Who is the Expert? Reconciling Algorithm Aversion and
Algorithm Appreciation in Al-Supported Decision Making

YOYO TSUNG-YU HOU, Information Science, Cornell University, USA
MALTE F. JUNG, Information Science, Cornell University, USA

The increased use of algorithms to support decision making raises questions about whether people prefer
algorithmic or human input when making decisions. Two streams of research on algorithm aversion and
algorithm appreciation have yielded contradicting results. Our work attempts to reconcile these
contradictory findings by focusing on the framings of humans and algorithms as a mechanism. In three
decision making experiments, we created an algorithm appreciation result (Experiment 1) as well as an
algorithm aversion result (Experiment 2) by manipulating only the description of the human agent and the
algorithmic agent, and we demonstrated how different choices of framings can lead to inconsistent outcomes
in previous studies (Experiment 3). We also showed that these results were mediated by the agent's perceived
competence, i.e., expert power. The results provide insights into the divergence of the algorithm aversion
and algorithm appreciation literature. We hope to shift the attention from these two contradicting
phenomena to how we can better design the framing of algorithms. We also call the attention of the
community to the theory of power sources, as it is a systemic framework that can open up new possibilities
for designing algorithmic decision support systems.
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1 INTRODUCTION

With the advance of artificial intelligence (AI) technology, algorithmic decision support systems
(or decision aid, augmented decision making, expert systems [5]) increasingly facilitate people’s
decision making processes by providing information, suggestions, or candidates.
Recommendation systems help with decision making by providing consumers with algorithm-
selected items, lowering cognitive load in navigating through millions of options. Resume
screening systems automatically summarize each candidate’s file with a score so that recruiters
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do not have to read through all applications to identify the most desirable candidates. In hospitals,
expert systems help health professionals by suggesting possible interpretations in patient’s
examination reports and imaging. In many situations, these systems take decision-support roles
traditionally held by co-workers or advisors, competing directly with human intelligence. These
situations pose a pressing question: when making decisions, are people more influenced by input
from algorithms or from humans?

This seemingly straight-forward question, however, has generated two streams of studies with
contradicting results. Early studies of algorithm-support in decision making suggested that people
tend to dismiss input from algorithms even when given information about the algorithm’s
superior performance—a phenomenon called “algorithm aversion” [8]. Algorithm aversion has
been found in studies across different scenarios and knowledge domains [3,7,32], and the
concept’s popularity even led to its adoption in public media [12]. Despite the growing evidence
for algorithm aversion, findings from recent studies suggested that an opposite response to
algorithms is possible: in some situations, people rely more on algorithmic advice than human
advice, a phenomenon called “algorithm appreciation” [20]. These two streams of research,
algorithm aversion and algorithm appreciation, predict different outcomes in situations where
people receive decision inputs from algorithms and humans. They also provide different
suggestions as to how to increase the acceptability of algorithmic decisions, forming
contradictions that remain unresolved. While many studies have investigated the reasons and
factors influencing algorithm aversion, such as task objectivity [7] and people’s prior perception
of algorithms [8], few have addressed the relationship between algorithm aversion and algorithm
appreciation. It is unclear whether these two phenomena are independent or whether there is a
common factor determining between them.

The purpose of this paper is to reconcile the seeming conflict between literature on algorithm
aversion and algorithm appreciation. Through three studies, we demonstrated framing, i.e., the
way in which an algorithmic agent and a human agent were introduced, as a potential mechanism.
We found that the framing of algorithmic and human decision aids will influence their perceived
competence, i.e., expert power, which will in turn influence whether people adhere more to the
algorithm’s input (algorithm appreciation) or the human’s input (algorithm aversion). We showed
this by two almost identical decision making experiments: by manipulating only the descriptions
of the algorithm and the human, we can create an algorithm appreciation result (Experiment 1)
as well as an algorithm aversion one (Experiment 2). We then further developed this idea by
comparing different framings of human agents and algorithmic agents, showing how different
choices of framings might lead to inconsistent findings in previous studies (Experiment 3). We
also demonstrated through mediation analyses that expert power was an important factor across
all three experiments, suggesting that we can make agents more influential by framing them with
more expert power.

Our paper makes three contributions to the literature on Al-supported decision making: First,
by identifying that framing is a key mechanism behind the differentiation of algorithm aversion
and algorithm appreciation, our work advances research on this topic toward a theory that
integrates literature on these two phenomena. We also hope, by this integration, to direct the
debate between algorithm aversion and algorithm appreciation to how we can better design the
framing of algorithms. Second, although there is increasing interest in CSCW on Al-supported
decision making [6,14,15,19], the CSCW literature has paid little attention to growing work on
algorithm aversion and algorithm appreciation. We therefore contribute to the CSCW community
by bring in this pressing question as well as a refined version of a useful research paradigm (the
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judge-advisor system paradigm) on this topic. Third, we call for the attention of the community
to the theory of power sources in Organizational Behavior, as we believe that this framework
brings in a systemic approach for increasing the influence of algorithmic decision support systems
and, more generally, for designing cooperative human-agent interaction.

2 LITERATURE REVIEW

2.1 Algorithm Aversion & Algorithm Appreciation

In the effort of knowing how people use decision support systems, early studies have shown that
human decision makers are reluctant to trust the selections or suggestions from algorithms
compared to those from humans, even when algorithms exhibit superior performance. This
phenomenon is called “algorithm aversion.” It was first coined in studies that compared the
influence of algorithm’s suggestions against the experiment participant’s own opinions [8,9], but
subsequent studies have generated a stream of similar results when comparing algorithms’ versus
other people’s suggestions [3,7,32], showing that algorithm aversion does not simply result from
people’s overconfidence in their own reasoning. It has also been found across domains such as
investment [23], medicine [21,25], and content recommendations [13]. The fact that people
disregard suggestions from algorithms highlights a barrier in the adoption of algorithmic decision
support systems, which have led many researchers to investigate its causes and to find ways to
alleviate it. For example, studies have shown that algorithm aversion becomes more pronounced
after seeing an algorithm make a mistake [8]. However, this effect can be alleviated if users can
modify how the algorithm works [9] or if they believe that algorithm can learn [2]. Studies also
suggest that algorithm aversion is most severe when the tasks are perceived as subjective instead
of objective, or when the algorithm is perceived to have low human-likeness [7]. These findings
have drawn much attention across different academic fields and have yielded two literature
review papers [5,18] and even public media coverage on algorithm aversion [12].

On the other hand, a growing number of studies have observed an opposite phenomenon, that
humans are influenced more by decision inputs from algorithms compared to those from humans.
The term “algorithm appreciation” was first proposed by Logg et al. [20], who showed in their
study that, unlike the “received wisdom”, people are actually influenced more by advice when
they think it is from an algorithm than from humans, regardless of the subjectivity and objectivity
of the tasks. This finding of algorithm appreciation echoes findings in previous studies on image
analysis [31] and online saving systems [16] which shows that participants adhered more to
algorithmic input than human input. It has also stimulated many subsequent studies that start
investigating algorithm appreciation [4,28], with findings suggesting a similar preference for
algorithmic decision making in other domains such as public health [1].

