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A B S T R A C T   

Transformative mobility services present both considerable opportunities and challenges for urban mobility 
systems. Increasing attention is being paid to ridehailing platforms and connections between demand and 
continuous innovation in service features; one of these features is dynamic ride-pooling. To disentangle how 
ridehailing impacts existing transportation networks and its ability to support economic vitality and community 
livability it is essential to consider the distribution of demand across diverse communities. In this paper we 
expand the literature on ridehailing demand by exploring community variation and spatial dependence in 
ridehailing use. Specifically, we investigate the diffusion and role of solo requests versus ride-pooling to shed 
light on how different mobility services, with different environmental and accessibility implications, are used by 
diverse communities. This paper employs a Social Disadvantage Index, Transit Access Analysis, and a Spatial 
Durbin Model to investigate the influence of both local and spatial spillover effects on the demand for shared and 
solo ridehailing. The analysis of 127 million ridehailing rides, of which 15% are pooled, confirms the presence of 
spatial effects. Results indicate that density and vibrancy variables have analogue effects, both direct and in
direct, on demand for solo vs pooled rides. Instead, our analysis reveals significant contrasting effects for socio- 
economic disadvantage, which is positively correlated with ride-pooling and negatively with solo rides. Addi
tionally, we find that higher rail transit access is associated with higher demand for both solo and pooled 
ridehailing along with substantial spatial spillovers. We discuss implications for policy, operations and research 
related to the novel insight on how pooled ridesourcing relate to geography, living conditions, and transit 
interactions.   

1. Introduction 

A growing portfolio of urban mobility services are offered by 
Transportation Network Companies (TNCs) around the world. The new 
generation of on-demand and shared service models are poised to alter 
how cities fulfill their mission to provide citizens access to goods, ser
vices, and opportunities (Shaheen and Cohen, 2018). Ridehailing (RH) 
promises to offer more options to urban travelers, improve access to 
transit by providing first-last mile connections, increase vehicle occu
pancy via pooling, and offer on-demand flexibility for customers 
(Alonso-Mora et al., 2017; Shaheen and Cohen, 2018). However, the 
promise of RH has been questioned in recent studies (Diao et al., 2021). 
Empirical studies have shown that RH tends to be used for recreational 
trips rather than transit last mile access, and leans towards substitution 
effects with transit (Alemi et al., 2018; Tirachini and del Río, 2019). 
Additionally, several researchers find that surveyed RH users are likely 

substituting active modes like walking and biking (Clewlow and Mishra, 
2017; Rayle et al., 2016) and that RH can generate induced demand 
because trips would not occur otherwise (Rayle et al., 2016, Tirachini 
and Gomez-Lobo, 2020). 

Research findings are also evolving to account for the constant ser
vice evolution of RH. The creation of shared RH service alternatives 
(also known as ride-pooling), such as UberPool, Lyft Line and Didi 
ExpressPool, match ride requests and give users a discount relative to 
the standard trip fare. These trips are authorized to be pooled and may 
possibly only serve one party when the demand is too low to efficiently 
match rides. In this paper we will refer to this service as ride-pooling, 
pooling, or pooled rides. We will also refer to the standard service (e. 
g. UberX and Lyft Classic) as solo rides since this service is exclusive to 
one party (a party may consist of more than one rider). Though RH has 
introduced a relatively more affordable alternative to traditional taxis, 
RH usage in general is skewed towards the younger and well-educated 
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population segments (Lewis and MacKenzie, 2017; Li et al., 2019; Rayle 
et al., 2016). Within the RH portfolio the ride-pooling option is the most 
affordable, yet the share of RH trips that are pooled are consistently low 
(Li et al., 2019). 

To date there is limited understanding of how RH demand is shaped 
by different community contexts and the degree to which solo demand 
differs from pooling (Soria et al., 2020). More commonly, these modes 
are not differentiated. In this paper we expand the literature on RH 
demand by using spatial modeling to examine the socio-economic 
community determinants. Specifically, we compare solo and pooled 
trip-making patterns from a large-scale Chicago database to identify the 
unique determinants that encourage pooled rides while controlling for 
spatial effects. The results of our analysis uncover new insights on how 
RH ties in with community factors, the importance of accounting for 
spatial effects, and whether solo and pooled rides serve distinct 
communities. 

1.1. Ridehailing demand: User, context and community determinants 

Analysis of the sociodemographic profile shows that RH adoption is 
higher in population segments that are younger, wealthier, more 
educated, and from smaller households (Alemi et al., 2018; Clewlow and 
Mishra, 2017; Dias et al., 2017; Rayle et al., 2016; Wang et al., 2019; Yu 
and Peng, 2019). It is also related to lower car ownership and to vehicle 
disposal (Alemi et al., 2019; Gehrke et al., 2019; Lavieri and Bhat, 
2019a). Considering interactions with other modes, most RH trips seem 
to substitute the use of taxi or transit. Yet the precise demand rela
tionship of RH with more sustainable options like public transit, walking 
and cycling is still unclear (Ward et al., 2019). Survey research suggests 
RH is a substitute for a sizeable share of users: Clewlow and Mishra 
(2017) suggest 15% of RH users would have used train, Feigon and 
Murphy (2016) indicate that 15% would have used bus or train, and 17% 
would have used active modes. Moreover, there is evidence that the 
availability of RH induces trips. Researchers find that 8% to 22% of trips 
would not have been taken if RH were not available (Rayle et al., 2016; 
Clewlow and Mishra, 2017; Henao, 2017). To date, little is known about 
the spatial, and population segment differences in substitution. Via an 
intercept survey, Gehrke et al. (2019) suggest that hailing-to-transit 
substitution is higher when general transit service is poor or unavai
lable, or RH costs less than 20$ (suggesting a shorter trip). Unexpect
edly, however, lower income households were more likely to substitute 
transit for comparatively costly RH. This finding implies an equity 
concern where RH could fill mobility gaps for carless households with 
poor transit accessibility, while also straining those households’ 
budgets. 

Recent studies have modelled RH demand from publicly available 
trip data matched with land-use and socio-demographics. Results sug
gest that RH use is higher in areas with high population density, higher 
number of apartments, a higher proportion of high-income residents 
(especially for weekday trips), a higher proportion of younger residents, 
and more land-use diversity (Brown, 2019; Ghaffar et al., 2020; Lavieri 
et al., 2018; Marquet, 2020; Yu and Peng, 2019; Hasnine et al., 2021). 
These studies confirm survey-based research on user-profiles. 

Findings related to the ethnic makeup in zones are less clear. An 
Austin study controlling for ethnic composition in zones and find that 
RH demand is higher in areas with a lower share of white residents 
(Lavieri et al., 2018). Work from Boston indicates that RH users reflect 
the ethnic makeup of the area (Gehrke et al., 2019). These findings 
contrast with other research finding that some new mobility platforms 
are used more in areas with higher proportion of white resident pop
ulations, and vice versa used less in areas with a higher share of Latino 
and black residents (Biehl et al., 2018; Dias et al., 2019; Morton et al., 
2021). Rather than taking these findings to suggest that different racial 
and ethnic groups have intrinsic differences in their willingness to use 
RH, there are likely more nuanced correlation across income, social 
conditions, transportation supply and residential location patterns 

explaining these differences. 

