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Abstract
We propose a novel policy gradient method for multi-agent re-
inforcement learning, which leverages two different variance-
reduction techniques and does not require large batches over
iterations. Specifically, we propose a momentum-based de-
centralized policy gradient tracking (MDPGT) where a new
momentum-based variance reduction technique is used to
approximate the local policy gradient surrogate with impor-
tance sampling, and an intermediate parameter is adopted to
track two consecutive policy gradient surrogates. Moreover,
MDPGT provably achieves best available sample complexity
of O(N−1ε−3) for converging to an ε-stationary point of
the global average of N local performance functions (possi-
bly nonconcave). This outperforms the state-of-the-art sample
complexity in decentralized model-free reinforcement learning
and when initialized with a single trajectory, the sample com-
plexity matches those obtained by the existing decentralized
policy gradient methods. We further validate the theoretical
claim for the Gaussian policy function. When the required
error tolerance ε is small enough, MDPGT leads to a linear
speed up, which has been previously established in decentral-
ized stochastic optimization, but not for reinforcement leaning.
Lastly, we provide empirical results on a multi-agent rein-
forcement learning benchmark environment to support our
theoretical findings.

Introduction
Multi-agent reinforcement learning (MARL) is an emerging
topic which has been explored both in theoretical (Nguyen
et al. 2014; Zhang et al. 2018; Qu et al. 2019; Zhang et al.
2021c) and empirical settings (Helou, Kalathil, and Xie 2020;
Mukherjee, Bai, and Chakrabortty 2020; Zhou et al. 2020).
Several appealing applications of MARL can be seen in
(Zhang, Yang, and Başar 2019; Nguyen, Nguyen, and Naha-
vandi 2020) and relevant references therein.

While MARL can primarily be cast into two different cat-
egories, i.e., cooperative (Li, Chen, and Chen 2020; Wang
et al. 2020; Li et al. 2020) and competitive (Chen et al. 2020),
our focus is in the cooperative setting; see (Wei et al. 2021)
for details on the competitive setting. Cooperative MARL is
typically modeled as a networked multi-agent Markov de-
cision process (MDP) (Zhang, Yang, and Basar 2018; Chu,
Chinchali, and Katti 2020; Zhang et al. 2018) in which the
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agents share a centralized reward function (Simões, Lau, and
Reis 2020; Ackermann et al. 2019). However, in practice,
this is not necessarily the case, and instead a more general
yet challenging scenario is that agents have heterogeneous
reward functions. Inherently, the ultimate goal in such a
cooperative MARL setting is for agents to maximize the
global average of local long-term returns. To address this
problem, various algorithms have been proposed, including
distributed-learning (Arslan and Yüksel 2016; Nguyen and
Mukhopadhyay 2017) and distributed actor-critic (Li et al.
2020; Ryu, Shin, and Park 2020). More recent works have
successfully showed finite-sample analysis for decentralized
batch MARL (Zhang et al. 2021c) and leveraged advances in
analysis of descent-ascent algorithms (Lu et al. 2021).

These preliminary attempts have facilitated the theoretical
understanding of cooperative MARL by showing explicit
sample complexity bounds, which match that of standard
(vanilla) stochastic gradient descent (SGD). Additionally, re-
cent works (Huang et al. 2020; Xu, Gao, and Gu 2019) in cen-
tralized RL have revealed that with simple variance reduction
techniques, this sample complexity can be reduced toO(ε−3)
to reach an ε-stationary point (i.e., E[‖∇J(x)‖] ≤ ε, where J
is the return function and x ∈ Rd is the decision variable to be
optimized), which has been admitted as the best complexity
in decentralized optimization (Das et al. 2020; Karimireddy
et al. 2020). However, no similar matching bounds have yet
been reported in the decentralized (cooperative MARL) set-
ting. Hence, this motivates the question:

Can we achieve a sample complexity of O(ε−3) in
decentralized MARL via variance reduction?

In this paper, we answer this question affirmatively by
proposing a variance-reduced policy gradient tracking ap-
proach, MDPGT (Algorithm 1), and analyzing it in Theorem 1.
Additionally, we propose a variation (based on a different
initialization) that enables state-of-the-art (SOTA) sample
complexity for decentralized MARL (Zhang et al. 2021c; Lu
et al. 2021). See Table 1 for SOTA comparisons. Specifically:
1. We propose MDPGT, in which we use a stochastic policy

gradient surrogate, a convex combination of the vanilla
stochastic policy gradient and an importance sampling-
based stochastic recursive algorithm (SARAH) (Nguyen
et al. 2017) for the local gradient update. Instead of
directly applying the stochastic policy gradient surro-
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gate in the parameter update, an intermediate param-
eter is adopted to track the difference between two
consecutive stochastic policy gradient surrogates. For
smooth nonconcave performance functions, we show that
MDPGT with the mini-batch initialization can converge
to an ε-stationary point in O(N−1ε−3) gradient-based
updates which matches the best available known upper
bounds (Huang et al. 2020).

2. We modify the initialization of the proposed algorithm
MDPGT by using a single trajectory instead of a mini-
batch of trajectories. Surprisingly, we find that only
one trajectory results in a larger sampling complexity
O(N−1ε−4), which, however, is the same as obtained by
the SOTA (Zhang et al. 2021c; Lu et al. 2021) with a linear
speed up when ε is sufficiently small. Additionally, our
algorithm shows that when updating the policy parameter
in MDPGT, the mini-batch size is O(1) instead of being
ε-related (Xu, Gao, and Gu 2019; Qu et al. 2019), which
can significantly improve practical efficiency.

3. To facilitate the theoretical understanding of MDPGT, we
leverage a benchmark gridworld environment for numer-
ical simulation and compare our proposed algorithm to
a baseline decentralized policy gradient (DPG) and the
momentum-based decentralized policy gradient (MDPG,
described in Algorithm 2 in the supplementary materials),
which is a new variant created in this work for the purpose
of empirical comparison. We show that our theoretical
claims are valid based on the experiments.

Related Works. Most previous decentralized MARL pa-
pers (Zhang et al. 2018; Suttle et al. 2020; Li et al. 2020;
Chen et al. 2020; Bono et al. 2018) tend to focus on conver-
gence to the optimal return. Exceptions include (Qu et al.
2019), where they proved non-asymptotic convergence rates
with nonlinear function approximation using value propa-
gation. This enables us to approximately derive the number
of stochastic gradient evaluations. However, the algorithm
involves the complex inner-outer structure and requires the
size of the mini-batch to be

√
K, with K being the number

of iterations, which may not be practically implementable.
Zhang et al. (2021c) obtainO(ε−4) for the cooperative setting
by using gradient tracking (GT), which is a bias correction
technique dedicated to decentralized optimization, but with
several specifically imposed assumptions, such as stationary
sample paths, which may not be realistic. Lu et al. (2021)
also utilize GT but require dual parameter updates to achieve
O(ε−4); our approach is different and simpler. In this context,
we mention that centralized counterparts of MARL (Huang
et al. 2020; Xu, Gao, and Gu 2019; Papini et al. 2018) have
achieved sample complexity ofO(ε−3). However, in both Xu,
Gao, and Gu (2019) and Papini et al. (2018), the size of mini-
batch is ε-related, which is more computationally sophisti-
cated than those in both (Huang et al. 2020) and our proposed
method. We provide additional discussion of related work in
the supplementary materials.

Preliminaries
We first formulate MARL, followed by an overview of vari-
ance reduction techniques and decentralized policy gradients.

MARL Formulation
In this context, we consider a networked system involving
multiple agents (say N ) that collaboratively solve dynamic
optimization problems. Specifically, the system can be quan-
tified as a graph, i.e., G = (V, E), where V = {1, 2, ..., N}
is the vertex set and E ⊆ V × V is the edge set. Throughout
the paper, we assume that G is static and undirected, though
in a few previous works (Lin et al. 2019; Suttle et al. 2020;
Zhang et al. 2018) G could be directed. The goal of this work
is to provide the rigorous theoretical analysis for our decen-
tralized MARL algorithm, with the property of the graph
not being the main focus. When a pair of agents i and j can
communicate with each other, we have (i, j) ∈ E . We also
define the neighborhood of a specific agent i, Nb(i), such
that Nb(i) , {j|j ∈ V , (i, j) ∈ Eor j = i}. Only agents
in Nb(i) are able to communicate with the agent i. We next
present the definition of networked MARL on top of G.

With multiple agents, the networked Markov de-
cision process is thus characterized by a tuple
(S, {Ai}i∈V ,P, {ri}i∈V ,G, γ), where S indicates a
global state space shared by all agents in V with |S| < ∞,
Ai signifies the action space specified for agent i, and
γ ∈ (0, 1] is the discount factor. Moreover, in the cooperative
MARL setting, the environment is driven by the joint
action space instead of individual action spaces. Thus,
A ,

∏
i∈V Ai is defined as the joint action space over

all agents in V . P : S × A × S → [0, 1] represents the
probability function to transition the current state to the next
state. {ri}i∈V : S × A → R is the local reward function of
agent i and ri ∈ [−R,R](R > 0). Additionally, states and
actions are assumed to be globally observable, while the
rewards are only locally observable. Such an assumption
corresponds to the definition of the cooperative MARL
setting and has been generic in previous works (Zhang et al.
2018; Zhang, Yang, and Basar 2018; Zhang et al. 2021c).

We next describe how agents behave in such an envi-
ronment. Suppose that the current state of the environ-
ment is sk ∈ S, where k is the time step. Each agent i
chooses its own action aik ∈ Ai, based on the local policy,
πi : S × Ai → [0, 1]. For a parameterized policy, we de-
note by πixi(s, a

i), which indicates the probability of agent i
choosing action ai given the current state s and xi ∈ Rdi here
is the policy parameter. Stacking all local policy parameter to-
gether yields x = [(x1)>, (x2)>, ..., (xN )>]> ∈ R

∑
i∈V di .

Hence, the joint policy can be denoted as πx : S×A → [0, 1],
where πx(s, a) ,

∏
i∈V π

i
xi(s, a

i) and a ∈ A. In this con-
text, the decisions are decentralized due to locally observable
rewards, locally evaluated policies and locally executed ac-
tions. To simplify the notations, we drop the xi for πixi and
x for πx respectively for local and joint policies through-
out the rest of the paper. With the joint policy π and the
state transition function P , the environment evolves from
s to s′ with the probability P(s′|s, a). Another assumption
imposed in this paper for the policy function is that for all
i ∈ V , s ∈ S, ai ∈ Ai, πi(s, ai) is continuously differen-
tiable w.r.t. all xi ∈ Rdi . Such an assumption will assist in
characterizing the smoothness of the objective function.

The goal for each agent is to learn a local policy πi∗ such



Table 1: Comparisons between existing and proposed approaches.

Method Complexity Decentralized Variance Reduction Linear Speed Up I.S.

MBPG (Huang et al. 2020) O(ε−3) 7 3 7 3
Value Prop (Qu et al. 2019) O(ε−4) 3 7 7 7

DCPG (Zeng et al. 2020) O(ε−4) 3 7 7 7
Safe-Dec-PG (Lu et al. 2021) O(ε−4) 3 3 7 7
DFQI (Zhang et al. 2021c) O(ε−4) 3 3 7 7

Dec-TD(0)+GT (Lin and Ling 2021) N/A 3 3 7 7
MDPGT (ours) O(ε−4) 3 3 3 3

MDPGT-MI (ours) O(ε−3) 3 3 3 3

1 Complexity: Sampling complexity for achieving E[‖∇J(x)‖] ≤ ε. 2 Linear Speed Up: If an algorithm has O(1/
√
K)

convergence, then its sampling complexity of attaining an O(ε) accurate solution is ε−2. Similarly, O(1/
√
NK) corresponds to

N−1ε−2, which is N times faster than the former. Typically, K has to satisfy a certain condition. 3 MDPGT-MI is MDPGT
with mini-batch initialization. We use this notation for conveniently classifying two different initialization approaches. In the rest
of paper, we still adopt MDPGT to unify these two approaches. 4 I.S. denotes the utilization of importance sampling.

that the joint policy π∗ is able to maximize the global average
of expected cumulative discounted rewards, i.e.,

π∗ = argmaxx∈RdJ(x) ,
1

N

∑
i∈V

E
[ H∑
h=0

γhrih

]
, (1)

where H is the horizon and d =
∑
i∈V di. Several

works (Zhang et al. 2018; Qu et al. 2019; Zhang et al. 2021c;
Lin et al. 2019; Suttle et al. 2020) have made their attempts
to resolve this optimization problem, leading to different
algorithms. Since each agent only has access to local infor-
mation, a communication protocol needs to be introduced in
the system, as done in decentralized optimization. With that,
well-known centralized policy-based algorithms can be ex-
tended as MARL algorithms. Nevertheless, one issue that has
not been sufficiently explored is the inherent policy gradient
variance, which could even be more significant in the MARL
algorithms. Consequently, this work propose novel MARL
algorithms to investigate how to reduce the policy gradient
variance during the optimization.

Variance Reduction and Bias Correction
In stochastic optimization, variance reduction techniques
have been well studied and applied to either centralized or
decentralized gradient descent type of algorithms, such as
SVRG (Johnson and Zhang 2013), SARAH (Nguyen et al.
2017), SPIDER (Fang et al. 2018), Hybrid-SARAH (Tran-
Dinh et al. 2019) and STORM (Cutkosky and Orabona 2019).
In another line of work, the GT technique (Pu and Nedić
2020; Sun, Daneshmand, and Scutari 2019) was proposed
specifically for consensus-based decentralized optimization
techniques to improve the convergence rate by tracking and
correcting each agent’s locally aggregated gradients. In our
work, we leverage both Hybrid-SARAH and GT to reduce
the policy gradient variance and correct the policy gradient
bias respectively in the MARL and achieve the best con-
vergence rate. Hybrid-SARAH performs with a trade-off
parameter to balance the effect between vanilla stochastic

gradient and SARAH. More detail on these techniques are
elaborated in the supplementary materials.