In sum, research on algorithm aversion and algorithm appreciation gives contradicting answers
to the question whether people prefer an algorithm’s or a human’s decision input, and the
contradicting findings have left three challenges to be resolved. First, there is confusion about the
factors that influence the acceptance of algorithms. For example, in terms of the task type, Castelo
et al found that when the task is perceived as more objective, the algorithm aversion is less severe
[7]. In certain situations, people could be even indifferent between an algorithm’s advice and a
human’s advice, indicating that task objectivity might facilitate people’s acceptance of algorithms.
However, Logg et al [20] found out that people always prefer decision input from algorithms, in
both objective and subjective tasks, leaving uncertainty about whether task objectivity and
subjectivity play a role or not.
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Second, although both streams of research have a common goal of facilitating the acceptance
of algorithmic decision support systems, suggestions as to how to reach this goal largely diverge.
Studies of algorithm appreciation argue that to increase the use of algorithmic input, people
should be made aware of the algorithmic nature of the input [20]. On the other hand, studies of
algorithm aversion argue that designers should emphasize the “human touch” of the input to
facilitate its acceptance [20]. With algorithmic decision aids increasingly used in industry, it is
crucial to understand which approaches are more promising in facilitating adequate use.

Third, the two streams of research also lead to different trajectories for future research. While
the stream of algorithm aversion tries to study how to alleviate the aversion effect by emphasizing
the human aspects of algorithms, the stream of algorithm appreciation calls for more
investigations in how we can further people’s reliance on algorithms by increasing the
transparency in Al systems [20]. Seeing all these differences, we believe it is crucial to clarify the
relationship between these opposite attitudes toward algorithms, i.e., are algorithm aversion and
algorithm appreciation two distinct phenomena, each with its own cause, or can they be the two
ends of one continuous spectrum sharing a single factor?

2.2 Reconciling Algorithm Aversion and Algorithm Appreciation

Current findings from research on algorithm aversion and algorithm appreciation are seemingly
at odds with each other. We do not fully understand the mechanisms that drive the occurrence of
one phenomenon over the other. A possible explanation is that, with time, people are getting
more familiar with algorithms, and algorithms are also becoming more powerful, thus the
transition from algorithm aversion to appreciation. This reasoning, however, does not explain
well why both phenomena still co-exist in recent studies, indicating the existence of other factors.
Following, we discuss studies with mixed results. Such studies might provide insights about how
these two seemingly contradictory phenomena can be reconciled.

Longoni and Cian’s study of marketing [22] found that people prefer algorithmic over human
recommendations if the goal is utilitarian and vice versa if the goal is hedonic. This finding not
only echoes that of Castelo et al’s research on perceived subjectivity and objectivity but also has
important implications because it shows that the distinction between algorithm aversion and
algorithm appreciation is not absolute. While Castelo et al found an algorithm aversion effect
(even if they made the task seem more objective, the best they can achieve was indifference
between algorithms and humans and never can they get an algorithm appreciation effect),
Longoni et al’s study shows that there might be a common factor with which we can “nudge” the
effect toward the appreciation a bit and make the perceived subjectivity-objectivity the key factor
deciding between algorithm aversion and algorithm appreciation.

So, what can be the “nudging” factor? A study by Bigman and Gray [3] seems to give some
insights. They conducted nine different studies on people’s attitude toward moral judgements
made by algorithms and other people. While most of the studies, across different contexts, showed
an algorithm aversion effect, study 9 showed, surprisingly, an algorithm appreciation effect when
the algorithm (a system called HealthComp) was presented as having a 95% success rate and the
human (Dr. Jones) only had a 75% success rate. That is, the difference in the description indicated
a clear difference in the competence, and this difference might have reversed the outcome that
would otherwise be an algorithm aversion effect.

Other relevant studies also have discussed the role of perceived competence. Logg et al.
mentioned that expertise might be an important factor in deciding between appreciation and
aversion [20]. Thurman et al. [30] also noted that, in Logg et al’s study, the “human advice” came
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from another experiment participant and not an expert, suggesting that this had shaped the
results of the study. Both indicated the importance of how the advice giver is presented, i.e., the
framing of the agents, in the study.

Along this line of discussion on the competence and the framing of the decision-support agents
(human or algorithm), we look further in relevant studies that have compared humans versus
algorithms regarding how each agent was framed. The comparison of several key studies is
summarized in Table 1. Here we observe a systematic tendency: in general, how the algorithm
and human conditions were described in a study seems to be related to its results. In studies that
found an algorithm aversion effect, the human was often described as having high competence,
such as doctors, physicians, experts, or “a very qualified person”, while in studies that found
algorithmic appreciation, the description was “other people” or other participants in an
experiment. This leads us to speculate whether this difference in competence framing is one key
factor that determines how much people are willing to take in decision inputs, hence the
distinction between algorithm aversion and algorithm appreciation. It is possible that when the
human is framed as more competent than the algorithm, people will exhibit algorithm aversion
behavior. In contrast, when humans are framed as less competent than the algorithm, we can
observe an algorithm appreciation effect.

Table 1. Comparison of Al-Supported Decision Making Studies (Framing of Human vs. Algorithm)

Empirical Part Human Description Algorithm Description Result4
Study
Castelo et Study 1 A very well qualified person An algorithm AVER
7

al (2019) 7 Study 3 A qualified human An algorithm AVER
Promberger A physician A computer program AVER
and Baron
(2006) [23]
Fuchs et al. A human expert A software program AVER
(2016) [13]
Longoni et Study 1 A physician A computer AVER
al. (2019)21]
Onkal et al. A financial expert who makes A statistical model that makes AVER
(2009) [23] good stock price predictions good stock price predictions.
Bigman and  Study 1 A human driver An autonomous computer AVER
Gray (2018) program
Bl Study 2 A state committee consists of CompNet, a super computer AVER

legal and mental health experts  used by various government

as well as representatives of agencies for calculations,

the community. estimates, and decision-

making.
Study 3  Dr. Jones, a doctor with a great ~ HealthComp, an autonomous AVER

capacity for both rational
thinking and for emotional
compassion.

statistics-based computer
system with a great capacity
for rational thinking, but
totally lacking in emotional
compassion.
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Bigman and  Study 4 Colonel Jones, an officer witha  CompNet, an autonomous AVER
Gray (2018) great capacity for both rational  statistics-based computer
(3] thinking and for emotional system with a great capacity

compassion. for rational thinking but is
totally lacking in emotional
compassion.
Study 9  Dr. Jones, who had a 75% HealthComp, which had a 95% APPR
success rate success rate
Longoni Study 1 A person An algorithm MIXED
and Cian
(2020) [22]
Prahl and Steven, a person experienced in  An advanced computer system  MIXED
Van Swol operating room management
(2017) [24] issues.
Logg et al. Study  Participants from a past An algorithm ran calculations APPR
(2019) [20] 1A experiment based on estimates of
participants from
a past study.
Study  An aggregation of 275 other An algorithm APPR
1B participants
Study 48 people in another study An algorithm APPR
1C&1D
Study 2 Another participant An algorithm APPR
Study 4 A randomly chosen participant ~ An algorithm, based on APPR
from a pool of 314 participants  estimates of 314 participants
who took a past study. who took a past study.
Dijkstra et A human An expert system APPR
al. (1998)
(10]
Gunaratne Crowdsourced: the average Algorithmic: the recommended ~ APPR

2APPR: Algorithm Appreciation; AVER: Algorithm Aversion; MIXED: Mixed results or difference not significant

2.3 Summary and Research Questions

In sum, previous research suggests that the framing of the human and algorithmic decision-
support agents plays a major role in eliciting an aversion or appreciation response. More
specifically, we raise three broader research questions:

RQ1. How does the framing of the agents (the human and the algorithm) affect algorithm
aversion and algorithm appreciation effects? That is, can we change an algorithm aversion
situation into an algorithm appreciation one (or vice versa) by simply changing the framing of
the agents?