1.2. Ridehailing relationship with transit 

Research on the relationship between RH and public transit warrants 
more attention as findings are mixed. Early work suggested comple
mentarity as RH can fill transit accessibility gaps (Shaheen and Chan, 
2016) and be accessed via public-private partnerships (Feigon and 
Murphy, 2016). Recent empirical studies from large-scale data tends to 
find that public transport use is positively correlated with ride-hailing 
use. Importantly, this is not in itself sufficient to conclude that a 
complementarity effect is dominant, since the aggregate correlational 
analysis cannot prove the exact impact of RH on public transport de
mand. Moreover, the precise measurement of transit access, as well as 
differences across contexts, and different service offerings (both bus vs 
rail and solo RH vs pooling) have not been clearly established. Several 
metrics of transit service have been utilized to research the connection 
between public transit and RH demand. Transit access time (TAT, i.e. the 
time to access a mass transit station), shows that poor subway access is 
related to fewer RH trips (Correa et al., 2017). Brown (2019) finds a 
similar relationship with higher overall transit stop density being asso
ciated with more TNC trips. Using National Household Travel Survey 
(NHTS) data, (Mitra et al., 2019) use a binary variable to denote rail 
service presence in the local statistical area, showing a positive effect on 
TNC trip demand for seniors. And finally, as the number of bus service 
hours increases, RH use also increases (Yan et al., 2020). Taken together, 
the research points to a positive demand relationship between ride- 
hailing and public transit. We note however that other research sug
gests demand is traded off, or varied. In Lavieri et al. (2018), higher bus 
frequency is associated with less RH. A more nuanced, inverted U 
relationship is suggested in Ghaffar et al. (2020). That is, TNC ridership 
is lower in areas with the lowest and highest amount of bus stops, 
whereas a moderate number of stops boosts RH demand. Kong et al. 
(2020) study DiDi trips, and find trade-off effects in dense transit-rich 
areas (bus and subway), while suburban areas exhibit more comple
mentary effect between transit and RH. Beyond the direct availability 
metrics, transit access to jobs is found to have a positive effect on TNC 
usage (Yu and Peng, 2019). And finally, Grahn et al. (2020) does not 
definitively conclude any relationship between RH and transit since 
transit includes a wide variety of modes (e.g. buses, light rail, commuter 
rail), each with different interactions with RH. 

1.3. The potential for ride-pooling 

Ride-pooling has the potential to reduce the number of passenger 
vehicles or vehicle miles travelled on the road assuming riders substitute 
personal or solo vehicle travel when opting to share. Simulation work 
suggests TNC fleet sizes can be reduced with shared rides (Alonso-Mora 
et al., 2017). However, the share of pooling likely needs to be much 
higher than currently observed to unlock benefits. Rodier et al. (2016) 
suggests above 50%, while Fagnant and Kockelman (2018) estimate that 
pooled services need to account for 20–50% of the market-share. To 
date, little is known about the current demand for pooled rides nor the 
determinants of use. Basic statistics are uncertain but suggest a market- 
share of pooling between 6 and 35% (California Air Resource Board, 
2019; Chen et al., 2018; Chicago Metropolitan Agency for Planning, 
2019; Li et al., 2019; Lyft, 2018; Soria et al., 2020; Young et al., 2020). 
The hypothetical demand for pooling has been examined in stated 
preference work, finding that the addition of co-riders generates non- 
linear disutility in a shuttle setting and high sensitivity to time-cost 
trade-offs (Alonso-González et al., 2020). In the context of a shared 
autonomous rides, Lavieri and Bhat (2019b) also suggest that the travel 
time/waiting time to cost trade-offs matter more than the perceived 
disutility of sharing a ride. Sarriera et al. (2017) also find that time and 
cost considerations outweigh social interaction effects. In terms of 
mode-substitution, survey data from Hangzhou, China suggests that the 
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biggest mode-shift of ride-pooling users would be to transit (bus and 
metro rail) (Chen et al., 2018). 

Recently, a limited number of major RH data-releases is supporting 
initial empirical analysis of pooling. Analysis of large-scale trip data 
suggests that solo and pooled demand has different spatio-temporal 
patterns in Chengdu, China (Li et al., 2019). Ensemble machine 
learning highlights the importance of pricing and timing variables for 
ride-pooling demand in Hangzhou, China (Chen et al., 2017). Clustering 
analysis on Chicago RH data reveals that pooled rides have distinct 
patterns, linked to affordability and local transit performance (Soria 
et al., 2020). These works shed light on the user trade-offs and aggregate 
demand patterns of ride-pooling. Yet we still know little about the 
hurdles to the increased adoption of pooled rides to reach the critical 
mass needed to unlock significant mobility benefits in terms of VMT 
reductions. 

1.4. Spatial modeling of mobility impacts 

There is ample evidence that transportation infrastructure is often 
associated with “broader” impacts via analysis of surrounding or 
neighboring spatial units (e.g. states, counties, Census Tracts). Yu et al. 
(2013) find that transport infrastructure capital (roadways, railways, 
water transport, and civil aviation) in China has a positive spillover ef
fect on GDP across regions; Berechman et al. (2006) find strong spillover 
effects of highway capital investment in the US. Additionally, urban rail 
projects in the US have been tied to increased residential property values 
in surrounding areas (Chen et al., 1998; Diao, 2015). Similarly, other 
spillover effects such as increases in household income have been 
observed around urban rail stations in Denver, CO (Bardaka et al., 
2018). Not all spillovers are positive, though observe negative spillovers 
of nuisances such as noise associated with light rail transit. In practice, 
investments such as light rail construction, often comport both positive 
(accessibility) and negative (nuisance) spillover effects (Chen et al., 
1998). In addition, the spatial distribution of new transportation infra
structure is often distributed unevenly with regard to race and socio
economic status of residents. Hirsch et al. (2017) found that 
health-promoting infrastructure (parks, bicycle facilities, off-road trails, 
and public transportation) in four US cities was spatially clustered, and 
often associated with income and employment status of residents. In 
sum, spatial spillovers exist, and often play an important role in terms of 
equity and health disparities. Knowing the nature and degree of spill
overs related to transportation investments has evident practical value 
by improving planning and accounting for the equity in distribution of 
spillover effects across areas (Cohen, 2010). 

