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In distributed machine learning, where agents collaboratively learn from diverse private
data sets, there is a fundamental tension between consensus and optimality. In this paper,
we build on recent algorithmic progresses in distributed deep learning to explore various
consensus-optimality trade-offs over a fixed communication topology. First, we propose
the incremental consensus-based distributed stochastic gradient descent (i-CDSGD)
algorithm, which involves multiple consensus steps (where each agent communicates
information with its neighbors) within each SGD iteration. Second, we propose the
generalized consensus-based distributed SGD (g-CDSGD) algorithm that enables us to
navigate the full spectrum from complete consensus (all agents agree) to complete
disagreement (each agent converges to individual model parameters). We analytically
establish convergence of the proposed algorithms for strongly convex and nonconvex
objective functions; we also analyze the momentum variants of the algorithms for the
strongly convex case. We support our algorithms via numerical experiments, and
demonstrate significant improvements over existing methods for collaborative deep
learning.
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1 INTRODUCTION

1.1 Motivation
Scaling up deep learning algorithms in a distributed setting (Recht et al., 2011; LeCun et al., 2015; Jin et al.,
2016) is becoming increasingly critical, impacting several applications such as learning in robotic
networks (Lenz et al., 2015; Fang et al., 2019), the Internet of Things (IoT) (Gubbi et al., 2013; Lane et al.,
2015; Hu et al., 2020), mobile device networks (Lane and Georgiev, 2015; Kang et al., 2020), and sensor
networks (Ge et al., 2019; He et al., 2020). For instance, with the development of wireless communication
and distributed computing technologies, intelligent sensor network has been emerging as a kind of large-
scale distributed network systems, which request more advanced sensor fusion techniques that enable
data privacy preservation (Jiang et al., 2017a; He et al., 2019), dynamic optimization (Yang et al., 2016),
and intelligent learning (Tan, 2020). This paper aims at developing novel algorithms to facilitate
collaborative deep learning in distributed settings such as distributed sensor networks (Lesser et al.,
2012). Several distributed deep learning approaches have been proposed to address issues such as model
parallelism (Dean et al., 2012), data parallelism (Dean et al., 2012; Jiang et al., 2017a), and the role of
communication and computation (Li et al., 2014; Das et al., 2016).

We focus on the constrained communication topology setting where the data is distributed (so
that each agent has its own estimate of the deep model) and where information exchange among
the learning agents are constrained along the edges of a given communication graph (Jiang et al.,
2017a; Lian et al., 2017). In this context, two key aspects arise: consensus and optimality. We refer
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the reader to Figure 1 for an illustration involving three agents.
With sufficient information exchange, the learned model
parameters corresponding to each agent, θjk, j � 1, 2, 3 could
converge to θ̂, in which case they achieve consensus but not
optimality (here, θ* is the optimal model estimate if all the data
were centralized). On the other hand, if no communication
happens, the agents may approach their individual model
estimates (θi*) while being far from consensus. The question
is whether this trade-off between consensus and optimality can
be balanced so that all agents collectively agree upon a model
estimate close to θ*.

1.2 Our Contributions
In this paper, we propose, analyze, and empirically evaluate
two new algorithmic frameworks for distributed deep
learning that enable us to explore fundamental trade-offs
between consensus and optimality. The first approach is
called incremental consensus-based distributed stochastic
gradient descent (i-CDSGD), which is a stochastic
extension of the descent-style algorithm proposed in
(Berahas et al., 2018). This involves running multiple
consensus steps where each agent exchanges information
with its neighbors within each SGD iteration. The second
approach is called generalized consensus-based distributed
SGD (g-CDSGD), based on the concept of generalized gossip
(Jiang et al., 2017b). This involves a tuning parameter that
explicitly controls the trade-off between consensus and
optimality. Specifically, we:

• (Algorithmic) propose the i-CDSGD and g-CDSGD
algorithms (along with their momentum variants).

• (Theoretical) prove the convergence of g-CDSGD
(Theorems 1 and 3) and i-CDSGD (Theorems 2 and 4)
for strongly convex and non-convex objective functions;

• (Theoretical) prove the convergence of the momentum
variants of g-CDSGD (Theorem 5) and i-CDSGD
(Theorem 6) for strongly convex objective functions;

• (Practical) empirically demonstrate that i-CDMSGD (the
momentum variant of i-CDSGD) can achieve similar
(global) accuracy as the state-of-the-art with lower
fluctuation across epochs as well as better consensus;

• (Practical) empirically demonstrate that g-CDMSGD (the
momentum variant of g-CDSGD) can achieve similar
(global) accuracy as the state-of-the-art with lower
fluctuation, smaller generalization error and better consensus.

We use both balanced and unbalanced datasets (i.e., equal or
unequal distributions of training samples among the agents) for
the numerical experiments with benchmark deep learning data
sets. Please see Table 1 for a detailed comparison with existing
algorithms.

1.3 Related Work
A large literature has emerged that studies distributed deep
learning in both centralized and decentralized settings (Dean
et al., 2012; Zhang et al., 2015; Blot et al., 2016; Jin et al., 2016;
McMahan et al., 2016; Xu et al., 2017; Zhang et al., 2017; Zheng
et al., 2017; Esfandiari et al., 2021), and we only attempt to
summarize the most recent work (Wangni et al., 2017). proposed
a gradient sparsification approach for communication-efficient
distributed learning, while (Wen et al., 2017) proposed the
concept of ternary gradients to reduce communication costs
(Scaman et al., 2017). proposed a multi-step dual accelerated
method using a gossip protocol to provide an optimal
decentralized optimization algorithm for smooth and strongly
convex loss functions. Decentralized parallel stochastic gradient
descent (Lian et al., 2017) has also been proposed. In (Duchi et al.,
2012), the authors developed a distributed averaging method for
convex (possibly nonsmooth) objective functions; additionally
(Mokhtari and Ribeiro, 2016), proposed a decentralized double
stochastic averaging gradient algorithm. However, non-convex
functions were not taken into account in either of the above
works. Dual approaches (Uribe et al., 2020; Dvinskikh et al., 2019)
were also proposed to address the convergence issues in the
distributed optimization over networks while extra parameters
need to be updated for obtaining the optimal solutions, which in
return could increase the difficulty of solving the problem and the
computational complexity. Again, convex problems were the
main focus that might not enable the proposed schemes to
generalize well for non-convex problems. Another category of
approaches, the primal-dual gradient algorithms developed in
(Hong et al., 2018; Dvinskikh and Gasnikov, 2019) were not
evaluated by real-world datasets and were only originally specific
for homogeneous networks where data was assumed
independently identically distributed (i.i.d.).