Previous research found contradicting results regarding task type, specifically task objectivity
and subjectivity, on people’s preference over algorithmic input versus human input. Some
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research shows that when tasks are perceived as more objective, people are less averse about
algorithms [7]. However, some other research shows that people always prefer algorithmic input
regardless of task type [20], leaving a theoretical inconsistency that must be resolved. Therefore,
while we are investigating the effect of framing in determining between algorithm aversion and
algorithm appreciation, we also plan to investigate whether task type plays a role, and whether
there is any interaction between task type and framing.

RQ2. Does task type play a role in determining between algorithm aversion and algorithm
appreciation? Also, what is the relationship between task type and framing? Is there any
interaction?

Lastly, to test whether the outcome of the difference in framing is actually related to, as we
observed, the perceived competence, we leverage Raven et al’s Interpersonal Power Inventory [26]
and its root, the framework of power sources [11] from the field of Organizational Behavior.
Power, or social power, is a fundamental concept in Organizational Behavior, usually defined as
“the capacity to influence others" [33]. By this definition, the reason why people can influence
others is because they have more power over other people. Note that this power is not just the
narrowly defined power that leaders have over their subordinates, but in a much broader sense,
encompassing many ways in which one can influence the others. In this regard, especially worthy
of noting is French and Raven’s framework, in which they specified six types of power, one of
them being expert power, which is the type of power that some people holds because they have
more knowledge or competence than others and therefore have influence over other people. We
believe that this concept of influence is especially relevant in discussing how algorithmic and
human decision-support agents, because of their perceived competence, influence people’s
decision making. Thus, we include this concept in the study to investigate whether our findings
about framing, if any, are because of the perceived competence, i.e., expert power, or they are due
to other types of factors in interpersonal influence.

RQ3. Is the perceived competence, i.e., expert power, of the human and the algorithm a crucial
factor explaining the effect of different framings?

We explore the answers to these questions through three experiments. We plan to set the
baseline with Experiment 1 and see if we can create an opposite effect in Experiment 2 by
changing only the description of the agents, while everything else remain the same. We then
demonstrate in Experiment 3 how the findings in the first two experiments can be used to explain
inconsistent evidence regarding algorithm appreciation and algorithm aversion.

3 EXPERIMENT 1: THE BASELINE

In Experiment 1, we hope to set a benchmark for how much people are influenced by suggestions
from humans versus algorithms. This benchmark can then serve as the baseline for the next study,
where we can try to create an opposite effect.

3.1 Methods

3.1.1 Design. Experiment 1 leveraged a 2 (task type: creative vs. analytical) x 2 (agent type:
algorithm vs. human) within-participants experiment design, resulting in four major blocks of
questions which every participant went through in random order.

Following the definition of objective and subjective tasks in Castelo et al’s study [7], the
creative questions were subjective questions involving personal opinion. We have developed
three similar creative questions, including “A and B are two abstract paintings. Among 100
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general people, exactly how many do you think will find painting B more creative?”, “A and B are
two descriptions for this image. Among 100 general people, exactly how many do you think will
find B more creative?”, and “A and B are two drawings of a mosquito. Among 100 general people,
exactly how many do you think will find drawing B more creative?”

The analytical questions, on the other hand, asked objective and quantifiable questions,
including “There are one red line and one blue line in this picture. The sum of their length is 100
inches. Exactly how many inches do you think the red line is?”, “By mixing two colors with
different ratios, we can create many in-between colors. Now, below is a color mixed from purple
and red (these three colors were shown). What do you think is the exact percentage of purple?”,
and “(After showing a graph for 10 seconds) The graph in the previous page has 100 shapes in
total, including green triangles and orange dots. Exactly how many of them are green triangles?”

Three questions of the same type formed a question set as repeated measures, and the order of
them was randomized for every participant. For the need of the experiment design, there were
two sets of creative questions that were highly similar in their format and content. For each
participant, one set of them was matched with an algorithmic suggestion provider to form a
question block, and the other set was matched with a human suggestion provider to form another
block. This configuration was the same for analytical questions, which also had two sets of
questions matching randomly with the other algorithm and the other human, forming the other
two blocks. The two human suggestion providers and the two algorithmic suggestion providers
only differed in their names and descriptions.

3.1.2 Material and Procedure. The experiment and data collection were carried out using a
Qualtrics survey. After accepting the task on Amazon Turk, participants were guided to Qualtrics,
read the instructions, and gave their consents to participate in this study. They were then
presented with the four question blocks in random order. The overall structure of a question block
is shown in Fig. 1, and we will explain in detail in the next few paragraphs.

om: Al {Supernava ZETA Artificial Intelligence System)

Fig. 1. The structure of a question block. Every participant went through four question blocks
(corresponding to 2x2 conditions) in random order. This shown block is Analytical Task x Algorithm.
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In each block, participants were firstly paired with an agent. There were totally four agents in
experiment 1: Al (Galaxy II Artificial Intelligence System), Al (Supernova ZETA Artificial
Intelligence  System), Another Mturker (AAX™****WWYY2K), and Another Mturker
(A99*****666PNF). The main manipulation of agent type was in the descriptions of these agents,
as shown in Table 2 in the section of Experiment 2.

The participants were then given the three creative or analytical questions in that block. All
questions were written so that the answer was a number between 0 and 100. For every question,
participants first read the question and submitted their initial answers with a slider. In the next
page, they then saw the agent’s “decision input”, i.e., the suggestion, alongside their own answer.
The decision input was actually calculated from their submitted answer in the previous page. It
was always their initial answer plus or minus a random number between 6 and 9, regardless of
the task type and the agent type (hence, the only difference between a human’s suggestion and
an algorithm's suggestion was how it was labeled). After seeing the suggestion, the participants
then submitted their final answer. This two-stage submission came from the judge-advisor
system paradigm [20,29]. In the original version of this paradigm, the decision input was always
very close to the correct answer. We redesigned it this way so that the participant’s attitude
toward the agent was not affected by the distance between their initial answer and the agent’s
suggestion.

After the three questions, at the end of each block, participants were given a social power
survey that measured their attitudes toward the agent, which will be explained in detail in the
measures section.

The participants went through all four blocks of the same format (pairing with a suggestion
provider — three questions — social power survey). They were then asked to provide personal
information such as gender, age, and cultural background, and to answer one attention check
question. Finally, they were debriefed about the experiment manipulation that these decision
inputs were all calculated and there was no fundamental difference between the agents except
that they were labeled differently.