Little is known on the potential spatial aspects of RH operations. This 
analysis is complicated by the spatio-temporal variation in on-demand 
services, limited data on both demand and supply, as well as contin
uous regulatory and service evolution. Research by Hughes and MacK
enzie (2016) compared spatial variability in wait times for UberX 
throughout the Seattle region. Wait times increased in areas with higher 
average income and decreased in areas with greater population and 
employment density. Brown (2018) directly compared Lyft and taxi 
performance for Los Angeles, California. She observed that RH serves 
more diverse neighborhoods and have lower cancellation rates and 
waiting times than traditional taxis. Other studies examine the compe
tition between taxis and RH by accounting for spatial differences. Kim 
et al. (2018) study the spatial effects TNCs have on New York City taxis 
where RH’s entry decreased taxi demand in one part of the city while 
increasing it in others. In other markets, RH filled spatial and temporal 
gaps in taxi supply (Dong et al., 2018). Moreover, initial evidence from 
empirical trip-data suggests robust spatial differences between solo and 
pooled rides (Chen et al., 2017; Li et al., 2019; Soria et al., 2020). With 
limited analysis it is difficult to draw general conclusions about spatial 
variation in the demand and impact of RH, though we note that the 
effects appear to be dynamic and tied to local community conditions. A 
deeper analysis of different spatial patterns that also account for socio- 

economic conditions and land-use variables, is needed to understand 
ride-pooling and inform better policies to maximize their benefits for 
users across diverse urban environments. 

1.5. Literature gaps and research motivation 

On the whole, the diffusion of RH appears to be related to existing 
socio-economic and mobility advantage of users. Despite the significant 
growth in use, suggesting that 36% of U.S. adults have now tried RH 
(Pew Research Center, 2018), adoption disparities persist, most notably 
between urban and rural communities, younger and older users, and 
income groups (Alemi et al., 2018; Alonso-González et al., 2020; Lavieri 
and Bhat, 2019a). While the adoption gaps among population segments 
is well established, the spatial gaps in use and service, including re
lationships to competing modes, are still unclear. 

For both general RH and ride-pooling analysis, most previous work 
typically uses an “aspatial” perspective, explaining usage patterns by 
accounting for characteristics within the spatial unit of analysis, but not 
controlling for spatial correlations nor investigating spillovers across 
neighborhoods. Ghaffar et al. (2020) and Dean and Kockelman (2021) 
consider similar socio-economic, built environment, and transit acces
sibility variables with methods that consider spatial effects with Chicago 
RH data. These studies use census tracts as the spatial unit of investi
gation. This research instead considers Chicago Community Areas as the 
spatial unit of investigation to include approximately 24% of the data 
that are missing due to trip origin censoring. The definition of Chicago 
Community Areas and information about trip origin censoring are pro
vided in the Methods and Materials section. 

1.6. Research objectives 

We complement the existing research that considers spatial effects by 
considering a Spatial Durbin Model (SDM) (Dean and Kockelman, 2021; 
Ghaffar et al., 2020; Lavieri et al., 2018; Yu and Peng, 2019). Addi
tionally, we investigate and compare determinants of demand for solo 
and pooled ride demand in depth. Previous research does consider ride- 
pooling separately and finds that it is different from solo rides based on 
average travel time and distance, time of day when it is most utilized, 
and general economic indicators such as gross domestic product and 
average house price (Li et al., 2019). To build upon this research, we 
account for socio-economic, land-use, and rail access time variables to 
understand community dynamics of RH adoption, including community 
level spillovers. Methodologically, we employ the SDM (Anselin, 2003). 
This approach enables us to investigate whether the intensity of RH 
demand in a community area is associated with the features of the 
observed area itself, as well as of its neighbors. In this paper we focus on 
three research objectives that each make a contribution to understand
ing RH demand determinants.  

• Q1: What are the spatial patterns of demand for solo and pooled rides, 
and do they differ? This research contributes to building fundamental 
insight from large-scale data on pooled demand distinctions. We 
further explain differences in Q2 and Q3.  

• Q2: What is the impact of socio-economic conditions of communities on 
RH demand (solo and pooled)? The specific contribution is to account 
for the bundled nature of socio-spatial advantage/disadvantage in
dicators and provide new insight on how pooling and solo RH relates 
to community disadvantage.  

• Q3: What is the demand-relationship between RH (solo and pooled) and 
transit accessibility? This research contributes to more understanding 
of the still mixed findings of how RH relates to transit. 

Our findings from the SDM analysis of Chicago RH demand coupled 
with auxiliary data suggests uniformity in effects for land-use and den
sity variables. Instead, solo and pooled demand has nuanced and diverse 
effects when considering transit competition and social disadvantage 
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impacts. 

2. Materials and methods 

2.1. Ridehailing data and dependent variable definition 

RH demand data (plus metadata for spatial boundaries) are collected 
from the City of Chicago public data portal (City of Chicago, 2020). The 
dataset details all TNC trips within the city limits and records the origin 
and destination census tract, time of departure and arrival, total fare 
paid, and whether the trip was authorized to be shared (and if so, how 
many parties joined the trip). The data are processed and cleaned by 
removing observations with no origin or destination, fares of $0 and 
extremely high values (greater than $1000), or 0 trip duration or miles 
recorded. The clean dataset used in this analysis comprises 127,598,605 
ride records between November 2018 and December 2019. Approxi
mately 25.5% of these trips were authorized to be shared, however, only 
66.9% of these were effectively shared, indicating that overall, 17% of 
all trips were truly pooled. 

To preserve privacy, the Census tract info is censored if only one trip 
occurs in a 15-min interval, and spatially aggregated up to the com
munity area level. These types of trips account for nearly 24% of the 
data. Owing to this restriction, and the availability of auxiliary data, we 
opt to model RH demand at the more aggregate spatial level of the 77 
community areas defined by the city. These community areas were 
originally based on groups of neighborhoods and physical barriers 
(Owens, 2012). Using this spatial unit of analysis is also advantageous 
because the boundaries rarely change, unlike Census based spatial units. 

The trip data were aggregated based on trip origins which are the 
most likely to reflect the socio-economic origin of users, though we note 
that destination, or OD pairs could be used (Ni et al., 2018). Though 
Young et al. (2020) found that a substantial portion of trips (86.4%) 
were home-based from a household travel survey, a limitation of this 
type of trip origin zone analysis is that we cannot make explicit as
sumptions about the riders and their socio-demographic characteristics 
from the available data. Specifically, the socio-demographic character
istics used to construct the Social Disadvantage Index used for our 
analysis reflects the resident population in the trip origin community, 
but it is not known if it reflects specific riders.1 Owing to the varying 
sizes of community areas, the ridership data are normalized by the area 
of the communities (in square miles). Additionally, trip demand is 
heavily skewed towards the downtown areas. To account for this, a log 
transformation is applied. The dependent variable thereby represents 
long-term RH intensity while controlling for community area and de
mand intensity variation. 