So far, we are not aware of existing results that have suc-
cessfully shown SARAH or Hybrid-SARAH type of vari-
ance reduction techniques well suited for decentralized non-
oblivious learning problems, e.g., MARL. Consequently, the
regular Hybrid-SARAH technique cannot be directly ap-
plied to MARL; we address this challenge in sections below.

Decentralized Policy Gradient
Given a time horizon H , we define a trajectory specifically
for agent i, as τ i , {s0, ai0, ..., sH−1, aiH−1} under any sta-
tionary policy. By following the trajectory τ i, a cumulative
discounted reward is given as Ri(τ i) ,

∑H
h=0 γ

hrih such
that an individual return can be obtained as:

Ji(x
i) , Eτ i∼pi(τ i|xi)[Ri(τ

i)] =

∫
Ri(τ i)pi(τ i|xi)dτ i,

(2)
where pi(τ i|xi) is the probability distribution over τ i that
is equivalent to the following expression given the initial
distribution ρi0 = ρi(s0). Without loss of generalization, we
can assume that the initial distribution is identical for all
agents, namely ρ(s0). Then, we have,

pi(τ
i|xi) = ρ0(s0)

H−1∏
h=0

P(sh+1|sh, aih)πi(aih|sh). (3)

For each agent i, the goal is to find an optimal policy πi∗ to
maximize the return Ji(xi). As discussed above, the underly-
ing dynamic distribution results in a non-oblivious learning
problem, which is more significant in MARL. To resolve this
issue, the decentralized policy gradient is a decent choice. As
background knowledge of MARL, we next present how to
arrive at the local stochastic policy gradient, which will help
characterize the analysis for the proposed algorithms.

Computing the gradient of Ji(xi) w.r.t xi yields the fol-



lowing formula:

∇Ji(xi) =

∫
Ri(τ i)

∇pi(τ i|xi)
pi(τ i|xi)

pi(τ
i|xi)dτ i

= Eτ i∼pi(τ i|xi)[∇logpi(τ i|xi)Ri(τ i)]
(4)

In practice, pi(τ i|xi) is typically unknown such that the accu-
rate full policy gradient for agent i is difficult to obtain. Thus,
similar to decentralized stochastic gradient descent (Jiang
et al. 2017), we calculate the policy gradient by sampling a
mini-batch of trajectories B = {τ im}

|B|
m=1 from the distribu-

tion pi(τ i|xi) such that

∇̂Ji(xi) =
1

|B|
∑
m∈B
∇logpi(τ im|xi)Ri(τ im). (5)

In addition, combining Eq. 3, we can observe that
∇logpi(τ im|xi) is independent of the probability transition
P . Hence, Eq. 5 is written as

∇̂Ji(xi) =
1

|B|
∑
m∈B

gi(τ
i
m|xi)

=
1

|B|
∑
m∈B

(H−1∑
h=0

∇xi logπi(ai,mh , smh )

)
·

(H−1∑
h=0

γhrih(ai,mh , smh )

)
(6)

In the above equation, gi(τ
i|xi) is the unbiased estimate of

∇Ji(xi), i.e., E[gi(τ i|xi)] = ∇Ji(xi). Some well-known
policy gradient estimators can be obtained through Eq. 6,
such as decentralized REINFORCE, which is the direct ex-
tension of its centralized version. We refer interested readers
to (Huang et al. 2020) for more details.

Our Proposed Approach: MDPGT
Hybrid Importance Sampling SARAH
In this subsection, we propose a hybrid importance sampling
version of SARAH, termed HIS-SARAH, for decentralized
policy gradient updates. First, we define the importance sam-
pling weight (Metelli et al. 2020) as follows:

υ(τ |x′,x) =
p(τ |x′)
p(τ |x)

=
H−1∏
h=0

πx′(ah|sh)

πx(ah|sh)
. (7)

As mentioned in the last section, due to the non-
oblivious learning problem, Eτ∼p(τ |x)[g(τ |x)− g(τ |x′)] 6=
∇J(x)−∇J(x′). With Eq. 7 we have Eτ∼p(τ |x)[g(τ |x)−
υ(τ |x′,x)g(τ |x′)] = ∇J(x) − ∇J(x′), which has been
analyzed in (Huang et al. 2020) for centralized policy opti-
mization methods and will be a key relationship in our proof.
We denote by ui the stochastic policy gradient surrogate for
agent i. Thus, applying Eq. 7 in a decentralized manner for
Hybrid-SARAH (See Supplementary materials for defini-
tion) gives the following update law at a time step k:

uik = βgi(τ
i
k|xik) + (1− β)[uik−1 + gi(τ

i
k|xik)

− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1)].

(8)

The second term on the right hand side of Eq. 8 differ in
the extra importance sampling weight compared to Eq. 13
in the supplementary materials. Intuitively, υi(τ ik|xik−1,xik)
resolves the non-stationarity in the MARL and retains the reg-
ular variance reduction property of HIS-SARAH as applied
in supervised learning problems. Clearly, each uik is a con-
ditionally biased estimator∇Ji(xik), i.e., E[uik] 6= ∇Ji(xik)
typically. Nevertheless, it can be shown that E[uik] =
E[∇Ji(xik)], which implies that uik acts as a surrogate for
the underlying exact full policy gradient. Therefore, uik will
be called directly the stochastic policy gradient surrogate for
the rest of analysis. With Eq. 8 in hand, we now are ready to
present the algorithmic framework in the following.

Algorithmic Framework
We first present MDPGT (in Algorithm 1), which only takes a
trajectory to initialize the policy gradient surrogate, leading
to significant randomness due to the conditionally biased
estimator property at the starting point of optimization, but
still retaining the same sampling complexity as compared to
the SOTA of MARL. To have a better initialization, we also
present another way of initialization by sampling a mini-batch
of trajectories from the distribution (in blue in Algorithm 1).
Surprisingly, we will see that with a proper size of mini-
batch initialization, the sampling complexity of our proposed
approach complies with the best result in centralized RL,
which improves the SOTA of MARL.

Algorithm 1: MDPGT
Result: x̃K chosen uniformly random from {xik, i ∈ V}Kk=1

Input: xi0 = x̄0 ∈ Rd, η ∈ R+, β ∈ (0, 1),W ∈
RN×N ,vi0 = 0d,u

i
−1 = 0d,K,B ∈ Z+, k = 1

Initialize the local policy gradient surrogate by sampling
a trajectory τ i0 from pi(τ

i|xi0) : ui0 = gi(τ
i
0|xi0), or by

sampling a mini-batch of trajectories {τ i,m0 }|B|m=1 from
pi(τ

i|xi0) : ui0 = 1
|B|
∑|B|
m=1 gi(τ

i,m
0 |xi0)

Initialize the local policy gradient tracker: vi1 =∑
j∈Nb(i) ωijv

j
0 + ui0 − ui−1

Initialize the local estimate of the policy network parameter:
xi1 =

∑
j∈Nb(i) ω

ij(xj0 + ηvj1)

while k < K do
for each agent do

Sample a trajectory τ ik from pi(τ
i|xik) and compute

the local policy gradient surrogate using Eq. 8
Update the local policy gradient tracker vik+1 =∑

j∈Nb(i) ωijv
j
k + uik − uik−1

Update the local estimate of the policy network pa-
rameters xik+1 =

∑
j∈Nb(i) ωij(x

j
k + ηvjk+1)

end
k = k + 1

end

A brief outline of Algorithm 1 is as follows. The initializa-
tion of the policy gradient surrogate ui0 can either be based
on only a trajectory sampled from pi(τ

i|xi0) or a mini-batch.



Subsequently, the policy gradient tracker and network pa-
rameters are initialized based on ui0. The core part of the
algorithm consists of each individual update for uik,v

i
k, and

xik. By controlling the value of β in Eq. 8, MDPGT can de-
generate to either vanilla decentralized policy gradient (with
β = 1) or decentralized version of SRVR-PG (Xu, Gao, and
Gu 2019) (with β = 0), both with the gradient tracking step.
In our work, to emphasize the impact of the trade-off on the
policy gradient surrogate, we keep β ∈ (0, 1), which makes β
act more closely as the momentum coefficient in accelerated
SGD algorithms (Singh et al. 2020).

We emphasize that we are unaware of theoretical results
for decentralized SRVR-PG. Hence, the proof techniques
presented in this paper can also apply to this case. Another
implication from Algorithm 1 is that at the beginning of each
time step k, only one trajectory is required for computing the
policy gradient, allowing for the batch size to be independent
of ε, i.e.,O(1), where we omit the number of agents N when
considering the whole networked system.

Theoretical Convergence
In this section, we present an analysis of MDPGT. Most of
the assumptions below are mild, and standard in the decentral-
ized optimization and RL literature. Due to space limitations,
we defer auxiliary lemmas and proofs to the supplementary
materials.
Assumption 1. Gradient and Hessian matrix of function
logπi(ai|s) are bounded, i.e., there exist constants Cg, Ch >
0 such that ‖∇logπi(ai|s)‖ ≤ Cg and ‖∇2logπi(ai|s)‖ ≤
Ch, for all i ∈ V .

Note that we skip the subscript xi at πi for the notation
simplicity. In this context, we did not impose the bounded
policy gradient assumption, though it can be derived based on
the above assumption, which has been adopted in centralized
RL algorithms (Zhang et al. 2021b; Huang et al. 2020; Xu,
Gao, and Gu 2019). Additionally, it also helps derive the
smoothness of Ji(xi) that has typically been exposed as an
assumption in decentralized learning/optimization literature.
Assumption 2. The mixing matrix W ∈ RN×N is doubly
stochastic such that λ , ‖W −P‖ ∈ [0, 1), where λ signi-
fies the second largest eigenvalue to measure the algebraic
connectivity of the graph, and P = 1

N 1>1 and 1 is a column
vector with each entry being 1.
Assumption 3. Variance of importance sampling weight
υi(τ

i|x1,x2) is bounded, i.e., there exists a constantM > 0
such that V(υi(τ

i|x1,x2)) ≤M, for any x1,x2 ∈ Rdi and
τ i ∼ pi(τ i|x1), for all i ∈ V .

Assumption 2 is generic in most previous works on de-
centralized optimization, though such a property has been
relaxed in some works (Nedić and Olshevsky 2014). How-
ever, we have not been aware of any existing works in
MARL doing such a relaxation and its investigation can
be of independent interest. Assumption 3 is specifically in-
troduced for importance sampling-based methods. Such an
assumption is critical to construct the relationship between
V(υi(τ

i|x1,x2)) and ‖x1−x2‖2, through which the impact
of the variance of importance sampling on the convergence

can be explicitly quantified. Another typical assumption is
for the bounded variance of stochastic gradient such that
E[‖gi(τ i|xi) − ∇Ji(xi)‖2] ≤ σ2

i . However, under MARL
setting, such a result can be derived from Assumption 1 and
we present the formal result in Lemma 1. In this context,
we also have σ̄2 = 1

N

∑N
i=1 σ

2
i , for all i ∈ V . The explicit

expression of σ̄2 is given in the supplementary materials.

Main Results
We present the main results to show specifically the con-
vergence rates for MDPGT when it is initialized by a mini-
batch of trajectories. We denote by L > 0 the smoothness
constant and G > 0 the upper bound of ‖gi(τ i|xi)‖ for
all i ∈ V . We further define a constant Cυ > 0 such that
V(υi(τ

i|x1,x2)) ≤ C2
υ‖x1−x2‖2. The explicit expressions

of these constants are derived in lemmas in the supplementary
materials. Note that in our work, G is not directly assumed,
but instead derived based on Assumption 1.

Theorem 1. Let Assumptions 1,2 and 3 hold. Let the momen-
tum coefficient β = 96L2+96G2Cυ

N η2. If MDPGT is initialized
by a mini-batch of trajectories with the size being B and the
step size satisfies the following condition

0 < η ≤ min
{

(1− λ2)2

λ
√

12844L2 + 9792G2Cυ
,

√
N(1− λ2)λ

31
√
L2 +G2Cυ

,

1

6
√

6(L2 +G2Cυ)

}
,

then the output x̃K satisfies: for all K ≥ 2:

E[‖∇J(x̃K)‖2] ≤ 4(J∗ − J(x̄0))

ηK
+

4σ̄2

N |B|βK
+

8βσ̄2

N

+
34λ2

KN(1− λ2)3
‖∇J(x̄0)‖2 +

68λ2σ̄2

(1− λ2)3|B|K
+

204λ2β2σ̄2

(1− λ2)3
,

(9)

where J∗ is the upper bound of J(x) and ‖∇J(x̄0)‖2 ,∑N
i=1 ‖∇Ji(x̄0)‖2.

Theorem 1 depicts that when K → ∞, MDPGT en-
ables convergence to a steady-state error in a sublinear rate
O(1/K) if η and β are selected properly, i.e.,

E[‖∇J(x̃K)‖2] ≤ 8βσ̄2

N
+

204λ2β2σ̄2

(1− λ2)3
. (10)

By observing Eq. 10, the steady-state error is determined
by the number of agents, the variance of stochastic policy
gradient, and the spectral gap of the graph 1− λ. Increasing
the number of agents leads to a small error bound. Though
different network topologies imply different error bounds,
the higher order term of β can reduce the impact of the
spectral gap on the error bound. Another suggestion from
Eq. 10 is that η and β can be reduced to make the steady-
state error arbitrarily small, while in return this can affect the
speed of convergence. Surprisingly, even though we have to
adopt the bounded stochastic policy gradient derived from
Assumption 1 for analysis, the error bound in Eq. 10 only



depends heavily on the variance, which is inherently consis-
tent with most conclusions from decentralized optimization
in literature without the bounded stochastic gradient assump-
tion. While J∗ is essentially correlated to the upper bound
of reward R, in this context, we still adopt the implicit J∗
for convenience. We next provide the analysis for the non-
asymptotic behavior, defining appropriately η, β, and |B|.