3.1.3 Measures. We measured how much the agent’s suggestion influenced the participant’s by
calculating, for every question, how much the participant changed from the initial answer to the
final answer, divided by the difference between the initial answer and the decision input (which
was always between 6 and 9 or -6 and -9). This value, which we called “influence factor”, often
ranged from 0 to 1 (0% to 100%). If the participants did not change their answers at all, it was a
0% influence. If their final answer was exactly as the suggestion, it was a 100% influence. Since
we had three questions in each condition, the influence factor of that condition was defined as
the mean of three individual influence factors.

The social power survey was adapted from Raven et al’s Interpersonal Power Inventory [26],
which was based on French and Raven’s framework of power sources [11]. The original inventory
followed this framework and measured all 6 types of social power sources. However, due to
incompatibility with our experiment design, we deleted four parts that can only be answered after
long-time interpersonal interaction. We therefore only used the remaining four parts that
measured four sources (types) of power: Expert power, Referent power, Information power, and
Legitimate power-position. For each type of power, there were three questions. Participants
answered each with a 7-point Likert scale, ranging from Strongly Disagree to Strongly Agree,
coded as 1 to 7 points. The participant’s rating for a certain type of power was thus calculated by
summing the answers of all three questions.
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3.1.4 Participants. We recruited 120 participants on Amazon’s Mechanical Turk (44 females, 75
males, and 1 prefer not to say) with an average age of 38.85. All these Mturkers met the criteria
we set, that only those who were in the US and had a task approval rate of 90% or higher can
participate. All participants were paid $4.50 for participating in this study.

From a pilot study, we have learned that many participants did not answer the questions
properly on Mechanical Turk. The problem was especially serious for the current experiment
design, probably because of its complexity and its length. Therefore, before collecting data, we
had defined the criteria of what can qualify as a usable data entry from one participant. First, the
participants must pass the attention check question asking what questions and graphs they had
seen in this study. Second, due to the experiment design, the participant’s initial answers cannot
be too high or too low to let the decision inputs be larger than 100 or smaller than 0, which cannot
be displayed properly. Third, normally, we would expect a participant’s final answer should be
between their initial answer and the decision input, i.e., the influence factor should be between
0% and 100%. However, we observed in the pilot study that many participants were just dragging
the sliders randomly. We therefore mandated that, for one participant’s data entry to be valid, all
of his or her influence factor should be between -50% and 150% (we added a 50% buffer zone in
both directions to the original 0%-100% to accommodate for minor errors).

We learned from the pilot study that only around one thirds of the participants will pass all
three criteria, so we recruited three times of the needed participant number (power analysis
suggested that we only needed 40). These screening criteria were pre-registered on OSF before
we started collecting data: https://osf.io/kh82r/?view_only=8c7a02b0848c44b69783f8101003ae76

3.2 Results

3.2.1 Preliminaries. Among the 120 participants that we recruited, 41 did not pass the attention
check questions, 23 had answers that made the decision inputs larger than 100 or smaller than 0,
and 62 had at least one influence factor larger than 150% or smaller than -50% (we stated the
rationales behind these three criteria in the Methods section). In total, that left us with data from
47 participants that met all criteria (17 females, 29 males, and 1 prefer not to say. Averageage =
39.36). The ratio was in the expected range we had found in the pilot study.

3.2.2 Influence Factor. A repeated-measures ANOVA showed that there was a significant main
effect of agent type on the influence factor, showing a clear algorithm appreciation effect.
Participants were influenced more when the suggestion came from algorithms (M=0.57, SD=0.30)
than when it came from humans (M = 0.45, SD = 0.29), F (1, 46) = 13.79, p < .001; see Fig. 2 on the
next page. There was no main effect of task type, F (1, 46) = .27, p = .61, and there was no
interaction effect, p = .51.

To be more careful, we additionally used a bootstrapped variant of ANOVA with ANOVA.boot
function from Imboot package in R to confirm these results because the Shapiro-Wilk normality
test showed that the distribution of influence factor was not normal (p < .001). With this new
method, the three p-values in the previous paragraph became 0.002, 0.68, 0.63, respectively. The
main conclusion is the same.

3.2.3 Power. Through a repeated-measures ANOVA, we found a significant main effect of agent
type on power. The suggestion giver was perceived to have more expert power when it was an
algorithm (M = 15.4, SD = 4.36) than when it was a human (M = 12.4, SD = 4.19), F(1, 46) = 21.18,
p < .001; see Fig. 3 on the next page. Also, the suggestion provider had more legitimate power-
position when it was an algorithm (M = 12.1, SD = 4.07) than when it was a human (M = 10.4, SD
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Fig. 2. Experiment 1: Mean Influence Factor Fig. 3. Experiment 1: Total Score of Expert Power
by Task Type (Analytical vs. Creative) and by Task Type (Analytical vs. Creative) and Agent
Agent Type (Algorithm vs. Human) showing Type (Algorithm vs. Human). The algorithm had
a clear algorithm appreciation effect. Error higher expert power than the human. Error bars
bars represent standard errors of the mean. represent standard errors of the mean.

= 4.01), F (1, 46) = 131.11, p <. 001. The same held true for informational power if it was an
algorithm (M = 15.3, SD = 3.72) than when it was a human (M = 14.0, SD = 3.66), F (1, 46) = 7.737,
p = .008. There was no significant difference in referent power, and there was neither main effect
of task type, nor was there interaction effect between task type and agent type.

3.2.4 Mediation Analysis. To know whether power did mediate how much the participants were
influenced by different suggestion providers, we also ran a meditation analysis. The result showed
that the effect of agent type on influence factor was fully mediated via expert power. As Figure 4
illustrates, the regression coefficient between agent type and the influence factor and the

Expert Power
b =.037, SE=.0043

p<.001

b =-3.00, SE=.62
p<.001

Agent Type Influence Factor
( Human=1 ; Algorithm=0 )
b =-.13, SE=.043

p=.0036
(b =-.016, SE=.039, p=.69 )

Fig. 4. Mediation analysis revealed that Expert Power fully mediated the effect of Agent Type on
Influence Factor in Experiment 1. The indirect effect was significant.

regression coefficient between expert power and the influence factor were significant. The
indirect effect was (-3.0) * (.037) = -.11. We tested the significance of this indirect effect using
bootstrapping procedures. Unstandardized indirect effects were computed for each of 1000
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bootstrapped samples, and the 95% confidence interval was computed by determining the indirect
effects at the 2.5th and 97.5th percentiles. The bootstrapped unstandardized indirect effect was
-.11, and the 95% confidence interval ranged from -.15 to -.07. Thus, the indirect effect was
statistically significant (p < .001). When we included the mediators, expert power, in the
regression, the effect of agent type on influence factor became insignificant, b = -.016, SE =.039,
p = .69, which suggested that this effect was fully mediated by expert power. The other types of
power sources, on the other hand, did not fully mediate the effect.

4 EXPERIMENT 2: THE REVERSION

In Experiment 2, we measure how much people are influenced by suggestions from humans
versus algorithms. However, unlike Experiment 1, where results indicated an algorithm
appreciation effect, in Experiment 2 we hope to show that we can create a different outcome if
the framings of the algorithm and the human have been changed.