2.2. Transit access measure 

Studies have found that transit can play either a competing or 
complementary role with no consensus on which relationship is stronger 
(Babar and Burtch, 2017; Boisjoly et al., 2018; Hall et al., 2018; Nelson 
and Sadowsky, 2019; Young et al., 2020). To add to this discourse, we 
model the impact of transit accessibility on the intensity of RH usage. 
The location of all Chicago Transit Authority and Metra public transit 
rail stations are collected from the public data portal (City of Chicago, 
2020). The transit accessibility measure used in this study is akin to the 
Transit Access Time defined by Correa et al. (2017) where a hexagonal 
tessellation is overlaid on a map of the city. The edge of each cell is 1750 
ft. so that the theoretical walking time across is within the pedestrian 
access time defined by the Federal Highway Administration guidelines 
(Nabors et al., 2008). To determine average transit access time in each 

community area, the Google Maps API is used to determine the walking 
time from the center of a hexagon to the closest rail transit stop and 
averaged across the community area (Google, 2020). A similar approach 
was used to derive bus station density, but this measure was found to be 
insignificant in modeling. 

2.3. Social disadvantage index 

Across cities, urban mobility systems naturally intersect with long- 
running challenges, including spatial mismatch, enduring racial resi
dential segregation and economic inequality. For Chicago, it is known 
that economically depressed areas tend to be poorly served by transit 
(The Chicago Urban League, 2016). The local planning agency, CMAP 
has called for more research to examine the benefits and pitfalls of new 
mobility technologies, such as RH, with regard to accessibility, afford
able mobility, and quality of life in underserved communities (CMAP, 
2018). 

Moreover, work in the social sciences has established that numerous 
factors related to household structure, employment, income, wealth and 
racial status can make households more vulnerable to a lack of economic 
opportunity that is perpetuated as economic immobility (Sabol et al., 
2020). Moreover, just like socio-demographic privilege, disadvantage 
comes in clusters, making it difficult to allocate the influence of separate 
factors (Smeeding, 2016). In Europe, several indices have been devel
oped to quantify social disadvantage or deprivation by utilizing socio- 
demographic variables (e.g. Townsend, 1987; Pornet et al., 2012; 
Guillaume et al., 2016). In transportation research specifically, indices 
have been developed to measure the relationship between disadvantage 
and gaps in the quality of public transit, transportation accessibility, and 
air pollution (Currie, 2004; Giuffrida et al., 2017; Sider et al., 2015). In 
addition to being capable of utilizing several correlated variables in an 
index, they can incorporate both material (e.g. wealth and car owner
ship) and social (e.g. race and single parenthood) measures to describe 
social disadvantage (Sider et al., 2015). To date, existing RH research 
has limited analysis to include socio-demographic factors like race or 
income as individual covariates. In reality such factors can be highly 
correlated, suggesting a need for careful examination of empirical re
lationships, and evaluating the potential for composite index measures. 
In this paper we parse the simultaneous dimensions of socially disad
vantaged communities to examine how they correlate with the adoption 
of RH services by developing a Social Disadvantage Index (SDI). A 
similar index has been applied to examine the relationship between 
measures of deprivation and health outcomes (Butler et al., 2013). To 
determine the SDI we rely on 5-year estimates from the 2014–2018 
American Community Survey (ACS) at the Census tracts, aggregated to 
the Chicago community area level (U.S. Census Bureau, 2019). A single 
factor Exploratory Factor Analysis (EFA) with a factor loading threshold 
of 0.30 and no rotations is used to obtain an SDI for each community 
area. The composition of the SDI is summarized in Table 1. 

The index has intuitive results and high internal validity (Cronbach’s 
α =0.91), suggesting strong links between household income and a 
number of vulnerability factors. The advantage of using an index is to 
enable a more holistic analysis that does not define hardship by looking 

Table 1 
Social disadvantage index results.a  

Item Factor loadings 

Percent of population with poverty level income 0.989 
Percent of households with single parent 0.873 
Percent of population that are non-white 0.769 
Percent of households with no vehicle 0.763 
Percent of households renting for housing 0.744 
Percent of working eligible that are unemployed 0.649 
Cronbach’s α 0.91  

a Result from Exploratory Factor Analysis on 5-year ACS data, unrotated 
single-factor results. 

1 We view the inclusion of socio-demographic (index) variables as a valuable 
input to understand demand for on-demand mobility services but note the 
limitations inherent in using zonal information 
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at single factors such as racial or ethnic minority status. Instead, the 
validity of the proposed factor analysis affirms the strong correlations 
among disadvantage metrics, and the risk of spurious results should the 
items be included separately. 

2.4. Land-use and demographic variables 

Beyond the SDI that captures economic vulnerability, our analysis 
controls for other relevant socio-demographics that have been tied to RH 
demand in the literature: user age, household size, and population 
density (Clewlow and Mishra, 2017; Lavieri and Bhat, 2019a; Rayle 
et al., 2016). We collected this data from the ACS (U.S. Census Bureau, 
2019). 

RH use is also associated with land-use mix (Ghaffar et al., 2020). We 
define a land-use mix index, following Ghaffar et al. (2020), and mea
sure it at the community area level using data from CMAP (CMAP, 
2018). This index was tested in our model specification but did not yield 
statistically significant results. Given the connection of RH use to rec
reational and leisure travel (Soria et al., 2020), we extract data on the 
location of restaurants and bars with active licenses during 2018 and 
2019 (City of Chicago, 2020). This measure represents the impact of 
third places, namely the localities that are separate from home and work 
that generates a sense of community and contributes to urban vibrancy 
(Oldenburg and Brissett, 1982; Trentelman, 2009). The bar/restaurant 
variable is normalized by area. 

Table 2 shows key socio-demographics, transit access, and RH 
characteristics of major Chicago Districts (collection of community 
areas).2 We note that the areas with higher income (North and Central) 
tend to have better transit access (lower TAT) and more RH pickups, but 
lower degrees of pooling, albeit with some variation across commu
nities. Fig. 1 maps the delimitations of these districts. Table 3 shows the 
summary statistics for all dependent and independent variables included 
in the final models. It shows that the model includes highly diverse 
communities with wide ranges of youth population, population density, 
bar and restaurant density, and TAT. Importantly, because the factor 
analysis only includes ACS data from Chicago, the SDI cannot be directly 
compared with other cities. 

2.5. Methodology: Spatial Durbin model 

Previous transportation research investigating RH use has relied on 
representation of the context measuring only the “immediate spatial 
area”, with limited investigation of factors occurring in surrounding 
areas. Importantly, while a portion of the impact is determined in the 
immediate spatial area, some effects are likely to spill over across 
communities. This spill-over is not directly tied to demand awareness. 
Instead, while it is unlikely that riders are directly aware of RH demand 
in neighboring areas, the local and surrounding community conditions 
are likely to affect demand for RH via waiting times and social effects. 
That is, local mobility praxis, driver pickup biases and strategies, and 
perceived attractiveness and viability of alternatives can all shape 
spatial (spillover) demand for RH. To study this, we regress the intensity 
of both solo and pooled usage on a range of potential explanatory fac
tors. We find evidence for a significant role of transit accessibility, SDI, 
along with four land-use/density variables, summarized in Table 3. 