Corollary 1. Let η = N2/3

8LK1/3 , β = DN1/3

64L2K2/3 , |B| =

dK
1/3

N2/3 e in Theorem 1. We have,

E[‖∇J(x̃K)‖2] ≤ 256L3D(J∗ − J(x̄0)) + 2048L4σ̄2 +D2σ̄2

8L2D(NK)2/3︸ ︷︷ ︸
T1

+
34λ2

KN(1− λ2)3
‖∇J(x̄0)‖2 +

λ2σ̄2(51D2 + 69632N2/3L4)

1024(1− λ2)3K4/3L4︸ ︷︷ ︸
T2

,

(11)

for all

K ≥ max
{
N2D1.5

512L3
,

29791
√
N(L2 +G2Cυ)1.5

512L3λ3(1− λ2)1.5
,

(12844L2 + 9792G2Cυ)1.5N2λ3

512L3(1− λ2)6

}
,

where D = 96L2 + 96G2Cυ .
Remark 1. An implication from Corollary 1 is that at the
early stage of optimization, before T1 in Eq. 11 dominates,
the complexity is tightly related to the algebraic connectivity
of the network topology in T2, which is measured by the
spectral gap 1− λ. However, T2 is in a large order of 1/K.
As the optimization moves towards the latter stage where
T1 dominates, the overall complexity is independent of the
network topology.

For the ease of exposition, with Corollary 1, when K
is sufficiently large, it is an immediate consequence as
E[‖∇J(x̃K)‖2] ≤ O((NK)−2/3). Thus, for achieving
E[‖∇J(x̃K)‖] ≤ ε, the following relationship is obtained:

E[‖∇J(x̃K)‖] =
√

(E[‖∇J(x̃K)‖])2 ≤
√
E[‖∇J(x̃K)‖2] ≤ ε.

Combining the last two inequalities results in the ultimate
sampling complexity, i.e.,O(N−1ε−3), which exhibits linear
speed up. More importantly, this is N times smaller than the
sampling complexity of the centralized momentum-based
policy gradient methods (Huang et al. 2020) that performs
on a single node. However, we have known from Corollary 1
that typicallyK has to be large, which will in the linear speed
up regime reduce η and β.

We also investigate a worse initialization with only a sin-
gle trajectory sampled from pi(τ

i|xi0). However, without a
mini-batch initialization, the eventual sampling complexity
is O(N−1ε−4) (see Theorem 2 and Corollary 3). Though
variance reduction techniques have not reduced the order of
ε−1, compared to the SOTA approaches, the linear speed up
still enables the complexity to be N times smaller than that
in (Xu, Gao, and Gu 2019; Huang et al. 2020). Additionally,

different from traditional decentralized learning problems,
MARL has more significant variances in the optimization
procedure due to the non-oblivious characteristic. Using just
a single trajectory for each agent to initialize is can be a
poor scheme, but the adopted variance reduction techniques
can successfully maintain the SOTA sampling complexity
in a decentralized setting. Please refer to the supplementary
materials for formal results and proof.

Implication for Gaussian Policy. We study the sample
complexity when the policy function πi(ai|s) of each agent
is explicitly a Gaussian distribution. For a bounded action
space Ai ⊂ R, a Gaussian policy parameterized by xi is
defined as

πi(ai|s) =
1√
2π

exp
(
− ((xi)>φi(s)− ai)2

2ξ2

)
, (12)

where ξ2 is a constant standard deviation parameter and
φi(s) : S → Rdi is a mapping from the state space to the
feature space. Thus, the following formal result can be ob-
tained. A more formal analysis and proof can be seen in the
supplementary materials.

Corollary 2. Let πi(ai|s) be defined as a Gaussian dis-
tribution in Eq. 12 with |ai| ≤ Ca, where Ca, Cf > 0,
and ‖φi(s)‖ ≤ Cf , and η, β, |B| be defined as in Corol-
lary 1. The sampling complexity of attaining the accuracy
E[‖∇J(x̃K)‖] ≤ ε is O((1− γ)−4.5N−1ε−3).

Numerical Experiments and Results
To validate our proposed algorithm, we performed experi-
ments on a multi-agent benchmark environment with a co-
operative navigation task that has been commonly used as a
benchmark in several previous works (Qu et al. 2019; Zhang
et al. 2018; Lu et al. 2021). Our platform for cooperative
navigation is derived off the particle environment introduced
by (Lowe et al. 2017). In our modification, all agents are
initialized at random locations with a specific goal in a 2-
dimensional grid world. Each agent observes the combined
position and velocity of itself and all other agents. The agent
is capable of moving up, down, left or right with the objective
of navigating to their respective goals. The reward function
of each agent is defined as the negative euclidean distance of
the agent to the goal. Additionally, a penalty of -1 is imposed
whenever the agent collides with any other agents. All agent’s
policy is represented by a 3-layer dense neural network with
64 hidden units with tanh activation functions. The agents
were trained for 50,000 episodes with a horizon of 50 steps
and discount factor of 0.99. For the sake of brevity, we present
numerical results in only one environment setting with five
agents. Additional results with different number of agents
and a simplified environment and computing infrastructure
details are available in the supplementary materials1.

Efficacy of MDPGT
Figure 1 illustrates the average training rewards obtained
by the five agents in the cooperative navigation gridworld

1Codes to reproduce these results are available at the following
repository: https://github.com/xylee95/MD-PGT



Figure 1: Average rewards obtain by MDPGT, MDPG and DPG
in a cooperative navigation task for five agents. For MDPGT,
β = 0.5 and results shown are averaged across five random
seeds. The line plots denote the mean value and shaded re-
gions denote the standard deviation of rewards.

Figure 2: Ablation study illustrating the effect of various
momentum coefficients, β on the performance of MDPGT for
five agents in the cooperative navigation environment.

environment. As observed, both MDPG and MDPGT signifi-
cantly outperforms the baseline, denoted as DPG. Comparing
MDPG with MDPGT, we observe that while both algorithms
initially have similar performance, MDPGT begins to outper-
form MDPG around the 15,000 iteration. Additionally, when
we compare the standard deviation of the rewards, shown
as shaded regions, we observe that standard deviation of
MDPGT is also smaller than the standard deviation of MDPG.
In summary, these results validate our theoretical findings
that utilizing gradient tracking as bias correction technique
does improve the performance of the algorithm. Additionally,
the improvement in terms of sampling complexity over DPG
is empirically evident through the result.

Effect of Momentum Coefficient
Next, we perform an additional ablation study to investigate
the effect of the momentum coefficient β on the performance
of MDPGT. As shown in Figure 2, we see that the choice
of momentum coefficient does indeed have an effect on the
performance. A β that is low can induce a faster convergence

Figure 3: Experiment results for five agents in the cooperative
navigation environment to compare the effects of different
network topologies. β = 0.5 for all experiments shown.

rate, but at the cost of a higher fluctuations in rewards, as
seen by β = 0.2 and 0.3. Conversely, a β value that is too
high will cause the surrogate to degenerate into vanilla policy
gradients and reflects a similar performance as DPG, which
matches the implication by Eq. 10. Ultimately, we see that
for this environment, β = 0.4 and 0.5 offers the perfect bal-
ance between convergence rate and stability/variance of the
training. Hence, β can be viewed as hyper-parameter which
can be tuned to trade off between optimizing for convergence
versus training stability.

Effect of Different Topologies
Finally, we provide evidence which confirms the fact that our
proposed method holds under various networks topologies.
To test our hypothesis, we train five agents in the same coop-
erative navigation environment using three different network
topologies: fully-connected, ring and bi-partite topology. As
seen in Figure 3, the five agents achieves similar rewards de-
spite communicating via different network topologies. This
validates our claim in Remark 1.

Conclusions
This paper proposes a novel MARL algorithm that involves
variance reduction techniques to reduce the sampling com-
plexity of decentralized policy-based methods. Specifically
we have developed the algorithmic framework and analyzed
it in a principled manner. An importance sampling-based
stochastic recursive momentum is presented as the policy
gradient surrogate, which is taken as input to a policy gradi-
ent tracker. Through theoretical analysis, we have found that
the proposed method can improve the sampling efficiency in
the decentralized RL settings compared to the SOTA meth-
ods. To the best of our knowledge, this is the first time to
achieve the best available rate, O(ε−3), for generic (possibly
non-concave) performance functions. Empirical results have
shown the superiority of the proposed MDPGT over the base-
line decentralized policy gradient methods. Future research
directions include: 1) incorporating more complex decen-
tralized environments in our experiments to reveal poten-
tially novel and interesting results; 2) extending the proposed



method to model-based decentralized RL settings to improve
further the sampling efficiency; 3) theoretically analyzing the
robustness of the proposed method under adversarial attacks.
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Supplementary Materials
We present the additional analysis and detailed proof for the auxiliary lemmas and main theorems as well as additional empirical
results.

Additional Related Works
The most recent work (Zhang et al. 2021b) in centralized RL introduced SIVR-PG, which employed the hidden convex nature
of general utility function and leveraged techniques from composition optimization to attain the sampling complexity of Õ(ε−2).
Nevertheless, SIVR-PG requires an additional assumption that the unnormalized state-action occupancy measure in the utility
function is convex and its corresponding inverse mapping exists, which may not rigorously hold for some RL settings. A
concurrent work (Zhang et al. 2021a) recently that has been published on arXiv proposes a Decentralized Shadow Reward Actor
Critic (DSAC) for general utilities, which can be treated as the extension to the decentralized setting of SIVR-PG. In their work,
the authors develop the shadow reward that estimates the derivative of the local utility with respect to their occupancy measure
and show that DSAC converges to ε-stationarity in O(ε−2.5) or even faster O(ε−2) with high probability. They further establish
the global optimality by adopting the diminishing step size. Though DSAC reveals faster convergence rate, additional occupancy
measure needs to be incorporated and updated in the algorithmic framework. Also, the shadow reward they have defined is
essentially a derivative, which may vary significantly among different agents. This could be another source of variance during
updates. In the analysis, we have observed that more assumptions are required to arrive at the theoretical claims, including
strongly convex critic objective function. Different from most previous works, the constructed error bounds in their work are
not based on expectation. The parameters, including step size, batch size, trajectory length, and even final iteration need to be
carefully defined. In the empirical evaluation, the authors present a cooperative navigation with safety constraint and do not show
any comparison with the decentralized baseline methods. We therefore are not going to compare our proposed method with
theirs due to different emphasis.

Hybrid-SARAH and GT
Hybrid-SARAH. In this context, we denote by g(ζ,x) the stochastic gradient, where ζ is the random seed. As discussed above,
Hybrid-SARAH is the combination between vanilla stochastic gradient and SARAH such that the following expression can be
obtained for a time step k:

uk = βg(ζk,xk) + (1− β)(uk−1 + g(ζk,xk)− g(ζk,xk−1)), (13)

where β ∈ [0, 1] is the momentum parameter. One can observe from Eq. 13 that in the part of SARAH, the term g(ζk,xk−1)
requires the computation of g(ζk,xk−1) and the copy of last iteration of parameters xk−1, which could increase the computational
power and memory significantly if the dimension of x is quite high, though this may not be an issue for a modern computer.
Additionally, this form of update in SARAH enables to improve the convergence rates in different problems such as decentralized
learning (Xin, Khan, and Kar 2020) and reinforcement learning (Huang et al. 2020; Xu, Gao, and Gu 2019). Therefore we will
still adapt Hybrid-SARAH in our MARL algorithms.
GT. Another technique that has specifically been developed for decentralized optimization is GT, which is close to SARAH, but

focusing on tracking and correcting each agent’s locally aggregated gradients. However, in terms of formulation, GT typically
appears in a form with a consensus or mixing step that can expressed as follows:

vik+1 =
∑

j∈Nb(i)

ωijv
j
k + gi(ζ

i
k,x

i
k)− gi(ζ

i
k−1,x

i
k−1), (14)

where ωij ∈W ∈ RN×N is the probability of an edge in the communication network G. W is the mixing matrix to define the
topology of the communication network and one assumption will be imposed for the matrix. An immediate observation from
Eq. 14 is that the update requires the copy of gi(ζ

i
k−1,x

i
k−1) from last iteration without the extra computation as in SARAH. The

difference between GT and SARAH is not the focus of this work and instead we will combine both Hybrid-SARAH and GT
together to reduce the stochastic gradient variance and correct the stochastic gradient bias in the MARL.

Additional Analysis for Algorithm 1
We discuss briefly how MDPGT enables to reduce the policy gradient variance. Let ∆i

k , uik − ∇Ji(xik). With simple
mathematical manipulations, we can obtain

E[∆i
k] = E[(1− β)∆i

k−1 + β(gi(τ
i
k|xik)−∇Ji(xik)︸ ︷︷ ︸

T3

)+

(1− β)(gi(τ
i
k|xik)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1)−∇Ji(xik) +∇Ji(xik−1)︸ ︷︷ ︸
T4

)].
(15)



We can observe from the last equation that E[∆i
k] = (1− β)E[∆i

k−1] due to Eτ ik∼pi(τ i|xik)[T3] = 0 and Eτ ik∼pi(τ i|xik)[T4] = 0.
Applying Cauthy-Schwartz inequality, we further attain the upper bound for E[‖∆i

k‖2] as follows,

E[‖∆i
k‖2] ≤ (1− β)2E[‖∆i

k−1‖2] + 2β2E[‖T3‖2]

+ 2(1− β)2E[‖T4‖2].
(16)

In the sequel, we will establish the relationship between the importance sampling weight υi(τ ik|xik−1,xik) and ‖xik − xik−1‖2
such that the following equality can be obtained

O(‖T4‖2) = O(‖xik − xik−1‖2)

= O(‖xik + x̄k − x̄k + x̄k−1 − x̄k−1 − xik−1‖2).
(17)

Eq. 17 is bounded above by the following

O(3‖xik − x̄k‖2 + 3‖xik−1 − x̄k−1‖2 + 3η2‖ūk−1‖2),

where ∗̄ is the ensemble average of all agents i ∈ V and the first two terms signify the consensus estimate, which can be
controlled by β and η. The bound also follows from the fact that ūk−1 = v̄k (see Lemma 4). Therefore, in light of Eq. 16, setting
β and η properly is able to reduce the variance. This also motivates the adoption of policy gradient surrogate in the work.