Perhaps most closely related to this paper is the work of
(Berahas et al., 2018), who presented a distributed optimization
method (called DGDτ) to enable consensus when the cost of

FIGURE 1 | A closer look at the optimization updates in distributed deep
learning: Blue dots represent the current states (i.e., learned model
parameters) of the agents; green dots represent the individual local optima (θi*),
that agents converge to without sufficient consensus; the purple dot (θ*)
represents the ideal optimal point for the entire agent population; another
purple dot θ̂ represents a possible consensus point for the agents which is far
from optimal; blue and red curves signify the convergence trajectories with
different step sizes; the green dashed circles indicate the neighborhoods of θ*
and θ̂, respectively; d2 represents the consensus bound/error and d1
represents the optimality bound/error; ideally, both of these bounds should
be small.
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communication is cheap. However, the authors only considered
convex optimization problems, and only study deterministic
gradient updates. Also (Qu and Li, 2017), proposed a class of
(deterministic) accelerated distributed Nesterov gradient descent
methods to achieve linear convergence rate, for the special case of
strongly convex objective functions. In (Tsianos and Rabbat,
2012), both deterministic and stochastic distributed were
discussed while the algorithm had no acceleration techniques.
To our knowledge, none of these previous works have explicitly
studied the trade-off between consensus and optimality. It should
also be noted that the proposed approaches guarantee the
convergence to the first-order stationary points for non-
convex analysis and the avoidance of local maxima and saddle
points is out of scope.

Outline: Section 2 presents the problem and several
mathematical preliminaries. In Section 3, we present our two
algorithmic frameworks, along with their analysis in Section 4.
For validating the proposed schemes, several experimental results
based on benchmark datasets are presented in Section 5.
Concluding remarks are presented in Section 6.

2 PROBLEM FORMULATION

We consider the standard unconstrained empirical risk
minimization (ERM) problem typically used in machine
learning problems (such as deep learning):

min
1
n
∑n
i�1

f i(θ), (1)

where θ ∈ Rd denotes the parameter vector of interest, f : Rd →R

denotes a given loss function, and fi is the function value
corresponding to a data point i. Our focus is to investigate the

case where the ERM problem is solved collaboratively among a
number of computational agents. In this paper, we are interested
in problems where the agents exhibit data parallelism, i.e., they
only have access to their own respective training datasets.
However, we assume that the agents can communicate over a
static undirected graph G � (V, E), where V is a vertex set (with
nodes corresponding to agents) and E is an edge set. Throughout
this paper we assume that the graph G is connected.

In this work, we primarily consider the spectrum between
consensus and optimality and investigate thoroughly what effect
such trade-offs have on the decentralized learning paradigm.
Specifically, we analyze the theoretical properties of the proposed
algorithms and show the empirical findings over benchmark
datasets. However, in realistic scenarios, the graph may be
subject to changes, such as the addition of new agents, and
robust decentralized learning algorithms need to be developed
for tackling such an issue, which is out of the scope and will
definitely be one of our future research directions beyond
this work.

Let Dj, j � 1, . . . , n denote the subset of the training data
(comprising nj samples) corresponding to the jth agent such that∑N

j�1nj � n, where N is the total number of agents. With this
formulation, and since f (θ) � ∑N

j�1fj(θ), we have the following
(constrained) reformulation of Eq. 1:

min ∑N
j�1

∑
i∈Dj

f ij(θj), s.t. θj � θl ∀(j, l) ∈ E, (2)

Note that in this context, θj for all j � 1, 2, . . . , N is the local
copy of θ, which means the model architecture for each agent is
typically the same. In another line of works where agents own
different models, personalized federated/decentralized
learning (Fallah et al., 2020) or meta-learning approaches
(Fallah et al., 2021) have been developed correspondingly.

TABLE 1 | Comparisons between different optimization approaches.

Method F Con.Bou Opt.Bou Con.Rate Mom.Ana CC.T. Sto

FedAvg McMahan et al. (2016) Nonconvex N/A N/A N/A No No Yes
DGDτ Berahas et al. (2018) Str-con O( α

1−λτ2) O( α
1−λτ2) O(ϵk ) No Yes No

MSDA Scaman et al. (2017) Str-con N/A N/A O(ϵk ) Yes Yes No
— — — — — — —

— — — — — — —

CDSGD Jiang et al. (2017a) Str-con O( α
1−λ2) O( αc+1

H+α−1(1−λ2)) O(ϵk ) No Yes Yes
Nonconvex O( α

1−λ2) O(αc + 1 − λN ) N/A
— — — — — — —

— — — — — — —

Acc-DNGD-SC Qu and Li (2017) Str-con O( α
1
3

(1−λ2)λ
2
3
2

) N/A O(ϵk ) Yes Yes No
— — — — — — —

— — — — — — —

i-CDSGD [This paper] Str-con O( α
1−λτ2) O( αc+1

H+α−1(1−λτ2)
) O(ϵk ) Yes Yes Yes

Nonconvex O( α
1−λτ2) Theorem 4 O(k−1) — — —

— — — — — — —

— — — — — — —

g-CDSGD [This paper] Str-con O( ωα
1−λ2) O(αc−1+ω

−1
H ) O(ϵk ) Yes Yes Yes

Nonconvex O( ωα
1−λ2) Theorem 3 O(k−1) — — —

Con.Bou.: consensus bound. Opt.Bou.: optimality bound. Con.Rate: convergence rate. Str-con: strongly convex. Mom.Ana.: momentum analysis. α: step size. λ2 ∈ (0, 1): the second
largest eigen-value of a stochastic matrix. τ ∈ N: positive constant. ω ∈ (0, 1]: a positive constant. ϵ ∈ (0, 1): a positive constant, and it signifies the representative meaning. They are not
exactly the same in different methods. Sto.: stochastic. C.C.T.: constrained communication topology. c1, c2 > 0: condition numbers. H: strong convexity constant. γ > 0: smoothness
constant. The optimality bounds for i-CDSGD and g-CDSGD with nonconvex functions refer to the constant error bounds in Theorems 4 and 3.
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Equivalently, the concatenated form of the above equation is as
follows:

minF(Θ)d∑N
j�1

∑
i∈Dj

f ij(θj), s.t. (Π⊗ Id)Θ � Θ, (3)

where Θd[θ1; θ2; . . . ; θN ]T ∈ RdN , Π ∈ RN×N is the agent
interaction matrix with its entries πjl indicating the link
between agents j and l, Id is the identity matrix of
dimension d × d, and ⊗ represents the Kronecker product.
Each element value in Π signifies the connection probability
between two agents such that πjl ∈ [0, 1]. One assumption is
imposed for Π in the sequel to show the properties of any
graph associated with the networked system.