Table 2. Comparison of Experiment 1 and 2: The Framings of Agents and Results

Experiment 1 Experiment 2

S@s

Human
Description Another Mturker (%), who A group of experts (), who
scored higher than most of formulated these decision
the participants in a previous  inputs with their 20 years of
experiment. experience in art education
and creativity.
LN
~ ”
Algorithm
Description Al (b), which scored higher An algorithm (4), which was
than most of the participants created by aggregating
in a previous experiment. several Mturkers' responses
in a previous experiment.
Result Algorithm Appreciation Algorithm Aversion

a“A99*****666PNJ” or “AAX****WWYY2K” (Made-up Mturker Account Number)
b “Galaxy II Artificial Intelligence System” or “Supernova ZETA Artificial Intelligence System”
¢ “Group Da Vinci” or “Group Picasso 4 “Mturkers Collection M” or “Mturkers Collection C”

4.1 Methods

4.1.1 Design, Material and Procedure. Experiment 2 was exactly as Experiment 1, with only one
exception that the descriptions and the graphs of the human agent and the algorithm agent were
changed for a different framing. In Experiment 1, the algorithm was perceived to have more
expert power. Therefore, we tried to design the framing in Experiment 2 so that the human would
appear to have more expert power here than in Experiment 1; conversely, we designed the
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framing of the algorithm so that it would appear to have less expert power here than in
Experiment 1. The comparison of the framings in Experiment 1 and 2 is summarized in Table 2.
For the human condition, we used a group of experts instead of just one expert because we did
not want to create the tension between numbers (one expert vs. many Mturkers). Except for the
difference in framing shown in Table 2, all other aspects of the experiment design, including
randomizations and data handling criteria, remained identical.

4.1.2 Participants. Same as Experiment 1, we recruited 120 participants on Amazon’s
Mechanical Turk (42 females, 77 males, and 1 prefer not to say) with an average age of 37.68.
These Mturkers also met the criteria we set, as in Experiment 1. All participants were also paid
$4.50 for participating in this study.

4.2 Results

4.2.1 Preliminaries. Among the 120 participants that we recruited, 37 did not pass the attention
check questions, 19 had answers that made the suggestions larger than 100 or smaller than 0, and
71 had at least one influence factor larger than 150% or smaller than -50%. In total, that left us
with data from 36 participants that met all criteria (13 females and 23 males, Averageage = 39.58).
The ratio was also within the expected range we had found in the pilot study and Experiment 1.

4.2.2 Influence Factor. A repeated-measures ANOVA showed that there was also a significant
main effect of agent type on the influence factor. However, unlike Experiment 1, it was an
algorithm aversion this time. Participants were influenced more when the suggestion came from
the humans (M = 0.58, SD = 0.30) than when it came from the algorithm (M = 0.45, SD = 0.27), F
(1, 35) = 9.15, p = .0046; see Fig. 5 on the next page. There was no main effect of task type, F (1,
35) = 1.63, p = .21; however, there was a statistically significant interaction between task type
and agent type, F (1, 35) = 8.335, p = .0066. Pairwise comparisons, using paired t-test, showed
that the difference between the human agent’s influence and the algorithm’s influence was
significant when the task type is analytical (¢ = -4.50, p < .001), but not when the task type is
creative (t = .77, p = .45).

Similar to Experiment 1, we additionally did a bootstrapped variant of ANOVA on influence
factor to confirm these results. The three p-values in the previous paragraph became 0.007, 0.28,
0.058, respectively. The interaction effect became insignificant. To be prudent, we took this
insignificancy as our result because the bootstrapped version is theoretically more robust when
the data is not normally distributed.

4.2.3 Power. Through repeated-measures ANOVA, we also found a significant main effect of the
agent type on different power sources. The suggestion giver was perceived to have more expert
power when it was human (M = 16.6, SD = 4.01) than when it was algorithm (M = 13.2, SD = 4.81),
F (1, 35) = 21.15, p < .001; see Fig. 6 on the next page. Also, the human agent had more legitimate
power (M = 11.8, SD = 4.20) than the algorithm (M = 10.4, SD = 4.22), F (1, 35) = 10.6, p = .0025.
The same held true for informational power: the human agent (M = 15.5, SD = 3.46) had more
power than the algorithm (M = 14.1, SD = 3.70), F (1, 35) = 8.749, p = .0055. Unlike Experiment 1,
there was also a significant main effect of the agent type on referent power. The human agent
was perceived to have more referent power (M = 12.6, SD = 4.43) than the algorithm (M = 10.8, SD
=5.13), F(1, 35) = 8.177, p = .0071. There was neither a main effect of task type, nor was there any
interaction effect between task type and agent type on all types of power.
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Task Type M Analytical M Creative Task Type M Analytical M Creative

T

Influence Factor
Expert Power

0.0

Algorithm Human Algorithm Human
Agent Type Agent Type
Fig. 5. Experiment 2: Mean Influence Factor Fig. 6. Experiment 2: Total Score of Expert Power
by Task Type (Analytical vs. Creative) and by Task Type (Analytical vs. Creative) and Agent
Agent Type (Algorithm vs. Human) showing Type (Algorithm vs. Human). The human had
an algorithm aversion effect. Error bars higher expert power than the algorithm. Error
represent standard errors of the mean. bars represent standard errors of the mean.

4.2.4 Mediation Analysis. We also ran a meditation analysis on expert power in Experiment 2.
Again, the result showed that the effect of agent type on influence factor was fully mediated via
expert power. As Fig. 7 illustrates, the regression coefficient between agent type and the influence
factor and the regression coefficient between expert power and the influence factor were
significant. The indirect effect was (3.38) *(.030) = .10. We tested the significance of this indirect
effect using bootstrapping procedures. Unstandardized indirect effects were computed for each
of 1000 bootstrapped samples, and the 95% confidence interval was computed by determining the
indirect effects at the 2.5th and 97.5th percentiles. The bootstrapped unstandardized indirect effect
was .10, and the 95% confidence interval ranged from .055 to .15. Thus, the indirect effect was
statistically significant (p < .001). When we included the mediators, expert power, in the

Expert Power
b =.030, SE=.0048
p<.001

b =3.38, SE=.74
p<.001

Ageqt Type Influence Factor
( Human=1 ; Algorithm=0 )
b =.13, SE=.048

p=.0056
{ b =.032, SE=.045, p=.48 )

Fig. 7. Mediation analysis revealed that Expert Power fully mediated the effect of Agent Type on
Influence Factor in Experiment 2. The indirect effect was significant.
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regression, the effect of agent type on influence factor became insignificant, b=.032, SE=.045,
p=.48, which, like Experiment 1 again, suggested that this effect was fully mediated by expert
power.

4.2.5 Manipulation Check. To check whether the change of framings from Experiment 1 to
Experiment 2 did influence participants’ perception of expert power, we ran two t-tests to
compare the agents’ perceived expert power. Unpaired two-sample t-test revealed that there was
a significant difference in expert power between human agents in Experiment 1 (M = 12.37, SD =
4.19) and human agents in Experiment 2 (M = 16.61, SD = 4.01), t = -6.62, p < .001. Human agents
were perceived to have more expert power in Experiment 2 than in Experiment 1. On the other
hand, unpaired two-sample t-test revealed that there was a significant difference in expert power
between algorithmic agents in Experiment 1 (M = 15.37, SD = 4.36) and algorithmic agents in
Experiment 2 (M = 13.24, SD = 4.81), t = 2.95, p = .0037. Algorithmic agents were perceived to have
less expert power in Experiment 2 than in Experiment 1. These results indicated that our
manipulation achieved desired effect.