Auxiliary Lemmas and Their Proof
We start with the results for the smoothness constant L and the upper bound of ‖gi(τ i|xi)‖, G.
Lemma 1. Let gi(τ

i|xi) be defined in Eq. 6 for all i ∈ V . Assumption 1 implies the following conclusions:

• ‖gi(τ i|x1)− gi(τ
i|x2)‖ ≤ L‖x1 − x2‖, ∀x1,x2 ∈ Rdi , with L = ChR

(1−γ)2 ;
• J(x) is L-smooth, i.e., ‖∇2J(x)‖ ≤ L;
• ‖gi(τ i|xi)‖ ≤ G, ∀xi ∈ Rdi , with G =

CgR
(1−γ)2 ;

• Variance of stochastic policy gradient gi(τ
i|xi) is bounded, i.e., E[‖gi(τ i|xi)−∇Ji(xi)‖2] ≤ σ2

i , σ̄
2 = 1

N

∑N
i=1 σ

2
i , for

all i ∈ V , where σ̄2 =
C2
gR

2

(1−γ)4 .

Proof. Recall the definition of gi(τ
i|xi) in Eq. 6 such that the PGT estimator (Sutton et al. 1999) is as follows:

gi(τ
i|xi) =

H−1∑
h=0

h∑
q=0

(γqriq(a
i
q, sq)− bq)∇xi logπi(aih, sh),

where bq is a constant baseline and we specify the subscript xi to indicate the gradient w.r.t it. Later this is omitted unless
specified appropriately. Further, we have

‖∇gi(τ
i|xi)‖ =

∥∥∥∥H−1∑
h=0

∇2logπi(aih, sh)

( h∑
q=0

γqriq(a
i
q, sq)

)∥∥∥∥
≤
(H−1∑

q=0

‖∇2logπi(aiq, sq)‖
R

1− γ

)
≤ ChR

(1− γ)2

(18)

where bq = 0. The above inequalities follow from that γ ∈ (0, 1). When bq 6= 0, we can easily scale it with γh and the above
result still holds but with different constant coefficient. Thus, the first part of Lemma 1 can be proved.

As the PGT estimator is an unbiased estimator of the policy gradient∇Ji(xi), we then have

∇Ji(xi) = Eτ i [gi(τ i|xi)],∇2Ji(x
i) = Eτ i [∇gi(τ

i|xi)].

Hence, the smoothness of Ji(xi) can be directly implied from the Lipchitzness of gi(τ
i|xi),

‖∇2Ji(x
i)‖ = ‖Eτ i [∇gi(τ

i|xi)]‖ ≤ ‖∇gi(τ
i|xi)‖ ≤ ChR

(1− γ)2
.

As the above relationship holds for each agent i ∈ V , the second part of Lemma 1 can be obtained.



Similarly, taking the norm of gi(τ
i|xi) leads to

‖gi(τ i|xi)‖ ≤
∥∥∥∥H−1∑
h=0

∇logπi(aih, sh)
γhR(1− γH−h)

1− γ

∥∥∥∥ ≤ CgR

(1− γ)2
.

Based on the above inequality, it is immediately obtained that

‖gi(τ i|xi)‖2 ≤
C2
gR

2

(1− γ)4
.

For a random variable X , we have that E[‖X − E[X]‖2] ≤ E[‖X‖2] such that

E[‖gi(τ i|xi)−∇Ji(xi)‖2] ≤
C2
gR

2

(1− γ)4
.

Also, σ̄2 =
C2
gR

2

(1−γ)4 . The proof is complete.

Lemma 1 completes the definitions of L and G. One immediate observation for both L and G is that they are independent of
the horizon H , which hence are tighter. In the following, we introduce a relation for the importance sampling weight. We first
introduce the Rényi divergence between two distributions Q and Z as follows:

Dα(Q||Z) =
1

α− 1
log2

∫
x

Q(x)

(
Q(x)

Z(x)

)α−1
dx,

which is non-negative for all α > 0. The exponentiated Rényi divergence is Dα(Q||Z) = 2Dα(Q||Z).

Lemma 2. (Lemma 1 in (Cortes, Mansour, and Mohri 2010)) Let υi(τ i|x1,x2) = pi(τ
i|x1)

pi(τ i|x2)
be the importance sampling

weight for distributions pi(τ i|x1) and pi(τ i|x2). Then the expectation, second moment and variance of υi(τ i|x1,x2) satisfy the
following results:

E[υi(τ
i|x1,x2)] = 1,E[υ2i (τ i|x1,x2)] = D2(pi(τ

i|x1)||pi(τ i|x2)),

and
V(υi(τ

i|x1,x2)) = D2(pi(τ
i|x1)||pi(τ i|x2))− 1.

With Lemma 2 in hand, we now are ready to state the relation between V(υi(τ
i|x1,x2)) and ‖x1 − x2‖2.

Lemma 3. For any x1,x2 ∈ Rdi , ∀i ∈ V , let υi(τ i|x1,x2) = pi(τ
i|x1)

pi(τ i|x2)
. With Assumptions 1 and 3, We have

V[υi(τ
i|x1,x2)] ≤ Cυ‖x1 − x2‖2, (19)

where Cυ = H(2HC2
g + Ch)(M+ 1).

Proof. According to Lemma 2, the variance of the importance sampling weight is

V[υi(τ
i|x1,x2)] = D2(pi(τ

i|x1)||pi(τ i|x2))− 1.

By definition, the following relationship can be obtained

D2(pi(τ
i|x1)||pi(τ i|x2)) =

∫
τ i
pi(τ

i|x1)
pi(τ

i|x1)

pi(τ i|x2)
dτ i =

∫
τ i
pi(τ

i|x1)2pi(τ
i|x2)−1dτ i.

Taking the gradient of D2(pi(τ
i|x1)||pi(τ i|x2)) w.r.t. x1, we then have

∇x1D2(pi(τ
i|x1)||pi(τ i|x2)) = 2

∫
τ i
pi(τ

i|x1)∇x1pi(τ
i|x1)pi(τ

i|x2)−1dτ i.

Letting x1 = x2 in the last equation yields

∇x1
D2(pi(τ

i|x1)||pi(τ i|x2))

∣∣∣∣
x1=x2

= 2

∫
τ i
∇x1

pi(τ
i|x1)dτ i

∣∣∣∣
x1=x2

= 0.

Applying the mean value theorem w.r.t. x1 results in

D2(pi(τ
i|x1)||pi(τ i|x2)) = 1 +

1

2
(x1 − x2)>∇2

x3
D2(pi(τ

i|x3)||pi(τ i|x2))(x1 − x2), (20)



where x3 = tx1 + (1 − t)x2, t ∈ [0, 1]. The last inequality follows from the fact that D2(pi(τ
i|x2)||pi(τ i|x2)) = 1. We

have now obtained another expression for D2(pi(τ
i|x1)||pi(τ i|x2)) and to bound it, we shall compute the Hessian matrix

∇2
x3
D2(pi(τ

i|x3)||pi(τ i|x2)). Taking the gradient ∇x3
D2(pi(τ

i|x3)||pi(τ i|x2)) of w.r.t. x3 leads to

∇2
x3
D2(pi(τ

i|x3)||pi(τ i|x2)) = 2

∫
τ i
∇x3

logpi(τ i|x3)∇x3
logpi(τ i|x3)>

pi(τ
i|x3)2

pi(τ i|x2)
dτ i

+ 2

∫
τ i
∇2

x3
pi(τ

i|x3)pi(τ
i|x3)pi(τ

i|x2)−1dτ i.

The above equation implies that to obtain the Hessian matrix, we need to attain∇2
x3
pi(τ

i|x3), which signifies the Hessian matrix
of the trajectory distribution function. We next derive the the Hessian matrix of log-density function.

∇2
x3

logpi(τ i|x3) = −pi(τ i|x3)2∇x3
pi(τ

i|x3)∇x3
pi(τ

i|x3)> + pi(τ
i|x3)−1∇2

x3
pi(τ

i|x3).

Combining the last two equations yields

‖∇2
x3
D2(pi(τ

i|x3)||pi(τ i|x2))‖ =

∥∥∥∥4

∫
τ i
∇x3

logpi(τ i|x3)∇x3
pi(τ

i|x3)>
pi(τ

i|x3)2

pi(τ i|x2)
dτ i

+ 2

∫
τ i
∇2

x3
logpi(τ i|x3)

pi(τ
i|x3)2

pi(τ i|x2)
dτ i
∥∥∥∥

≤
∫
τ i

pi(τ
i|x3)2

pi(τ i|x2)
(4‖∇x3

logpi(τ i|x3)‖2 + 2‖∇2
x3

logpi(τ i|x3)‖)dτ i

≤ (4H2C2
g + 2HCh)E[υi(τ

i|x1,x2)2]

≤ 2H(2HC2
g + Ch)(M+ 1),

where the second inequality follows from Assumption 1 and Lemma 2 and the last inequality follows from Assumption 3.
Therefore, substituting the above result into Eq. 20 attain the following desirable result

V[υi(τ
i|x1,x2)] = D2(pi(τ

i|x1)||pi(τ i|x2))− 1 ≤ Cυ‖x1 − x2‖2.

Lemma 3 is critical in the proof as it will translate HIS-SARAH into a squared norm that can be bounded above. We next
present the outline of how to prove Theorem 1 and apply the same proof techniques to show Theorem 2. We first define some
notations for the convenience of proof. In a generalized case, the dimension for each xi is not necessarily the same, while in this
work we assume that d1 = d2 = ... = dN = d

N for the ease of exposition and in this context, d/N is assumed to be an integer.
Recalling the update laws for vik and xik in Algorithm 1 in a matrix form, we have:

vk+1 = Wvk + uk − uk−1 (21a)
xk+1 = W(xk + ηvk+1) (21b)

where W , W ⊗ Id/N and xk,vk,uk are square-integrable random vectors in Rd that concatenate the local estimates of the
solution {xik}Ni=1, gradient trackers {vik}Ni=1, and the stochastic policy gradient surrogates {uik}Ni=1. Additionally, we denote
∇J(xk) = [∇J1(x1

k)>, ...,∇JN (xNk )>]> and define the ensemble averages as follows.

x̄k ,
1

N
(1>N ⊗ Id/N )xk, v̄k ,

1

N
(1>N ⊗ Id/N )vk,

ūk ,
1

N
(1>N ⊗ Id/N )uk,∇J(xk) ,

1

N
(1>N ⊗ Id/N )∇f(xk).

With these definitions, we present some known results for gradient tracking type of algorithms in decentralized optimization and
refer interested readers to (Xin, Khan, and Kar 2021) for the detail of proof.

Lemma 4. The following relationships hold for MDPGT.

• Define Λ = 1
N (1>N ⊗ Id/N ). Thus, ‖Wx−Λx‖ ≤ λ‖x−Λx‖.

• v̄k+1 = ūk, for all k ≥ 0.

• ‖∇J(xk)−∇J(x̄k)‖2 ≤ L2

N ‖xk −Λxk‖2, for all k ≥ 0.



The first relationship in Lemma 4 has been well-known due to a doubly stochastic mixing matrix W and the second one is an
immediate consequence of the update law for the gradient tracker. The third relationship is due to the second conclusion from
Lemma 1. Multiplying the update for xik+1 by Λ yields the following equality

x̄k+1 = x̄k + ηv̄k+1 = x̄k + ηūk, ∀k ≥ 0. (22)

We next establish a key technical lemma that sheds light on the convergence in terms of the second moment of∇J(x̄k).

Lemma 5. Let x̄k be generated by Eq. 22. If the step size η ∈ (0, 1
2L ], then for all K ≥ 0, we have:

K∑
k=0

‖∇J(x̄k)‖2 ≤ 2(J∗ − J(x̄0))

η
− 1

2

K∑
k=0

‖ūk‖2

+ 2
K∑
k=0

‖ūk −∇J(xk)‖2 +
2L2

N

K∑
k=0

‖xk − Λxk‖2.

(23)

Proof. Based on the second conclusion of Lemma 1, we have the following relationship:

J(x̄k+1) ≥ J(x̄k) + 〈∇J(x̄k), (x̄k+1 − x̄k)〉 − L

2
‖x̄k+1 − x̄k‖2

≥ J(x̄k) + η〈∇J(x̄k), ūk〉 −
η2L

2
‖ūk‖2.

(24)

According to the basic inequality 〈a,b〉 = 1
2 (‖a‖2 + ‖b‖2 − ‖a− b‖2), the last inequality, the following can be obtained

J(x̄k+1) ≥ J(x̄k) +
η

2
‖∇J(x̄k)‖2 +

(
η

2
− η2L

2

)
‖ūk‖2 −

η

2
‖ūk −∇J(x̄k)‖2

≥ J(x̄k) +
η

2
‖∇J(x̄k)‖2 +

(
η

2
− η2L

2

)
‖ūk‖2 −

η

2
‖ūk −∇J(x̄k) +∇J(xk)−∇J(xk)‖2

≥ J(x̄k) +
η

2
‖∇J(x̄k)‖2 +

η

4
‖ūk‖2 − η‖ūk −∇J(xk)‖2 − ηL2

N
‖xk − Λxk‖2,

(25)

where the third inequality is due to ‖a + b‖2 ≤ 2(‖a‖2 + ‖b‖2), the smoothness of J and η ∈ (0, 1
2L ]. Rewriting Eq. 25 yields

the following relationship

‖∇J(x̄k)‖2 ≤ 2(J(x̄k+1)− J(x̄k))

η
− 1

2
‖ūk‖2 + 2‖ūk −∇J(xk)‖2 +

2L2

N
‖xk − Λxk‖2. (26)

Summing up the last equation from 0 to K completes the proof.