We now introduce several key definitions and assumptions
that characterize the above problem.

Definition 1. A function f : Rd →R is said to be H-strongly
convex, if for all x, y ∈ Rd, we have
f (y)≥ f (x) + ∇f (x)T(y − x) + H

2‖y − x‖2. It is said to be c-smooth
if f (y)≤ f (x) + ∇f (x)T(y − x) + c

2‖y − x‖2. Here, ‖ ·‖ represents the
Euclidean norm.

Definition 2.A function c is said to be coercive if it satisfies: c(x)
→ ∞ when ‖x‖ → ∞.

Assumption 1. The objective functions fj: Rd →R are assumed
to satisfy the following conditions: a) each fj is cj-smooth; b) each fj
is proper (not everywhere infinite) and coercive; c) each fj is
Lipschitz continuous.

Assumption 2. The interaction matrix Π is normalized to
be doubly stochastic; the second largest eigenvalue of Π is
strictly less than 1, i.e., λ2(Π)<1, where λ2(Π) is the second
largest eigenvalue of Π. If (j, l) ∉ E, then πjl � 0.For
convenience, we use λ2 to represent λ2(Π) and similar λN
for λN(Π), which signifies the N-largest eigenvalue of Π.

We will solve Eq. 2 in a distributed and stochastic
manner.

For solving stochastic optimization problems, variants of
the well-known stochastic gradient descent (SGD) have been
commonly employed. For the formulation in Eq. 2, one of
the state-of-the-art algorithms is a method called consensus
distributed SGD, or CDSGD, recently proposed in (Jiang
et al., 2017a). This method estimates θ according to the
update equation:

θjk+1 � ∑
l∈Nb(j)

πjlθ
l
k − αgj(θjk) (4)

where Nb(j) indicates the neighborhood of agent j, α is the step
size, gj(θ

j
k) is the (stochastic) gradient of fj at θ

j
k, implemented by

drawing a minibatch of sampled data points. More precisely,
gj(θ

j
k) � 1

b′∑q′∈D′∇f
q′
j (θ

j
k), where b′ is the size of the minibatch D′

selected uniformly at random from the data subsetDj available to
Agent j.

3 PROPOSED ALGORITHMS

State-of-the-art algorithms such as CDSGD alternate
between the gradient update and consensus steps. We

propose two natural extensions where one can control the
emphasis on consensus relative to the gradient update and
hence, leads to interesting trade-offs between consensus and
optimality.

3.1 Increasing Consensus
Observe that the concatenated form of the CDSGD updates, Eq.
4, can be expressed as

Θk+1 � (Π⊗ Id)Θk − αg(Θk),
If we perform τ consensus steps interlaced with each gradient

update, we can obtain the following concatenated form of the
iterations of the parameter estimates:

Θk+1 � (Πτ ⊗ Id)Θk − αg(Θk) (5)

where, g(Θk) � [gT1 (θ1k), gT2 (θ2k), . . . , gTN(θNk )]T . We call this
variant incremental consensus-based distributed SGD
(i-CDSGD) which is detailed in Algorithm 1. Note, in a
distributed setting, that this algorithm incurs an additional
factor τ in communication complexity.

In this context, i-CDSGD not only extends traditional
decentralized (stochastic) gradient algorithms but also
leverages the consensus among agents in a graph, particularly
when agents are heterogeneous. Most traditional decentralized
algorithms have been properly designed for homogeneous
scenarios where agents share common properties such data
sampling distributions and cannot be directly applied to
heterogeneous networks as only one step of consensus may
not be enough to enable agents to converge to the same
solution due to the trade-off between the consensus-
optimality. Therefore, the analysis presented in the paper for
i-CDSGD provides a new perspective different from that most
traditional decentralized algorithms delivered. A different and
more direct approach to control the trade-off between consensus
and gradient would be as follows:

Θk+1 � (1 − ω)(Π⊗ Id)Θk + ω(Θk − αg(Θk)) (6)

where, 0<ω ≤ 1 is a user-defined parameter. We call this
algorithm generalized consensus-based distributed SGD
(g-CDSGD), and the full procedure is detailed in Algorithm 3.

Algorithm 1 Incremental Consensus-based Distributed
Stochastic Gradient Descent

1: Initialization: θj0, v
j
0, j � 1, 2, . . . ,N , α, N, τ, m, Π

2: Distribute the training data set to N agents
3: for each agent do
4: andomly shuffle each data subset
5: for k � 0: m do
6: t � 0
7: for j � 1, . . . , N do
8: θjt � θjk{Initialization before incremental consensus}
9: end for
10: while t ≤ τ − 1 do
11: for j � 1, . . . , N do
12: θjt+1 � ∑l∈Nb(j)πjlθ

l
t{Incremental consensus}
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13: end for
14: t � t + 1
15: end while
16: θ̂ � θjt{Update after incremental consensus}
17: θjk+1 � θ̂ − αgj(θ

j
k){Update for iteration}

18: end for
19: end for

Algorithm 2 Incremental Consensus-based Distributed
Stochastic Gradient Descent w/ Momentum

