might be advantageous in future iterations of this design to consult the tagger’s

prediction and require at least one neighbor to have the same supersense.

Case 4: tagger incorrect, no gold-tagged neighbor In the last case where the tagger was wrong and no

neighbors with the correct tag were retrieved, we found similarly hard cases which were due to vagueness

in the SNACS guidelines, well-formedness issues, or other relatively uncommon causes. In these cases,

we felt that expert human annotators also would have struggled to choose the correct tag or could have

defensibly argued for different analyses. One instance, for example, contains a crucial typo: ªit was a

little to high dollar for meº. The ªtoº should have been a ªtooº, and ªtooº is highly connected to the fact

that this instance of ªforº is involved in a comparison.

Summary We have seen in pilot 4 that human crowdworkers, in aggregate, are generally cautious,

good at being confident when they should be, and choosing ªNoneº when no neighbors are appropriate.8

It should be noted that the ªNoneº result is not simply a dead endÐif an instance receives a ªNoneº,

additional steps can in principle be taken to attempt to elicit an answer, e.g. by fetching a new batch of

neighbors and putting it back into the annotation pool. We also reiterate that the dataset in pilot 4 was

deliberately constructed so that half of its instances would have incorrect tag predictions. Even still, if

we take pilot 4 results as a measure of performance, our crowdsourcing method delivers higher-quality

annotations than the tagger alone (which can already achieve F1 in the low 80s on STREUSLE’s test split),

demonstrating the potential of this approach.

7This is because ªwith a drink orderº is describing the manner of the greeting, not an item that was in someone’s possession
for the main event, as in ªI arrived withPOSSESSION|ACCOMPANIER my box to ship.º

8The extent to which this is also true of individual crowdworkers before their responses have been aggregated is unclear from
the work we have discussed here.
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5 Related Work

Crowdsourcing on Amazon Mechanical Turk has been a popular method for scaling up linguistic an-

notation. Early studies on its efficacy for semantic annotations like word sense disambiguation, textual

entailment, and word similarity (Snow et al., 2008) and psycholinguistic studies and judgment elicitation

(Munro et al., 2010) have shown that crowdsourced annotations can be as good as if not even better

than annotations produced using traditional methods. Several studies have focused specifically on word

sense annotations for content-words like nouns, adjectives, and verbs (Rumshisky, 2011; Jurgens, 2013;

Biemann and Nygaard, 2010; Biemann, 2012; Tsvetkov et al., 2014), but function words have received

less attention. To our knowledge, the only work carried out specifically on prepositional sense annotation

using a non-traditional annotation methodology is due to Tratz (2011, §4.2), who describes a process by

which existing prepositional sense annotations were refined by three annotators, two of which have unspec-

ified levels of linguistic or other competencies. We conjecture that one reason why content-words have

been favored over function-words for crowdsourced annotation is that their comparatively less abstract

meanings make reasoning about their semantics more approachable to linguistically naïve crowdworkers,

simplifying task design, while for function words, it can be difficult to tap into crowdworkers’ intuitions

without changing the task considerably.

Some work has investigated gamification with the hope that bringing gamelike elements would allow

crowdworkers to produce good annotations without a traditional training process, in some cases achieving

performance on par with or better than expert annotation (Fort et al., 2020; Hartshorne et al., 2014;

Schneider et al., 2014). Independent from the matter of whether to crowdsource or gamify, some have

modified their annotation schemes with an eye explicitly to annotation expense (in terms of time or money).

In the QA-SRL annotation scheme proposed by He et al. (2015), plain-language questions are used to

describe the predicate-argument structures of verbs instead of formalisms such as frames or predicates,

rendering it theory- and formalism-neutral and easier to explain to non-expert workers.

Our work is different from the work we have reviewed here in that we have attempted to have participants

solve a task that is not the same task we would have given to an expert annotator. Pursuing such a proxy

task, as we have termed it, introduces the challenge of turning proxy data into gold data, but reduces the

need for worker training. Proxy tasks have been successfully pursued in other domains, like in the ESP

game designed by von Ahn and Dabbish (2004) for image labeling, where player data for a game played

with an imageÐthe proxy taskÐis used to infer image labels.

6 Conclusion

We have presented two designs for deriving prepositional supersense tags from crowdsourced tasks, and

we have investigated their efficacy through four pilot studies, finding that both hold promise for producing

high-quality prepositional supersense annotations. We have seen that the two designs differ in their

complexity and performance characteristics: the neighbor selection design, while consisting of only one

task instead of two, requires a gold-annotated corpus of sufficient size to give every tag sufficient coverage,

while the substitution design could reveal, bottom-up, clusters of usages that may not be well-represented

in the training data.

We have made several idealizations throughout this work: all data was drawn from STREUSLE,

guaranteeing that it would be homogeneous with respect to genre, and crowdworkers had some knowledge

of the SNACS guidelines which likely made them better at the tasks than real-world crowdworkers.

Moreover, we studied only 5 common prepositions covering 20 or so supersenses out of SNACS’s 50.

In future work, we intend to implement these designs on platforms such as Amazon Mechanical Turk to

further investigate these designs’ efficacy and the extent to which these idealizations affect our results.
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