According to Lemma 5, it is clearly observed that in order to arrive at the main results presented in the previous section,
the upper bound of the right hand side in the last inequality needs to be explicitly quantified. One may argue that in the main
theorems it is x̃K instead of x̄K . Dividing Eq. 23 by 1

K+1 allows us to approximate x̃K using the ensemble average. Additionally,
a sufficiently large K implies all agents have converged to the (near-) optimal solution, suggesting that the gap between x̃K
and x̄K is quite close to 0. Though in the final result, the convergence rate is specifically for x̃K , Lemma 5 helps facilitate the
understanding of convergence for MDPGT and will be critical to derive the final error bounds in the main theorems. Thus, in the
sequel, the analysis is dedicated to finding the upper bounds for

∑K
k=0 ‖ūk −∇J(xk)‖2 and

∑K
k=0 ‖xk − Λxk‖2. To start the

analysis, we present two relationships that will help significantly characterize the recursions of gradient variances, consensus,
and gradient tracking errors.

Lemma 6. Let {ek}k≥0, {bk}k≥0, and {ck}k≥0 be nonnegative sequences such that ek ≤ qek−1 + qbk−1 + ck + C, ∀k ≥ 1,
where q ∈ (0, 1) and C ≥ 0. Then, we have for all K ≥ 1,

K∑
k=1

ek ≤
e0

1− q
+

1

1− q

K−1∑
k=0

bk +
1

1− q

K∑
k=0

ck +
CK

1− q
. (27)

Similarly, if ek+1 ≤ qek + bk−1 + C, ∀k ≥ 1, then, we have for all K ≥ 2,

K∑
k=1

ek ≤
e1

1− q
+

1

1− q

K−2∑
k=0

bk +
CK

1− q
. (28)



Please follow the proof of Lemma 6 in (Xin, Khan, and Kar 2021) for more detail. We next derive the relevant recursions for
the gradient variances E[‖ūk −∇J(xk)‖2] and E[‖uk −∇J(xk)‖2]. Essentially the former can be treated intuitively as the
average of the latter up to a factor of 1

N2 , but they are proved separately.
Lemma 7. Let ūk and xk be generated by MDPGT. Then for all k ≥ 1, we have

E[‖ūk −∇J(xk)‖2] ≤ (1− β)2E[‖ūk−1 −∇J(xk−1)‖2]

+
12(L2 +G2Cυ)η2(1− β)2

N
E[‖ūk−1‖2] +

2β2σ̄2

N

+
12(L2 +G2Cυ)(1− β)2

N2
E[‖xk − Λxk‖2

+ ‖xk−1 − Λxk−1‖2],

(29)

and
E[‖uk −∇J(xk)‖2] ≤ (1− β)2E[‖uk−1 −∇J(xk−1)‖2]

+ 12N(L2 +G2Cυ)η2(1− β)2E[‖ūk−1‖2] + 2β2σ̄2N

+ 12(L2 +G2Cυ)(1− β)2E[‖xk − Λxk‖2

+ ‖xk−1 − Λxk−1‖2].

(30)

Proof. Recalling
uik = βgi(τ

i
k|xik) + (1− β)[uik−1 + gi(τ

i
k|xik)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1)], (31)

we then have
uik −∇Ji(xik) = βgi(τ

i
k|xik) + (1− β)[uik−1 + gi(τ

i
k|xik)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1)]

− β∇Ji(xik)− (1− β)∇Ji(xik)

= β(gi(τ
i
k|xik)−∇Ji(xik)) + (1− β)[∇Ji(xik−1) + gi(τ

i
k|xik)

− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1)−∇Ji(xik)] + (1− β)(uik −∇Ji(xik−1)).

(32)

As E[gi(τ
i
k|xik) − ∇Ji(xik)] = 0d/N and E[gi(τ

i
k|xik) − υi(τ

i
k|xik−1,xik)gi(τ

i
k|xik−1) + ∇Ji(xik−1) − ∇Ji(xik)] = 0d/N .

Applying Eq. 32 from 1 to N and taking the ensemble average results in

ūk −∇J(xk) = (1− β)(ūk−1 −∇J(xk−1)) + β
1

N

N∑
i=1

(gi(τ
i
k|xik)−∇Ji(xik))

+ (1− β)
1

N

N∑
i=1

(gi(τ
i
k|xik)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1) +∇Ji(xik−1)−∇Ji(xik))

(33)

Let

nk =
1

N

N∑
i=1

(gi(τ
i
k|xik)−∇Ji(xik))

and

zk =
1

N

N∑
i=1

(gi(τ
i
k|xik)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1) +∇Ji(xik−1)−∇Ji(xik)).

We have
E[‖ūk −∇J(xk)‖2] = (1− β)2‖ūk−1 −∇J(xk−1)‖2 + E[‖βnk + (1− β)zk‖2]

+ 2E[〈(1− β)(ūk−1 −∇J(xk−1)), βnk + (1− β)zk〉]
= (1− β)2‖ūk−1 −∇J(xk−1)‖2 + E[‖βnk + (1− β)zk‖2]

≤ (1− β)2‖ūk−1 −∇J(xk−1)‖2 + 2β2E[‖nk‖2] + 2(1− β)2E[‖zk‖2].

(34)

The second equality follows from that E[〈(1 − β)(ūk−1 − ∇J(xk−1)), βnk + (1 − β)zk〉] = 0 as E[nk] = 0d/N and
E[zk] = 0d/N . We next bound the terms E[‖nk‖2] and E[‖zk‖2]. As for k ≥ 1,

E[‖nk‖2] =
1

N2

N∑
i=1

E[‖gi(τ ik|xik)−∇Ji(xik)‖2] +
1

N2

∑
i6=j

E[〈gi(τ ik|xik)−∇Ji(xik),gj(τ
j
k |x

j
k)−∇Jj(xjk)〉]

=
1

N2

N∑
i=1

E[‖gi(τ ik|xik)−∇Ji(xik)‖2] ≤ σ̄2

N
.

(35)



The second equality follows from that

E[〈gi(τ ik|xik)−∇Ji(xik),gj(τ
j
k |x

j
k)−∇Jj(xjk)〉]

= E[〈E[gi(τ
i
k|xik)]−∇Ji(xik),gj(τ

j
k |x

j
k)−∇Jj(xjk)〉]

= 0.

(36)

For the term E[‖zk‖2], we have for all k ≥ 1,

E[‖zk‖2] = E[‖ 1

N

N∑
i=1

(gi(τ
i
k|xik)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1) +∇Ji(xik−1)−∇Ji(xik))‖2]

=
1

N2

N∑
i=1

E[‖gi(τ ik|xik)− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1) +∇Ji(xik−1)−∇Ji(xik)‖2]

+
1

N2

∑
i6=j

E[〈gi(τ ik|xik)− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1) +∇Ji(xik−1)−∇Ji(xik),

gj(τ
j
k |x

j
k)− υj(τ jk |x

j
k−1,x

j
k)gj(τ

j
k |x

j
k−1) +∇Jj(xjk−1)−∇Jj(xjk)〉]

=
1

N2

N∑
i=1

E[‖gi(τ ik|xik)− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1) +∇Ji(xik−1)−∇Ji(xik)‖2]

≤ 1

N2

N∑
i=1

E[‖gi(τ ik|xik)− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1)‖2].

(37)

The third equality follows from the same argument we have for the E[〈gi(τ ik|xik)−∇Ji(xik),gj(τ
j
k |x

j
k)−∇Jj(xjk)〉]. The last

inequality follows from the fact that

E[gi(τ
i
k|xik)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1)] = ∇Ji(xik)−∇Ji(xik−1)

and the variance decomposition, i.e., for any vector a ∈ Rp,

E[‖a− E[a]‖2] = E[‖a‖2]− ‖E[a]‖2.



Hence, we have now

E[‖zk‖2] ≤ 1

N2

N∑
i=1

E[‖gi(τ ik|xik)− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1)‖2]

=
1

N2

N∑
i=1

E[‖gi(τ ik|xik)− gi(τ
i
k|xik−1) + gi(τ

i
k|xik−1)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1)‖2]

=
1

N2

N∑
i=1

E[2‖gi(τ ik|xik)− gi(τ
i
k|xik−1)‖2 + 2‖gi(τ ik|xik−1)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1)‖2]

≤ 2L2

N2

N∑
i=1

E[‖xik − xik−1‖2] +
2

N2

N∑
i=1

E[‖1− υi(τ ik|xik−1,xik)‖2‖gi(τ ik|xik−1)‖2]

≤ 2L2

N2

N∑
i=1

E[‖xik − xik−1‖2] +
2G2

N2
E[‖1− υi(τ ik|xik−1,xik)‖2]

=
2L2

N2

N∑
i=1

E[‖xik − xik−1‖2] +
2G2

N2

N∑
i=1

V(υi(τ
i
k|xik−1,xik))

≤ 2L2

N2

N∑
i=1

E[‖xik − xik−1‖2] +
2G2Cυ
N2

N∑
i=1

E[‖xik − xik−1‖2]

=
2L2 + 2G2Cυ

N2
E[‖xk − xk−1‖2]

=
2L2 + 2G2Cυ

N2
E[‖xk − Λxk + Λxk − Λxk−1 + Λxk−1 − xk−1‖2]

≤ 6L2 + 6G2Cυ
N

E[‖ūk−1‖2] +
6L2 + 6G2Cυ

N2
E[‖xk − Λxk‖2 + ‖Λxk−1 − xk−1‖2].

(38)

The second inequality follows from the Cauthy-Schwartz inequality. The third inequality follows from Lemma 1 while the fourth
inequality follows from Lemma 3. Hence, the following relationship can be obtained

E[‖ūk −∇f(xk)‖2] ≤ (1− β)2E[‖ūk−1 −∇f(xk−1)‖2] +
12L2 + 12G2Cυ

N
η2(1− β)2E[‖ūk−1‖2]

+
2β2σ̄2

N
+

12L2 + 12G2Cυ
N2

(1− β)2E[‖xk − Λxk‖2 + ‖Λxk−1 − xk−1‖2],

(39)

which completes the first part of proof for Lemma 7.
Recalling Eq. 32, we have

uik −∇Ji(xik) = β(gi(τ
i
k|xik)−∇Ji(xik)) + (1− β)[∇Ji(xik−1) + gi(τ

i
k|xik)

− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1)−∇Ji(xik)] + (1− β)(uik −∇Ji(xik−1)).

(40)

Based on the analysis above, it is immediately obtained that the expectations of the first and second terms are all zero. Following
the similar proof in Eq. 34, we have for all k ≥ 1,

E[‖uik −∇Ji(xik)‖2] ≤ (1− β)2‖uik−1 −∇Ji(xik−1)‖2 + 2β2E[‖gi(τ ik|xik)−∇Ji(xik)‖2]

+ 2(1− β)2E[‖∇Ji(xik−1) + gi(τ
i
k|xik)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1)−∇Ji(xik)‖2]

≤ (1− β)2‖uik−1 −∇Ji(xik−1)‖2 + 2β2E[‖gi(τ ik|xik)−∇Ji(xik)‖2]

+ 2(1− β)2E[‖gi(τ ik|xik)− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1)‖2]

(41)

According to Lemma 1 and Lemma 3, the following relationship can be attained

E[‖uik −∇Ji(xik)‖2] ≤ (1− β)2‖uik−1 −∇Ji(xik−1)‖2 + 2β2σ2
i + 4(1− β)2(L2 + CυG

2)E[‖xik − xik−1‖2]

≤ (1− β)2‖uik−1 −∇Ji(xik−1)‖2 + 2β2σ2
i

+ 12(1− β)2(L2 + CυG
2)(E[‖xik − x̄k‖2] + ‖x̄k − x̄k−1‖2 + ‖x̄k−1 − xik−1‖2)

= (1− β)2‖uik−1 −∇Ji(xik−1)‖2 + 2β2σ2
i + 12(1− β)2(L2 + CυG

2)η2E[‖ūk−1‖2]

+ 12(1− β)2(L2 + CυG
2)(E[‖xik − x̄k‖2 + ‖xik−1 − x̄k−1‖2]).

(42)



Applying Eq. 42 over i from 1 to N completes the second part of the proof for Lemma 7.

With Lemma 6 and Lemma 7 in hand, we now are ready to present the upper bounds for both
∑K
k=1 E[‖ūk −∇J(xk)‖2] and∑K

k=1 E[‖uk −∇J(xk)‖2] in the following lemma.
Lemma 8. Let ūk and xk be generated by MDPGT initialized with a mini-batch of trajectories B. Then for any β ∈ (0, 1),
∀K ≥ 1, we have

K∑
k=0

E[‖ūk −∇J(xk)‖2] ≤ σ̄2

|B|Nβ
+

12(L2 +G2Cυ)η2

Nβ
×

K−1∑
k=0

E[‖ūk‖2] +
24(L2 +G2Cυ)

N2β

K∑
k=0

E[‖xk − Λxk‖2]

+
2βσ̄2K

N
,

(43)

and
K∑
k=0

E[‖uk −∇J(xk)‖2] ≤ Nσ̄2

|B|β
+

12N(L2 +G2Cυ)η2

β
×

K−1∑
k=0

E[‖ūk‖2] +
24(L2 +G2Cυ)

β

K∑
k=0

E[‖xk − Λxk‖2]

+ 2Nβσ̄2K.

(44)

Proof. We apply the conclusions from Lemma 6 to Lemma 7. We first show the upper error bound for
∑K
k=0 E[‖ūk−∇J(xk)‖2].