We apply spatial econometrics to account for spatial interactions 
(Manski, 1993). After verifying the presence of spatial autocorrelation, 
and using Moran’s I and Lagrange Multiplier tests for model specifica
tion guidance, we specify a Spatial Durbin Model (SDM) to explore our 
three research questions (Anselin and Kelejian, 1997; Osland, 2010). 
The general SDM specification is summarized in Eq. (1). Y is the 
response variable of community area RH demand, ρ is a coefficient for 

the lagged effect representing the response variable in one community to 
other neighboring communities, and W is a weight matrix representing 
the spatial structure of community influences on the residuals. This first 
term, ρWY, measures the endogenous effect of RH usage. The spatial 
weight matrix, W, is defined as a row-standardized matrix where each 
row represents the spatial unit of analysis, contiguous neighbors have an 
equal effect, with 0’s along the diagonal. The row sum of the weights is 
equal to 1 for every spatial unit. The purpose of using the 
row-standardized weight matrix is two-fold. First, a row standardized 
matrix facilitates efficient maximum likelihood estimation of the SDM 
(LeSage and Pace, 2009). Secondly, the row normalization of W means 
that the effect of neighbors is averaged which is desirable when there is 
no a priori knowledge of neighbor influence. This W is used throughout 
the modeling to maintain comparability. X is a matrix of explanatory 
variables and β is the vector of corresponding coefficients. γl is the vector 
of spatial lag coefficients of the explanatory variables Xl. An extension of 
this model is the Spatial Durbin Error Model (SDEM) which considers 
the error term as a function of W. 

Because SDM includes an endogenous term, the estimated co
efficients are not representative of the impacts of the explanatory vari
ables. To translate them into interpretable values, the coefficients are 
transformed. Eqs. (2), (3), and (4) are used to obtain direct (immediate 
local effects), indirect (spillovers), and total impacts (the sum), respec
tively, to examine the impacts of the explanatory factors on both solo 
and pooled ridehailing. These impacts are calculated for each explana
tory variable, k, using the ρ estimated in Eq. (1). 

Y = ρWY + Xβ + WXlγl + ϵ (1)  

Direct =
3 − ρ2

3(1 − ρ2)
βk +

2ρ
3(1 − ρ2)

γk (2)  

Indirect =
3ρ + ρ2

3(1 − ρ2)
βk +

3 + ρ
3(1 − ρ2)

γk (3)  

Total =
3 + 3ρ

3(1 − ρ2)
(βk + γk) (4)  

3. Results and discussion 

3.1. Mapping of ridehailing variables 

Before analyzing the model results, we explore the general patterns 
of demand for RH along with ACS data. Fig. 2 depicts the percent of RH 
rides that are solo (a) and pooled (b), respectively. We also plot the SDI 
scores by community area in Fig. 3. Comparing Figs. 2 and 3 suggests the 
community areas with higher SDI index (more disadvantaged) tend to 
rely more on ride-pooling, as these maps have stronger spatial similarity. 
The trends are most evident with central and northern communities 
exhibiting lower rates of sharing and low SDI whereas western and 
southern community areas have higher rates of sharing with a higher 
SDI. Along with the statistics on ride-pooling shown in Table 2, this 
provides initial evidence that the spatial dynamics of solo and pooled 
rides differ and are associated with socio-economic vulnerability. 

3.2. Spatial Durbin model specification 

Given the strong differences in spatial patterns of solo and pooled 
rides, we estimate separate models. The modeling starts with a bottom- 
up approach: estimating non-spatial linear regression models by OLS 
including all the theorized RH demand drivers. Residual diagnostics and 
the Moran’s I-test is used to detect spatial dependency. Both solo rides 
(Moran’s I = 0.30705, p-value = 0.001) and pooling (Moran’s I =

0.37534, p-value = 0.001) gives evidence of spatial autocorrelation. 
Thereby we follow Elhorst’s (2010) combined approach using Lagrange 
multiplier (LM) and likelihood ratio testing. With the need to control for 

2 We note that household income is typically reported with its median value, 
but due to data limitations we opt to use the average 
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spatial effects apparent, the Lagrange Multiplier (LM) test is used to 
determine the need for spatial lag or spatial error controls. The spatial 
lag (statistic = 34.35, p-value <0.001) and spatial error (statistic =

17.03, p-value <0.001) model specifications indicate that either 
approach is potentially valid. However, with both tests significant, the 
SDM is favored over a potential SDEM because it is more robust (Osland, 

2010). The estimation of the SDM was completed using the R pro
gramming language and spatialreg package (Bivand and Piras, 2015; R 
Development Core Team, 2008). Further comparison of SDM and SDEM 
likelihood ratio tests and inspection of spatial correlation confirms that 
the former provides more interpretable findings. Tables 4 and 5 show 
the regression results and impacts, respectively. The following section 
discusses the interpretation of the findings followed by a deeper analysis 
of the three research questions. 

3.3. Direct and indirect effects on ridehailing demand 

Table 4 shows the SDM results with a spatial lag effect ρ evident for 
both solo and pooled rides. The lagged γ coefficient for TAT is highly 
significant (p-value <0.001). This suggests that in both RH cases there is 
a need to account for spatial effects, including indirect impacts, most 
evident for transit accessibility. Both the solo and pooled ride demand 
models produce a high goodness of fit with Nagelkerke pseudo ρ2 

(similar to r2 in OLS) greater than 0.90 and AIC lower than equivalent 
OLS specifications, all suggesting the SDMs are valid and justified. There 
is evidence of residual spatial autocorrelation in the ride-pooling model, 
but the significance is low. Because these coefficients are not directly 
interpretable, the impacts of explanatory variables are calculated via the 
spatialreg package in R and summarized in Table 5 in the form of direct, 
indirect and total effects as described in Eqs. (2)–(4) (Bivand and Piras, 
2015; R Development Core Team, 2008). That is, changes in the inde
pendent variables in a community area are not only correlated with a 
change in demand in the same community (direct effect), but are also 
correlated with the RH demand in other community areas (indirect ef
fects, related to the off-diagonal elements in W). 

There is evidence of six factors affecting the community area demand 
for RH with some variability in terms of direct and indirect impacts. To 
gain more intuitive understanding of the effects, we use Eq. (5) to 
compute impact measures, where Δx is the change in variable x and Ix is 
the impact of variable x from Table 5. We thereby estimate changes in 
average daily requested rides. Interpreting the direct effects of popula
tion density, we find that an increase of 1000 in population density is 
associated with approximately 7700 more solo rides and 2000 addi
tional pooled rides per day in that community. Using the average pop
ulation density from Table 3, this translates to a 1% increase in 
population density being associated with a 0.49% and 0.42% increase in 
daily demand for solo and pooled rides, respectively. These findings do 
not account for the spillover effects into other community areas. Turning 
to investigate transit rail accessibility, given the pronounced indirect 
effects, the spillovers are computed instead. For example, if a rail station 
were removed and a community area’s average rail access time increases 
by 1 min, then the sum of changes in neighboring community areas 
results in 12,000 fewer solo rides and 2700 fewer pooled rides. In terms 
of total (direct and indirect) impacts, on average, a 1% increase in TAT is 
associated with strong reduction in RH requests (−1.24% for solo; 

Table 2 
Descriptive statistics of 9 major chicago districts.   