5 EXPERIMENT 3: A BIGGER PICTURE

To illustrate how our results in experiment 1 and 2 might partly explain the inconsistency in
previous literature on algorithm aversion and algorithm appreciation, we conduct Experiment 3,
where we reveal how different combinations of framings can lead to different conclusions.

5.1 Methods

5.1.1 Design, Material and Procedure. The basic configuration of Experiment 3 was similar to
Experiment 1 and 2, all involving the two-stage answer submission: for a given question, the
participants submitted their initial answer first, and they then saw the suggestion from the agent
and submitted their final answer. However, the design and the procedure of Experiment 3 were
adjusted to address the need of this experiment. We dropped the manipulation of task type and
focused more on the agent type and different framings.

Experiment 3 leveraged a 6-condition mixed design. Among the six conditions, three conditions
were humans and the other three were algorithms, resulting in an underlying factor of agent type.
The descriptions of conditions are summarized in Table 3 on the next page. In this study, each
participant was randomly given one human condition and one algorithm condition. Each
condition was paired with a set of analytical questions (each set included two questions, which
were selected from Experiment 1 and 2) to form two main question blocks. Therefore, the
manipulation of agent type was within-participants, while the manipulation of conditions was
between-participants. The pairing of participants to conditions, the order of the conditions, and
the matching between a condition and a question set were all randomized. For better screening,
we also increased the difficulty of the attention check questions at the end of this study, asking
the participants to precisely recognize the question they had answered. Besides these differences,
the structure and procedure were the same as Experiment 1 and 2. Participants also went through
the two question blocks following the same order (pairing with a suggestion provider — two

questions — social power survey).

5.1.2 Participants. To accommodate a higher number of conditions and the transition from a
within-participants design to a between-participants design, we recruited 408 participants on
Amazon’s Mechanical Turk (136 females, 271 males, and 1 prefer not to say). These Mturkers met
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the criteria we set, that only those who were in the US and had a task approval rate of 90% or
higher can participate. The average age was 36.04. All participants were paid $3.00 for
participating in this study.

Table 3. Conditions in Experiment 3

Agent Type Condition Description 2

Algorithm Al Al (Galaxy II Artificial Intelligence System), which scored higher than
(Exp 1) most of the participants in a previous experiment.

Algorithm An algorithm (Mturkers Collection C), which was created by

(Exp 2) aggregating several Mturkers' responses in a previous experiment.

Computer A Computer, which is randomly picked from a previous experiment.
Human Expert A group of experts (Group Da Vinci), who formulated these decision

(Exp 2) inputs with their 20 years of experience.

Mturker Another Mturker (A93*****810PN]J), who scored higher than most of the

(Exp 1) participants in a previous experiment.

Person A person, who is randomly picked from a previous experiment.

@ The images of Al, Algorithm, Expert, Mturker were the same as Experiment 1 and 2. The image of Computer was the
same as Algorithm, and the image of Person was the same as Mturker.

5.2 Results

5.2.1 Preliminaries. Among the 408 participants that we recruited, 230 did not pass the attention
check questions, 44 had answers that made the suggestions larger than 100 or smaller than 0, and
180 had at least one influence factor larger than 150% or smaller than -50%. In total, that left us
with data from 129 participants that met all criteria (43 females, 85 males, and 1 prefer not to say,
Average,ge = 35.76). Although we have increased the difficulty of the attention check questions,
the overall pass ratio was similar compared to Experiment 1 and 2.

5.2.2 Influence Factor: Overall Analysis. We first tested the within-participants effect of agent type
on influence factor. A paired t-test revealed that the difference between the influence of humans
(M =0.52, SD = 0.36) and the influence of algorithms (M = 0.56, SD = 0.34) was not significant, t =
0.90, p = .37, given our study design and this specific set of framings.

We then tested the effect of six different conditions on influence factor, see Fig 8 on page 18.
One-way ANOVA showed a significant difference between six conditions, F (5, 252) = 4.124, p
=.0012. Again, we did the bootstrapped version of ANOVA to check this result, p = .0024. A Tukey
post hoc test revealed that there was a significant difference between Expert (M = 0.69, SD = 0.32)
and Mturker (M = 0.41, SD = 0.32) and between Expert and Person (M = 0.44, SD = 0.37). The
results are summarized in Table 4 (left) on page 17. With this study design, the variance between
conditions was mainly because of the variance between different human agents.

5.2.3 Influence Factor: Unadjusted Pair Comparison. The main purpose of this experiment was to
demonstrate how different combinations of framings can lead to different results. To do so, we
additionally did unadjusted pairwise t-tests between conditions to simulate possible results if only
two conditions were included in this study. The results showed that there were significant
differences between AI (M = 0.61, SD = 0.31) and Mturker (M = 0.41, SD = 0.32), Al and Person (M
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Influence Factor

Al Algorithm Computer Expert Mturker  Person
Condition

Fig. 8. Experiment 3: Mean Influence Factor by Condition. Error bars represent
standard errors of the mean.

= 0.44, SD = 0.37), Algorithm (M = 0.51, SD = 0.35) and Expert (M = 0.69, SD = 0.32), Expert and
Mturker, and Expert and Person. There were marginally significant differences between
Computer (M = 0.56, SD = 0.36) and Expert, and Computer and Mturker. The results and possible
conclusions are summarized in Table 4 (middle), showing that different combinations of framings
can lead to different conclusions, which is likely a cause of inconsistent findings on algorithm
appreciation and algorithm aversion in previous literature.

5.2.4 Power. We tested the within-participants effect of agent type on expert power. A paired t-
test revealed that the difference between the expert power of humans (M = 14.5, SD = 4.14) and
the expert power of algorithms (M = 15.8, SD = 3.25) was significant, ¢ = 2.65, p = .0090. With our
study design and this specific set of framings, algorithmic agents were perceived to have more
expert power than humans overall.

We then tested the effect of six different conditions on expert power, see Fig 9. One-way
ANOVA showed a significant difference between six conditions, F (5, 252) = 10.58, p < .001. A
Tukey post hoc test revealed that there was a significant difference between AI (M = 16.5, SD =
3.28) and Mturker (M = 14.00, SD = 3.89), p = .016, Al and Person (M = 12.6, SD = 4.14), p < .001,

15

L

Expert Power

Al Algorithm Computer Expert Mturker Person
Condition

Fig. 9. Experiment 3: Total Score of Expert Power by Condition. Error bars
represent standard errors of the mean.
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Algorithm (M = 15.5, SD = 2.89) and Person, p < .001, Computer (M = 15.4, SD = 3.53) and Person,
p =.0016, Expert (M = 17.2, SD = 2.80) and Mturker, p < .001, and Expert and Person, p < .001.

5.2.5 Mediation Analysis. Similar to the previous experiments, we were interested in whether
expert power mediated the effects or not.