Substituting Eq. 29 into Eq. 27 leads to the following inequality
K∑
k=0

E[‖ūk −∇J(xk)‖2] ≤ 1

1− (1− β)2
E[‖ū0 −∇J(x0)‖2] +

12(L2 +G2Cυ)η2(1− β)2

N(1− (1− β)2)

K−1∑
k=0

E[‖ūk−1‖2]

+
2β2σ̄2K

N(1− (1− β)2)
+

12(L2 +G2Cυ)(1− β)2

N2(1− (1− β)2)
E
K−1∑
k=0

[‖xk − Λxk‖2 + ‖xk−1 − Λxk−1‖2]

≤ 1

1− (1− β)2
E[‖ū0 −∇J(x0)‖2] +

12(L2 +G2Cυ)η2(1− β)2

N(1− (1− β)2)

K−1∑
k=0

E[‖ūk−1‖2]

+
2β2σ̄2K

N(1− (1− β)2)
+

24(L2 +G2Cυ)(1− β)2

N2(1− (1− β)2)

K∑
k=0

E[‖xk − Λxk‖2].

(45)

We now process the first term on the right hand side of the last inequality.

E[‖ū0 −∇J(x0)‖2] = E[‖ 1

N

N∑
i=1

1

|B|

|B|∑
m=1

(gi(τ
i,m
0 |xi0)−∇Ji(xi0))‖2].

It is immediately obtained that

E[‖ū0 −∇J(x0)‖2] =
1

N2|B|2
N∑
i=1

|B|∑
m=1

E[‖gi(τ i,m0 |xi0)−∇Ji(xi0)‖2] ≤ σ̄2

N |B|
.

Observing that 1
1−(1−β)2 ≤

1
β , we can obtain the first conclusion in Lemma 8. Likewise, if we apply Eq. 27 to Eq. 30, the

following relationship can be attained
K∑
k=1

E[‖uk −∇J(xk)‖2] ≤ E[‖u0 −∇J(x0)‖2]

β
+

12N(L2 +G2Cυ)η2

β

K−1∑
k=0

E[‖ūk‖2]

+
24(L2 +G2Cυ)

β

K∑
k=0

E[‖xk − Λxk‖2] + 2Nβσ̄2K.

(46)



As

E[‖u0 −∇J(x0)‖2] =
N∑
i=1

E[‖ 1

|B|

|B|∑
m=1

(gi(τ
i,m
0 |xi0)−∇Ji(xi0))‖2]

=
1

|B|2
N∑
i=1

|B|∑
m=1

E[‖gi(τ i,m0 |xi0)−∇Ji(xi0)‖2] ≤ Nσ̄2

|B|
.

(47)

Substituting Eq. 47 into Eq. 46 completes the proof for the second conclusion in Lemma 8.

It is clearly observed from Eq. 43 that the error bound is dependent of the consensus error. To bound the consensus, we first
present a lemma to bound the gradient tracking errors. As the initialization approach can be to use either a single trajectory or a
mini-batch of trajectories, the lemma also consists of the explicit bound for the initial gradient tracking error. Before that, we
present a fact that establishes the relationship between ‖vk+1 − Λvk+1‖2 and ‖xk+1 − Λxk+1‖2.
Fact 1. For all k ≥ 0, we have

‖xk+1 − Λxk+1‖2 ≤
1 + λ2

2
‖xk − Λxk‖2

+
2η2λ2

1− λ2
‖vk+1 − Λvk+1‖2,

(48)

and
‖xk+1 − Λxk+1‖2 ≤ 2λ2‖xk − Λxk‖2

+ 2η2λ2‖vk+1 − Λvk+1‖2.
(49)

This fact can be easily shown true by using the update laws of MDPGT and the Young’s inequality.
Lemma 9. Let vk be generated by MDPGT initialized with a mini-batch of trajectories B. We have the following relationships:

E[‖v1 − Λv1‖2] ≤ Nσ̄2

|B|
+ ‖∇J(x0)‖2, (50)

and if 0 < η ≤ 1−λ2

8λ
√
9L2+3G2Cυ

, then for all k ≤ 1,

E[‖vk+1 − Λvk+1‖2] ≤ 3 + λ2

4
E[‖vk − Λvk‖2]

+
48L2 + 24(L2 +G2Cυ)

1− λ2
Nη2E[‖ūk−1‖2] + 4Nβ2σ̄2

+
114L2 + 72(L2 +G2Cυ)

1− λ2
E[‖xk−1 − Λxk−1‖2]

+
10β2

1− λ2
E[‖uk−1 −∇J(xk−1)‖2].

(51)

Proof. According to the update law, we have
v1 − Λv1 = Wv0 + u0 − u−1 − ΛWv0 − Λu0 + Λu−1 = (I− Λ)u0. (52)

It follows from v0 = 0 and u−1 = 0. Hence, we have
E[‖v1 − Λv1‖2] = E[‖(I− Λ)u0‖2] ≤ E[‖u0 −∇J(x0) +∇J(x0)‖2] (53)

Since ui0 = 1
|B|
∑|B|
m=1 gi(τ

i,m
0 |xi0), we then obtain

E[‖u0 −∇J(x0) +∇J(x0)‖2] =
N∑
i=1

E[‖ui0 −∇Ji(xi0)‖2] + ‖∇J(x0)‖2

=
N∑
i=1

E[‖ 1

|B|

|B|∑
m=1

(gi(τ
i,m
0 |xi0)−∇Ji(xi0))‖2] + ‖∇J(x0)‖2

=
1

|B|2
N∑
i=1

|B|∑
m=1

E[‖gi(τ i,m0 |xi0)−∇Ji(xi0)‖2] + ‖∇J(x0)‖2

≤ Nσ̄2

|B|
+ ‖∇J(x0)‖2,

(54)



which completes the first part of the proof.

We now proceed to prove the second part. As

vk+1 − Λvk+1 = Wvk + uk − uk−1 − Λ(Wvk + uk − uk−1)

= (W − Λ)vk + (I− Λ)(uk − uk−1),
(55)

conducting the squared norm results in the following relationship

‖vk+1 − Λvk+1‖2 = ‖(W − Λ)vk + (I− Λ)(uk − uk−1)‖2

= ‖(W − Λ)vk‖2 + 2〈(W − Λ)vk, (I− Λ)(uk − uk−1)〉
+ ‖(I− Λ)(uk − uk−1)‖2

≤ λ2‖vk − Λvk‖2 + 2〈(W − Λ)vk, (I− Λ)(uk − uk−1)〉+ ‖uk − uk−1‖2.

(56)

We next investigate the second term on the right hand side of the last inequality. Based on the update for the policy gradient
surrogate, we have

uik = gi(τ
i
k|xik) + (1− β)uik−1 − (1− β)υi(τ

i
k|xik−1,xik)gi(x

i
k−1).

Thus,

uik − uik−1 = gi(τ
i
k|xik)− βuik−1 − (1− β)υi(τ

i
k|xik−1,xik)gi(x

i
k−1)

= (1− β)(gi(τ
i
k|xik)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1)) + β(gi(τ

i
k|xik)− gi(τ

i
k|xik−1))

+ β(gi(τ
i
k|xik−1)−∇J(xik−1) +∇J(xik−1)− uik−1).

(57)

Hence, taking the expectation on both sides of the last equality leads to

E[uk − uk−1] = (1− β)(∇J(xk)−∇J(xk−1)) + βE[g(τk|xk)− g(τk|xk−1)]− β(uk−1 −∇J(xk−1)). (58)

We now investigate the term of 2〈(W−Λ)vk, (I−Λ)(uk−uk−1)〉 and denote it asBk. Consequently, the following relationship
is attained

E[Bk] = 2〈(W − Λ)vk, (I− Λ)E[(uk − uk−1)]〉
= 2〈(W − Λ)vk, (I− Λ)[(1− β)(∇J(xk)−∇J(xk−1)) + βE[g(τk|xk)− g(τk|xk−1)]

− β(uk−1 −∇J(xk−1))]〉
≤ 2λ‖vk − Λvk‖‖(1− β)(∇J(xk)−∇J(xk−1)) + βE[g(τk|xk)− g(τk|xk−1)]

− β(uk−1 −∇J(xk−1))‖

≤ 1− λ2

2
‖vk − Λvk‖2 +

6λ3(1− β)2

1− λ2
‖∇J(xk)−∇J(xk−1)‖2

+
6λ3β2

1− λ2
E[‖g(τk|xk)− g(τk|xk−1)‖2] +

6λ3β2

1− λ2
‖uk−1 −∇J(xk−1)‖2

≤ 1− λ2

2
‖vk − Λvk‖2 + (β2 + (1− β)2)

6λ3L2

1− λ2
E[‖xk − xk−1‖2] +

6λ3β2

1− λ2
‖uk−1 −∇J(xk−1)‖2.

(59)

The first inequality is due to Cauthy-Schwartz inequality, while the second inequality follows from basic inequalities 2ab ≤
ea2 + b2/e, with e = 1−λ2

2λ for all a, b ∈ R and ‖a + b + c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2, ∀a,b, c ∈ Rd. The last inequality is



due to the smoothness property. Using Eq. 57 yields the upper bound of the second moment of uik − uik−1,

E[‖uik − uik−1‖2] ≤ 4(1− β)2E[‖gi(τ ik|xik)− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1)‖2]

+ 4β2E[‖gi(τ ik|xik)− gi(τ
i
k|xik−1)‖2] + 4β2E[‖gi(τ ik|xik−1)−∇J(xik−1)‖2]

+ 4β2E[‖∇J(xik−1)− uik−1‖2]

= 4(1− β)2E[‖gi(τ ik|xik)− gi(τ
i
k|xik−1) + gi(τ

i
k|xik−1)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1)‖2]

+ 4β2E[‖gi(τ ik|xik)− gi(τ
i
k|xik−1)‖2] + 4β2E[‖gi(τ ik|xik−1)−∇J(xik−1)‖2]

+ 4β2E[‖∇J(xik−1)− uik−1‖2]

≤ 4(1− β)2E[2‖gi(τ ik|xik)− gi(τ
i
k|xik−1)‖2 + 2‖gi(τ ik|xik−1)− υi(τ ik|xik−1,xik)gi(τ

i
k|xik−1)‖2]

+ 4β2E[‖gi(τ ik|xik)− gi(τ
i
k|xik−1)‖2] + 4β2E[‖gi(τ ik|xik−1)−∇J(xik−1)‖2]

+ 4β2E[‖∇J(xik−1)− uik−1‖2]

= 8(1− β)2E[‖gi(τ ik|xik)− gi(τ
i
k|xik−1)‖2]

+ 8(1− β)2E[‖gi(τ ik|xik−1)− υi(τ ik|xik−1,xik)gi(τ
i
k|xik−1)‖2]

+ 4β2E[‖gi(τ ik|xik)− gi(τ
i
k|xik−1)‖2] + 4β2E[‖gi(τ ik|xik−1)−∇J(xik−1)‖2]

+ 4β2E[‖∇J(xik−1)− uik−1‖2]

≤ 8(1− β)2L2E[‖xik − xik−1‖2] + 8(1− β)2G2CυE[‖xik − xik−1‖2]

+ 4β2L2E[‖xik − xik−1‖2] + 4β2σ2
i + 4β2E[‖∇J(xik−1)− uik−1‖2]

= [8(1− β)2L2 + 8(1− β)2G2Cυ + 4β2L2]E[‖xik − xik−1‖]
+ 4β2σ2

i + 4β2E[‖∇J(xik−1)− uik−1‖2].

(60)

The last inequality is based on the smoothness property, Lemma 1 and Lemma 2. We then have that
E[‖uk − uk−1‖2] ≤ [8(1− β)2L2 + 8(1− β)2G2Cυ + 4β2L2]E[‖xk − xk−1‖2]+

4β2Nσ̄2 + 4β2E[‖∇J(xk−1 − uk−1)‖2].
(61)

Taking the expectation on both sides of Eq. 56 and substituting Eq. 59 and Eq. 61 into it, the following relationship can be
obtained

E[‖vk+1 − Λvk+1‖2] ≤ λ2E[‖vk − Λvk‖2] +
1− λ2

2
E[‖vk − Λvk‖2]

+ (β2 + (1− β)2)
6λ3L2

1− λ2
E[‖xk − xk−1‖2]

+
6λ3β2

1− λ2
E[‖uk−1 −∇J(xk−1)‖2] + 4β2Nσ̄2

+ [8(1− β)2L2 + 8(1− β)2G2Cυ + 4β2L2]E[‖xk − xk−1‖2]

+ 4β2E[‖uk−1 −∇J(xk−1)‖2]

=
1 + λ2

2
λ2E[‖vk − Λvk‖2]

+

[
(β2 + (1− β)2)

6λ3L2

1− λ2
+ 8(1− β)2L2 + 8(1− β)2G2Cυ + 4β2L2

]
E[‖xk − xk−1‖2]

+

(
4β2 +

6λ3β2

1− λ2

)
E[‖uk−1 −∇J(xk−1)‖2] + 4β2Nσ̄2

≤ 1 + λ2

2
λ2E[‖vk − Λvk‖2] +

(
12λ3L2

1− λ2
+ 8(L2 +G2Cυ) + 4L2

)
E[‖xk − xk−1‖2]

+ 4Nβ2σ̄2 +
10β2

1− λ2
E[‖uk−1 −∇J(xk−1)‖2]

≤ 1 + λ2

2
λ2E[‖vk − Λvk‖2] +

16L2 + 8(L2 +G2Cυ)

1− λ2
E[‖xk − xk−1‖2] + 4β2Nσ̄2

+
10β2

1− λ2
E[‖uk−1 −∇J(xk−1)‖2].