Chicago Far North Far NW North Central West South SW Side Far SE Far SW 

Avg. Income Per Capita ($) 32,535 33,744 25,172 57,393 87,061 26,755 24,364 17,570 19,737 26,682 
Avg. Income Per Household ($) 84,637 82,208 76,569 126,994 147,138 76,703 56,731 58,606 54,302 77,102 
HS Degree only (% of pop) 23% 20% 28% 11% 6% 24% 23% 37% 30% 27% 
Bachelor’s or higher (%) 36% 45% 24% 66% 73% 31% 30% 11% 18% 26% 
Commuting SOV (%) 53% 53% 67% 41% 32% 49% 46% 62% 63% 71% 
Commuting Carpool (%) 8% 7% 11% 5% 4% 9% 8% 14% 9% 9% 
Commuting Transit (%) 30% 32% 19% 45% 30% 31% 33% 20% 26% 19% 
Commuting Active (%) 9% 7% 4% 9% 34% 11% 12% 4% 3% 1% 
Avg. Rail Access Time (min) 24.1 38.9 21.9 13.3 11.0 14.7 12.5 24.7 31.0 22.1 
Avg Daily TNC Pickups 263,192 27,030 7763 53,727 77,952 57,390 18,833 11,371 5619 3507 
Avg Daily Authorized Shared TNC Pickups 59,006 6644 2439 8868 11,261 14,177 6879 4614 2575 1549 
TNC Rides Authorized to be Pooled (%) 22% 19% 28% 17% 14% 24% 37% 35% 41% 37% 
TNC Rides Truly Shared (%) 15% 12% 18% 12% 11% 18% 26% 23% 23% 22% 
Share of Authorized Pooled Rides that are truly shared (%) 69% 65% 64% 73% 77% 72% 70% 65% 57% 58%  

Fig. 1. Chicago Area District Map. 
Note. Bold borders depict the boundaries of the Chicago districts. 

Table 3 
Model variable summary statistics.  

Variable Median Mean Standard 
Deviation 

Dependent Variable: Log of Average Daily 
Solo Trips per square mile 

5.698 5.957 1.357 

Dependent Variable: Log of Average Daily 
Shared Trips per square mile 

5.316 5.196 1.119 

Population 18 yr to 34 yr (%) 0.2530 0.2735 0.07741 
Population Density (per sq. mile) 11,521 13,113 7002 
Mean Household Size 2.716 2.739 0.5407 
Bar and Restaurant Density (per sq. mile) 35.559 58.058 73.76 
Transit Access Time (minutes) 14.569 19.756 13.45 
Social Disadvantage Index −0.1683 0 0.9904  
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−1.16% for pooled). 

ln(r2) − ln(r1) = ΔxIxln
(

r2

r1

)

= ΔxIx  

r2

r1
= exp(ΔxIx)

r2 = r1exp(ΔxIx)

r2 − r1 = Δr = r1(exp(ΔxIx) − 1 ) (5) 

In the following sections we turn to discuss the results in the context 
of addressing our three research questions. 

3.4. Differences between solo ridehailing and ride-pooling 

Our first goal is to investigate the spatial usage patterns of solo versus 
pooled ridehailing. Before studying the model results, we examine the 
spatial distribution of Community area centroid Origin-Destination 
flows. Comparing Figs. 4 and 5 reveals stark differences in the user 
patterns with a greater spatial dispersion of ride-pooling compared to 
highly concentrated OD flows of solo rides, illustrated by the red con
nectors concentrated in the downtown and airport corridors. Taken 

together, the mapping of RH intensity (Fig. 2) and flows (Figs. 4–5) 
strongly suggests that ridership patterns are distinct. We turn to the 
model results in Tables 4 and 5 to formally examine the causes for these 
differences. Both solo and pooled RH demand is higher in community 
areas with higher population density, more bars and restaurants, and 
higher share of young (18-34 yr) population, with slightly stronger 
impact of each factor for solo use. This leads to a first observation that 
urban vibrancy factors stimulate RH demand more broadly, with uni
form impact on solo and pooled ride requests. 

This allows us to confirm established research findings on the key 
role played by urban density variables, and to extend those findings also 
to pooled RH demand (e.g. Dias et al., 2019; Yu and Peng, 2019). 

However, this leaves the question of explaining the prominent spatial 

Fig. 2. Community Area Percent use of Solo (a) and Ride-pooling (b) Map with bold borders depicting the boundaries of the Chicago sides.  

Fig. 3. Social Disadvantage Index mapped by community area.  

Table 4 
Spatial Durbin model estimation resulta.  

Variable Solo Rides Authorized Ride- 
pooling Rides 

Coefficient t- 
Statistic 

Coefficient t- 
Statistic 

(Intercept) 3.90*** 5.87 2.37*** 4.3 
Population 18 yr to 34 yr 

(%) 
4.03*** 4.06 2.68** 3.26 

Population Density 
(100,000 s per sq. mile) 

3.57** 3.28 3.02*** 3.47 

Mean Household Size −0.387*** −3.78 −0.163* −1.98 
Bar/Restaurant Density 

(1000 s per sq. mile) 
1.89^ 1.88 1.17^ 1.43 

Transit Access Time 
(minutes) 

0.00122 0.278 −0.00904* −2.48 

Social Disadvantage Index 
(score) 

−0.124* −2.38 0.146*** 3.39 

Lag (γ) for Transit Access 
Time (minutes) 

−0.0411*** −4.32 −0.0201* −2.52 

ρ 0.369*** 0.508*** 
Nagelkerke Pseudo ρ2 0.919 0.917 
AIC (OLS) 90.985 (105.97) 63.232 (91.301) 
Residual Autocorrelation 1.17 4.41* 
n. community areas 77 77  

a Several variables were tested and if found to be insignificant in both the Solo 
and Authorized Pooled models were removed from the model specification. 
These were: bus stop density, percent of land area dedicated to parks, and mixed 
land-use. 

^ p-value <0.1. 
* p-value <0.05. 
** p-value <0.01. 
*** p-value <0.001. 
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differences for solo and pooled hailing open. The SDM models reveal 
that the main source of the divergent spatial patterns are the social 
disadvantage and transit accessibility metrics, examined further in Sec. 
3.5 and 3.6. Notably, the relative socio-economic disadvantage of com
munities appears to be the main differentiator for pooled versus solo RH 
demand. This finding suggests an intriguing new connection between 
the evolving service portfolio of RH operators and diverse socio- 
economic demand segments. That is, in Chicago the small share of dy
namic ride-pooling requests are disproportionally requested in areas of 
socio-economic disadvantage, in contrast to the typically observed 
patterns of RH demand established in the literature. 

3.5. Social disadvantage index and spatial effects 

The second research question centers on exploring the socio- 
economic factors, and particularly the correlated socio-economic 
disadvantage observed across Chicago. The SDI analysis and mapping 
confirm the correlated nature, as well as the spatial concentration of 
socio-economic disadvantage indicators. The map in Fig. 3, illustrates 
stronger vulnerability in the West, Southwest, South and Far Southeast 
districts (Fig. 1) of Chicago. 