1: Initialization: θj0, v
j
0, j � 1, 2, . . . ,N , α, N, τ, m, Π, μ

2: Distribute the Non-IID training data set to N agents
3: for each agent do
4: Randomly shuffle each data subset
5: for k � 0: m do
6: t � 0
7: for j � 1, . . . , N do
8: θjt � θjk{Initialization before incremental consensus}
9: vjt � vjk{Initialization of momentum before incremental
consensus}
10: end for
11: while t ≤ τ − 1 do
12: for j � 1, . . . , N do
13: θjt+1 � ∑l∈Nb(j)πjlθ

l
t{Incremental consensus for decision

variable}
14: vjt+1 � ∑l∈Nb(j)πjlvlt{Incremental consensus for momentum}
15: end for
16: t � t + 1
17: end while
18: θ̂ � θjt{Update of decision variable after incremental
consensus}
19: v̂ � vjt{Update of momentum after incremental consensus}
20: vjk+1 � θ̂ − θjk + μv̂ − αgj(θ

j
k){Update of momentum for

iteration}
21: θjk+1 � θjk + vjk+1{Update of decision variable for iteration}
22: end for
23: end for

By examining Eq. 6, we observe that when ω approaches
0, the update law boils down to a only consensus protocol,
and that when ω approaches 1, the method reduces to
standard stochastic gradient descent (for individual agents).

Next, we introduce the Nesterov momentum variants of
our aforementioned algorithms. The momentum term is
typically used for speeding up the convergence rate with
high momentum constant close to Eq. 1 (Sutskever et al.,
2013). More details can be found in Algorithms 2 and 4.

Algorithm 3 Generalized Consensus-based Distributed
Stochastic Gradient Descent

1: Initialization: ω, θj0, v
j
0, j � 1, 2, . . . ,N , α, N, m, Π

2: Distribute the training data set to N agents
3: for each agent do
4: Randomly shuffle each data subset
5: for k � 0: m do

6: θ̂ � ∑l∈Nb(j)πjlθ
l
k{Consensus update for decision variable

only}
7: θjk+1 � (1 − ω)θ̂ + ω(θjk − αgj(θ

j
k)){Generalized consensus}

8: end for
9: end for

We provide a discussion on the trade-off between the
consensus and optimality to conclude this section. The trade-
off between consensus and optimality can vary from convex to
non-convex optimization problems. For most convex distributed
optimization problems, they are well defined and globally optimal
solution are not empty (probably unique if strongly convex) so
each agent can communicate with other agents in its
neighborhood to reach consensus and their local gradient
updates will guide them to an minimizer. Therefore, the trade-
off can be perfectly balanced to get to good optimal solutions.
However, for non-convex problems, there exist possibly
numerous locally optimal solutions such that the trade-off
plays a critical role in the distributed optimization. The
consensus among agents may not be necessarily a good
optimal solution since the local gradient update of an agent
may “dominate” the solution searching process and allows for
“bias”. Hence, the investigation of such a trade-off is quite critical.

3.2 Tools for Convergence Analysis
We now analyze the convergence of the iterates {θjk} generated
by our algorithms. Specifically, we identify an appropriate
Lyapunov function (that is bounded from below) for each
algorithm that decreases with each iteration, thereby
establishing convergence.

Algorithm 4 Generalized Consensus-based Distributed
Stochastic Gradient Descent w/ Momentum

1: Initialization: ω, θj0, v
j
0, j � 1, 2, . . . ,N , α, N, m, Π, μ

2: Distribute the Non-IID training data set to N agents
3: for each agent do
4: Randomly shuffle each data subset
5: for k � 0: m do
6: θ̂ � ∑l∈Nb(j)πjlθ

l
t{Consensus update for decision variable}

7: v̂ � ∑l∈Nb(j)πjlvlt{Consensus update for momentum}
8: vjk+1 � (1 − ω)(θ̂ − θjk + μv̂) + ωμvjk − ωα
gj(θ

j
k + μvjk){Generalized consensus for momentum}

9: θjk+1 � θjk + vjk+1{Update of decision variable for iteration}
10: end for
11: end for

In our analysis, we use the concatenated (Kronecker) form
of the updates. For simplicity, let P � Π⊗Id ∈ RNd×Nd .

We begin the analysis for g-CDSGD by constructing a
Lyapunov function that combines the true objective function
with a regularization term involving a quadratic form of
consensus as follows:

V(Θ)dωF(Θ) + 1 − ω

2α
ΘT(INd − P)Θ (7)

It is easy to show that∑N
j�1fj(θ

j) is cmdmaxj{cj}-smooth, and that
V(Θ) is ĉ-smooth with
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ĉdωcm + (1 − ω)α−1λmax(INd − P) � ωcm + (1 − ω)α−1(1 − λN).

Likewise, it is easy to show that ∑N
j�1fj(θ

j) is Hmd minj{Hj}-

strongly convex; therefore V(Θ) is Ĥ-strongly convex with

ĤdωHm + (1 − ω)(2α)−1λmin(INd − P) � ωHm + (1 − ω)(2α)−1
(1 − λ2).

We also assume that there exists a lower bound Vinf for the
function value sequence {V (Θk)}, ∀k. When the objective
functions are strongly convex, we have Vinf � V (Θ*), where
Θ* is the optimizer. Due to Assumptions 1 and 2, it is
straightforward to obtain an equivalence between the
gradient of Eq. 7 and the update law of g-CDSGD. Rewriting
(6), we get:

Θk+1 � (1 − ω)PΘk + ω(Θk − αg(Θk)) (8)

Therefore, we obtain:

Θk+1 � Θk − Θk + (1 − ω)PΘk + ω(Θk − αg(Θk))
� Θk − αωΘk − (1 − ω)INdΘk + (1 − ω)PΘk

� Θk − α ωg(Θk) + 1
α
(1 − ω)(INd − P)Θk( )︸���������������︷︷���������������︸

Lyapunov Gradient

(9)

The last term in Eq. 9 is precisely the gradient of V(Θ). In the
stochastic setting, g (Θk) can be approximated by sampling
one data point (or a mini-batch of data points) and the
stochastic Lyapunov gradient is denoted by S(Θk), ∀k.