We first tested whether expert power mediated the effect of agent type on influence factor.
Because the total effect of agent type on influence factor was not significant, we used the
bootstrapping procedure to do mediation analysis instead of the traditional methodology that we
used in Experiment 1 and 2. This was possible, though not ideal, because a significant total effect
is not necessary to claim an indirect effect [27]. When human was coded as 1 and algorithm as 0,
using Model 4 from Hayes’s [17] PROCESS macro v3.5 beta for R, we calculated the indirect effect
for each of 5000 bootstrapped samples, and the 95% confidence interval was computed by
determining the indirect effects at the 2.5th and 97.5th percentiles. The bootstrapped
unstandardized indirect effect was -.044, SE = 0.017, 95% CI [-0.079, -0.012]. Because the
confidence interval did not include zero, the indirect effect was significant. we would say that
expert power significantly mediated the effect of agent type on influence factor.

Similarly, we also tested whether expert power mediated the effects of different conditions on
influence factor. The bootstrapping method was basically the same, except for how conditions
were coded: for each condition, we used five dummy variables to code the other five conditions
and then calculated the indirect effect. The results are summarized in Table 4 (right). Although
the results were mixed, we still can still see that expert power played an important role in the
process. In all five pairs where the influence factor differed significantly, expert power
significantly mediated the effects of conditions on influence factor.

6 DISCUSSION
6.1 Main Findings

Our results suggest that how we frame the algorithm and the human is a key factor deciding how
much people are influenced by them, which in turn affects whether the experiment yields an
algorithm appreciation result or an algorithm aversion one. In our first two experiments, we
tested how the task type (creative vs. analytical) and the agent type (algorithm vs. human) affected
how much participants were influenced in decision making tasks. In Experiment 1, participants
were more influenced by the algorithm compared to the human, regardless of the task type,
showing a clear effect of algorithm appreciation. In Experiment 2, we changed how the two agents
were described and pictured in a way that increased the human’s expert power and decreased the
algorithm’s expert power while all other factors remained unchanged. The result indicated that
there was a significant main effect that, opposite to Experiment 1, participants now preferred the
decision inputs from the human to those from the algorithm. By comparing Experiment 1 and
Experiment 2, we can see that people’s preference for algorithm vs. human is malleable through
framing. We also showed that one key factor behind this malleability is expert power, a concept
that we used to measure the agents’ influence on the participants because of their perceived
competence, which fully mediated the effect of agent type on the influence factor.

We further extended the idea of these findings in Experiment 3, comparing three types of
framings of algorithmic agents and three types of framings of human agents. The results showed
that different combinations of framings can lead to different conclusions about whether people
prefer suggestions from algorithms or from humans, which explained the inconsistent findings

PACM on Human-Computer Interaction, Vol. 5, No. CSCW2, Article 477, Publication date: October 2021.



477:20 Yoyo Tsung-Yu Hou & Malte F. Jung

in previous literature. We also found that in pairs that differed significantly in influence factor,
expert power was again the key variable that mediated the effect of different conditions on the
influence factor. An interesting finding was that, given our framing design in Experiment 3, the
variance of the influence factor between different human conditions was larger than the variance
between algorithms. This is probably one important cause of the inconsistency in previous
literature, and we believe that this finding provides an important insight and is worthy of further
investigation in future study.

In sum, we found that the phenomena of algorithm appreciation and algorithm aversion have
a common factor, expert power. In a given context, whether people will show algorithm aversion
or algorithm appreciation depends on how powerful the algorithm is framed in comparison to the
human. The key deciding factor between algorithm aversion and algorithm appreciation is
therefore how much expert power each agent has in relation to each other. Thus, in our view, it is
therefore less meaningful to argue whether people actually adhere more to algorithm inputs or
human inputs. What matters more is the framing: what kind of people and what kind of algorithm
we are comparing. And if the ultimate goals of these two streams of studies are both facilitating
the application and acceptance of algorithmic decision support systems, the key question should
become how we can better frame the algorithms so that they can be perceived as more competent,
i.e., having more expert power, within a given context. We believe that, by shifting perspective
in this way, we can generate fruitful findings of greater implication values.

6.2 Practical and Theoretical Implications

Our findings suggest that framing and expert power matter more than whether the decision input
comes from algorithms or humans. We believe this finding is important in shaping the trajectory
of future research in algorithmic decision support systems. Previously, the research stream that
found algorithm aversion contradicted with the research stream that found algorithm
appreciation in their suggestions to make these support systems more effective. The stream of
algorithm aversion have addressed the importance of alleviating the effect of algorithm aversion
and even have persuaded some companies using algorithms to present their outcomes as less
algorithmic and with more “human touch” [20]. On the other hand, the stream of algorithm
appreciation have suggested that, to make the decision inputs more influential, what we need to
do is let people know that these inputs come from algorithms [20]. Our current study suggests
that these two approaches are both not ideal. The key question is not whether the decision inputs
are marked as from algorithms or from humans; instead, thinking about how these agents are
framed and how to make these framings more powerful may generate more pertinent answers.
It should be noted that what we mean by “framing” is a broader term than how it is usually
used. It consists of, traditionally, how a term is described and, additionally, how the term itself is
chosen and the interaction between the term and the description. Take our Experiment 3 as an
example. In the Al and Mturker conditions, their descriptions were both “who (which) scored
higher than most of the participants in a previous experiment.” And in the Computer and Person
conditions, the descriptions were both “who (which) is randomly picked from a previous
experiment.” We would think, traditionally, that the framings of the algorithmic agent and the
human agent were “the same” in both cases. However, with our simulation analysis in Experiment
3, we found an algorithm appreciation effect in the former pair, while it was inconclusive in the
latter pair. It is therefore problematic to say that we can control the framing in a study by using
the same description for both agents, and then claim that algorithm appreciation (in the former
case) or no conclusion (in the latter case) is the default answer to whether people prefer
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algorithms or humans—our results have shown that you can get different results even when the
descriptions are held constant.

This example illustrates the complexity of framing in two ways. First, the term itself that one
chooses also carries certain meaning and certain level of expert power, and this is inevitable when
comparing algorithm agents against human agents. In this kind of study, we need to give different
names to the agents so that people know that they are comparing different kinds of agents.
However, by calling the human agent “another Mturker” instead of “a person”, and by calling the
algorithm “AI” instead of just “a computer”, we already assign a certain amount of expert power
to the agents, and this term becomes part of the framing, which influences people’s preference.
Second, there might be interaction between the term and the description. The same description
or even a single word might have different meanings according to the agent type. For example,
“training” and “learning” might mean very different things to a human versus to an algorithm. “A
group of experts” may sound powerful, but “a group of algorithms” is not that much more
impressive than “an algorithm”. In short, when comparing humans and algorithms, framing and
expert power are so entangled with agent type, the term we choose, the description, and the
interaction between all these factors. We therefore should be very aware of these effects, and,
although not entirely possible, try to control them carefully if we want to further investigate other
factors in our future endeavors on this topic.

Our results also provide insights into some contradicting results in previous studies regarding
task subjectivity and objectivity. In Castelo et al’s study [7], they found that the more objective
the task is, the less severe algorithm aversion is. However, even in some of the most objective
tasks, their participants were at most indifferent between the algorithmic input and the human
input, indicating that algorithm aversion is overwhelmingly powerful. However, Logg et al’s
study [20] suggested an overwhelming algorithm appreciation, regardless of task subjectivity and
objectivity. It is therefore unclear regarding how task objectivity and subjectivity influence
algorithm aversion and algorithm appreciation. Our findings reconcile this contradiction by
showing that expert power is probably the overwhelmingly important factor here, while task type
may be a minor influencer. It is possible that in Logg et al’s study, the power difference between
human and algorithm was huge, so that they did not observe the effect of task type. Only when
the power difference was smaller, such as in Castelo et al’s study, we can really see the smaller
effect of task type.