The modeling confirms that concentrated disadvantage is associated 
with fewer solo requests. This evidence supports the argument that 

(solo) ridehailing is related to ridership privilege (Lewis and MacKenzie, 
2017). This is because RH, solo rides in particular, is offered as a pre
mium service and at a higher price than other available mobility options 
in the area. Yet, this correlation with privilege is not supported by the 
model results for pooling requests. This suggests an intriguing inter
pretation that ride-pooling plays a gap-filling role for households with 
lower income and limited access to a personal vehicle (Tirachini and del 
Río, 2019). It is worth noting that this higher demand occurs despite the 
higher price-point of RH, even considering the discount for pooled rides. 
Considered jointly, we note that even after controlling for population 
and bar/restaurant density, the social and economic conditions in the 
community area still play an important role in shaping demand for RH. 
A crucial question that arises from these results is the contradiction of a 
higher number of requests for sharing, occurring in the very areas where 
demand is generally low and matching multiple trip trajectories is 
challenging. This is also reflected in the Table 2 statistics. The share of 
effectively matched trips (15%) is lower than the requested share of 
pooling (22%) with the rate of effective matching being highest in the 
wealthier central district and lowest in the far southeast district. 

A second observation concerns the robust spillover effects for the SDI 
for shared rides. The negative indirect effect implies that disadvantage 
in adjacent community areas reinforces the direct demand effects. We 
attribute this indirect impact to the social nature of technology adoption 

Table 5 
Impacts of explanatory variables.   

Solo rides Authorized ride-pooling rides 

Direct impact Indirect impact Total impact Direct impact Indirect impact Total impact 

Population 18 yr to 34 yr (%) 4.17 2.23** 6.40*** 2.870 2.59** 5.457*** 
Population Density (100,000 s per sq. mile) 3.69*** 1.97** 5.66*** 3.23*** 2.91** 6.14*** 
Mean Household Size −0.400^ −0.214** −0.614*** −0.175^ −0.157^ −0.332* 
Bar and Restaurant Density (1000 s per sq. mile) 1.95** 1.04 2.98^ 1.25*** 1.13 2.38 
Transit Access Time (minutes) −0.00237 −0.0608*** −0.0632*** −0.0124** −0.0468*** −0.0592*** 
Social Disadvantage Index −0.128* −0.0685* −0.196* 0.157* 0.141** 0.297***  

^ p-value <0.1. 
* p-value <0.05. 
** p-value <0.01. 
*** p-value <0.001. 

Fig. 4. Intensity of OD flows of Solo Ridehailing.  Fig. 5. Intensity of OD flows of Ride-pooling.  
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(Alemi et al., 2018; Alemi et al., 2019). For other shared mobility ser
vices like bikesharing, there is evidence of social/community factors 
driving adoption (Manca et al., 2019; Biehl et al., 2019). It is not clear 
that RH embodies the same level of symbolism or spatial visibility that 
bikesharing does. Therefore, we propose as an area of future investiga
tion to disentangle whether the observed spillover of socio-economic 
conditions is due to supply effects (RH drivers avoiding, or not opting 
in to offer pooled rides, in certain areas) or demand effects (local serv
ice/acceptability, social diffusion). For the latter case, we would spe
cifically need to examine whether there are spatially bound social 
network effects leading to more use of pooled services, or whether the 
spatially correlated challenges of longer commutes and poorer mobility 
options (i.e. spatial mismatch) drive the needs for pooled RH to fill gaps 
in underserved community areas. 

3.6. Spatial effects and rail transit access 

The third research question probes the relationship between RH (solo 
and pooled) and local rail transit accessibility measured via the TAT 
variable. The research is still divided regarding the substitutional 
(Clewlow and Mishra, 2017) or complementary (Boisjoly et al., 2018) 
relationship of RH with transit. Moreover, research suggests systematic 
variation is likely according to the size of the city (Hall et al., 2018), 
locations within a city (Grahn et al., 2020), the number of TNC com
petitors in the market (Nelson and Sadowsky, 2019), and the transit 
option type and performance (Babar and Burtch, 2017). What is more, 
the existing research offers limited insight on the connection of pooled 
RH and transit. 

Looking at Chicago, there are factors suggesting both relationships 
are possible. The strong variability in wealth and service access across 
the city could suggest complementarity since users, particularly in un
derserved community areas, may opt to use RH to fill gaps in transit 
accessibility (Alemi et al., 2018), albeit with a need to consider the steep 
price differences (Hall et al., 2018). We would expect this to occur 
particularly for more affordable pooled rides. Instead, Chicago’s 
expansive transit system with a high transit performance score (All
Transit, 2020) suggests that transit could remain competitive even in the 
presence of multiple TNC operators, as suggested by Babar and Burtch 
(2017). Finally, the loop-centered radial nature of Chicago’s CTA rail 
system points to possible variation in effects according to the north- 
south corridor with strong coverage vs. the remainder of the system. 

On the whole, our SDM model results suggest a significant positive 
correlation between RH and rail accessibility. That is, in community 
areas where transit performs better (lower access times) the demand for 
RH is also higher, in line with Correa et al. (2017) and Brown (2019). 
While this result is not surprising given the previous research using real 
trip data, the results are important because they can provide evidence of 
the separate effect of pooled rides. We expected that ride-pooling could 
have a more competitive demand relationship with rail transit, given the 
lower price-point and shared reliance on sharing. For example, Lewis 
and MacKenzie (2017) found that UberHOP, a ride-pooling service, 
predominantly drew riders form transit. 

Instead, we find a significant direct demand effect only for pooled 
RH, and no significant differences overall between solo and pooled re
quests. Additionally, there is a strong spillover effects for TAT (Table 5), 
suggesting that transit accessibility in one community affects its neigh
bors. We attribute this to the spatial nature of transit systems where rail 
transit routes traverse several community areas. 

In summary, in the central and northern areas of Chicago, excellent 
rail transit accessibility is correlated with higher demand for RH. A 
possible explanation is that RH competes more directly with driving 
than with transit, and the lower auto ownership and parking availability 
makes RH more attractive precisely in the areas where transit also 
performs well, and vice versa. We do not conclude that the positive 
correlation confirms a complementary relationship over a competitive 
one between RH and transit. This is because the analysis is based on 

spatially aggregated data rather than single trip data revealing 
replacement or complementary travel. Rather, we suggest that future 
research focus on collecting a representative dataset of transit and 
ridehailing users to investigate trip-specific mode substitution and 
induced travel. 

On the whole, despite pooled rides serving a larger range of com
munities and more peripheral areas as discussed above, we cannot find 
any statistical evidence that pooling compensates for transit deserts. 
What is more, pooling seems to offer less gap-filling than solo rides in 
areas where transit is poor, despite being more affordable. We speculate 
that ride-pooling might not be feasible or considered safe in transit- 
deserts. 