Similarly, the update laws for our proposed Nesterov
momentum variants can be compactly analyzed using the
above Lyapunov function. First, we rewrite the updates for
g-CDMSGD as follows:

yk+1 � Θk + μ(Θk − Θk−1) (10a)

Θk+1 � (1 − ω)Pyk+1 + ω(yk+1 − αg(yk+1)) (10b)

With a few algebraic manipulations, we get:

Θk+1 � yk+1 − yk+1 + (1 − ω)Pyk+1 + ω(yk+1 − αg(yk+1))
� yk+1 − α ωg(yk+1) +

1 − ω

α
(INd − P)yk+1( ) (11)

The above derivation simplifies the Nesterov
momentum-based updates into a regular form which is
more convenient for convergence analysis. For clarity, we
separate this into two sub-equations. Let
S(yk+1) � ωg(yk+1) + 1−ω

α (INd − P)yk+1. Thus, the updates for
g-CDMSGD can be expressed as

yk+1 � Θk + μ(Θk − Θk−1) (12a)

Θk+1 � yk+1 − αS(yk+1), (12b)

Please find the similar transformation for i-CDMSGD in
Supplementary Section S1.

For analysis, we require a bound on the variance of the
stochastic Lyapunov gradient S(Θk) such that the variance of

the gradient noise1 can be bounded from above. The variance of
S(Θk) is defined as:

Var[S(Θk)]dE[‖S(Θk)‖2] − ‖E[S(Θk)]‖2.
The following assumption is standard in SGD convergence
analysis, and is based on Bottou et al. (2018).

Assumption 3. a) There exist scalars r2 ≥ r1>0 such that
∇V(Θk)

TE[S(Θk)]≥ r1‖∇V(Θk)‖2 and ‖E[S(Θk)]‖≤ r2‖∇V(Θk)‖
for all k ∈ N; b) There exist scalars B ≥ 0 and BV ≥ 0 such that
Var[S(Θk)]≤B + BV‖∇V(Θk)‖2 for all k ∈ N.

Remark 1. Assumption 3(a) guarantees sufficient descent
of V in the direction of −S(Θk); Assumption 3(b) states that
the variance of S(Θk) is bounded above by the second
moment of ∇V(Θk). The constant B can be regarded to
represent the second moment of noise involving in the
gradient S(Θk). Therefore, the second moment of S(Θk)
can be bounded above as

E[‖S(Θk)‖2]≤B + Bm‖∇V(Θk)‖2,
where BmdBV + r22 ≥ r

2
1 ≥ 0. Note that this is slightly different

from the conventional assumption in SGD analysis that the
variance of stochastic gradients is bounded above by a single
constant; in our context, we control the restriction of S(Θk) via
two scalar constants. However, our analysis technique is
otherwise similar.
For convergence analysis, we assume:

Assumption 4. There exists a constant G>0 such that

‖∇V(x)‖≤G,∀x ∈ RdN .
We justify this assumption. As the Lyapunov function is a

composite function with the true cost function which is Lipschitz
continuous and the regularization term associated with
consensus, it can be immediately obtained that ‖∇V(x)‖ is
bounded above by some positive constant.

Before turning to our main results, we present two auxiliary
technical lemmas.

Lemma 1. Let Assumptions 1 and 2 hold. The iterates of
g-CDSGD (Algorithm 3) satisfy the following inequality ∀k ∈ N:

E[V(Θk+1)] − V(Θk)≤ − α∇V(Θk)TE[S(Θk)]
+ ĉ

2
α2E[‖S(Θk)‖2]. (13)

Lemma 2. Let Assumptions 1, 2, and 3 hold. The iterates of
g-CDSGD (Algorithm 3) satisfy the following inequality ∀k ∈ N:

E[V(Θk+1)] − V(Θk)≤ − r1 − ĉ

2
αBm)α‖∇V(Θk)‖2 + ĉ

2
α2B.(
(14)

We provide the proof of Lemmas 1 and 2 in the
Supplementary Section S1. To guarantee that the first term
on the right hand side is strictly negative, the step size α should
be chosen such that

1As our proposed algorithm is a distributed variant of SGD, the noise in the
performance is caused by the random sampling Song et al. (2015).
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0≤ α≤
r1 − (1 − ω)(1 − λτN)Bm

ωBmcm
. (15)

4 ANALYSIS AND MAIN RESULTS

This section presents the main results by analyzing the
convergence properties of the proposed algorithms. Our main
results are grouped as follows: 1) we provide rigorous
convergence analysis for g-CDSGD and i-CDSGD for both
strongly convex and non-convex objective functions. 2) we
analyze their momentum variants only for strongly convex
objective functions. It is noted that the proofs of theorems are
provided in the main body while the proofs of lemmas and
propositions are provided in the Supplementary Section S1.

4.1 Convergence Analysis for I-CDSGD and
G-CDSGD
Our analysis will consist of two components: establishing an upper
bound on how far away the estimates of the individual agents are with
respect to their empirical mean (which we call the consensus bound),
and establishing an upper bound on how far away the overall procedure
is with respect to the optimum (which we call the optimality bound).

First, we obtain consensus bounds for the g-CDSGD and
i-CDSGD as follows.

Proposition 1. (Consensus with fixed step size, g-CDSGD)
Let Assumptions 1, 2, 4 hold. The iterates of g-CDSGD
(Algorithm 3) satisfy the following inequality ∀k ∈ N, when α
satisfies Eq. 15,

E[‖θjk − sk‖]≤ωα

B + BmG2

√
1 − λ̂2

(16)

where sk � 1
N∑N

j�1θ
j
k, λ̂2 is the second-largest eigenvalue of the

matrix Q � (1 − ω)P + ωINd.
Proposition 2. (Consensus with fixed step size, i-CDSGD) Let

Assumptions 1, 2, 4 hold. The iterates of i-CDSGD (Algorithm 1)
satisfy the following inequality ∀k ∈ N, when α

satisfies 0≤ α≤ r1−(1−λτN)Bm

cmBm
,

E[‖θjk − sk‖]≤ α

B + BmG2

√
1 − λτ2

(17)

We provide a discussion on comparing the consensus bounds in
the Supplementary Section S1. Next, we obtain optimality
bounds for g-CDSGD and i-CDSGD.

Theorem 1. (Convergence of g-CDSGD in strongly convex
case) Let Assumptions 1, 2, and 3 hold. When the step size
satisfies Eq. 15, the iterates of g-CDSGD (Algorithm 3) satisfy the
following inequality ∀k ∈ N:

E[Dk]≤Ck−1
1 D1 + C2 ∑k−1

q�0
Cq

1 (18)

where Dk � V(Θk) − V*, C1 � 1 − (ωαHm + 1−ω
2 (1 − λ2))r1,

C2 � (α2cmω+α(1−ω)(1−λN))B
2 .