(62)



Since
‖xk − xk−1‖2 ≤ 3‖xk − Λxk‖2 + 3Nη2‖ūk−1‖2 + 3‖xk−1 − Λxk−1‖2,

combining Fact 1, the following is obtained

‖xk − xk−1‖2 ≤ 6λ2η4‖vk − Λvk‖2 + 3Nη2‖ūk−1‖2 + 9‖xk−1 − Λxk−1‖2. (63)

Combining the last two inequalities, one can attain

E[‖vk+1 − Λvk+1‖2] ≤
(

1 + λ2

2
+

96L2 + 48(L2 +G2Cυ)

1− λ2
λ2η2

)
E[‖vk − Λvk‖2]

+
48L2 + 24(L2 +G2Cυ)

1− λ2
Nη2E[‖ūk−1‖2] +

144L2 + 72(L2 +G2Cυ)

1− λ2
E[‖xk−1 − Λxk−1‖2]

+ 4β2Nσ̄2 +
10β2

1− λ2
E[‖uk−1 −∇J(xk−1)‖2].

(64)

Combining the fact that 0 < η ≤ 1−λ2

8λ
√
9L2+3G2Cυ

yields the desirable result.

According to Lemma 8 and Lemma 9, the remaining step to obtain the explicitly accurate error bound is to inaugurate the
correlation between

∑K
k=0 E[‖xk − Λxk‖2] and

∑K
k=0 E[‖ūk‖2]. Thus, the following lemma is constructed for this purpose.

Lemma 10. Let xk be generated by MDPGT initialized with a mini-batch of trajectories B. If 0 < η ≤ (1−λ2)2

λ
√
14592L2+9984G2Cυ

and β ∈ (0, 1), then for K ≥ 2, we have

K∑
k=0

E[‖xk − Λxk‖2] ≤

[
1436L2 + 4608(L2 +G2Cυ)

(1− λ2)4

]
·

λ2Nη4
K−2∑
k=0

E[‖ūk‖2] +
32λ2Nσ̄2η2

(1− λ2)3|B|

(
1 +

10β

1− λ2

)
+

32λ2η2

(1− λ2)3
‖∇J(x0)‖2 +

128λ2Nβ2Kσ̄2η2

(1− λ2)3

(
1 +

5β

1− λ2

)
.

(65)

Proof. Applying Eq. 27 to the fact that

‖xk+1 − Λxk+1‖2 ≤
1 + λ2

2
‖xk − Λxk‖2 +

2η2λ2

1− λ2
‖vk+1 − Λvk+1‖2

leads to
K∑
k=0

‖xk − Λxk‖2 ≤
4λ2η2

(1− λ2)2

K∑
k=1

‖vk − Λvk‖2.

Similarly, applying Eq. 28 to Eq. 51 results in

K∑
k=1

E[‖vk − Λvk‖2] ≤ 4

1− λ2
E[‖v1 − Λv1‖2] +

192L2 + 96(L2 +G2Cυ)

1− λ2
Nη2

K−2∑
k=0

E[‖ūk−1‖2]

+
576L2 + 288(L2 +G2Cυ)

(1− λ2)2

K−2∑
k=0

E[‖xk − Λxk‖2] +
40β2

(1− λ2)2

K−2∑
k=0

E[‖uk −∇J(xk)‖2]

+
16β2Nσ̄2K

1− λ2

≤ 4Nσ̄2

(1− λ2)|B|
+

4‖∇J(x0)‖2

1− λ2
+

192L2 + 96(L2 +G2Cυ)

1− λ2
Nη2

K−2∑
k=0

E[‖ūk−1‖2]

+
576L2 + 288(L2 +G2Cυ)

(1− λ2)2

K−2∑
k=0

E[‖xk − Λxk‖2] +
40β2

(1− λ2)2

K−2∑
k=0

E[‖uk −∇J(xk)‖2]

+
16β2Nσ̄2K

1− λ2
.

(66)



The last inequality follows from Lemma 9. As

40β2

(1− λ2)2

K−2∑
k=0

E[‖uk −∇J(xk)‖2] ≤ 40Nσ̄2β

(1− λ2)2|B|
+

480βN(L2 +G2Cυ)η2

(1− λ2)2

K−1∑
k=0

E[‖ūk‖2] +
960β(L2 +G2Cυ)

(1− λ2)2

K∑
k=0

E[‖xk − Λ(xk)‖2]

+
80Nβ3σ̄2K

(1− λ2)2
,

(67)

we then have
K∑
k=1

E[‖vk − Λvk‖2] ≤ 192L2 + 576(L2 +G2Cυ)

(1− λ2)2
Nη2

K−2∑
k=0

E[‖ūk‖2]

+
576L2 + 1248(L2 +G2Cυ)

(1− λ2)2

k=0∑
K−1

E[‖xk − Λxk‖2]

4Nσ̄2

(1− λ2)|B|

(
1 +

10β

1− λ2

)
+

16β2Nσ̄2K

1− λ2

(
1 +

5β

1− λ2

)
+

4‖∇J(x0)‖2

1− λ2
.

(68)

Thus, we have
K∑
k=0

E[‖xk − Λxk‖2] ≤ 768L2 + 2304(L2 +G2Cυ)λ2Nη4

(1− λ2)4

K−2∑
k=0

E[‖ūk‖2]

+
2304L2 + 4992(L2 +G2Cυ)

(1− λ2)4
λ2η2

K−1∑
k=0

E[‖xk − Λxk‖2] +
16Nσ̄2λ2η2

(1− λ2)3|B|

(
1 +

10β

1− λ2

)
+

64β2Nσ̄2Kη2λ2

(1− λ2)3

(
1 +

5β

1− λ2

)
+

16λ2η2‖∇J(x0)‖2

(1− λ2)3
.

(69)

With simple mathematical manipulations, based on the conditions 0 < η ≤ (1−λ2)2

λ
√
14592L2+9984G2Cυ

and β ∈ (0, 1), it is obtained
that

1− 2304L2 + 4992(L2 +G2Cυ)

(1− λ2)4
λ2η2 ≤ 1

2
.

Hence the proof is completed by adopting this inequality.

Hence, with Lemma 10, it suffices to show Theorem 1, whose proof is presented next. While for Theorem 2, the same proof
ideas can be applied and the corresponding results are obtained by setting |B| = 1. Thus, we are not going to repeat statements
for the auxiliary lemmas, instead using the conclusions from the lemmas and adjusting slightly the constants in the error bounds.

Proof of Theorem 1
Proof. Recall the conclusion of Lemma 5, we have

K∑
k=0

‖∇J(x̄k)‖2 ≤ 2(J∗ − J(x̄0))

η
− 1

2

K∑
k=0

‖ūk‖2 + 2
K∑
k=0

‖ūk −∇J(xk)‖2 +
2L2

N

K∑
k=0

‖xk − Λxk‖2.

Substituting Eq. 43 into the last inequality yields
K∑
k=0

‖∇J(x̄k)‖2 ≤ 2(J∗ − J(x̄0))

η
− 1

2

K∑
k=0

E[‖ūk‖2] +
2L2

N

K∑
k=0

E[‖xk − Λxk‖2]

+
2σ̄2

Nβ|B|
+

24(L2 +G2Cυ)η2

Nβ

K−1∑
k=0

E[‖ūk‖2] +
48(L2 +G2Cυ)

N2β

K∑
k=0

E[‖xk − Λxk‖2] +
4βσ̄2K

N

=
2(J∗ − J(x̄0))

η
− 1

4

K∑
k=0

E[‖ūk‖2] +
2

N

(
L2 +

24(L2 +G2Cυ)

Nβ

) K∑
k=0

E[‖xk − Λxk‖2]

+
2σ̄2

Nβ|B|
+

4βσ̄2K

N
−
(

1

4
− 24(L2 +G2Cυ)η2

Nβ

) K∑
k=0

E[‖ūk‖2].

(70)



To get rid of the last term on the right hand side of the above inequality, the following relationship can be obtained

1

4
− 24(L2 +G2Cυ)η2

Nβ
≥ 0⇒ 96(L2 +G2Cυ)η2

N
≤ β < 1⇒ 0 < η <

1

6
√

6(L2 +G2Cυ)
.

It is easily to verified the above relationship as we have that β = 96(L2+G2Cυ)η
2

N . Thus,

K∑
k=0

‖∇J(x̄k)‖2 ≤ 2(J∗ − J(x̄0))

η
− 1

4

K∑
k=0

E[‖ūk‖2] +
2σ̄2

Nβ|B|
+

4βσ̄2K

N

+
2

N

(
L2 +

24(L2 +G2Cυ)

Nβ

) K∑
k=0

E[‖xk − Λxk‖2].

(71)

As

1

N

N∑
i=1

K∑
k=0

E[‖∇J(xik)‖2] ≤ 2

N

N∑
i=1

K∑
k=0

E[‖∇J(xik)−∇J(x̄k)‖2 + ‖∇J(x̄k)‖2]

≤ 2L2

N

K∑
k=0

E[‖xk − Λxk‖2] + 2
K∑
k=0

E[‖∇J(x̄k)‖2],

(72)

we have

1

N

N∑
i=1

K∑
k=0

E[‖∇J(xik)‖2] ≤ 2L2

N

K∑
k=0

E[‖xk − Λxk‖2] +
4(J∗ − J(x̄0))

η

− 1

2

K∑
k=0

E[‖ūk‖2] +
4σ̄2

Nβ|B|
+

8βσ̄2K

N
+

4

N

(
L2 +

24(L2 +G2Cυ)

Nβ

) K∑
k=0

E[‖xk − Λxk‖2]

=
6

N

(
L2 +

16(L2 +G2Cυ)

Nβ

) K∑
k=0

E[‖xk − Λxk‖2] +
4(J∗ − J(x̄0))

η
− 1

2

K∑
k=0

E[‖ūk‖2]

+
4σ̄2

Nβ|B|
+

8βσ̄2K

N
.

(73)

As 6
N

(
L2 + 16(L2+G2Cυ)

Nβ

)
= 6

N

(
L2 + 1

6η2L2

)
and η2L2 ≤ η2(L2 +G2Cυ) ≤ 1

96 based on η < 1

6
√

6(L2+G2Cυ)
, we have

6

N

(
L2 +

16(L2 +G2Cυ)

Nβ

)
<

17

16Nη2
.

Thus, the following relationship can be attained

1

N

N∑
i=1

K∑
k=0

E[‖∇J(xik)‖2] ≤ 17

16η2N
E[‖xk − Λxk‖2] +

4(J∗ − J(x̄0))

η
− 1

2

K∑
k=0

E[‖ūk‖2]

+
4σ̄2

Nβ|B|
+

8βσ̄2K

N
.

(74)



We investigate the combined term − 1
2

∑K
k=0 E[‖ūk‖2] + 17

16η2NE[‖xk − Λxk‖2]. Since

− 1

2

K∑
k=0

E[‖ūk‖2] +
17

16η2N
E[‖xk − Λxk‖2] ≤ −1

2

K∑
k=0

E[‖ūk‖2]

+
17

16η2N

[(
1436L2 + 4608(L2 +G2Cυ)

(1− λ2)4

)
λ2Nη4

K−2∑
k=0

E[‖ūk‖2] +
32λ2Nσ̄2η2

(1− λ2)3|B|(
1 +

10β

1− λ2

)
+

32λ2η2

(1− λ2)3
‖∇J(x0)‖2 +

128λ2Nβ2Kσ̄2η2

(1− λ2)3

(
1 +

5β

1− λ2

)]
= −1

2

K∑
k=0

E[‖ūk‖2] +
1526L2 + 4896(L2 +G2Cυ)

(1− λ2)4
λ2η2

K−2∑
k=0

E[‖ūk‖2]

+
34λ2

N(1− λ2)3
‖∇J(x0)‖2 +

34λ2σ̄2

(1− λ2)3|B|

(
1 +

10β

1− λ2

)
+

136λ2β2Kσ̄2

(1− λ2)3

(
1 +

5β

1− λ2

)
= −1

2

(
1− 3052L2 + 9792(L2 +G2Cυ)

(1− λ2)4
λ2η2

)K−2∑
k=0

E[‖ūk‖2]

+
34λ2

N(1− λ2)3
‖∇J(x0)‖2 +

34λ2σ̄2

(1− λ2)3|B|

(
1 +

10β

1− λ2

)
+

136λ2β2Kσ̄2

(1− λ2)3

(
1 +

5β

1− λ2

)
.

(75)

With the condition that η ≤ (1−λ2)2

λ
√
12844L2+9792G2Cυ

, it is immediately that

1− 3052L2 + 9792(L2 +G2Cυ)

(1− λ2)4
λ2η2 ≥ 0

such that the first term on the right hand side of Eq. 75 can be removed. Moreover, since η ≤
√
N(1−λ2)λ

31
√
L2+G2Cυ

, which leads to

β ≤ (1−λ2)λ2

10 such that

1 +
10β

1− λ2
< 2, 1 +

5β

1− λ2
<

3

2
.

By now we can conclude that

−1

2

K∑
k=0

E[‖ūk‖2] +
17

16η2N
E[‖xk − Λxk‖2] ≤ 34λ2

N(1− λ2)3
‖∇J(x0)‖2 +

68λ2σ̄2

(1− λ2)3|B|

+
204λ2β2Kσ̄2

(1− λ2)3
.

(76)

Substituting Eq. 76 into Eq. 74 and dividing both sides by 1
K+1 , and with E[‖∇J(x̃K)‖2] =

1
N(K+1)

∑N
i=1

∑K
k=0 E[‖∇J(xik)‖2] completes the proof.

Proof of Corollary 1
Proof. Substituting η, β, and|B| into the Eq. 9 and conducting some simple mathematical manipulations can easily attain the
desirable result.

Analysis for MDPGT with Single Trajectory Initialization
Theorem 2. Let Assumptions 1,2 and 3 hold. Let the momentum coefficient β = 96L2+96G2Cυ

N η2. If MDPGT is initialized by a
single trajectory and the step size satisfies the following condition

0 < η ≤ min
{

(1− λ2)2

λ
√

12844L2 + 9792G2Cυ
,

√
N(1− λ2)λ

31
√
L2 +G2Cυ

,

1

6
√

6(L2 +G2Cυ)

}
,

(77)



then the output x̃K satisfies: for all K ≥ 2:

E[‖∇J(x̃K)‖2] ≤ 4(J∗ − J(x̄0))

ηK
+

4σ̄2

NβK
+

8βσ̄2

N

+
34λ2

KN(1− λ2)3
‖∇J(x̄0)‖2 +

68λ2σ̄2

(1− λ2)3K

+
204λ2β2σ̄2

(1− λ2)3
,

(78)

where J∗ is the upper bound of J(x) and ‖∇J(x̄0)‖2 ,
∑N
i=1 ‖∇Ji(x̄0)‖2.