This paper also contributes methodologically to the research on Al-supported decision making.
Traditionally, research comparing the effect of algorithms and humans often let the participants
choose between an algorithmic suggestion provider or a human suggestion provider [7,8,22]
instead of actually measuring how much participants were influenced by these agents. The results,
therefore, reflected the participant’s attitude toward algorithms versus humans but not the actual
measurable behavior. To solve this problem, Logg et al. [20] adopted the judge-advisor system
paradigm to measure influence when participants were given actual decision input in a decision
making task. They also controlled the quality of the decision input by giving participants in
different conditions identical advice, resulting in a clean experiment design where the only
difference was whether the advice was labeled as coming from the algorithm or coming from the
human. However, in their design, the advice was always a number very close to the actual answer,
which raised a new issue. Since participants varied in their initial answers, some of them might
had an initial answer close to the advice, while some might had an answer far from the advice.
This difference might cause different participants to rate the quality of the advice differently,
affecting their trust in the agents and their willingness to adhere to the advice. To address this
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issue, we therefore refined this paradigm. Instead of giving the same advice to every participant,
we gave participants decision input based on their initial answers. Since the decision input was
always the participant’s initial answer plus or minus 6 to 9, it was less viewed as too outrageous
to follow. With this refined paradigm, we are therefore able to control both the quality of the
decision input and participant’s attitude toward the agent, which is an improvement to the
original judge—advisor system paradigm.

6.3 Power as a Useful Framework in the Design of Decision Support Systems

A major finding of current study is the important role that expert power plays, which suggests
great implication values of power-related theories in the design of decision support systems.
Although the concept of power is traditionally applied only in human-human interaction, we
think it is also applicable in human-algorithm interaction, especially for those algorithms that
have human-like behavior or have replaced roles traditionally held by humans. As people are
more likely to perceive these algorithms as autonomous agents, it is more likely that we can
leverage the long traditions of Organizational Behavior and Social Psychology, where
interpersonal interaction has been intensively studied.

In the current study, we have shown that by designing for more expert power, it is possible for
an agent to cast more influence over people’s decision making. It is worth noting that expert
power is not the only type of power. According to French and Raven’s framework [11], there are
six types of power: Expert power, Reward power, Coercive power, Legitimate power, Referent
power, and Information power. Expert power, which we are already familiar with, is the result of
being more knowledgeable, competent, and knowing what the better action to take. On the other
hand, people gain Reward power by controlling how much reward others can get, and they gain
Coercive power when they can punish others who do not obey. Legitimate power is the authority
and legitimacy given by organizations or social systems. Referent power, closely related to
personal charisma, is held by people whose personality and personal traits attract admiration and
identification from others. Finally, people who own Information power hold critical information
at hand and can decide who can and cannot access that information.

Here we would like to propose that it is beneficial for us to incorporate the whole framework,
including other types of power, which will lead to a broader view for the design of algorithms.
Though this application of the power framework seems new, many parts of it have already been
raised in previous research, just not under the umbrella of power framework. For example, Burton
et al. have discussed ways to alleviate algorithm aversion [5]. They mentioned that lack of
incentives to use algorithms inputs is one reason behind algorithm aversion, so they proposed
solutions using economic and social incentivization. Seeing this suggestion through the lens of
power framework, we would like to point out that providing economic incentive is a way to
increase an agent’s reward power. On the other hand, social incentivization, which is about
creating a social context in which algorithms are trusted, is a way to increase an agent’s legitimate
power. Potentially, this framework not only covers such previous suggestions systematically, but
also can serve as a convenient framework for brainstorming new ways to increase algorithms’
influences: What if, along the line of legitimate power, we create a social context where some
algorithms have authority? Or, along the line of referent power, can an algorithm become more
influential if it has a good reputation? We believe this power framework can help us leverage
knowledge from Organizational Behavior and Social Psychology and apply that on the design of
decision support systems and, even more generally, the design of cooperative human-agent
interaction.
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6.4 Limitations and Future Directions

The current study is very much an initial investigation into reconciling algorithm aversion and
algorithm appreciations, so it still leaves many open questions. First, we found that framing and
expert power are crucial in deciding between algorithm aversion and algorithm appreciation, but
it remains unclear how these factors work and interact to influence people’s behavior. In
Experiment 1, 2 and 3, we manipulated multiple dimensions in the framings. The descriptions
differed in many ways: one vs. many, laymen vs. experts, “Al” vs. “algorithm” vs. “computer”,
how the algorithm is derived vs. its performance compared to general participants. We only had
a vague sense about how these dimensions might work when designing these framings, and we
still do not fully understand whether each dimension works or not, whether the effects of these
dimensions would differ with different agent types, and how these dimensions might interact
with each other. As previously discussed, when comparing algorithms and humans, the influence
of framing is inevitable. It entangles with the terms and descriptions we use to refer to different
types of agents. It is therefore difficult but crucial to have a deeper understanding of these
dimensions that function as the building blocks of framing, how they work, and how they
influence the perceived expert power. We therefore suggest that future research should
investigate further how much these dimensions, including terms, descriptions, or even images,
bear different levels of expert power, and how they affect people’s attitude and behavior.

Second, the tasks used in this research were very limited. We only had one type of objective
task (quantity judgement) and one type of subjective task (creativity judgement). It is therefore
inconclusive whether the findings in this study can be generalizable to other types of tasks or
other context, especially given algorithms’ wide range of application that already exists today.
The tasks used in this study all share certain characteristics. They are difficult to answer, yet they
all seem to have an objectively correct answer (even the subjective questions such as “Among 100
general people, exactly how many will find painting A more creative?” should also have a correct
answer through a large-scale survey study). This might make participants less confident in their
own decisions and more likely to cling to the opinion of experts. It is very possible that people
will trust their own idea more if the questions become more subjective, asking for their opinion
instead of a correct answer. Besides, we also did not investigate tasks that involve social values
such as moral judgement, or tasks that may lead to serious outcomes, like medical diagnosis. As
the application of Al-supported decision making is growing in these scenarios, it will be pressing
to test whether our findings can also be applied in these contexts. Also, with the design of this
research, the relationship between agent type, task type, and expert power was highly simplified.
In the real world, we would expect some level of interaction between them. For example, people
are unlikely to believe an algorithm good at financial advice will also be good at reading X-ray
images, but people might believe that an algorithm good at reading X-ray images might also be
good at reading fMRI images (even if it is actually not). Future research is necessary to explore
these relationships and interactions.

Third, while current research shows the general trend that people adhere more to the agent
which has more expert power, there were still many participants whose performance did not align
with this trend, indicating that there are more factors influencing people’s use of decision support
systems. Also, because of the limitation of online studies, we were not able to investigate in detail
the rationale behind the perceived behavior. We believe there should be more factors underlying
people’s preference for (or aversion to) algorithms. This will continue to be a great challenge in
understanding how we can design for algorithms’ greater influence.
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