PROOF. Recalling Lemma 2 and using Definition 1 yield:

E [V(Θk+1)] − V(Θk)≤ − (r1 − ĉ

2
αBm)α‖∇V(Θk)‖2 + ĉ

2
α2

B≤ − 1
2
αr1‖∇(Θk)‖2 + α2ĉB

2
≤ − αr1Ĥ(V(Θk) − V*) + α2ĉB

2
.

(19)

The second inequality follows from that α≤ r1
ĉBm

, which is implied
by Eq. 15. The expectation taken in the above inequalities is only
related to θk+1. Hence, recursively taking the expectation and
subtracting V* from both sides, we get:

E[V(Θk+1) − V *]≤ (1 − αĤr1)E[V(Θk) − V*] + α2ĉB
2

. (20)

As 0≤ αĤr1 ≤
Ĥr21
ĉBm

≤ Ĥr21
ĉr21

� Ĥ
ĉ
≤ 1, the conclusion follows by

applying Eq. 1 recursively through iteration k ∈ N and
letting Dk � V(Θk) − V *,C1 � 1 − (ωαHm + 1−ω

2 (1 − λ2))r1,C2 �
(α2cmω + α (1−ω)(1−λN))B

2 .

Theorem 2. (Convergence of i-CDSGD in strongly convex
case) Let Assumptions 1, 2, and 3 hold. When the step size

satisfies 0≤ α≤ r1−(1−λτN)Bm

cmBm
, the iterates of i-CDSGD (Algorithm 1)

satisfy the following inequality ∀k ∈ N:

E[Dk]≤Ck−1
3 D1 + C4 ∑k−1

q�0
Cq

3 (21)

where Dk � V (Θk) − V*,

C3 � 1 − (αHm + 1
2 (1 − λτ2))r1, C4 � (α2cm+α(1−λτN))B

2 .

PROOF. We omit the proof here and one can easily get it
following the proof techniques shown for Theorem 1. The desired
result is obtained by replacing C1 with C3 and C2 with C4,
respectively.

Although we show the convergence for strongly convex objectives,
we note that objective functions are highly non-convex for most deep
learning applications. While convergence to a global minimum in such
cases is extremely difficult to establish, we prove that g-CDSGD and
i-CDSGDstill exhibitsweaker (butmeaningful) notions of convergence.

Theorem 3. (Convergence to the first-order stationary point for
non-convex case of g-CDSGD) Let Assumptions 1, 2, and 3 hold.
When the step size satisfies Eq. 15, the iterates of g-CDSGD
(Algorithm 3) satisfy the following inequality ∀K ∈ N:

E
1
K

∑K
k�1

‖∇V(Θk)‖2⎡⎣ ⎤⎦≤ (ωcmα + (1 − ω)(1 − λN ))B
r1

+ 2(V(Θ1) − Vinf )
Kr1α

(22)

PROOF. Recalling Lemma 2 and taking expectations on both
sides lead to the following relation:

E[V(Θk+1)] − E[V(Θk)]≤
−(r1 − ĉαBm

2
)αE[‖∇V(Θk)‖2] + ĉα2B

2
. (23)

If the step size is such that α≤ r1
ĉBm

, we get:
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E[V(Θk+1)] − E[V(Θk)]≤ − r1α
2

E[‖∇V(Θk)‖2] + α2ĉB
2

. (24)

Applying the above inequality from 1 to K and summing them up
can give the following relation

Vinf − V(Θ1)≤E[V(Θk+1)] − V(Θ1)≤ − r1α
2

∑m
k�1

E[‖∇V(Θk)‖2]

+mα2ĉB
2

.

(25)

The last inequality follows from the Assumption 3. Rearrangement
of the above inequality, substituting ĉ � ωcm + α−1(1 − ω)(1 − λN),
and dividing by K yields the desired result.

Theorem 4. (Convergence to the first-order stationary point for
non-convex case of i-CDSGD) Let Assumptions 1, 2, and 3 hold.
When the step size satisfies 0≤ α≤ r1−(1−λτN)Bm

cmBm
, the iterates of

i-CDSGD (Algorithm 1) satisfy the following inequality ∀K ∈ N:

E
1
K

∑K
k�1

‖∇V(Θk)‖2⎡⎣ ⎤⎦≤ (cmα + (1 − λτN))B
r1

+ 2(V(Θ1) − Vinf )
Kr1α

.

(26)
PROOF. The proof for this theorem is rather similar to the one

provided for Theorem 3 above, and we omit the details. □
Remark 2. In the literature, to eliminate the negative effect

of “noise” caused by the stochastic gradients, a diminishing
step size is used. However, in our context, we observe from
Theorems 1 and 2 that a constant step size itself can result in
convergence, up to a neighborhood, of the local minimum. In
fact, using a constant step size can lead to a linear
convergence rate instead of a sub-linear convergence rate.
To summarize, one can speed up the convergence rate at the
cost of solution accuracy, which has also been reported in the
recent work Pu and Nedić (2018).

In our context, we have shown the convergence of the
function value sequence {V (Θk)} to a neighborhood of V*. As
E[ωF (Θk)]≤E[V(Θk)], then we have E[F (Θk)]≤ 1

ωE[V(Θk)].
Since ∇V(Θ*) � ∇F (Θ*) � 0, which leads to that F * � V*. It
can be obtained that E[F (Θk) − F *]≤ 1

ωE[V(Θk) − V*]. Then
using Theorems 1 and 2 can establish analogous convergence
rate for the true value function sequence {F (Θk)}.

Remark 3. Let us discuss the rates of convergence suggested by
Theorems 1 and 3.We observe that when the objective function is
strongly convex, the function value sequence {V(Θk)} can linearly
converge to within a fixed radius of convergence, which can be
calculated as follows:

lim
k→∞

E[V(Θk) − V*]≤ B[ωαcm + (1 − ω)(1 − λN)]
2r1(ωHm + α−1(1 − ω)(1 − λ2)).