Proof. As the initialization is single trajectory, |B| = 1. Following the similar proof techniques as already shown in Theorem 1
yields the desirable result. The proof process is not repeated in this context.

Similarly, in view of Theorem 2, the asymptotic behavior is the same as in Theorem 1, having the same steady-state error. Due
to an infinite time horizon, regardless of the initialization strategy, diverse agents are able to learn effectively in a collaborative
manner. However, in terms of the non-asymptotic property, the single trajectory initialization strategy makes a difference in the
sampling complexity, which is reflected by the following result.

Corollary 3. Let η = N3/4

8LK1/4 , β = DN1/2

64L2K1/2 , in Theorem 2. We have

E[‖∇J(x̃K)‖2] ≤ 32L(J∗ − J(x̄0))

(NK)3/4
+

2048L4σ̄2 +D2σ̄2N

8L2DN3/2K1/2

+
λ2

(1− λ2)3K

(
34‖∇J(x̄0)‖2

N
+ 68σ̄2 +

51σ̄2D2N

1024L4

)
,

(79)

for all

K ≥ max
{
N3D2

4096L4
,

923521N(L2 +G2Cυ)2

4096L4(1− λ2)2λ4
,

(12844L2 + 9792G2Cυ)2λ4N3

4096L4(1− λ2)8

}
,

(80)

where D = 96L2 + 96G2Cυ .

Proof. Substituting η, β into the Eq. 78 and conducting some simple mathematical manipulations can easily attain the desirable
result.

Corollary 3 implies that with only a single trajectory initialization for MDPGT, when K is sufficiently large, the mean-squared
convergence rate is

E[‖∇J(x̃K)‖2] ≤ O
(

1

(NK)1/2

)
,

which is slower than that obtained in Corollary 1. With similar mathematical manipulation, the eventual sampling complexity
is O(N−1ε−4). Though variance reduction techniques has not reduced the order of ε−1, compared to the SOTA approaches,
the linear speed up still enables the complexity to be N times smaller than that in (Xu, Gao, and Gu 2019; Huang et al. 2020).
Additionally, different from traditional decentralized learning problems, MARL has more significant variances in the optimization
procedure due to the non-oblivious characteristic. Using just a single trajectory for each agent to initialize is a quite poor scheme,
but the adopted variance reduction techniques can successfully maintain the SOTA sampling complexity in a decentralized
setting.

Implication for Gaussian Policy
In this section, we study the sample complexity when the policy function πi(ai|s) of each agent is explicitly a Gaussian
distribution. For a bounded action space Ai ⊂ R, a Gaussian policy parameterized by xi is defined as

πi(ai|s) =
1√
2π

exp
(
− ((xi)>φi(s)− ai)2

2ξ2

)
, (81)

where ξ2 is a constant standard deviation parameter and φi(s) : S → Rdi is mapping from the state space to the feature space.
Note that the standard deviation parameter can be varying in terms of different agents, while for simplicity in this context,
we assume that it is the same for each agent. Next, we verify the assumptions on the Gaussian policy. We first impose a



mild assumption that the action space and feature space are bounded, i.e., there exist constants Ca > 0 and Cf > 0 such
that for all i ∈ V , |ai| ≤ Ca, ∀ai ∈ Ai and ‖φi(s)‖ ≤ Cf , ∀s ∈ S. Then we can show that Assumption 1 hold. Due to
the limit of space, we defer the derivation to the supplementary materials. While Assumption 3 does not always hold for all
Gaussian distributions, but based on a result from (Cortes, Mansour, and Mohri 2010), it has been shown that for two Gaussian
distributions, πix1

(ai|s) = N (µ1, ξ
2
1) and πix2

(ai|s) = N (µ2, ξ
2
2), if ξ2 >

√
2
2 ξ1, then the variance of the importance sampling

weight υi(τ i|x1,x2) is bounded. Due to a constant standard deviation parameter defined for the Gaussian distributions, it is easily
verified that for any time step k ≥ 0, V(υi(τ

i
k|xik−1,xik)) should be bounded by some constantM > 0. We recall Corollary 1

that can apply to any general policy models. Therefore, based on the above discussion, it also applies to the Gaussian policy
function scenario. We present the result in the following corollary to explicitly state the relationship between γ and ε in the
sampling complexity. We first present an established result that bounds the variance of policy gradient estimator gi(τ

i|xi) in
Eq. 6 when the policy function πi follows a Gaussian distribution.

Lemma 11. (Lemma 5.5 in (Pirotta, Restelli, and Bascetta 2013)) Given a Gaussian policy πixi = N ((xi)>φi(s), ξ
2), for all

i ∈ V , if |ri(s, ai)| ≤ R and ‖φi(s)‖ ≤ Cf for all s ∈ S, ai ∈ Ai and R > 0, Cf > 0 are constants, then the variance of policy
gradient estimator V(gi(τ

i|xi)) can be bounded as

V(gi(τ
i|xi)) ≤

R2C2
f

(1− γ)2ξ2

(
1− γ2H

1− γ2
−Hγ2H − 2γH

1− γH

1− γ

)
. (82)

In this context, we have defined a constant standard deviation parameter for the policy of each agent to simplify the analysis.
However, one can still define separately this parameter for each agent, i.e., ξi. Then in the upper bound of last inequality,
ξ2 = min{ξ21 , ξ22 , ..., ξ2N}. We show the proof for Corollary 2 in the following.

Proof. According to Corollary 1, when K is sufficiently large, T1 dominates the convergence such that we investigate it.
According to Lemma 11, we can immediately obtain that

σ̄2 ≤
R2C2

f

(1− γ)2ξ2

(
1− γ2H

1− γ2
−Hγ2H − 2γH

1− γH

1− γ

)
= O

(
1

(1− γ)3

)
.

As L = ChR
(1−γ)2 and G =

CgR
(1−γ)2 , we have D = 96L2 + 96G2Cυ = O

(
1

(1−γ)4

)
. Thus,

256L3D(J∗ − J(x̄0)) + 2048L4σ̄2 +D2σ̄2

8L2D(NK)2/3
≤ O

(
1

(1− γ)3(NK)2/3

)
.

We can easily obtain that the sampling complexity is O
(

1
(1−γ)4.5Nε3

)
when the policy is parameterized by a Gaussian

distribution.

Remark 2. When the policy function is a Gaussian distribution for each agent, Corollary 2 shows that the sampling complexity
is inherently in the order of O(ε−3), which matches the generalized result. Moreover, the linear speed up is still retained.
Additionally, we also show that the complexity does not rely on the horizon. The dependence on (1 − γ)−4.5 stems from the
variance of the policy gradient estimator, which has been known in the centralized counterpart (Xu, Gao, and Gu 2019). When the
initialization is with a single trajectory, it can be inferred from Corollary 3 that the sampling complexity isO((1−γ)−6N−1ε−4).

Algorithmic Framework for MDPG

We next present a new decentralized algorithm adapted from the centralized MBPG (Huang et al. 2020), which serves as a new
baseline for empirical comparison. Different from MBPG, the updates are simplified with constant step size and β value. This
simplification is to enable a fair comparison among all algorithms.



Algorithm 2: Momentum-based Decentralized Policy Gradient (MDPG)
Result: x̃K chosen uniformly random from {xik, i ∈ V}Kk=1

Input: xi1 = x̄1 ∈ Rd, η ∈ R+, β ∈ (0, 1),W ∈ RN×N ,K,B ∈ Z+, k = 1
while k < K do

for each agent do
if k = 1: compute the local policy gradient surrogate by sampling a trajectory τ i1 from pi(τ

i|xi1) : ui1 = gi(τ
i
1|xi1), or by

sampling a mini-batch of trajectories {τ i,m1 }|B|m=1 from pi(τ
i|xi1) : ui1 = 1

|B|
∑|B|
m=1 gi(τ

i,m
1 |xi1)

if k > 1: sample a trajectory τ ik from pi(τ
i|xik) and compute the local policy gradient surrogate using Eq. 8

Update the local estimate of the policy network parameters xik+1 =
∑
j∈Nb(i) ωij(x

j
k + ηujk)

end
k = k + 1

end

Computing Resource Details
All numerical experiments presented in the main article and supplementary section were performed on a computing cluster with
2 x 16 Core Intel Xeon CPU E5-2620 v4 and a memory of 256 GB. All codes were implemented using PyTorch version 1.8.1.

Additional Experimental Results
In the following section, we include additional results for comparing MDPGT, MDPG and DPG in a gridworld environment with
two and three agents. Additionally, we also provide results for five, ten, twenty and thirty agents in a simplified lineworld
environment.

Figure 4: Experimental results comparing MDPGT, MDPG and DPG in the gridworld environment with 2 agents using fully-
connected topology.

Gridworld Environment Figures 4, 5, and 6 illustrate the average reward obtained by the three algorithms, MDPGT, MDPG
and DPG in with two, three and ten agents respectively using a fully-connected network topology with β = 0.5. It should be noted
that in Figure 6 the number of trajectories is only 25,000 such that MDPGT and MDPG perform similarly. However, when the
number is 50,000, it suffices to show that the result should resemble the plot in Figure 1, with even a larger gap between MDPGT
and MDPG. In all scenarios, we observed that both MDPGT and MDPG still outperforms DPG. Interestingly, with fewer agents, the
performance of MDPGT and MDPG are similar, in contrast to the five agent scenario presented in the main article. Fewer agents
may reduce the impact of linear speed up on the error bound, which is w.r.t O(N−1). By observing carefully, when the number
of agents becomes larger, MDPGT is more advantageous in a complex graph than MDPG as the extra tracking step contributes
to correcting the gradient bias caused by diverse agents. This interesting finding will be validated in the following simplified
lineworld environment where more agents are incorporated.



Figure 5: Experimental results comparing MDPGT, MDPG and DPG in the gridworld environment with 3 agents using fully-
connected topology.

Figure 6: Experimental results comparing MDPGT, MDPG and DPG in the gridworld environment with 10 agents using fully-
connected topology.

Lineworld Environment As an initial proof of concept and to demonstrate our algorithm’s ability to scale to a larger number
of agents, we created a simplification of the gridworld environment called the Lineworld environment. In this environment, all
agents are randomly initialized with a 1-D coordinate. The goal of all the agents are to cooperatively arrive at the coordinate 0. In
this setting, the agents are not allowed to collide and have a smaller action set of either moving up, down or stay stationary. The
reward function we used for this environment is also defined as the Euclidean distance of individual agent to its respective goal.
All agent’s policy is represented by a 3-layer neural network with 64 hidden units with tanh activation functions. The agents
were trained for 10,000 episodes with a horizon of 500 steps and discount factor of 0.99. A learning rate of 3E-4 was used in all
our experiments and we average the results conducted over 5 random seeds.

Figures 7 and 8 shows the rewards of our proposed methods and the baseline DPG in the Lineworld environment with five, ten,
twenty and thirty agents respectively. In summary, the findings from the performance in the Lineworld environment strengthens
the conclusion attained from the Gridworld setting that MDPGT outperforms MDPG in a more sophisticated graphs involving
more agents. With five agents, we observed that MDPGT performs better than DPG but worse than MDPG. However, as the number
of agent increases, we see that the performance of MDPGT improves to be on-par or slightly better than MDPG and significantly
better than DPG. Thus, a practical guideline from an application point-of-view is that one can choose MDPG for simple graphs



Figure 7: Experimental results comparing MDPGT, MDPG and DPG in the lineworld environment with 5 agents (left) and 10
agents (right) using fully-connected topology.

and expect MDPGT to perform much better in complex graphs.

Minibatch Initialization To validate the theoretical findings obtained in this work for the difference between two different
versions of MDPGT, we implement several experiments with 5 agents using fully-connected topology with different mini-batch
initializations. In this context, mini-batch size equal to 1 corresponds to MDPGT with only single trajectory initialization. From
Figure 9, one can observe that the reward curves due to different mini-batch initializations are depicted in three phases. Before
approximately 20,000 trajectories, regardless of whichever initialization, MDPGT yields similar performance. After 20,000
trajectories, the difference becomes appealing, which is reflected by the outperforming of MPDGT with mini-batch size equal to 4.
This supports the claim of Corollary 1 that K has to satisfy a certain condition to start showing the non-asymptotic behavior.
Additionally, when the number of trajectories is larger than 60,000, another interesting phenomenon is that all reward curves
start converging together again, which can be explained by using Theorem 1 as MDPGT enables the asymptotic results once K is
sufficiently larger than a certain number. We have pointed out in the analysis that they all converge to the same steady-state error
defined in Eq. 10. Intuitively, practitioners can set a sufficiently large number of trajectories to get the same optimal solution
regardless of what initialization is taken. While different approximate solutions can also be obtained when different specific
mini-batch sizes for initialization are defined. One may argue how to set the mini-batch size for a specific problem. For example,
we can observe from Figure 9 that to get better approximate solutions, the mini-batch size could be selected in between 4 and 16.
This is also suggested from Corollary 1 that the mini-batch size is w.r.t both the number of agents and the number of trajectories.
Thus, either mini-batch size equal to 64 or 256 results in slightly worse result than only one trajectory initialization.



Figure 8: Experimental results comparing MDPGT, MDPG and DPG in the lineworld environment with 20 agents (left) and 30
agents (right) using fully-connected topology.

Figure 9: Experimental results comparing MDPGT in the gridworld environment with 5 agents and β = 0.5 using fully-connected
topology with different mini-batch initializations.
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