4. Practical implications and suggested research 

The findings suggest a number of implications for practice, RH op
erators and researchers. On the public policy side, the finding that ride- 
pooling demand correlates with vulnerable socio-economic living con
ditions measured by the SDI suggests that users in underserved com
munity areas are benefitting from the convenience of an emerging 
mobility platform without paying the premium for solo rides. In terms of 
policy, this points to a need for greater focus dedicated to the positive 
socio-economic outcomes that TNCs can facilitate via pooled RH. By 
promoting ride-pooling, there are not only potential benefits from 
reduced congestion but also from users in disadvantaged community 
areas accessing more opportunities for employment and recreation. 
Thereby, public agencies ought to carefully differentiate RH taxes and 
regulations according to the type of service model, along with user- 
segment and locations, to avoid reducing mobility and accessibility for 
underserved communities. 

Concerning the operational and business perspective, an important 
challenge arises when considering the greater spatial spread of pooled 
ride requests. Notably, to maintain effective shared on-demand service 
operations it is necessary to match multiple requester trajectories in real 
time. However, with only one in five riders requesting sharing, and the 
requests being geographically dispersed, it is challenging to efficiently 
tie together trajectories. At the same time, on the side of riders, to 
maintain a growing customer base and loyalty to pooling, it is important 
to ensure service quality. Research suggests that riders likely care more 
about trip time/cost than sharing itself (Lavieri and Bhat, 2019b). 
Therefore, understanding user expectations, and the socio-spatial 
context is necessary to promote demand for pooled services, to in turn 
enable more stream-lined matching and unlock the critical mass of 
pooling. Given the benefits to vulnerable community areas, RH opera
tors and policy/mobility agencies have a strong motivation to work 
together to increase ride-pooling ridership. 

On the research side there are three main take-aways. First, findings 
highlight the importance of studying contextual variables, such as socio- 
economic measures, more carefully. This calls for more research to 
disentangle how different mobility service offerings from the RH port
folio serves and affects different user segments and community areas. 
Second, RH service model effects are not monolithic. Specifically, the 
results point to a difference in magnitude or even in direction of 
explanatory effects when looking at different RH service models. Third, 
methodologically, this research uses a factor analysis-based index to 
study the overlapping factors of disadvantage that frequently affect 
communities. This helps overcome the underlying correlation between 
factors such as wealth, employment, and car-ownership, that jointly 
affect mobility decisions. An avenue for further work is to continue 
refining the indices that account for bundled factors to more accurately 
appraise the role of emerging mobility. 

5. Conclusion 

Innovative mobility services can be important tools to limit rising 
urban congestion and improve mobility for vulnerable populations. Yet, 
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despite the significant growth in both the ridership and research on RH 
in recent years, findings on disparities in use have persisted not just 
along demographic dimensions such as income, gender, race/ethnicity, 
but also geographically. There is still limited understanding of the 
diverse demand patterns and the impact of varied services offered by RH 
operators (solo, pooled, shuttles, curb-to-curb, etc.). The goal of this 
study is to investigate the demand for RH services, focusing on the 
distinct socio-spatial patterns of solo requests versus ride-pooling. The 
analysis sheds light on how different emerging mobility services, with 
different sustainability, accessibility and equity implications, are used 
by diverse communities. We use a Spatial Durbin Model including 
measures of Social Disadvantage and Transit Accessibility applied to a 
publicly available dataset with 127 million RH records from the city of 
Chicago. The results show that density and vibrancy variables related to 
concentration of restaurants, population and younger residents, have 
similar effects on the demand for solo versus pooled rides. On the other 
hand, our analysis uncovers that pooling requests are geographically 
more dispersed and socially distinct from exclusive RH use. With regard 
to the three research questions posed in this work there are several 
implications.  

• For Q1 we uncover that ride-pooling is utilized among a broader 
range of community areas outside the central business district, 
thereby serving more diverse communities. Comparing the solo and 
pooled ride determinants, we reveal that differences are mainly 
linked to community disadvantage. This suggests a novel connection 
between emerging mobility and vulnerability indicators where 
pooled services can serve a wider range of travelers based on socio- 
demographic profiles than what has been observed in the research 
focused on solo RH. This has three important implications. One, for 
the spatial modeling of RH, disadvantages explain differences in 
demand, and also looms larger, that is, casts spillover effects across 
community areas. Two, the diffusion of pooling in underserved 
communities suggests an important socio-spatial dimension to 
consider in future work. Three, the more distributed demand pattern 
of pooled rides is tied to the sustainability of operations as critical 
demand-thresholds are harder to reach.  

• For Q2 we develop an index that accounts for the bundled nature of 
socio-economic disadvantage. The SDI represents the only flipped 
sign in our spatial model: higher disadvantage is associated with 
more ride-pooling, and less demand for solo rides. Two implications 
arise. One, methodologically, there is value in using an index to ac
count for highly correlated factors that affect RH demand. Two, a 
deeper analysis of the opportunity and barriers to accessing different 
RH models is needed. Analyzing service attributes, socio-economic 
circumstances and mobility context variables jointly is needed help 
understand which communities can access and benefit from pooling, 
and how it is used in practice.  

• For Q3 we examined the impact of transit accessibility, finding that 
better rail transit access is correlated with more RH pickups (both 
solo and pooled). The findings call for more investigation to clarify 
why ride-pooling demand, seemingly a closer transit substitute, 
surges in transit-rich areas, then tapers of more rapidly in transit- 
underserved community areas. 

We note some important caveats of this study. First, owing to data 
censoring we are unable to distinguish Uber, Lyft and Via rides, leaving 
the different character and promotional strategies as unknown factors in 
shaping demand for solo versus pooled rides. Second, our trip data are 
not directly tied to rider sociodemographics. These are matched indi
rectly though the community area attributes and trip origin locations. 
Without precise rider data associated with each trip, it remains unknown 
whether the trips in high SDI areas, for example, are effectively 
requested by higher income trip-makers living in a disadvantaged 
community. Third, the data do not include information on drivers 
search/driving patterns or on operator locational/pricing algorithms 

which could affect the choice to use RH given that potential customers 
can view estimated waiting times and prices. 

Future research should focus on further characterizing the differences 
between solo and pooled demand patterns (such as focusing on other 
variables such as trip length, pricing, timing, and duration), and 
analyzing their complex relationship with transit (buses and rail). There 
are potential benefits from reducing (solo) vehicle miles, and improving 
social outcomes, with increased use of pooling. Carefully designed stated 
and revealed preference/intercept surveys are needed to more fully 
capture the barriers to increased adoption of pooled rides. 

Finally, with an eye to the future, while the RH industry tends to 
spearhead new forms of ride-sharing, currently and in the near future, 
societal values around sharing are changing drastically. As the world 
contends with the ongoing COVID-19 pandemic, and in many cases 
suspension of pooled RH services, it behooves researchers, policy- 
makers, and the RH industry to investigate the perceived risks of 
vehicle sharing, and the tolerance for returning to various forms of 
shared mobility. 
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