When the objective function is non-convex, we cannot claim
linear convergence. However, Theorem 3 asserts that the average
of the second moment of the Lyapunov gradient is bounded from
above. Recall that the parameter B bounds the variance of the
“noise” due to the stochasticity of the gradient, and if B � 0,
Theorem 3 implies that {Θk} asymptotically converges to a first-
order stationary point.

Remark 4. For g-CDSGD, let us investigate the corner cases
where ω→ 0 or ω→ 1. For the strongly convex case, when ω→ 1,
we have αcB

2r1
, where c � cm

Hm
is the condition number. This suggests

that if consensus is not a concern, then each iterate {θjk} converges
to its own respective θj*, as depicted in Figure 1. On the other
hand, whenω→ 0, the upper bound converges to αB(1−λN)

2r1(1−λ2). In such
a scenario, each agent sufficiently communicates its own
information with other agents to arrive at an agreement. In
this case, the upper bound depends on the topology of the
communication network. If λN ≈ 0, this results in:

lim
k→∞

E[V(Θk) − V *]≤ Bα
2r1(1 − λ2).

For the non-convex case, when ω → 1, the upper bound
suggested by Theorem 3 is αcmB

r1
, while ω → 0 leads to (1−λN)B

r1
,

which is roughly B
r1
if λN ≈ 0.

We also compare i-CDSGD and CDSGD with g-CDSGD in
terms of the optimality upper bounds to arrive at a suitable
lower bound for ω. However, due to the space limit, the
analysis is presented in the Supplementary Section S1.

4.2 Convergence Analysis for Momentum
Variants
We next provide a convergence analysis for the g-CDMSGD
algorithm, summarized in the update laws given in Eq. 12. A
similar analysis can be applied to i-CDMSGD. The proof
techniques are developed on top of the estimate sequence
method that has been applied to the centralized version
(Nesterov, 2013). In the following analysis, we focus on the

basic variant where μ � 1−
̂
Hα

√
1+

̂
Hα

√ . Before stating the main result,

we define the sequence ϕk(Θ), k � 1, 2, . . . as:

ϕ1(Θ) � V(Θ1) + Ĥ
2
‖Θ − Θ1‖2, and

ϕk+1 � (1 −

Ĥα

√
)ϕk(Θ)

+

Ĥα

√
(V̂(yk) + (Sk,Θ − yk) +

Ĥ
2
‖Θ − yk‖2 (27)

where V̂ represents the average of the objective function values of
a mini-batch. We define ϕ*k as follows

ϕ*
k � min

Θ∈RNd
ϕk(Θ)

Further, from Assumption 3, we see that
Var[S(yk)]≤B + BV‖∇V(yk)‖2. Combining Assumption 4 and
Var[S(yk)]dE[‖S(yk) − ∇V(yk)‖2], we
have E[‖S(yk) − ∇V(yk)‖2]≤B + BVG2.

We now state our main result, which characterizes the
performance of g-CDMSGD. To our knowledge, this is the
first theoretical result for momentum-based versions of
consensus-distributed SGD.

Theorem 5. (Convergence of g-CDMSGD, strongly convex case)
Let Assumptions 1, 2, 3, and 4 hold. If the step size satisfies

α≤min{r1−(1−ω)(1−λN)Bm

ωBmcm
, 1
Ĥ
, 1
2ĉ}, we have:
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E[V(Θk) − V*]≤ (1 −

Ĥα

√
)k−1(ϕ*

1 − V *) +

α

Ĥ

√
(B + BVG

2).
(28)

PROOF. From Lemma 5 in Supplementary Section S1., it can be
obtained that

E[V(Θk)]≤E ϕ*
k +∑k−1

p�1
(1 −


Ĥα

√
)k−1−p α‖S(yk) − ∇V(yk)‖2{ }⎡⎢⎢⎣ ⎤⎥⎥⎦

(29)

The last inequality follows from that the coefficient −Ĥ
2

1−
̂
Hα

√̂
Hα

√ ≤ 0.

Recalling Eq. S20 of Lemma 5 in Supplementary Section S1 and
letting Θ � Θ*, and combining Eq. 29, we have

E[V(Θk)] ≤E[V * + (1 −

Ĥα

√
)k−1(ϕ*

1 − V *)]
+E ∑k−1

p�1
(1 −


Ĥα

√
)k−1−p α‖S(yk) − ∇V(yk)‖2{ }[ ]

(30)

As E[‖S(yk) − ∇V(yk)‖2]≤B + BVG2, therefore, the following
inequality can be acquired

E[V(Θk) − V *]≤ (1 −

Ĥα

√
)k−1(ϕ*

1 − V *)

+ E ∑k−1
p�1

(1 −

Ĥα

√
)k−1−p(B + BVG

2)⎡⎢⎢⎣ ⎤⎥⎥⎦ (31)

Using ∑k−1
p�1(1 −


Ĥα

√
)k−1−p ≤∑∞

t�0(1 −

Ĥα

√
)t � 1̂

Hα
√ completes

the proof.

Theorem 6. (Convergence of i-CDMSGD, strongly convex case)
Let Assumptions 1, 2, 3, and 4 hold. If the step size satisfies

α≤min{r1−(1−λτN)Bm

Bmcm
, 1
Ĥ
, 1
2ĉ}, we have:

E[V(Θk) − V *]≤ (1 −

Ĥα

√
)k−1(ϕ*

1 − V *) +

α

Ĥ

√
(B + BVG

2). (32)

Note, although the theorem statements look the same for
g-CDMSGD and i-CDMSGD, the constants Ĥ are significantly
different from each other. Theorem 5 suggests that with a
sufficiently small step size, using Nesterov acceleration results in a
linear convergence (with parameter 1 −


Ĥα

√
) up to a neighborhood

of V* of radius

α
Ĥ

√
(B + BVG2). When k → ∞, the first term on the

right hand side vanishes and substituting
Ĥ � ωHm + (1 − ω)(2α)−1(1 − λ2) into


α
Ĥ

√
(B + BVG2), we have


α

ωHm + (1 − ω)(2α)−1(1 − λ2)
√

(B + BVG
2),

which implies that the upper bound is related to the spectral gap 1
− λ2 of the network; hence, a similar conclusion as Theorem 1 can
be deduced. When ω → 0, the upper bound becomes
α


1

2(1−λ)
√

(B + BVG2). However, ω → 1 leads to

α
Hm

√
(B + BVG2).

These two scenarios demonstrates that the “gradient noise” cased
by the stochastic sampling negatively affects the convergence.

One can use ω to trade-off the consensus and optimality updates.
Evidently, when compared with the non-momentum version, the
upper bound is looser due to the BVG

2 even when B � 0. However,
it should be noted that B+ BVG

2 represents the upper bound of
variance of S(Θk). The analysis below shows the faster
convergence rate with the cost solution accuracy.

Next, we discuss the upper bounds obtained when k→∞ for
g-CDSGD and g-CDMSGD. 1) ω → 0: When BV is sufficiently
small and r1 ≈ 1

2

2

√ , it can be observed that the optimality bound
for the Nesterov momentum variant is smaller than that for
g-CDSGD as Bα

1−λ2 ≥
Bα
1−λ2

√ ; 2) ω→ 1: When cm and r1 are carefully

selected such that cm
2r1

≈ 1, we have B

α
Hm

√
≤ Bα

Hm
when α

Hm
> 1.

Therefore, introducing the momentum can speed up the
convergence rate with appropriately chosen hyperparameters.

5 EXPERIMENTAL RESULTS

We validate our algorithms with several experimental results
using the CIFAR-10 image recognition dataset (with standard
training and testing sets). We have performed the experiments
with different network architectures and hyperparameters. Out of
several offline hyperparameters chosen, for brevity, we present
results obtained with the LeNet architecture (LeCun et al., 1998).
However, we note that, the behavior for other networks remain
the same. Please see Supplement for results on other
hyperparameters. The LeNet architecture is a convolutional
neural network (CNN) (with ReLU activations) which includes
2 convolutional layers with 32 filters each followed by a max
pooling layer, then 2 more convolutional layers with 64 filters
each followed by another max pooling layer, and a dense layer
with 512 units. The mini-batch size is set to 512, and step size is
set to 0.01 in all experiments. All experiments were performed
using Keras with TensorFlow (Chollet, 2015; Abadi et al., 2016).

FIGURE 2 | Performance of different algorithms with unbalanced sample
distribution among agents (Dashed lines represent test accuracy and solid
lines represent training accuracy.)
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We use a sparse network topology with five agents. We use both
balanced and unbalanced data sets for our experiments. In the
balanced case, agents have an equal share of the entire training
set. However, in the unbalanced case, agents have (randomly
selected) unequal parts of the training set while making sure that
each agent has at least half of the equal share amount of examples.
We summarize our key experimental results in this section, with
more details and results provided in the Supplementary
Section 2.

Performance of algorithms. In Figure 2, we compare the
performance of the momentum variants of our proposed
algorithms, i-CDMSGD and g-CDMSGD (with ω � 0.1) with

state-of-the art techniques such as CDMSGD and Federated
Averaging using an unbalanced data set. All algorithms were run
for 3,000 epochs. Observing the average accuracy over all the agents
for both training and test data, we note that i-CDMSGD can converge
as fast as CDMSGD with lesser fluctuation in the performance across
epochs. While being slower in convergence, g-CDMSGD achieves
similar performance (with test data) with less fluctuation as well as
smaller generalization gap (i.e., difference between training and testing
accuracy). All algorithms significantly outperform Federated
Averaging in terms of average accuracy. We also vary the tuning
parameter ω for g-CDMSGD to show (in Figure 3) that it is able to
achieve similar (or better) convergence rate as CDMSGDusing higher
ω values with some sacrifice in terms of the generalization gap.

FIGURE 3 | Performance of g-CDMSGD for different ω values (Dashed
lines represent test accuracy and solid lines represent training accuracy.)

FIGURE 4 | The accuracy percentage difference between the best and
the worst agents for different algorithms with unbalanced and balanced
sample distribution among agents.

FIGURE 5 | The accuracy percentage difference between the best and
the worst agents with balanced sample distribution for CDMSGD, i-CDMSGD
and g-CDMSGD (varying ω.).

FIGURE 6 | Performance of i-CDMSGD for different τ values (Dash lines
represent test accuracy and solid lines represent training accuracy).
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Degree of Consensus. One of the main contribution of our
paper is to show that one can control the degree of consensus while
maintaining average accuracy in distributed deep learning. We
demonstrate this by observing the accuracy difference between the
best and the worst performing agents (identified by computing the
mean accuracy for the last 100 epochs). As shown in Figure 4, the
degree of consensus is similar for all three algorithms for balanced
data set, with i-CDMSGD performing slightly better than the rest.
However, for an unbalanced set, both i-CDMSGD and
g-CDMSGD perform significantly better compared to
CDMSGD. Note, the degree of consensus can be further
improved for g-CDMSGD using lower values of ω as shown in
Figure 5. However, the convergence becomes relatively slower as
shown in Figure 3. We do not compare these results with the
Federated Averaging algorithm as it performs a brute force
consensus at every epoch using centralized parameter server. In
Figure 6, we show the performance of i-CDMSGDwith different τ
values. We observe that while there is better performance by
increasing the value of τ, we see that the performance degrades
after a while and then quickly stabilizes to similar performance.
This is because the doubly stochastic agent interaction matrix for
the small agent population becomes stationary very quickly with a
very small value of τ. However, this will be explored in our future
work with significantly bigger networks.

Finally, we also compare our proposed algorithms to
CDMSGD on another benchmark dataset—MNIST. The
performance of the algorithms is shown in Figure 7 which
follows similar trend as observed for CIFAR-10.

6 CONCLUSION AND FUTURE WORK

For investigating the trade-off between consensus and optimality in
distributed deep learning with constrained communication topology,
this paper presents two new algorithms, called i-CDSGD and
g-CDSGD and their momentum variants. We show the
convergence properties for the proposed algorithms and the
relationships between the hyperparameters and the consensus and
optimality bounds. Theoretical and experimental comparisonwith the
state-of-the-art algorithm called CDSGD, shows that i-CDSGD, and
g-CDSGD can improve the degree of consensus among the agents
while maintaining the average accuracy especially when there is data
imbalance among the agents. Future research directions include
learning with non-uniform data distributions among agents and
time-varying networks.
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